A Data Fusion Analysis and Random Forest Learning for Enhanced Control and Failure Diagnosis in Rotating Machinery

In a heavily-subjected-to-failure field of rotating machinery, the need for accurate and reliable detection methods is paramount. This paper aims to advance fault detection capabilities through a novel approach that integrates current–temperature–vibration data fusion analysis and also by employing...

Full description

Saved in:
Bibliographic Details
Published inJournal of failure analysis and prevention Vol. 24; no. 6; pp. 2979 - 2989
Main Authors Mejbel, Basim Ghalib, Sarow, Salwa Ahmad, Al-Sharify, Mushtaq Talib, Al-Haddad, Luttfi A., Ogaili, Ahmed Ali Farhan, Al-Sharify, Zainab T.
Format Journal Article
LanguageEnglish
Published Materials Park Springer Nature B.V 01.12.2024
Subjects
Online AccessGet full text
ISSN1547-7029
1864-1245
1864-1245
DOI10.1007/s11668-024-02075-6

Cover

Abstract In a heavily-subjected-to-failure field of rotating machinery, the need for accurate and reliable detection methods is paramount. This paper aims to advance fault detection capabilities through a novel approach that integrates current–temperature–vibration data fusion analysis and also by employing a Random Forest (RF) artificial intelligence methodology. An experimental investigation was conducted to acquire temperature variations, vibration signals, and electrical current readings from a rotating machine subjected to various types of faults. These faults include conditions of normal operation, bearing faults (inner and outer races), shaft misalignment, and rotor unbalance, all monitored under a constant rotating speed of 680 RPM and zero load. Four ceramic shear ICP-based accelerometers, two thermocouples, and three current transformers, were collectively used to collect the data while adhering to the International Organization for Standardization (ISO) standards. To refine the data for the RF algorithm, the standard deviation of the three datasets was calculated at specific intervals, revealing a significant enhancement in diagnostic accuracy when combinedly used. The resulted accuracies varied as follows: 45.0% accuracy using current data alone, 19.4% with temperature data, 62.0% with vibration data, and a remarkable 96.0% when using data fusion. Thus, data fusion is promising in thermal, electrical, and mechanical condition monitoring. Integrating diagnostic approaches in control systems can significantly improve the reliability of rotating machinery.
AbstractList In a heavily-subjected-to-failure field of rotating machinery, the need for accurate and reliable detection methods is paramount. This paper aims to advance fault detection capabilities through a novel approach that integrates current–temperature–vibration data fusion analysis and also by employing a Random Forest (RF) artificial intelligence methodology. An experimental investigation was conducted to acquire temperature variations, vibration signals, and electrical current readings from a rotating machine subjected to various types of faults. These faults include conditions of normal operation, bearing faults (inner and outer races), shaft misalignment, and rotor unbalance, all monitored under a constant rotating speed of 680 RPM and zero load. Four ceramic shear ICP-based accelerometers, two thermocouples, and three current transformers, were collectively used to collect the data while adhering to the International Organization for Standardization (ISO) standards. To refine the data for the RF algorithm, the standard deviation of the three datasets was calculated at specific intervals, revealing a significant enhancement in diagnostic accuracy when combinedly used. The resulted accuracies varied as follows: 45.0% accuracy using current data alone, 19.4% with temperature data, 62.0% with vibration data, and a remarkable 96.0% when using data fusion. Thus, data fusion is promising in thermal, electrical, and mechanical condition monitoring. Integrating diagnostic approaches in control systems can significantly improve the reliability of rotating machinery.
Author Ogaili, Ahmed Ali Farhan
Al-Haddad, Luttfi A.
Mejbel, Basim Ghalib
Al-Sharify, Mushtaq Talib
Al-Sharify, Zainab T.
Sarow, Salwa Ahmad
Author_xml – sequence: 1
  givenname: Basim Ghalib
  surname: Mejbel
  fullname: Mejbel, Basim Ghalib
– sequence: 2
  givenname: Salwa Ahmad
  surname: Sarow
  fullname: Sarow, Salwa Ahmad
– sequence: 3
  givenname: Mushtaq Talib
  surname: Al-Sharify
  fullname: Al-Sharify, Mushtaq Talib
– sequence: 4
  givenname: Luttfi A.
  surname: Al-Haddad
  fullname: Al-Haddad, Luttfi A.
– sequence: 5
  givenname: Ahmed Ali Farhan
  surname: Ogaili
  fullname: Ogaili, Ahmed Ali Farhan
– sequence: 6
  givenname: Zainab T.
  surname: Al-Sharify
  fullname: Al-Sharify, Zainab T.
BookMark eNqNkLtOwzAUhi0EEm3hBZgsMQd8Sex0rHoBpCKkCmbrJHFaV6ld7EQob4_TMjEghnMZ_v9cvjG6tM5qhO4oeaCEyMdAqRB5Qlgag8gsERdoRHORJpSl2WXss1QmkrDpNRqHsCeEZ5RlI-RneAEt4FUXjLN4ZqHpgwkYbIU3MbkDXjmvQ4vXGrw1dotr5_HS7sCWusJzZ1vvmpN-BabpvMYLA1vrhinG4o1roR1sr1DujNW-v0FXNTRB3_7UCfpYLd_nz8n67ellPlsnJRe8TYoy02Va5YTzqtAlkyzumzIOlRY5UC7SuuJAp1PNJdSEF2lNoQBZFxmvCCd8gvh5bmeP0H9B06ijNwfwvaJEDdjUGZuK2NQJmxLRdX92Hb377OLjau86H7EExVmW5lIKIqMqP6tK70LwulalGf4caEQKfy9gv6z_uOobkJmRIA
CitedBy_id crossref_primary_10_1007_s43939_024_00175_6
crossref_primary_10_3390_machines13030216
crossref_primary_10_1016_j_rineng_2025_104416
Cites_doi 10.1016/j.engappai.2023.107681
10.1080/00207543.2022.2032860
10.1016/j.dwt.2024.100344
10.5937/fme2403471O
10.1038/s41598-024-69462-9
10.1016/j.heliyon.2024.e34202
10.2478/jee-2020-0026
10.1016/j.fusengdes.2023.114128
10.1016/j.geits.2024.100155
10.1007/s00202-023-02148-z
10.1016/j.prime.2022.100096
10.2478/jee-2022-0007
10.2478/jee-2024-0017
10.1016/j.ymssp.2023.110544
10.1007/s41939-023-00309-y
10.1016/j.dib.2023.109049
10.17531/ein/176318
10.1007/s41939-024-00389-4
10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361506
10.1016/j.compbiomed.2023.107894
10.1515/cls-2022-0214
10.1007/s40799-024-00702-3
10.1016/j.asoc.2023.111125
10.1016/j.pisc.2016.04.068
10.3390/drones7020082
10.1016/j.prime.2023.100209
10.3390/aerospace9090518
10.1016/j.eswa.2023.120860
10.1016/j.jer.2024.01.007
10.1016/j.prime.2024.100674
10.1007/s10661-019-7821-5
10.30684/etj.2023.142873.1552
10.1007/s11104-023-06089-1
10.1016/j.prime.2023.100166
10.1007/s00202-023-02195-6
10.1016/j.amjsurg.2023.10.003
10.2478/joeb-2023-0009
10.1007/s42107-024-01047-3
10.30684/etj.2023.137412.1348
10.1007/s40515-023-00369-0
10.3390/s23187857
10.1016/j.prime.2023.100387
10.5937/fme2201202D
ContentType Journal Article
Copyright ASM International 2024.
Copyright_xml – notice: ASM International 2024.
DBID AAYXX
CITATION
7SR
7TA
7TB
8BQ
8FD
FR3
JG9
KR7
ADTOC
UNPAY
DOI 10.1007/s11668-024-02075-6
DatabaseName CrossRef
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Materials Business File
METADEX
DatabaseTitleList Materials Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1864-1245
EndPage 2989
ExternalDocumentID 10.1007/s11668-024-02075-6
10_1007_s11668_024_02075_6
GroupedDBID -Y2
.86
.VR
06C
06D
0R~
0VY
199
1N0
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
CITATION
COF
CS3
CSCUP
D-I
D1I
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KB.
KDC
KOV
L6V
LLZTM
M4Y
M7S
MA-
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9N
PDBOC
PF0
PHGZM
PHGZT
PQGLB
PT4
PTHSS
PUEGO
Q2X
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~A9
7SR
7TA
7TB
8BQ
8FD
FR3
JG9
KR7
ADTOC
UNPAY
ID FETCH-LOGICAL-c363t-bc5ec4d8033dbec272ced923ade68a1364fd3a199e37af03b4f1aba7fb53d0303
IEDL.DBID UNPAY
ISSN 1547-7029
1864-1245
IngestDate Sun Sep 07 10:45:56 EDT 2025
Sun Sep 28 03:51:56 EDT 2025
Thu Apr 24 23:02:01 EDT 2025
Wed Oct 01 05:04:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-bc5ec4d8033dbec272ced923ade68a1364fd3a199e37af03b4f1aba7fb53d0303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/s11668-024-02075-6
PQID 3254877607
PQPubID 326254
PageCount 11
ParticipantIDs unpaywall_primary_10_1007_s11668_024_02075_6
proquest_journals_3254877607
crossref_citationtrail_10_1007_s11668_024_02075_6
crossref_primary_10_1007_s11668_024_02075_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Materials Park
PublicationPlace_xml – name: Materials Park
PublicationTitle Journal of failure analysis and prevention
PublicationYear 2024
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References AA Jaber (2075_CR13) 2024
D Thakur (2075_CR22) 2024; 129
V Dave (2075_CR42) 2022; 50
J Lee (2075_CR23) 2024; 199
AAF Ogaili (2075_CR41) 2024; 52
2075_CR33
2075_CR12
LA Al-Haddad (2075_CR29) 2024
J Long (2075_CR1) 2023; 61
RK Patel (2075_CR27) 2016; 8
LA Al-Haddad (2075_CR39) 2024
Q Ni (2075_CR34) 2023; 200
LA Al-Haddad (2075_CR35) 2023; 169
SS Shijer (2075_CR9) 2024; 9
CA Hounschell (2075_CR21) 2024; 227
D Bhat (2075_CR18) 2023; 4
2075_CR2
LC Brito (2075_CR6) 2023; 232
2075_CR30
Y Ren (2075_CR44) 2023
MS Hossain (2075_CR7) 2023; 6
K Pramilarani (2075_CR24) 2024; 151
MY Fattah (2075_CR36) 2024
KK Otmane (2075_CR4) 2022; 73
AAF Ogaili (2075_CR5) 2023; 10
S Ai (2075_CR45) 2022; 9
Š Grác (2075_CR19) 2024; 75
SA Mohammed (2075_CR38) 2023
LA Al-Haddad (2075_CR14) 2024; 14
LA Al-Haddad (2075_CR37) 2023; 15
LA Al-Haddad (2075_CR10) 2024; 3
WH Alawee (2075_CR47) 2023; 14
L Al-Haddad (2075_CR15) 2023; 41
LA Al-Haddad (2075_CR46) 2023; 7
WH Alawee (2075_CR40) 2024; 318
M Vukotić (2075_CR3) 2020; 71
2075_CR48
W Jung (2075_CR31) 2023; 48
H Lee (2075_CR32) 2023; 23
AAF Ogaili (2075_CR25) 2023; 13
WH Alawee (2075_CR17) 2024
LA Al-Haddad (2075_CR8) 2024
LA Al-Haddad (2075_CR16) 2023
LA Al-Haddad (2075_CR26) 2023
AA Shandookh (2075_CR11) 2024; 10
Z Yu (2075_CR20) 2021; 15
M Al-Mukhtar (2075_CR43) 2019; 191
P Dore (2075_CR28) 2023; 3
References_xml – volume: 129
  start-page: 107681
  year: 2024
  ident: 2075_CR22
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107681
– volume: 15
  start-page: 1
  year: 2021
  ident: 2075_CR20
  publication-title: Jordan J. Mech. Ind. Eng.
– volume: 61
  start-page: 8238
  year: 2023
  ident: 2075_CR1
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2022.2032860
– volume: 318
  start-page: 100344
  year: 2024
  ident: 2075_CR40
  publication-title: Desalinat. Water Treat
  doi: 10.1016/j.dwt.2024.100344
– volume: 52
  start-page: 471
  year: 2024
  ident: 2075_CR41
  publication-title: FME Trans.
  doi: 10.5937/fme2403471O
– volume: 14
  start-page: 18599
  year: 2024
  ident: 2075_CR14
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-69462-9
– volume: 10
  start-page: e34202
  year: 2024
  ident: 2075_CR11
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e34202
– volume: 71
  start-page: 195
  year: 2020
  ident: 2075_CR3
  publication-title: J. Electr. Eng.
  doi: 10.2478/jee-2020-0026
– volume: 199
  start-page: 114128
  year: 2024
  ident: 2075_CR23
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2023.114128
– volume: 3
  start-page: 100155
  year: 2024
  ident: 2075_CR10
  publication-title: Green Energy Intell. Transp.
  doi: 10.1016/j.geits.2024.100155
– year: 2023
  ident: 2075_CR26
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-023-02148-z
– volume: 3
  start-page: 100096
  year: 2023
  ident: 2075_CR28
  publication-title: Electron. Energy
  doi: 10.1016/j.prime.2022.100096
– volume: 73
  start-page: 50
  year: 2022
  ident: 2075_CR4
  publication-title: J. Elect. Eng.
  doi: 10.2478/jee-2022-0007
– ident: 2075_CR12
– volume: 75
  start-page: 137
  year: 2024
  ident: 2075_CR19
  publication-title: J. Electr. Eng.
  doi: 10.2478/jee-2024-0017
– volume: 200
  start-page: 110544
  year: 2023
  ident: 2075_CR34
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2023.110544
– year: 2023
  ident: 2075_CR38
  publication-title: Exper. Des.
  doi: 10.1007/s41939-023-00309-y
– ident: 2075_CR30
  doi: 10.1016/j.dib.2023.109049
– year: 2023
  ident: 2075_CR16
  publication-title: Eksploatacja i Niezawodność – Maint. Reliab.
  doi: 10.17531/ein/176318
– year: 2024
  ident: 2075_CR39
  publication-title: Exper. Des.
  doi: 10.1007/s41939-024-00389-4
– ident: 2075_CR33
  doi: 10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361506
– volume: 169
  start-page: 107894
  year: 2023
  ident: 2075_CR35
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.107894
– volume: 10
  start-page: 214
  year: 2023
  ident: 2075_CR5
  publication-title: Curv. Layer. Struct.
  doi: 10.1515/cls-2022-0214
– volume: 48
  start-page: 109049
  year: 2023
  ident: 2075_CR31
  publication-title: Data Brief
  doi: 10.1016/j.dib.2023.109049
– year: 2024
  ident: 2075_CR13
  publication-title: Exp. Tech.
  doi: 10.1007/s40799-024-00702-3
– volume: 151
  start-page: 111125
  year: 2024
  ident: 2075_CR24
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.111125
– volume: 8
  start-page: 334
  year: 2016
  ident: 2075_CR27
  publication-title: Perspect Sci. (Neth)
  doi: 10.1016/j.pisc.2016.04.068
– volume: 7
  start-page: 82
  year: 2023
  ident: 2075_CR46
  publication-title: Drones
  doi: 10.3390/drones7020082
– ident: 2075_CR2
  doi: 10.1016/j.prime.2023.100209
– volume: 9
  start-page: 518
  year: 2022
  ident: 2075_CR45
  publication-title: Aerospace
  doi: 10.3390/aerospace9090518
– volume: 232
  start-page: 120860
  year: 2023
  ident: 2075_CR6
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2023.120860
– year: 2024
  ident: 2075_CR17
  publication-title: J. Eng. Res.
  doi: 10.1016/j.jer.2024.01.007
– volume: 9
  start-page: 100674
  year: 2024
  ident: 2075_CR9
  publication-title: Elect. Energy
  doi: 10.1016/j.prime.2024.100674
– volume: 13
  start-page: 1082
  year: 2023
  ident: 2075_CR25
  publication-title: Int. J. Renew. Energy Res. (IJRER)
– volume: 191
  start-page: 673
  year: 2019
  ident: 2075_CR43
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-019-7821-5
– volume: 15
  start-page: 1
  year: 2023
  ident: 2075_CR37
  publication-title: Eng. Technol. J.
  doi: 10.30684/etj.2023.142873.1552
– year: 2023
  ident: 2075_CR44
  publication-title: Plant Soil
  doi: 10.1007/s11104-023-06089-1
– volume: 4
  start-page: 100166
  year: 2023
  ident: 2075_CR18
  publication-title: e-Prime – Adv. Elect. Eng. Electr. Energy
  doi: 10.1016/j.prime.2023.100166
– year: 2024
  ident: 2075_CR29
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-023-02195-6
– volume: 227
  start-page: 218
  year: 2024
  ident: 2075_CR21
  publication-title: Am. J. Surg.
  doi: 10.1016/j.amjsurg.2023.10.003
– volume: 14
  start-page: 66
  year: 2023
  ident: 2075_CR47
  publication-title: J. Electr. Bioimpedance
  doi: 10.2478/joeb-2023-0009
– year: 2024
  ident: 2075_CR8
  publication-title: Asian J. Civ. Eng.
  doi: 10.1007/s42107-024-01047-3
– volume: 41
  start-page: 1
  issue: 7
  year: 2023
  ident: 2075_CR15
  publication-title: Eng. Technol. J.
  doi: 10.30684/etj.2023.137412.1348
– year: 2024
  ident: 2075_CR36
  publication-title: Transp. Infrastr. Geotechnol.
  doi: 10.1007/s40515-023-00369-0
– volume: 23
  start-page: 7857
  year: 2023
  ident: 2075_CR32
  publication-title: Sensors
  doi: 10.3390/s23187857
– volume: 6
  start-page: 100387
  year: 2023
  ident: 2075_CR7
  publication-title: e-Prime Adv. Elect. Eng. Electr. Energy
  doi: 10.1016/j.prime.2023.100387
– volume: 50
  start-page: 202
  year: 2022
  ident: 2075_CR42
  publication-title: LASSO Feature Select. Rand. Forest Classif. FME Trans.
  doi: 10.5937/fme2201202D
– ident: 2075_CR48
SSID ssj0035125
Score 2.377289
Snippet In a heavily-subjected-to-failure field of rotating machinery, the need for accurate and reliable detection methods is paramount. This paper aims to advance...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2979
SubjectTerms Accelerometers
Accuracy
Algorithms
Artificial intelligence
Bearing races
Classification
Condition monitoring
Data integration
Electric currents
Fault detection
Fault diagnosis
Faults
Load
Machine learning
Machinery
Mechanical engineering
Misalignment
Rotating machinery
Rotating machines
Sensors
Signal processing
Temperature
Thermocouples
Vibration analysis
Title A Data Fusion Analysis and Random Forest Learning for Enhanced Control and Failure Diagnosis in Rotating Machinery
URI https://www.proquest.com/docview/3254877607
https://doi.org/10.1007/s11668-024-02075-6
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1864-1245
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035125
  issn: 1864-1245
  databaseCode: AFBBN
  dateStart: 20010201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1864-1245
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035125
  issn: 1864-1245
  databaseCode: AGYKE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1864-1245
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035125
  issn: 1864-1245
  databaseCode: U2A
  dateStart: 20010210
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5t7cPGA-wHaB0M-WFvmyGJHTt9bAsRmkQ1oVViT9E5cbaKLkVtKsT-es5OCgwhxB6Sp_NJ8V18X-LP3wF8NrQaSiw1j_LEcmmM4ZjHlkdOt1KLRKMXnj8dq5OJ_HYen7cyOe4szIP9-8NlGCqVcKokdFF54-oldFVMuLsD3cn4--CnF0SVmuvAtyQLE-WE-GTcnpB53Mm_VegOWr5aVZd4fYWz2b0qk2417YqWXpzQkUsuDla1Ocj_PpBufN4DvIHNFmyyQZMdb-GFrd7Bxj0JwvewGLAjrJGlK_fbjK01ShhWBTuj2_wPc907lzVrlVh_MYK57Lj67akDbNRQ3b19ilNHcmdHDX2PvEwrdjZ3m_007NTTNu3iehsm6fGP0Qlv-zDwXChRc0PBy2WRBEIUFPJIR-SfgCEWViUYCiXLQmDY71uhsQyEkWWIBnVpYlHQIiJ2oFPNK_sBmA4wQAKh_cREstBxXxalstrJ1NvAlmUPwnVcsrwVKXe9MmbZnbyym8-M5jPz85mpHny5HXPZSHQ8ab23DnfWvq7LTETuw02rQPfg620KPMPbx_8z34XXkcsET4fZg069WNlPBGpqsw_dQTocjvfbrL4BU_DrwQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66HtSDb3F9kYM3jbZNmnSPi7qIoIi4oKcyaVNdXLvLbovor3eSdn0hoof2NBloZpr52nz5hpA9jauhgEyxIIkME1prBkloWGB1KxWPFDjh-YtLedYV57fhbS2TY8_CfNu_Pxr7vpQRw0qCF5Y3JqfJjAwRdzfITPfyqn3nBFGFYspzLcn8SFohPhHWJ2R-dvK1Cn1Ay9kyH8LLM_T7n6pMZ7FqVzR24oSWXPJ4WBb6MHn9Jt34twdYIgs12KTtKjuWyZTJV8j8JwnCVTJq0xMogHZK-9uMTjRKKOQpvcbb4Ina7p3jgtZKrPcUYS49zR8cdYAeV1R3Z9-BniW505OKvodeejm9HtjNfhx24WibZvSyRrqd05vjM1b3YWAJl7xgGoOXiDTyOE8x5IEK0D8CQ0iNjMDnUmQpB7_VMlxB5nEtMh80qEyHPMVFhK-TRj7IzQahygMPEIS2Ih2IVIUtkWbSKCtTbzyTZU3iT-ISJ7VIue2V0Y8_5JXtfMY4n7Gbz1g2yf77mGEl0fGr9fYk3HH9uo5jHtgPNyU91SQH7ynwB2-b_zPfInOBzQRHh9kmjWJUmh0ENYXerbP5Df3t6kU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Data+Fusion+Analysis+and+Random+Forest+Learning+for+Enhanced+Control+and+Failure+Diagnosis+in+Rotating+Machinery&rft.jtitle=Journal+of+failure+analysis+and+prevention&rft.au=Mejbel%2C+Basim+Ghalib&rft.au=Sarow%2C+Salwa+Ahmad&rft.au=Al-Sharify%2C+Mushtaq+Talib&rft.au=Al-Haddad%2C+Luttfi+A.&rft.date=2024-12-01&rft.issn=1547-7029&rft.eissn=1864-1245&rft.volume=24&rft.issue=6&rft.spage=2979&rft.epage=2989&rft_id=info:doi/10.1007%2Fs11668-024-02075-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11668_024_02075_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-7029&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-7029&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-7029&client=summon