A Data Fusion Analysis and Random Forest Learning for Enhanced Control and Failure Diagnosis in Rotating Machinery
In a heavily-subjected-to-failure field of rotating machinery, the need for accurate and reliable detection methods is paramount. This paper aims to advance fault detection capabilities through a novel approach that integrates current–temperature–vibration data fusion analysis and also by employing...
Saved in:
| Published in | Journal of failure analysis and prevention Vol. 24; no. 6; pp. 2979 - 2989 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Materials Park
Springer Nature B.V
01.12.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1547-7029 1864-1245 1864-1245 |
| DOI | 10.1007/s11668-024-02075-6 |
Cover
| Abstract | In a heavily-subjected-to-failure field of rotating machinery, the need for accurate and reliable detection methods is paramount. This paper aims to advance fault detection capabilities through a novel approach that integrates current–temperature–vibration data fusion analysis and also by employing a Random Forest (RF) artificial intelligence methodology. An experimental investigation was conducted to acquire temperature variations, vibration signals, and electrical current readings from a rotating machine subjected to various types of faults. These faults include conditions of normal operation, bearing faults (inner and outer races), shaft misalignment, and rotor unbalance, all monitored under a constant rotating speed of 680 RPM and zero load. Four ceramic shear ICP-based accelerometers, two thermocouples, and three current transformers, were collectively used to collect the data while adhering to the International Organization for Standardization (ISO) standards. To refine the data for the RF algorithm, the standard deviation of the three datasets was calculated at specific intervals, revealing a significant enhancement in diagnostic accuracy when combinedly used. The resulted accuracies varied as follows: 45.0% accuracy using current data alone, 19.4% with temperature data, 62.0% with vibration data, and a remarkable 96.0% when using data fusion. Thus, data fusion is promising in thermal, electrical, and mechanical condition monitoring. Integrating diagnostic approaches in control systems can significantly improve the reliability of rotating machinery. |
|---|---|
| AbstractList | In a heavily-subjected-to-failure field of rotating machinery, the need for accurate and reliable detection methods is paramount. This paper aims to advance fault detection capabilities through a novel approach that integrates current–temperature–vibration data fusion analysis and also by employing a Random Forest (RF) artificial intelligence methodology. An experimental investigation was conducted to acquire temperature variations, vibration signals, and electrical current readings from a rotating machine subjected to various types of faults. These faults include conditions of normal operation, bearing faults (inner and outer races), shaft misalignment, and rotor unbalance, all monitored under a constant rotating speed of 680 RPM and zero load. Four ceramic shear ICP-based accelerometers, two thermocouples, and three current transformers, were collectively used to collect the data while adhering to the International Organization for Standardization (ISO) standards. To refine the data for the RF algorithm, the standard deviation of the three datasets was calculated at specific intervals, revealing a significant enhancement in diagnostic accuracy when combinedly used. The resulted accuracies varied as follows: 45.0% accuracy using current data alone, 19.4% with temperature data, 62.0% with vibration data, and a remarkable 96.0% when using data fusion. Thus, data fusion is promising in thermal, electrical, and mechanical condition monitoring. Integrating diagnostic approaches in control systems can significantly improve the reliability of rotating machinery. |
| Author | Ogaili, Ahmed Ali Farhan Al-Haddad, Luttfi A. Mejbel, Basim Ghalib Al-Sharify, Mushtaq Talib Al-Sharify, Zainab T. Sarow, Salwa Ahmad |
| Author_xml | – sequence: 1 givenname: Basim Ghalib surname: Mejbel fullname: Mejbel, Basim Ghalib – sequence: 2 givenname: Salwa Ahmad surname: Sarow fullname: Sarow, Salwa Ahmad – sequence: 3 givenname: Mushtaq Talib surname: Al-Sharify fullname: Al-Sharify, Mushtaq Talib – sequence: 4 givenname: Luttfi A. surname: Al-Haddad fullname: Al-Haddad, Luttfi A. – sequence: 5 givenname: Ahmed Ali Farhan surname: Ogaili fullname: Ogaili, Ahmed Ali Farhan – sequence: 6 givenname: Zainab T. surname: Al-Sharify fullname: Al-Sharify, Zainab T. |
| BookMark | eNqNkLtOwzAUhi0EEm3hBZgsMQd8Sex0rHoBpCKkCmbrJHFaV6ld7EQob4_TMjEghnMZ_v9cvjG6tM5qhO4oeaCEyMdAqRB5Qlgag8gsERdoRHORJpSl2WXss1QmkrDpNRqHsCeEZ5RlI-RneAEt4FUXjLN4ZqHpgwkYbIU3MbkDXjmvQ4vXGrw1dotr5_HS7sCWusJzZ1vvmpN-BabpvMYLA1vrhinG4o1roR1sr1DujNW-v0FXNTRB3_7UCfpYLd_nz8n67ellPlsnJRe8TYoy02Va5YTzqtAlkyzumzIOlRY5UC7SuuJAp1PNJdSEF2lNoQBZFxmvCCd8gvh5bmeP0H9B06ijNwfwvaJEDdjUGZuK2NQJmxLRdX92Hb377OLjau86H7EExVmW5lIKIqMqP6tK70LwulalGf4caEQKfy9gv6z_uOobkJmRIA |
| CitedBy_id | crossref_primary_10_1007_s43939_024_00175_6 crossref_primary_10_3390_machines13030216 crossref_primary_10_1016_j_rineng_2025_104416 |
| Cites_doi | 10.1016/j.engappai.2023.107681 10.1080/00207543.2022.2032860 10.1016/j.dwt.2024.100344 10.5937/fme2403471O 10.1038/s41598-024-69462-9 10.1016/j.heliyon.2024.e34202 10.2478/jee-2020-0026 10.1016/j.fusengdes.2023.114128 10.1016/j.geits.2024.100155 10.1007/s00202-023-02148-z 10.1016/j.prime.2022.100096 10.2478/jee-2022-0007 10.2478/jee-2024-0017 10.1016/j.ymssp.2023.110544 10.1007/s41939-023-00309-y 10.1016/j.dib.2023.109049 10.17531/ein/176318 10.1007/s41939-024-00389-4 10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361506 10.1016/j.compbiomed.2023.107894 10.1515/cls-2022-0214 10.1007/s40799-024-00702-3 10.1016/j.asoc.2023.111125 10.1016/j.pisc.2016.04.068 10.3390/drones7020082 10.1016/j.prime.2023.100209 10.3390/aerospace9090518 10.1016/j.eswa.2023.120860 10.1016/j.jer.2024.01.007 10.1016/j.prime.2024.100674 10.1007/s10661-019-7821-5 10.30684/etj.2023.142873.1552 10.1007/s11104-023-06089-1 10.1016/j.prime.2023.100166 10.1007/s00202-023-02195-6 10.1016/j.amjsurg.2023.10.003 10.2478/joeb-2023-0009 10.1007/s42107-024-01047-3 10.30684/etj.2023.137412.1348 10.1007/s40515-023-00369-0 10.3390/s23187857 10.1016/j.prime.2023.100387 10.5937/fme2201202D |
| ContentType | Journal Article |
| Copyright | ASM International 2024. |
| Copyright_xml | – notice: ASM International 2024. |
| DBID | AAYXX CITATION 7SR 7TA 7TB 8BQ 8FD FR3 JG9 KR7 ADTOC UNPAY |
| DOI | 10.1007/s11668-024-02075-6 |
| DatabaseName | CrossRef Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Materials Business File METADEX |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1864-1245 |
| EndPage | 2989 |
| ExternalDocumentID | 10.1007/s11668-024-02075-6 10_1007_s11668_024_02075_6 |
| GroupedDBID | -Y2 .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBRH ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATHPR AXYYD AYFIA AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA CAG CCPQU CITATION COF CS3 CSCUP D-I D1I DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HRMNR HZ~ I-F IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KB. KDC KOV L6V LLZTM M4Y M7S MA- NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P9N PDBOC PF0 PHGZM PHGZT PQGLB PT4 PTHSS PUEGO Q2X QOR QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~8M ~A9 7SR 7TA 7TB 8BQ 8FD FR3 JG9 KR7 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c363t-bc5ec4d8033dbec272ced923ade68a1364fd3a199e37af03b4f1aba7fb53d0303 |
| IEDL.DBID | UNPAY |
| ISSN | 1547-7029 1864-1245 |
| IngestDate | Sun Sep 07 10:45:56 EDT 2025 Sun Sep 28 03:51:56 EDT 2025 Thu Apr 24 23:02:01 EDT 2025 Wed Oct 01 05:04:36 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-bc5ec4d8033dbec272ced923ade68a1364fd3a199e37af03b4f1aba7fb53d0303 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/s11668-024-02075-6 |
| PQID | 3254877607 |
| PQPubID | 326254 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1007_s11668_024_02075_6 proquest_journals_3254877607 crossref_citationtrail_10_1007_s11668_024_02075_6 crossref_primary_10_1007_s11668_024_02075_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Materials Park |
| PublicationPlace_xml | – name: Materials Park |
| PublicationTitle | Journal of failure analysis and prevention |
| PublicationYear | 2024 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | AA Jaber (2075_CR13) 2024 D Thakur (2075_CR22) 2024; 129 V Dave (2075_CR42) 2022; 50 J Lee (2075_CR23) 2024; 199 AAF Ogaili (2075_CR41) 2024; 52 2075_CR33 2075_CR12 LA Al-Haddad (2075_CR29) 2024 J Long (2075_CR1) 2023; 61 RK Patel (2075_CR27) 2016; 8 LA Al-Haddad (2075_CR39) 2024 Q Ni (2075_CR34) 2023; 200 LA Al-Haddad (2075_CR35) 2023; 169 SS Shijer (2075_CR9) 2024; 9 CA Hounschell (2075_CR21) 2024; 227 D Bhat (2075_CR18) 2023; 4 2075_CR2 LC Brito (2075_CR6) 2023; 232 2075_CR30 Y Ren (2075_CR44) 2023 MS Hossain (2075_CR7) 2023; 6 K Pramilarani (2075_CR24) 2024; 151 MY Fattah (2075_CR36) 2024 KK Otmane (2075_CR4) 2022; 73 AAF Ogaili (2075_CR5) 2023; 10 S Ai (2075_CR45) 2022; 9 Š Grác (2075_CR19) 2024; 75 SA Mohammed (2075_CR38) 2023 LA Al-Haddad (2075_CR14) 2024; 14 LA Al-Haddad (2075_CR37) 2023; 15 LA Al-Haddad (2075_CR10) 2024; 3 WH Alawee (2075_CR47) 2023; 14 L Al-Haddad (2075_CR15) 2023; 41 LA Al-Haddad (2075_CR46) 2023; 7 WH Alawee (2075_CR40) 2024; 318 M Vukotić (2075_CR3) 2020; 71 2075_CR48 W Jung (2075_CR31) 2023; 48 H Lee (2075_CR32) 2023; 23 AAF Ogaili (2075_CR25) 2023; 13 WH Alawee (2075_CR17) 2024 LA Al-Haddad (2075_CR8) 2024 LA Al-Haddad (2075_CR16) 2023 LA Al-Haddad (2075_CR26) 2023 AA Shandookh (2075_CR11) 2024; 10 Z Yu (2075_CR20) 2021; 15 M Al-Mukhtar (2075_CR43) 2019; 191 P Dore (2075_CR28) 2023; 3 |
| References_xml | – volume: 129 start-page: 107681 year: 2024 ident: 2075_CR22 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107681 – volume: 15 start-page: 1 year: 2021 ident: 2075_CR20 publication-title: Jordan J. Mech. Ind. Eng. – volume: 61 start-page: 8238 year: 2023 ident: 2075_CR1 publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2022.2032860 – volume: 318 start-page: 100344 year: 2024 ident: 2075_CR40 publication-title: Desalinat. Water Treat doi: 10.1016/j.dwt.2024.100344 – volume: 52 start-page: 471 year: 2024 ident: 2075_CR41 publication-title: FME Trans. doi: 10.5937/fme2403471O – volume: 14 start-page: 18599 year: 2024 ident: 2075_CR14 publication-title: Sci. Rep. doi: 10.1038/s41598-024-69462-9 – volume: 10 start-page: e34202 year: 2024 ident: 2075_CR11 publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e34202 – volume: 71 start-page: 195 year: 2020 ident: 2075_CR3 publication-title: J. Electr. Eng. doi: 10.2478/jee-2020-0026 – volume: 199 start-page: 114128 year: 2024 ident: 2075_CR23 publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2023.114128 – volume: 3 start-page: 100155 year: 2024 ident: 2075_CR10 publication-title: Green Energy Intell. Transp. doi: 10.1016/j.geits.2024.100155 – year: 2023 ident: 2075_CR26 publication-title: Electr. Eng. doi: 10.1007/s00202-023-02148-z – volume: 3 start-page: 100096 year: 2023 ident: 2075_CR28 publication-title: Electron. Energy doi: 10.1016/j.prime.2022.100096 – volume: 73 start-page: 50 year: 2022 ident: 2075_CR4 publication-title: J. Elect. Eng. doi: 10.2478/jee-2022-0007 – ident: 2075_CR12 – volume: 75 start-page: 137 year: 2024 ident: 2075_CR19 publication-title: J. Electr. Eng. doi: 10.2478/jee-2024-0017 – volume: 200 start-page: 110544 year: 2023 ident: 2075_CR34 publication-title: Mech. Syst. Signal Process doi: 10.1016/j.ymssp.2023.110544 – year: 2023 ident: 2075_CR38 publication-title: Exper. Des. doi: 10.1007/s41939-023-00309-y – ident: 2075_CR30 doi: 10.1016/j.dib.2023.109049 – year: 2023 ident: 2075_CR16 publication-title: Eksploatacja i Niezawodność – Maint. Reliab. doi: 10.17531/ein/176318 – year: 2024 ident: 2075_CR39 publication-title: Exper. Des. doi: 10.1007/s41939-024-00389-4 – ident: 2075_CR33 doi: 10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361506 – volume: 169 start-page: 107894 year: 2023 ident: 2075_CR35 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.107894 – volume: 10 start-page: 214 year: 2023 ident: 2075_CR5 publication-title: Curv. Layer. Struct. doi: 10.1515/cls-2022-0214 – volume: 48 start-page: 109049 year: 2023 ident: 2075_CR31 publication-title: Data Brief doi: 10.1016/j.dib.2023.109049 – year: 2024 ident: 2075_CR13 publication-title: Exp. Tech. doi: 10.1007/s40799-024-00702-3 – volume: 151 start-page: 111125 year: 2024 ident: 2075_CR24 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.111125 – volume: 8 start-page: 334 year: 2016 ident: 2075_CR27 publication-title: Perspect Sci. (Neth) doi: 10.1016/j.pisc.2016.04.068 – volume: 7 start-page: 82 year: 2023 ident: 2075_CR46 publication-title: Drones doi: 10.3390/drones7020082 – ident: 2075_CR2 doi: 10.1016/j.prime.2023.100209 – volume: 9 start-page: 518 year: 2022 ident: 2075_CR45 publication-title: Aerospace doi: 10.3390/aerospace9090518 – volume: 232 start-page: 120860 year: 2023 ident: 2075_CR6 publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2023.120860 – year: 2024 ident: 2075_CR17 publication-title: J. Eng. Res. doi: 10.1016/j.jer.2024.01.007 – volume: 9 start-page: 100674 year: 2024 ident: 2075_CR9 publication-title: Elect. Energy doi: 10.1016/j.prime.2024.100674 – volume: 13 start-page: 1082 year: 2023 ident: 2075_CR25 publication-title: Int. J. Renew. Energy Res. (IJRER) – volume: 191 start-page: 673 year: 2019 ident: 2075_CR43 publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-019-7821-5 – volume: 15 start-page: 1 year: 2023 ident: 2075_CR37 publication-title: Eng. Technol. J. doi: 10.30684/etj.2023.142873.1552 – year: 2023 ident: 2075_CR44 publication-title: Plant Soil doi: 10.1007/s11104-023-06089-1 – volume: 4 start-page: 100166 year: 2023 ident: 2075_CR18 publication-title: e-Prime – Adv. Elect. Eng. Electr. Energy doi: 10.1016/j.prime.2023.100166 – year: 2024 ident: 2075_CR29 publication-title: Electr. Eng. doi: 10.1007/s00202-023-02195-6 – volume: 227 start-page: 218 year: 2024 ident: 2075_CR21 publication-title: Am. J. Surg. doi: 10.1016/j.amjsurg.2023.10.003 – volume: 14 start-page: 66 year: 2023 ident: 2075_CR47 publication-title: J. Electr. Bioimpedance doi: 10.2478/joeb-2023-0009 – year: 2024 ident: 2075_CR8 publication-title: Asian J. Civ. Eng. doi: 10.1007/s42107-024-01047-3 – volume: 41 start-page: 1 issue: 7 year: 2023 ident: 2075_CR15 publication-title: Eng. Technol. J. doi: 10.30684/etj.2023.137412.1348 – year: 2024 ident: 2075_CR36 publication-title: Transp. Infrastr. Geotechnol. doi: 10.1007/s40515-023-00369-0 – volume: 23 start-page: 7857 year: 2023 ident: 2075_CR32 publication-title: Sensors doi: 10.3390/s23187857 – volume: 6 start-page: 100387 year: 2023 ident: 2075_CR7 publication-title: e-Prime Adv. Elect. Eng. Electr. Energy doi: 10.1016/j.prime.2023.100387 – volume: 50 start-page: 202 year: 2022 ident: 2075_CR42 publication-title: LASSO Feature Select. Rand. Forest Classif. FME Trans. doi: 10.5937/fme2201202D – ident: 2075_CR48 |
| SSID | ssj0035125 |
| Score | 2.377289 |
| Snippet | In a heavily-subjected-to-failure field of rotating machinery, the need for accurate and reliable detection methods is paramount. This paper aims to advance... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 2979 |
| SubjectTerms | Accelerometers Accuracy Algorithms Artificial intelligence Bearing races Classification Condition monitoring Data integration Electric currents Fault detection Fault diagnosis Faults Load Machine learning Machinery Mechanical engineering Misalignment Rotating machinery Rotating machines Sensors Signal processing Temperature Thermocouples Vibration analysis |
| Title | A Data Fusion Analysis and Random Forest Learning for Enhanced Control and Failure Diagnosis in Rotating Machinery |
| URI | https://www.proquest.com/docview/3254877607 https://doi.org/10.1007/s11668-024-02075-6 |
| UnpaywallVersion | publishedVersion |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1864-1245 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035125 issn: 1864-1245 databaseCode: AFBBN dateStart: 20010201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1864-1245 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035125 issn: 1864-1245 databaseCode: AGYKE dateStart: 20010101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1864-1245 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035125 issn: 1864-1245 databaseCode: U2A dateStart: 20010210 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5t7cPGA-wHaB0M-WFvmyGJHTt9bAsRmkQ1oVViT9E5cbaKLkVtKsT-es5OCgwhxB6Sp_NJ8V18X-LP3wF8NrQaSiw1j_LEcmmM4ZjHlkdOt1KLRKMXnj8dq5OJ_HYen7cyOe4szIP9-8NlGCqVcKokdFF54-oldFVMuLsD3cn4--CnF0SVmuvAtyQLE-WE-GTcnpB53Mm_VegOWr5aVZd4fYWz2b0qk2417YqWXpzQkUsuDla1Ocj_PpBufN4DvIHNFmyyQZMdb-GFrd7Bxj0JwvewGLAjrJGlK_fbjK01ShhWBTuj2_wPc907lzVrlVh_MYK57Lj67akDbNRQ3b19ilNHcmdHDX2PvEwrdjZ3m_007NTTNu3iehsm6fGP0Qlv-zDwXChRc0PBy2WRBEIUFPJIR-SfgCEWViUYCiXLQmDY71uhsQyEkWWIBnVpYlHQIiJ2oFPNK_sBmA4wQAKh_cREstBxXxalstrJ1NvAlmUPwnVcsrwVKXe9MmbZnbyym8-M5jPz85mpHny5HXPZSHQ8ab23DnfWvq7LTETuw02rQPfg620KPMPbx_8z34XXkcsET4fZg069WNlPBGpqsw_dQTocjvfbrL4BU_DrwQ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66HtSDb3F9kYM3jbZNmnSPi7qIoIi4oKcyaVNdXLvLbovor3eSdn0hoof2NBloZpr52nz5hpA9jauhgEyxIIkME1prBkloWGB1KxWPFDjh-YtLedYV57fhbS2TY8_CfNu_Pxr7vpQRw0qCF5Y3JqfJjAwRdzfITPfyqn3nBFGFYspzLcn8SFohPhHWJ2R-dvK1Cn1Ay9kyH8LLM_T7n6pMZ7FqVzR24oSWXPJ4WBb6MHn9Jt34twdYIgs12KTtKjuWyZTJV8j8JwnCVTJq0xMogHZK-9uMTjRKKOQpvcbb4Ina7p3jgtZKrPcUYS49zR8cdYAeV1R3Z9-BniW505OKvodeejm9HtjNfhx24WibZvSyRrqd05vjM1b3YWAJl7xgGoOXiDTyOE8x5IEK0D8CQ0iNjMDnUmQpB7_VMlxB5nEtMh80qEyHPMVFhK-TRj7IzQahygMPEIS2Ih2IVIUtkWbSKCtTbzyTZU3iT-ISJ7VIue2V0Y8_5JXtfMY4n7Gbz1g2yf77mGEl0fGr9fYk3HH9uo5jHtgPNyU91SQH7ynwB2-b_zPfInOBzQRHh9kmjWJUmh0ENYXerbP5Df3t6kU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Data+Fusion+Analysis+and+Random+Forest+Learning+for+Enhanced+Control+and+Failure+Diagnosis+in+Rotating+Machinery&rft.jtitle=Journal+of+failure+analysis+and+prevention&rft.au=Mejbel%2C+Basim+Ghalib&rft.au=Sarow%2C+Salwa+Ahmad&rft.au=Al-Sharify%2C+Mushtaq+Talib&rft.au=Al-Haddad%2C+Luttfi+A.&rft.date=2024-12-01&rft.issn=1547-7029&rft.eissn=1864-1245&rft.volume=24&rft.issue=6&rft.spage=2979&rft.epage=2989&rft_id=info:doi/10.1007%2Fs11668-024-02075-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11668_024_02075_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-7029&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-7029&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-7029&client=summon |