New maximal functions and multiple weights for the multilinear Calderón–Zygmund theory

A multi(sub)linear maximal operator that acts on the product of m Lebesgue spaces and is smaller than the m-fold product of the Hardy–Littlewood maximal function is studied. The operator is used to obtain a precise control on multilinear singular integral operators of Calderón–Zygmund type and to bu...

Full description

Saved in:
Bibliographic Details
Published inAdvances in mathematics (New York. 1965) Vol. 220; no. 4; pp. 1222 - 1264
Main Authors Lerner, Andrei K., Ombrosi, Sheldy, Pérez, Carlos, Torres, Rodolfo H., Trujillo-González, Rodrigo
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.03.2009
Subjects
Online AccessGet full text
ISSN0001-8708
1090-2082
DOI10.1016/j.aim.2008.10.014

Cover

Abstract A multi(sub)linear maximal operator that acts on the product of m Lebesgue spaces and is smaller than the m-fold product of the Hardy–Littlewood maximal function is studied. The operator is used to obtain a precise control on multilinear singular integral operators of Calderón–Zygmund type and to build a theory of weights adapted to the multilinear setting. A natural variant of the operator which is useful to control certain commutators of multilinear Calderón–Zygmund operators with BMO functions is then considered. The optimal range of strong type estimates, a sharp end-point estimate, and weighted norm inequalities involving both the classical Muckenhoupt weights and the new multilinear ones are also obtained for the commutators.
AbstractList A multi(sub)linear maximal operator that acts on the product of m Lebesgue spaces and is smaller than the m-fold product of the Hardy–Littlewood maximal function is studied. The operator is used to obtain a precise control on multilinear singular integral operators of Calderón–Zygmund type and to build a theory of weights adapted to the multilinear setting. A natural variant of the operator which is useful to control certain commutators of multilinear Calderón–Zygmund operators with BMO functions is then considered. The optimal range of strong type estimates, a sharp end-point estimate, and weighted norm inequalities involving both the classical Muckenhoupt weights and the new multilinear ones are also obtained for the commutators.
Author Lerner, Andrei K.
Trujillo-González, Rodrigo
Ombrosi, Sheldy
Torres, Rodolfo H.
Pérez, Carlos
Author_xml – sequence: 1
  givenname: Andrei K.
  surname: Lerner
  fullname: Lerner, Andrei K.
  email: aklerner@netvision.net.il
  organization: Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, 41080 Sevilla, Spain
– sequence: 2
  givenname: Sheldy
  surname: Ombrosi
  fullname: Ombrosi, Sheldy
  email: sombrosi@uns.edu.ar
  organization: Departamento de Matemática, Universidad Nacional del Sur, Bahía Blanca, 8000, Argentina
– sequence: 3
  givenname: Carlos
  surname: Pérez
  fullname: Pérez, Carlos
  email: carlosperez@us.es
  organization: Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, 41080 Sevilla, Spain
– sequence: 4
  givenname: Rodolfo H.
  surname: Torres
  fullname: Torres, Rodolfo H.
  email: torres@math.ku.edu
  organization: Department of Mathematics, University of Kansas, 405 Snow Hall 1460 Jayhawk Blvd, Lawrence, Kansas 66045-7523, USA
– sequence: 5
  givenname: Rodrigo
  surname: Trujillo-González
  fullname: Trujillo-González, Rodrigo
  email: rotrujil@ull.es
  organization: Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna, S.C. de Tenerife, Spain
BookMark eNp9kDtOAzEQhi0UJJLAAeh8gQ32rvdhUaGIlxRBAwU0lrMeJ452vZHtENJxB47CEbgJJ8GrUFGkGs3jG-n_RmhgOwsInVMyoYQWF6uJNO0kJaSK_YRQdoSGlHCSpKRKB2hICKFJVZLqBI28X8WWM8qH6OUBtriV76aVDdYbWwfTWY-lVbjdNMGsG8BbMItl8Fh3Docl7BeNsSAdnspGgfv-sj8fn6-7RbuJYLzp3O4UHWvZeDj7q2P0fHP9NL1LZo-399OrWVJnRRaSeZVmoOcFy5XSjPFc54VmlUoZ5JLPoeS8hlyXXGqalwCyyBQDXchM0lQRyMao3P-tXee9Ay1qE2QfIzhpGkGJ6A2JlYiGRG-oH0VDkaT_yLWLHtzuIHO5ZyBGejPghK8N2BqUcVAHoTpzgP4FdFWE4w
CitedBy_id crossref_primary_10_1007_s00041_014_9326_5
crossref_primary_10_1007_s11854_021_0154_7
crossref_primary_10_1186_s13660_020_02461_2
crossref_primary_10_4134_JKMS_2012_49_5_907
crossref_primary_10_1007_s00041_019_09675_z
crossref_primary_10_1007_s11118_018_9703_9
crossref_primary_10_1515_agms_2022_0153
crossref_primary_10_1016_j_na_2014_12_001
crossref_primary_10_1007_s11401_013_0803_y
crossref_primary_10_1016_j_jmaa_2014_07_027
crossref_primary_10_1186_1029_242X_2014_510
crossref_primary_10_1007_s11464_021_0256_7
crossref_primary_10_1007_s00025_023_01959_7
crossref_primary_10_1007_s13324_018_0264_2
crossref_primary_10_1007_s11868_025_00675_w
crossref_primary_10_1007_s11868_016_0169_5
crossref_primary_10_1007_s00209_021_02943_z
crossref_primary_10_1007_s11425_010_4135_z
crossref_primary_10_1007_s00041_017_9563_5
crossref_primary_10_1142_S0219530514500043
crossref_primary_10_2748_tmj_1432229196
crossref_primary_10_1016_j_na_2015_10_004
crossref_primary_10_1090_S0002_9947_2012_05609_1
crossref_primary_10_1002_cpa_21985
crossref_primary_10_1002_mana_201200338
crossref_primary_10_1007_s10114_012_1352_0
crossref_primary_10_1007_s11118_010_9211_z
crossref_primary_10_1155_2022_4875460
crossref_primary_10_1007_s00208_018_1762_0
crossref_primary_10_1155_2014_606504
crossref_primary_10_1007_s10476_016_0202_1
crossref_primary_10_1007_s43034_023_00267_z
crossref_primary_10_1016_j_bulsci_2024_103544
crossref_primary_10_1016_j_jfa_2023_110130
crossref_primary_10_1007_s00209_022_03120_6
crossref_primary_10_1007_s43037_021_00137_7
crossref_primary_10_1186_s13660_020_02447_0
crossref_primary_10_1090_proc_13680
crossref_primary_10_1007_s00208_021_02240_4
crossref_primary_10_1016_j_na_2019_111699
crossref_primary_10_1016_j_exmath_2018_01_001
crossref_primary_10_1186_1029_242X_2013_250
crossref_primary_10_1007_s12220_020_00430_1
crossref_primary_10_1007_s13226_023_00406_1
crossref_primary_10_1007_s13348_024_00434_y
crossref_primary_10_1007_BF03191210
crossref_primary_10_1007_s11117_022_00963_5
crossref_primary_10_1515_forum_2023_0398
crossref_primary_10_1016_j_na_2013_11_003
crossref_primary_10_1016_j_jmaa_2009_08_022
crossref_primary_10_1007_s43034_023_00270_4
crossref_primary_10_1093_imrn_rnac339
crossref_primary_10_2969_jmsj_06831161
crossref_primary_10_1007_s12220_010_9174_8
crossref_primary_10_1007_s13348_022_00390_5
crossref_primary_10_1007_s11766_014_2815_0
crossref_primary_10_1007_s10114_025_3589_4
crossref_primary_10_1007_s11766_011_2784_5
crossref_primary_10_1007_s12220_019_00159_6
crossref_primary_10_2969_jmsj_07017358
crossref_primary_10_1016_j_indag_2021_09_007
crossref_primary_10_1016_j_jfa_2019_108454
crossref_primary_10_1007_s10114_023_2164_0
crossref_primary_10_1090_tran_8645
crossref_primary_10_1007_s00041_022_09973_z
crossref_primary_10_1016_j_na_2014_05_005
crossref_primary_10_1007_s00208_019_01870_z
crossref_primary_10_4213_mzm13605
crossref_primary_10_1007_s10114_025_3465_2
crossref_primary_10_1007_s11868_022_00464_9
crossref_primary_10_1186_s13660_021_02628_5
crossref_primary_10_1016_S0252_9602_12_60121_0
crossref_primary_10_3836_tjm_1358951326
crossref_primary_10_1007_s10114_013_1753_8
crossref_primary_10_1090_S2330_1511_2014_00009_2
crossref_primary_10_1007_s00208_019_01816_5
crossref_primary_10_1007_s11854_010_0032_1
crossref_primary_10_1007_s13163_016_0217_y
crossref_primary_10_1016_j_jmaa_2010_02_008
crossref_primary_10_1007_s11854_019_0049_z
crossref_primary_10_1007_s12215_019_00401_8
crossref_primary_10_1515_fca_2015_0066
crossref_primary_10_1007_s13348_020_00307_0
crossref_primary_10_11650_tjm_18_2014_3208
crossref_primary_10_1017_S1446788719000521
crossref_primary_10_1007_s00041_021_09854_x
crossref_primary_10_1016_j_aim_2020_107286
crossref_primary_10_1007_s41980_023_00816_1
crossref_primary_10_1090_S0002_9947_2013_06067_9
crossref_primary_10_1007_s11425_018_9404_4
crossref_primary_10_1002_mma_10587
crossref_primary_10_1007_s10114_021_0251_7
crossref_primary_10_1007_s10114_015_4293_6
crossref_primary_10_1155_2013_735795
crossref_primary_10_1112_jlms_12139
crossref_primary_10_1016_j_bulsci_2024_103529
crossref_primary_10_1007_s10473_021_0219_9
crossref_primary_10_1007_s11118_022_09991_y
crossref_primary_10_2969_jmsj_06441053
crossref_primary_10_1186_s13660_016_1201_2
crossref_primary_10_2969_jmsj_06720535
crossref_primary_10_1007_s00208_023_02619_5
crossref_primary_10_1007_s11868_017_0228_6
crossref_primary_10_1007_s10114_017_7051_0
crossref_primary_10_1007_s13348_019_00246_5
crossref_primary_10_1007_s00041_014_9364_z
crossref_primary_10_1007_s00041_019_09676_y
crossref_primary_10_1007_s11766_011_2367_5
crossref_primary_10_1186_s13660_021_02585_z
crossref_primary_10_3934_math_2021786
crossref_primary_10_1007_s11425_010_4016_5
crossref_primary_10_1007_s00041_018_9613_7
crossref_primary_10_1007_s10496_011_0158_8
crossref_primary_10_1007_s11117_021_00846_1
crossref_primary_10_1090_proc_15302
crossref_primary_10_1016_j_bulsci_2022_103155
crossref_primary_10_1007_s13163_021_00409_8
crossref_primary_10_1016_j_aim_2021_108099
crossref_primary_10_1016_j_bulsci_2024_103515
crossref_primary_10_1007_s11118_021_09960_x
crossref_primary_10_1007_s00041_021_09877_4
crossref_primary_10_1112_mtk_12248
crossref_primary_10_1515_forum_2020_0357
crossref_primary_10_1007_s13348_013_0083_6
crossref_primary_10_1016_j_jmaa_2012_07_037
crossref_primary_10_1016_j_jmaa_2012_07_038
crossref_primary_10_1186_s13660_015_0913_z
crossref_primary_10_1007_s43036_024_00338_5
crossref_primary_10_1002_mma_8303
crossref_primary_10_1007_s00041_021_09870_x
crossref_primary_10_1007_s00208_015_1320_y
crossref_primary_10_1007_s11868_020_00348_w
crossref_primary_10_1186_s13660_021_02560_8
crossref_primary_10_1007_s12220_018_9997_2
crossref_primary_10_1007_s11118_016_9575_9
crossref_primary_10_1007_s00208_013_0940_3
crossref_primary_10_1016_j_matpur_2013_06_007
crossref_primary_10_1007_s12220_021_00630_3
crossref_primary_10_1007_s11118_014_9455_0
crossref_primary_10_11650_twjm_1500406846
crossref_primary_10_1007_s10114_021_9567_6
crossref_primary_10_1007_s10114_023_1197_8
crossref_primary_10_1007_s12220_022_01122_8
crossref_primary_10_1007_s10114_014_3027_5
crossref_primary_10_1016_j_jmaa_2014_09_039
crossref_primary_10_1186_1029_242X_2014_109
crossref_primary_10_4153_S0008414X19000476
crossref_primary_10_1007_s00025_020_01215_2
crossref_primary_10_1002_mana_201700487
crossref_primary_10_1007_s11425_018_9471_7
crossref_primary_10_1186_1029_242X_2014_113
crossref_primary_10_1090_tran_8172
crossref_primary_10_1515_fca_2016_0037
crossref_primary_10_1016_j_jmaa_2011_08_078
crossref_primary_10_1155_2013_363916
crossref_primary_10_1017_S0013091524000191
crossref_primary_10_1007_s12220_019_00335_8
crossref_primary_10_1016_j_na_2013_08_016
crossref_primary_10_1093_imrn_rnq017
crossref_primary_10_1016_j_bulsci_2023_103311
crossref_primary_10_1515_forum_2023_0454
crossref_primary_10_1016_j_bulsci_2023_103310
crossref_primary_10_1007_s10958_011_0264_3
crossref_primary_10_1155_2013_280401
crossref_primary_10_11948_20230334
crossref_primary_10_1016_j_na_2019_111727
crossref_primary_10_1002_mana_201700376
crossref_primary_10_1155_2016_4876146
crossref_primary_10_1155_2014_325924
crossref_primary_10_1515_anona_2020_0162
crossref_primary_10_1007_s00025_019_0971_5
crossref_primary_10_1007_s10496_011_0181_9
crossref_primary_10_1007_s11868_020_00367_7
crossref_primary_10_1007_s43037_024_00353_x
crossref_primary_10_1016_j_bulsci_2012_04_001
crossref_primary_10_1307_mmj_1427203284
crossref_primary_10_1515_gmj_2018_0071
crossref_primary_10_1007_s12220_022_01123_7
crossref_primary_10_1007_s43034_023_00263_3
crossref_primary_10_1155_2012_128520
crossref_primary_10_1186_s13660_017_1325_z
crossref_primary_10_1007_s11868_024_00591_5
crossref_primary_10_1007_s10114_015_4112_0
crossref_primary_10_1090_proc_15101
crossref_primary_10_1007_s10114_010_8421_z
crossref_primary_10_1007_s10476_024_00018_9
crossref_primary_10_11650_tjm_211101
crossref_primary_10_1007_s11464_017_0634_3
crossref_primary_10_1007_s11118_020_09870_4
crossref_primary_10_1090_proc_13841
crossref_primary_10_1007_s10114_011_0591_9
crossref_primary_10_1155_2014_686017
crossref_primary_10_1186_1029_242X_2012_179
crossref_primary_10_1007_s00041_023_10030_6
crossref_primary_10_1016_j_jmaa_2010_03_058
crossref_primary_10_1007_s12215_013_0131_9
crossref_primary_10_1016_j_jmaa_2010_03_057
crossref_primary_10_1002_mana_201800080
crossref_primary_10_1007_s10476_019_0818_z
crossref_primary_10_1007_s10473_020_0119_7
crossref_primary_10_1515_gmj_2023_2036
crossref_primary_10_3934_math_2022333
crossref_primary_10_1007_s12220_020_00400_7
crossref_primary_10_1007_s11425_016_0324_3
crossref_primary_10_1007_s41478_018_0144_z
crossref_primary_10_1112_blms_70003
crossref_primary_10_1134_S0001434622070057
crossref_primary_10_1002_mana_201700271
crossref_primary_10_2140_paa_2023_5_47
crossref_primary_10_1007_s11464_020_0822_4
crossref_primary_10_1016_j_bulsci_2018_01_003
crossref_primary_10_1007_s11425_013_4607_z
crossref_primary_10_1090_tran_8007
crossref_primary_10_1515_forum_2018_0008
crossref_primary_10_1007_s11117_021_00828_3
crossref_primary_10_1007_s13398_020_00955_8
crossref_primary_10_1007_s10114_020_8324_6
crossref_primary_10_1080_17476933_2024_2418872
crossref_primary_10_1007_s00208_018_1640_9
crossref_primary_10_1007_s11766_013_3154_2
crossref_primary_10_1007_s11464_014_0420_4
crossref_primary_10_1007_s12220_020_00478_z
crossref_primary_10_1007_s10587_012_0034_5
crossref_primary_10_1007_s43037_023_00256_3
crossref_primary_10_1112_blms_12585
crossref_primary_10_1515_math_2021_0031
crossref_primary_10_1007_s13348_022_00381_6
crossref_primary_10_1017_nmj_2018_30
crossref_primary_10_1016_j_jfa_2024_110661
crossref_primary_10_1016_S0252_9602_11_60273_7
crossref_primary_10_1007_s11401_017_1096_3
crossref_primary_10_1186_s13660_019_2051_5
crossref_primary_10_1007_s40840_021_01153_4
crossref_primary_10_1016_j_jmaa_2010_07_057
crossref_primary_10_1515_FORM_2011_134
crossref_primary_10_1090_S0002_9939_2013_11689_8
crossref_primary_10_1155_2021_8289155
crossref_primary_10_1016_j_jmaa_2022_126608
crossref_primary_10_1007_s00041_023_10061_z
crossref_primary_10_1017_prm_2023_57
crossref_primary_10_1155_2015_967390
crossref_primary_10_1007_s10476_025_00065_w
crossref_primary_10_1007_s11766_019_3501_z
crossref_primary_10_1186_s13660_017_1553_2
crossref_primary_10_1016_j_jmaa_2015_06_037
crossref_primary_10_1186_s13660_022_02888_9
crossref_primary_10_1007_s00208_022_02402_y
crossref_primary_10_1155_2014_570450
crossref_primary_10_1007_s11118_015_9477_2
crossref_primary_10_1016_j_matpur_2020_02_006
crossref_primary_10_1016_j_jmaa_2013_07_041
crossref_primary_10_1007_s13163_017_0253_2
crossref_primary_10_1002_mana_202200435
crossref_primary_10_11650_tjm_230703
crossref_primary_10_1515_math_2024_0070
crossref_primary_10_1007_s11868_019_00295_1
crossref_primary_10_1017_S0013091517000153
crossref_primary_10_1017_S001309151900021X
crossref_primary_10_1007_s11117_011_0129_5
crossref_primary_10_1007_s10476_022_0116_z
crossref_primary_10_1002_mana_201800311
crossref_primary_10_3934_cam_2024031
crossref_primary_10_1007_s10587_013_0074_5
crossref_primary_10_1007_s12220_019_00226_y
crossref_primary_10_4153_CMB_2017_033_9
crossref_primary_10_1016_j_aim_2013_12_027
crossref_primary_10_1007_s11118_022_10032_x
crossref_primary_10_1007_s11464_015_0505_8
crossref_primary_10_1007_s12220_012_9367_4
crossref_primary_10_1007_s00209_015_1437_4
crossref_primary_10_11650_tjm_17_2013_2087
crossref_primary_10_1007_s10474_022_01273_8
crossref_primary_10_1007_s11118_015_9481_6
crossref_primary_10_1007_s11565_016_0260_0
Cites_doi 10.2307/2373450
10.5802/aif.708
10.4064/sm-51-3-241-250
10.1007/BF02386000
10.4310/MRL.1999.v6.n1.a1
10.1007/BF02921864
10.1155/IMRN.2005.1849
10.1090/S0002-9947-1972-0293384-6
10.2307/1970954
10.1016/j.aim.2005.04.009
10.2307/2952458
10.2307/120971
10.1016/0021-9045(85)90102-9
10.1112/plms/s3-71.1.135
10.1112/jlms/49.2.296
10.1090/S0002-9939-08-09318-0
10.1007/BF02392130
10.1090/S0002-9939-1983-0684636-9
10.1007/BF02392840
10.1006/jfan.1993.1032
10.4064/sm-32-3-305-310
10.1006/aima.2001.2028
10.1090/S0002-9947-1975-0380244-8
10.1512/iumj.2002.51.2114
10.1007/BF02392554
10.1002/cpa.3160140317
10.1016/j.jmaa.2003.09.051
10.1007/BF02392215
10.1006/jfan.1995.1027
ContentType Journal Article
Copyright 2008 Elsevier Inc.
Copyright_xml – notice: 2008 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.aim.2008.10.014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1090-2082
EndPage 1264
ExternalDocumentID 10_1016_j_aim_2008_10_014
S0001870808003198
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABCQX
ABEFU
ABFNM
ABJNI
ABLJU
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFDAS
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
D0L
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
UPT
WH7
XOL
XPP
ZCG
ZKB
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c363t-b823efb645ddf4495f56f48d24e5a9be799ce5f79af157eea63d4ef6a3a12d0e3
IEDL.DBID IXB
ISSN 0001-8708
IngestDate Thu Sep 18 00:14:07 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Fri Feb 23 02:21:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Weighted norm inequalities
42B25
42B20
Calderón–Zygmund theory
Commutators
Multilinear singular integrals
Maximal operators
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-b823efb645ddf4495f56f48d24e5a9be799ce5f79af157eea63d4ef6a3a12d0e3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0001870808003198
PageCount 43
ParticipantIDs crossref_citationtrail_10_1016_j_aim_2008_10_014
crossref_primary_10_1016_j_aim_2008_10_014
elsevier_sciencedirect_doi_10_1016_j_aim_2008_10_014
PublicationCentury 2000
PublicationDate 2009-03-01
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-01
  day: 01
PublicationDecade 2000
PublicationTitle Advances in mathematics (New York. 1965)
PublicationYear 2009
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Jawerth, Torchinsky (bib030) 1985; 43
Cruz-Uribe, Neugebauer (bib015) 1995; 347
Pérez (bib043) 1995; 71
Chiarenza, Frasca, Longo (bib005) 1993; 334
Pérez (bib041) 1994; 49
Lacey, Thiele (bib036) 1999; 149
Christ, Fefferman (bib007) 1983; 87
Lacey, Thiele (bib035) 1997; 146
Di Fazio, Ragusa (bib017) 1993; 112
Stein (bib048) 1998; 45
Coifman, Meyer (bib010) 1975; 212
Lerner (bib037) 2004; 289
Ferguson, Lacey (bib021) 2002; 189
Coifman, Rochberg, Weiss (bib013) 1976; 103
Calderón, Zygmund (bib003) 1952; 88
Chiarenza, Frasca, Longo (bib004) 1991; 40
Lerner (bib038) 2008; 136
Christ, Journé (bib008) 1987; 159
Curbera, García-Cuerva, Martell, Pérez (bib016) 2006; 203
Journé (bib032) 1983; vol. 994
Pérez, Pradolini (bib044) 2001; 49
Coifman, Meyer (bib012) 1986; vol. 112
John, Nirenberg (bib031) 1961; 14
Fefferman, Stein (bib018) 1971; 93
Grafakos, Martell (bib024) 2004; 14
M. Lacey, S. Petermichl, J. Pipher, B. Wick, Multiparameter Riesz commutators, Amer. J. Math., in press
Volberg (bib049) 2003; vol. 100
Grafakos, Torres (bib027) 2002
Grafakos, Torres (bib025) 2002; 165
Janson (bib029) 1978; 16
Stein (bib047) 1969; 32
Kenig, Stein (bib033) 1999; 6
Coifman, Fefferman (bib009) 1974; 51
Alvarez, Pérez (bib001) 1994; 8
Pérez (bib042) 1995; 128
Coifman, Meyer (bib011) 1978; 28
Martín-Reyes (bib039) 1995
Bennett, Sharpley (bib002) 1988; vol. 129
Grafakos (bib023) 2004
Grafakos, Torres (bib026) 2002; 51
García-Cuerva, Rubio de Francia (bib022) 1985
Fefferman (bib020) 1999
Pérez, Torres (bib045) 2003; vol. 320
Wilson (bib050) 2008; vol. 1924
Christ (bib006) 1990; vol. 77
Rao, Ren (bib046) 1991
Cruz-Uribe, Martell, Pérez (bib014) 2005; 30
Fefferman, Stein (bib019) 1972; 129
Iwaniec, Sbordone (bib028) 1994; 454
Muckenhoupt (bib040) 1972; 165
Fefferman (10.1016/j.aim.2008.10.014_bib019) 1972; 129
Janson (10.1016/j.aim.2008.10.014_bib029) 1978; 16
Christ (10.1016/j.aim.2008.10.014_bib008) 1987; 159
Pérez (10.1016/j.aim.2008.10.014_bib041) 1994; 49
Iwaniec (10.1016/j.aim.2008.10.014_bib028) 1994; 454
Stein (10.1016/j.aim.2008.10.014_bib048) 1998; 45
Volberg (10.1016/j.aim.2008.10.014_bib049) 2003; vol. 100
Fefferman (10.1016/j.aim.2008.10.014_bib020) 1999
Grafakos (10.1016/j.aim.2008.10.014_bib024) 2004; 14
Muckenhoupt (10.1016/j.aim.2008.10.014_bib040) 1972; 165
Coifman (10.1016/j.aim.2008.10.014_bib013) 1976; 103
Cruz-Uribe (10.1016/j.aim.2008.10.014_bib014) 2005; 30
Lerner (10.1016/j.aim.2008.10.014_bib037) 2004; 289
Curbera (10.1016/j.aim.2008.10.014_bib016) 2006; 203
Christ (10.1016/j.aim.2008.10.014_bib006) 1990; vol. 77
Lacey (10.1016/j.aim.2008.10.014_bib035) 1997; 146
Pérez (10.1016/j.aim.2008.10.014_bib044) 2001; 49
Martín-Reyes (10.1016/j.aim.2008.10.014_bib039) 1995
Christ (10.1016/j.aim.2008.10.014_bib007) 1983; 87
John (10.1016/j.aim.2008.10.014_bib031) 1961; 14
Pérez (10.1016/j.aim.2008.10.014_bib045) 2003; vol. 320
Pérez (10.1016/j.aim.2008.10.014_bib043) 1995; 71
Coifman (10.1016/j.aim.2008.10.014_bib011) 1978; 28
Calderón (10.1016/j.aim.2008.10.014_bib003) 1952; 88
Coifman (10.1016/j.aim.2008.10.014_bib012) 1986; vol. 112
Jawerth (10.1016/j.aim.2008.10.014_bib030) 1985; 43
Kenig (10.1016/j.aim.2008.10.014_bib033) 1999; 6
Alvarez (10.1016/j.aim.2008.10.014_bib001) 1994; 8
Journé (10.1016/j.aim.2008.10.014_bib032) 1983; vol. 994
Chiarenza (10.1016/j.aim.2008.10.014_bib005) 1993; 334
Lacey (10.1016/j.aim.2008.10.014_bib036) 1999; 149
10.1016/j.aim.2008.10.014_bib034
García-Cuerva (10.1016/j.aim.2008.10.014_bib022) 1985
Di Fazio (10.1016/j.aim.2008.10.014_bib017) 1993; 112
Lerner (10.1016/j.aim.2008.10.014_bib038) 2008; 136
Bennett (10.1016/j.aim.2008.10.014_bib002) 1988; vol. 129
Fefferman (10.1016/j.aim.2008.10.014_bib018) 1971; 93
Cruz-Uribe (10.1016/j.aim.2008.10.014_bib015) 1995; 347
Grafakos (10.1016/j.aim.2008.10.014_bib023) 2004
Rao (10.1016/j.aim.2008.10.014_bib046) 1991
Grafakos (10.1016/j.aim.2008.10.014_bib026) 2002; 51
Wilson (10.1016/j.aim.2008.10.014_bib050) 2008; vol. 1924
Stein (10.1016/j.aim.2008.10.014_bib047) 1969; 32
Chiarenza (10.1016/j.aim.2008.10.014_bib004) 1991; 40
Grafakos (10.1016/j.aim.2008.10.014_bib025) 2002; 165
Coifman (10.1016/j.aim.2008.10.014_bib010) 1975; 212
Pérez (10.1016/j.aim.2008.10.014_bib042) 1995; 128
Coifman (10.1016/j.aim.2008.10.014_bib009) 1974; 51
Grafakos (10.1016/j.aim.2008.10.014_bib027) 2002
Ferguson (10.1016/j.aim.2008.10.014_bib021) 2002; 189
References_xml – volume: vol. 77
  year: 1990
  ident: bib006
  article-title: Lectures on Singular Integral Operators
  publication-title: CBMS Reg. Conf. Ser. Math.
– volume: 87
  start-page: 447
  year: 1983
  end-page: 448
  ident: bib007
  article-title: A note on weighted norm inequalities for the Hardy–Littlewood maximal operator
  publication-title: Proc. Amer. Math. Soc.
– volume: vol. 100
  year: 2003
  ident: bib049
  article-title: Calderón–Zygmund Capacities and Operators on Nonhomogeneous Spaces
  publication-title: CBMS Reg. Conf. Ser. Math.
– volume: 71
  start-page: 135
  year: 1995
  end-page: 157
  ident: bib043
  article-title: On sufficient conditions for the boundedness of the Hardy–Littlewood maximal operator between weighted
  publication-title: Proc. London Math. Soc. (3)
– start-page: 237
  year: 1995
  end-page: 250
  ident: bib039
  article-title: On the one-sided Hardy–Littlewood maximal function in the real line and in dimensions greater than one
  publication-title: Fourier Analysis and Partial Differential Equations
– volume: 88
  start-page: 85
  year: 1952
  end-page: 139
  ident: bib003
  article-title: On the existence of certain singular integrals
  publication-title: Acta Math.
– volume: 40
  start-page: 149
  year: 1991
  end-page: 168
  ident: bib004
  article-title: Interior
  publication-title: Ric. Mat.
– volume: 146
  start-page: 693
  year: 1997
  end-page: 724
  ident: bib035
  publication-title: Ann. of Math. (2)
– volume: vol. 1924
  year: 2008
  ident: bib050
  article-title: Weighted Littlewood–Paley Theory and Exponential-Square Integrability
  publication-title: Lecture Notes in Math.
– volume: 28
  start-page: 177
  year: 1978
  end-page: 202
  ident: bib011
  article-title: Commutateurs d'intégrales singulières et opérateurs multilinéaires
  publication-title: Ann. Inst. Fourier (Grenoble)
– volume: 103
  start-page: 611
  year: 1976
  end-page: 635
  ident: bib013
  article-title: Factorization theorems for Hardy spaces in several variables
  publication-title: Ann. of Math.
– volume: 189
  start-page: 143
  year: 2002
  end-page: 160
  ident: bib021
  article-title: A characterization of product BMO by commutators
  publication-title: Acta Math.
– volume: 32
  start-page: 305
  year: 1969
  end-page: 310
  ident: bib047
  article-title: Note on the class
  publication-title: Studia Math.
– volume: 51
  start-page: 241
  year: 1974
  end-page: 250
  ident: bib009
  article-title: Weighted norm inequalities for maximal functions and singular integrals
  publication-title: Studia Math.
– volume: 454
  start-page: 143
  year: 1994
  end-page: 161
  ident: bib028
  article-title: Weak minima of variational integrals
  publication-title: J. Reine Angew. Math.
– volume: 30
  start-page: 1849
  year: 2005
  end-page: 1871
  ident: bib014
  article-title: Weighted weak-type inequalities and a conjecture of Sawyer
  publication-title: Int. Math. Res. Not.
– volume: 112
  start-page: 241
  year: 1993
  end-page: 256
  ident: bib017
  article-title: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients
  publication-title: J. Funct. Anal.
– volume: 212
  start-page: 315
  year: 1975
  end-page: 331
  ident: bib010
  article-title: On commutators of singular integrals and bilinear singular integrals
  publication-title: Trans. Amer. Math. Soc.
– volume: 49
  start-page: 296
  year: 1994
  end-page: 308
  ident: bib041
  article-title: Weighted norm inequalities for singular integral operators
  publication-title: J. London Math. Soc.
– volume: 45
  start-page: 1130
  year: 1998
  end-page: 1140
  ident: bib048
  article-title: Singular integrals: The roles of Calderón and Zygmund
  publication-title: Notices Amer. Math. Soc.
– volume: vol. 112
  start-page: 3
  year: 1986
  end-page: 45
  ident: bib012
  article-title: Nonlinear harmonic analysis, operator theory and P.D.E.
  publication-title: Beijing Lectures in Harmonic Analysis
– year: 1985
  ident: bib022
  article-title: Weighted Norm Inequalities and Related Topics
– volume: 129
  start-page: 137
  year: 1972
  end-page: 193
  ident: bib019
  publication-title: Acta Math.
– volume: vol. 994
  year: 1983
  ident: bib032
  article-title: Calderón–Zygmund Operators, Pseudo-differential Operators and the Cauchy Integral of Calderón
  publication-title: Lecture Notes in Math.
– volume: 16
  start-page: 263
  year: 1978
  end-page: 270
  ident: bib029
  article-title: Mean oscillation and commutators of singular integral operators
  publication-title: Ark. Mat.
– volume: 149
  start-page: 475
  year: 1999
  end-page: 496
  ident: bib036
  article-title: On Calderón's conjecture
  publication-title: Ann. of Math. (2)
– volume: 334
  start-page: 841
  year: 1993
  end-page: 853
  ident: bib005
  publication-title: Trans. Amer. Math. Soc.
– volume: 14
  start-page: 19
  year: 2004
  end-page: 46
  ident: bib024
  article-title: Extrapolation of weighted norm inequalities for multivariable operators and applications
  publication-title: J. Geom. Anal.
– year: 2004
  ident: bib023
  article-title: Classical and Modern Fourier Analysis
– reference: M. Lacey, S. Petermichl, J. Pipher, B. Wick, Multiparameter Riesz commutators, Amer. J. Math., in press
– start-page: 57
  year: 2002
  end-page: 91
  ident: bib027
  article-title: On multilinear singular integrals of Calderón–Zygmund type
  publication-title: Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations
– year: 1991
  ident: bib046
  article-title: Theory of Orlicz Spaces
– volume: 165
  start-page: 124
  year: 2002
  end-page: 164
  ident: bib025
  article-title: Multilinear Calderón–Zygmund theory
  publication-title: Adv. Math.
– volume: vol. 129
  year: 1988
  ident: bib002
  article-title: Interpolation of Operators
  publication-title: Pure Appl. Math.
– volume: 203
  start-page: 256
  year: 2006
  end-page: 318
  ident: bib016
  article-title: Extrapolation with weights to rearrangement invariant function spaces and modular inequalities, with applications to singular integrals
  publication-title: Adv. Math.
– volume: 165
  start-page: 207
  year: 1972
  end-page: 226
  ident: bib040
  article-title: Weighted norm inequalities for the Hardy maximal function
  publication-title: Trans. Amer. Math. Soc.
– volume: 8
  start-page: 123
  year: 1994
  end-page: 133
  ident: bib001
  article-title: Estimates with
  publication-title: Boll. Unione Mat. Ital. Sez. A (7)
– start-page: 207
  year: 1999
  end-page: 221
  ident: bib020
  article-title: Multiparameter Calderón–Zygmund theory
  publication-title: Harmonic Analysis and Partial Differential Equations
– volume: 43
  start-page: 231
  year: 1985
  end-page: 270
  ident: bib030
  article-title: Local sharp maximal functions
  publication-title: J. Approx. Theory
– volume: 128
  start-page: 163
  year: 1995
  end-page: 185
  ident: bib042
  article-title: Endpoint estimates for commutators of singular integral operators
  publication-title: J. Funct. Anal.
– volume: 51
  start-page: 1261
  year: 2002
  end-page: 1276
  ident: bib026
  article-title: Maximal operator and weighted norm inequalities for multilinear singular integrals
  publication-title: Indiana Univ. Math. J.
– volume: 49
  start-page: 23
  year: 2001
  end-page: 37
  ident: bib044
  article-title: Sharp weighted endpoint estimates for commutators of singular integral operators
  publication-title: Michigan Math. J.
– volume: 159
  start-page: 51
  year: 1987
  end-page: 80
  ident: bib008
  article-title: Polynomial growth estimates for multilinear singular integral operators
  publication-title: Acta Math.
– volume: 136
  start-page: 2829
  year: 2008
  end-page: 2833
  ident: bib038
  article-title: An elementary approach to several results on the Hardy–Littlewood maximal operator
  publication-title: Proc. Amer. Math. Soc.
– volume: 14
  start-page: 415
  year: 1961
  end-page: 426
  ident: bib031
  article-title: On functions of bounded mean oscillation
  publication-title: Comm. Pure Appl. Math.
– volume: vol. 320
  start-page: 323
  year: 2003
  end-page: 331
  ident: bib045
  article-title: Sharp maximal function estimates for multilinear singular integrals
  publication-title: Contemp. Math.
– volume: 289
  start-page: 248
  year: 2004
  end-page: 259
  ident: bib037
  article-title: On some pointwise inequalities
  publication-title: J. Math. Anal. Appl.
– volume: 6
  start-page: 1
  year: 1999
  end-page: 15
  ident: bib033
  article-title: Multilinear estimates and fractional integration
  publication-title: Math. Res. Lett.
– volume: 347
  start-page: 2941
  year: 1995
  end-page: 2960
  ident: bib015
  article-title: The structure of the reverse Hölder classes
  publication-title: Trans. Amer. Math. Soc.
– volume: 93
  start-page: 107
  year: 1971
  end-page: 115
  ident: bib018
  article-title: Some maximal inequalities
  publication-title: Amer. J. Math.
– volume: 8
  start-page: 123
  issue: 1
  year: 1994
  ident: 10.1016/j.aim.2008.10.014_bib001
  article-title: Estimates with A∞ weights for various singular integral operators
  publication-title: Boll. Unione Mat. Ital. Sez. A (7)
– volume: 93
  start-page: 107
  year: 1971
  ident: 10.1016/j.aim.2008.10.014_bib018
  article-title: Some maximal inequalities
  publication-title: Amer. J. Math.
  doi: 10.2307/2373450
– volume: vol. 112
  start-page: 3
  year: 1986
  ident: 10.1016/j.aim.2008.10.014_bib012
  article-title: Nonlinear harmonic analysis, operator theory and P.D.E.
– volume: 28
  start-page: 177
  issue: 3
  year: 1978
  ident: 10.1016/j.aim.2008.10.014_bib011
  article-title: Commutateurs d'intégrales singulières et opérateurs multilinéaires
  publication-title: Ann. Inst. Fourier (Grenoble)
  doi: 10.5802/aif.708
– volume: 454
  start-page: 143
  year: 1994
  ident: 10.1016/j.aim.2008.10.014_bib028
  article-title: Weak minima of variational integrals
  publication-title: J. Reine Angew. Math.
– volume: 51
  start-page: 241
  year: 1974
  ident: 10.1016/j.aim.2008.10.014_bib009
  article-title: Weighted norm inequalities for maximal functions and singular integrals
  publication-title: Studia Math.
  doi: 10.4064/sm-51-3-241-250
– volume: 16
  start-page: 263
  year: 1978
  ident: 10.1016/j.aim.2008.10.014_bib029
  article-title: Mean oscillation and commutators of singular integral operators
  publication-title: Ark. Mat.
  doi: 10.1007/BF02386000
– year: 1991
  ident: 10.1016/j.aim.2008.10.014_bib046
– volume: 6
  start-page: 1
  year: 1999
  ident: 10.1016/j.aim.2008.10.014_bib033
  article-title: Multilinear estimates and fractional integration
  publication-title: Math. Res. Lett.
  doi: 10.4310/MRL.1999.v6.n1.a1
– start-page: 57
  year: 2002
  ident: 10.1016/j.aim.2008.10.014_bib027
  article-title: On multilinear singular integrals of Calderón–Zygmund type
– volume: 14
  start-page: 19
  issue: 1
  year: 2004
  ident: 10.1016/j.aim.2008.10.014_bib024
  article-title: Extrapolation of weighted norm inequalities for multivariable operators and applications
  publication-title: J. Geom. Anal.
  doi: 10.1007/BF02921864
– start-page: 207
  year: 1999
  ident: 10.1016/j.aim.2008.10.014_bib020
  article-title: Multiparameter Calderón–Zygmund theory
– volume: 30
  start-page: 1849
  year: 2005
  ident: 10.1016/j.aim.2008.10.014_bib014
  article-title: Weighted weak-type inequalities and a conjecture of Sawyer
  publication-title: Int. Math. Res. Not.
  doi: 10.1155/IMRN.2005.1849
– volume: vol. 1924
  year: 2008
  ident: 10.1016/j.aim.2008.10.014_bib050
  article-title: Weighted Littlewood–Paley Theory and Exponential-Square Integrability
– volume: 165
  start-page: 207
  year: 1972
  ident: 10.1016/j.aim.2008.10.014_bib040
  article-title: Weighted norm inequalities for the Hardy maximal function
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-1972-0293384-6
– volume: 103
  start-page: 611
  year: 1976
  ident: 10.1016/j.aim.2008.10.014_bib013
  article-title: Factorization theorems for Hardy spaces in several variables
  publication-title: Ann. of Math.
  doi: 10.2307/1970954
– volume: vol. 129
  year: 1988
  ident: 10.1016/j.aim.2008.10.014_bib002
  article-title: Interpolation of Operators
– volume: 203
  start-page: 256
  year: 2006
  ident: 10.1016/j.aim.2008.10.014_bib016
  article-title: Extrapolation with weights to rearrangement invariant function spaces and modular inequalities, with applications to singular integrals
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2005.04.009
– volume: 146
  start-page: 693
  issue: 3
  year: 1997
  ident: 10.1016/j.aim.2008.10.014_bib035
  article-title: Lp estimates on the bilinear Hilbert transform for 2<p<∞
  publication-title: Ann. of Math. (2)
  doi: 10.2307/2952458
– volume: 149
  start-page: 475
  issue: 2
  year: 1999
  ident: 10.1016/j.aim.2008.10.014_bib036
  article-title: On Calderón's conjecture
  publication-title: Ann. of Math. (2)
  doi: 10.2307/120971
– volume: 43
  start-page: 231
  year: 1985
  ident: 10.1016/j.aim.2008.10.014_bib030
  article-title: Local sharp maximal functions
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(85)90102-9
– ident: 10.1016/j.aim.2008.10.014_bib034
– volume: 71
  start-page: 135
  year: 1995
  ident: 10.1016/j.aim.2008.10.014_bib043
  article-title: On sufficient conditions for the boundedness of the Hardy–Littlewood maximal operator between weighted Lp-spaces with different weights
  publication-title: Proc. London Math. Soc. (3)
  doi: 10.1112/plms/s3-71.1.135
– volume: 49
  start-page: 23
  year: 2001
  ident: 10.1016/j.aim.2008.10.014_bib044
  article-title: Sharp weighted endpoint estimates for commutators of singular integral operators
  publication-title: Michigan Math. J.
– volume: 49
  start-page: 296
  year: 1994
  ident: 10.1016/j.aim.2008.10.014_bib041
  article-title: Weighted norm inequalities for singular integral operators
  publication-title: J. London Math. Soc.
  doi: 10.1112/jlms/49.2.296
– volume: 136
  start-page: 2829
  issue: 8
  year: 2008
  ident: 10.1016/j.aim.2008.10.014_bib038
  article-title: An elementary approach to several results on the Hardy–Littlewood maximal operator
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-08-09318-0
– volume: 334
  start-page: 841
  year: 1993
  ident: 10.1016/j.aim.2008.10.014_bib005
  article-title: W2,p-solvability of the Dirichlet problem for non-divergence elliptic equations with VMO coefficients
  publication-title: Trans. Amer. Math. Soc.
– volume: vol. 100
  year: 2003
  ident: 10.1016/j.aim.2008.10.014_bib049
  article-title: Calderón–Zygmund Capacities and Operators on Nonhomogeneous Spaces
– volume: 88
  start-page: 85
  year: 1952
  ident: 10.1016/j.aim.2008.10.014_bib003
  article-title: On the existence of certain singular integrals
  publication-title: Acta Math.
  doi: 10.1007/BF02392130
– volume: 87
  start-page: 447
  issue: 3
  year: 1983
  ident: 10.1016/j.aim.2008.10.014_bib007
  article-title: A note on weighted norm inequalities for the Hardy–Littlewood maximal operator
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1983-0684636-9
– volume: vol. 320
  start-page: 323
  year: 2003
  ident: 10.1016/j.aim.2008.10.014_bib045
  article-title: Sharp maximal function estimates for multilinear singular integrals
– volume: 45
  start-page: 1130
  year: 1998
  ident: 10.1016/j.aim.2008.10.014_bib048
  article-title: Singular integrals: The roles of Calderón and Zygmund
  publication-title: Notices Amer. Math. Soc.
– volume: 189
  start-page: 143
  issue: 2
  year: 2002
  ident: 10.1016/j.aim.2008.10.014_bib021
  article-title: A characterization of product BMO by commutators
  publication-title: Acta Math.
  doi: 10.1007/BF02392840
– volume: 112
  start-page: 241
  year: 1993
  ident: 10.1016/j.aim.2008.10.014_bib017
  article-title: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.1993.1032
– volume: 32
  start-page: 305
  year: 1969
  ident: 10.1016/j.aim.2008.10.014_bib047
  article-title: Note on the class LlogL
  publication-title: Studia Math.
  doi: 10.4064/sm-32-3-305-310
– volume: 165
  start-page: 124
  issue: 1
  year: 2002
  ident: 10.1016/j.aim.2008.10.014_bib025
  article-title: Multilinear Calderón–Zygmund theory
  publication-title: Adv. Math.
  doi: 10.1006/aima.2001.2028
– volume: 212
  start-page: 315
  year: 1975
  ident: 10.1016/j.aim.2008.10.014_bib010
  article-title: On commutators of singular integrals and bilinear singular integrals
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-1975-0380244-8
– volume: 51
  start-page: 1261
  issue: 5
  year: 2002
  ident: 10.1016/j.aim.2008.10.014_bib026
  article-title: Maximal operator and weighted norm inequalities for multilinear singular integrals
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.2002.51.2114
– start-page: 237
  year: 1995
  ident: 10.1016/j.aim.2008.10.014_bib039
  article-title: On the one-sided Hardy–Littlewood maximal function in the real line and in dimensions greater than one
– volume: 159
  start-page: 51
  year: 1987
  ident: 10.1016/j.aim.2008.10.014_bib008
  article-title: Polynomial growth estimates for multilinear singular integral operators
  publication-title: Acta Math.
  doi: 10.1007/BF02392554
– volume: vol. 994
  year: 1983
  ident: 10.1016/j.aim.2008.10.014_bib032
  article-title: Calderón–Zygmund Operators, Pseudo-differential Operators and the Cauchy Integral of Calderón
– volume: 347
  start-page: 2941
  issue: 8
  year: 1995
  ident: 10.1016/j.aim.2008.10.014_bib015
  article-title: The structure of the reverse Hölder classes
  publication-title: Trans. Amer. Math. Soc.
– volume: 14
  start-page: 415
  year: 1961
  ident: 10.1016/j.aim.2008.10.014_bib031
  article-title: On functions of bounded mean oscillation
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160140317
– volume: vol. 77
  year: 1990
  ident: 10.1016/j.aim.2008.10.014_bib006
  article-title: Lectures on Singular Integral Operators
– volume: 289
  start-page: 248
  issue: 1
  year: 2004
  ident: 10.1016/j.aim.2008.10.014_bib037
  article-title: On some pointwise inequalities
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2003.09.051
– year: 1985
  ident: 10.1016/j.aim.2008.10.014_bib022
– volume: 40
  start-page: 149
  year: 1991
  ident: 10.1016/j.aim.2008.10.014_bib004
  article-title: Interior W2,p estimates for non-divergence elliptic equations with discontinuous coefficients
  publication-title: Ric. Mat.
– volume: 129
  start-page: 137
  year: 1972
  ident: 10.1016/j.aim.2008.10.014_bib019
  article-title: Hp spaces of several variables
  publication-title: Acta Math.
  doi: 10.1007/BF02392215
– volume: 128
  start-page: 163
  year: 1995
  ident: 10.1016/j.aim.2008.10.014_bib042
  article-title: Endpoint estimates for commutators of singular integral operators
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.1995.1027
– year: 2004
  ident: 10.1016/j.aim.2008.10.014_bib023
SSID ssj0009419
Score 2.444073
Snippet A multi(sub)linear maximal operator that acts on the product of m Lebesgue spaces and is smaller than the m-fold product of the Hardy–Littlewood maximal...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1222
SubjectTerms Calderón–Zygmund theory
Commutators
Maximal operators
Multilinear singular integrals
Weighted norm inequalities
Title New maximal functions and multiple weights for the multilinear Calderón–Zygmund theory
URI https://dx.doi.org/10.1016/j.aim.2008.10.014
Volume 220
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKucABsYqyVD5wQgrN4jjJsVRUZWmFEJUKl8iObRREQ9VF0AviH_gUPoE_4UvwZCkgAQdOkZwZKZpY42f7vRmE9kQQMA0MfENYlBvEV7bBhRMZRHj677u2ryI4h2x3aKtLTnpur4QahRYGaJV57s9yepqt85FaHs3aII5B4wsN5UwojAhSHBD8gqoURHy9w8_Cu8TKIbBlgHVxs5lyvFjcz-iUQPCyyM9r05f1prmMlnKgiOvZt6ygkkxW0WJ7VmV1tIaudIbCffYY97UhLFDpHMIsEbjgCeKH9OhzhDU2xdo1ewHQkg1xg0GL7rfX5P355Xp6059ox1TYOF1H3ebRZaNl5K0SjMihztjgvu1IxSlxhVBEb3qUSxXxhU2kywIuvSCIpKu8gCnL9aRk1BFEKsocZtnClM4GKif3idxEOLJNvWvRqIDanHhccl9Q6TPLc6gHMtcKMosghVFeRxzaWdyFBWHsNtRxzfpb6iEd1wran7kMsiIafxmTIvLht5kQ6iT_u9vW_9y20UJ2PwSssh1UHg8nclfDjDGvormDJ6uK5uuNi7NzeB6ftjrVdHZ9AJs61mM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOQAHxCrK6gMnJNMkdpzkiCqqsrSnVipcIju2URAJVRdBL4h_4FP4BP6EL8HOUkACDlydGcmajGae7TczAByKIGAaGPhI2JQj4isHcYEjRISn_77r-Coy95DtDm31yHnf7VdAo6yFMbTKIvbnMT2L1sVKvbBmfRDHpsbXDJSzTGNEU4rjz4F5YsYcaKc-fvrkeQTELjCwjYx4-bSZkbxYnOR8SsPwssnPyelLwmmugOUCKcKTfDOroCLTNbDUnrVZHa2DKx2iYMIe40QLmgyVORFkqYAlURA-ZHefI6jBKdSq-QeDLdkQNpiZ0f32mr4_v1xPb5KJVswqG6cboNc87TZaqJiVgCJM8Rhx38FScUpcIRTRpx7lUkV84RDpsoBLLwgi6SovYMp2PSkZxYJIRRlmtiMsiTdBNb1P5RaAkWPpY4uGBdThxOOS-4JKn9kepp6pc60BqzRSGBWNxM08i7uwZIzdhtqu-YBLvaTtWgNHM5VB3kXjL2FSWj785gqhjvK_q23_T-0ALLS67cvw8qxzsQMW88ciQzHbBdXxcCL3NOYY8_3Mpz4A3UvVTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+maximal+functions+and+multiple+weights+for+the+multilinear+Calder%C3%B3n%E2%80%93Zygmund+theory&rft.jtitle=Advances+in+mathematics+%28New+York.+1965%29&rft.au=Lerner%2C+Andrei+K.&rft.au=Ombrosi%2C+Sheldy&rft.au=P%C3%A9rez%2C+Carlos&rft.au=Torres%2C+Rodolfo+H.&rft.date=2009-03-01&rft.issn=0001-8708&rft.volume=220&rft.issue=4&rft.spage=1222&rft.epage=1264&rft_id=info:doi/10.1016%2Fj.aim.2008.10.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aim_2008_10_014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8708&client=summon