Statistical machine learning model for capacitor planning considering uncertainties in photovoltaic power

New energy integration and flexible demand response make smart grid operation scenarios complex and changeable, which bring challenges to network planning. If every possible scenario is considered, the solution to the planning can become extremely time-consuming and difficult. This paper introduces...

Full description

Saved in:
Bibliographic Details
Published inProtection and control of modern power systems Vol. 7; no. 1
Main Author Fu, Xueqian
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.12.2022
Power System Protection and Control Press
Subjects
Online AccessGet full text
ISSN2367-2617
2367-0983
2367-0983
DOI10.1186/s41601-022-00228-z

Cover

Abstract New energy integration and flexible demand response make smart grid operation scenarios complex and changeable, which bring challenges to network planning. If every possible scenario is considered, the solution to the planning can become extremely time-consuming and difficult. This paper introduces statistical machine learning (SML) techniques to carry out multi-scenario based probabilistic power flow calculations and describes their application to the stochastic planning of distribution networks. The proposed SML includes linear regression, probability distribution, Markov chain, isoprobabilistic transformation, maximum likelihood estimator, stochastic response surface and center point method. Based on the above SML model, capricious weather, photovoltaic power generation, thermal load, power flow and uncertainty programming are simulated. Taking a 33-bus distribution system as an example, this paper compares the stochastic planning model based on SML with the traditional models published in the literature. The results verify that the proposed model greatly improves planning performance while meeting accuracy requirements. The case study also considers a realistic power distribution system operating under stressed conditions.
AbstractList New energy integration and flexible demand response make smart grid operation scenarios complex and changeable, which bring challenges to network planning. If every possible scenario is considered, the solution to the planning can become extremely time-consuming and difficult. This paper introduces statistical machine learning (SML) techniques to carry out multi-scenario based probabilistic power flow calculations and describes their application to the stochastic planning of distribution networks. The proposed SML includes linear regression, probability distribution, Markov chain, isoprobabilistic transformation, maximum likelihood estimator, stochastic response surface and center point method. Based on the above SML model, capricious weather, photovoltaic power generation, thermal load, power flow and uncertainty programming are simulated. Taking a 33-bus distribution system as an example, this paper compares the stochastic planning model based on SML with the traditional models published in the literature. The results verify that the proposed model greatly improves planning performance while meeting accuracy requirements. The case study also considers a realistic power distribution system operating under stressed conditions.
ArticleNumber 5
Author Fu, Xueqian
Author_xml – sequence: 1
  givenname: Xueqian
  orcidid: 0000-0001-7983-8700
  surname: Fu
  fullname: Fu, Xueqian
  email: fuxueqian@cau.edu.cn
  organization: College of Information and Electrical Engineering, China Agricultural University
BookMark eNqNkEtLAzEUhYNUsNb-AVcB16N5TGfSpRRfUHChrkOa3rEpaTImqaX99aadguCiuLm5JOfcnPtdop7zDhC6puSWUlHdxZJWhBaEsYLkIordGeozXtUFGQveO_asovUFGsa4JIRkGxcj1kfmLalkYjJaWbxSemEcYAsqOOM-8crPweLGB6xVq7RJuWutcodH7V00cwj7fu00hKSMSwYiNg63C5_8t7f5TuPWbyBcofNG2QjD4zlAH48P75PnYvr69DK5nxaaVzwVM1oCYZoxDQ0T85oCofVM6BJYmYsigtcCxnVTMt3UTd5FNBRGTAAdMQ4zPkC8m7t2rdpulLWyDWalwlZSIvfAZAdMZlbyAEzusuumc7XBf60hJrn06-ByUMkqTsqsKllWiU6lg48xQCMzk8zPuxSUsac_YH-s_0p13CW2e8wQflOdcP0AuFehGg
CitedBy_id crossref_primary_10_1016_j_diamond_2024_111796
crossref_primary_10_3390_en16114510
crossref_primary_10_1016_j_apenergy_2023_122380
crossref_primary_10_1155_2023_4295384
crossref_primary_10_3389_fenrg_2022_934935
crossref_primary_10_3389_fenrg_2022_998493
crossref_primary_10_1016_j_egyr_2023_04_263
crossref_primary_10_1016_j_eswa_2023_121313
crossref_primary_10_3390_en16083408
crossref_primary_10_1016_j_renene_2022_06_063
crossref_primary_10_3389_fenrg_2022_948954
crossref_primary_10_3390_su151511852
crossref_primary_10_1049_rpg2_12932
crossref_primary_10_1049_rpg2_12978
crossref_primary_10_1186_s42162_024_00466_5
crossref_primary_10_1109_TIA_2024_3372515
crossref_primary_10_3390_su151612636
crossref_primary_10_1155_2023_1358099
crossref_primary_10_3389_fenrg_2023_1297356
crossref_primary_10_3390_en15207565
crossref_primary_10_3390_metrology3040021
crossref_primary_10_1186_s41601_023_00308_8
crossref_primary_10_3389_fenrg_2022_1089854
crossref_primary_10_3390_en15249441
crossref_primary_10_1155_2023_6678942
crossref_primary_10_1109_TPWRS_2022_3215510
crossref_primary_10_1155_2023_8828093
crossref_primary_10_3389_fenrg_2022_1006972
crossref_primary_10_1109_ACCESS_2023_3335191
crossref_primary_10_1109_TSG_2024_3411306
crossref_primary_10_1016_j_apenergy_2023_121786
crossref_primary_10_3389_fenrg_2023_1202701
crossref_primary_10_3390_su15108348
crossref_primary_10_3389_fenrg_2023_1280724
crossref_primary_10_1109_TSTE_2022_3220567
crossref_primary_10_3389_fenrg_2023_1277412
crossref_primary_10_1016_j_energy_2024_133546
crossref_primary_10_1109_TIA_2022_3218758
crossref_primary_10_3390_en16186465
crossref_primary_10_1049_rpg2_12786
crossref_primary_10_3389_fenrg_2023_1141374
crossref_primary_10_23919_PCMP_2023_000530
crossref_primary_10_3389_fenrg_2022_979599
crossref_primary_10_3390_buildings15040648
crossref_primary_10_1109_TSG_2024_3364182
crossref_primary_10_3389_fenrg_2022_916495
crossref_primary_10_1109_ACCESS_2023_3308067
crossref_primary_10_23919_PCMP_2023_000296
crossref_primary_10_32604_ee_2023_041881
crossref_primary_10_3390_en17010177
crossref_primary_10_1109_ACCESS_2024_3370911
crossref_primary_10_3389_fenrg_2023_1181310
crossref_primary_10_1016_j_engappai_2025_110367
crossref_primary_10_3389_fenrg_2022_919001
crossref_primary_10_1007_s10489_023_04980_z
crossref_primary_10_1186_s41601_022_00259_6
crossref_primary_10_3389_fenrg_2022_968102
crossref_primary_10_1109_TIA_2024_3351621
crossref_primary_10_1016_j_inpa_2023_02_007
crossref_primary_10_1155_2023_6328119
crossref_primary_10_3389_fenrg_2022_902779
crossref_primary_10_1016_j_inpa_2023_02_008
crossref_primary_10_3390_en16104252
crossref_primary_10_1155_2023_6864403
crossref_primary_10_3390_en16145321
crossref_primary_10_3390_en17133139
crossref_primary_10_1016_j_eswa_2023_122226
crossref_primary_10_1016_j_inpa_2024_02_002
crossref_primary_10_1155_2023_9927608
crossref_primary_10_3390_su15129434
crossref_primary_10_3389_fenrg_2022_964305
crossref_primary_10_1155_2023_8685976
crossref_primary_10_3390_en18030503
crossref_primary_10_3389_fenrg_2022_993408
crossref_primary_10_1016_j_geits_2024_100181
crossref_primary_10_1186_s41601_022_00262_x
crossref_primary_10_1016_j_ifacol_2024_07_104
crossref_primary_10_1109_TPWRD_2023_3307024
crossref_primary_10_1109_TSTE_2022_3223684
crossref_primary_10_3389_fenrg_2022_956543
crossref_primary_10_3389_fenrg_2022_1006474
crossref_primary_10_3389_fenrg_2022_999948
crossref_primary_10_3389_fenrg_2022_977979
crossref_primary_10_3390_en17040795
crossref_primary_10_1016_j_egyr_2024_09_073
crossref_primary_10_1016_j_apenergy_2024_123201
crossref_primary_10_1155_2023_6304877
crossref_primary_10_3390_math11102367
crossref_primary_10_1109_TNNLS_2024_3382763
crossref_primary_10_1049_gtd2_12895
crossref_primary_10_3389_fenrg_2022_1073976
crossref_primary_10_3389_fenrg_2022_968910
crossref_primary_10_61435_ijred_2024_60169
Cites_doi 10.1016/j.apenergy.2014.10.012
10.1016/j.apenergy.2017.02.002
10.1109/TSG.2020.2974021
10.3389/fenrg.2021.809254
10.1186/s41601-021-00200-3
10.1016/j.energy.2017.01.111
10.1109/TPWRS.2017.2699231
10.1109/TSG.2012.2183649
10.1109/60.790949
10.1109/TSG.2017.2684238
10.1109/TII.2016.2569525
10.1109/TSTE.2019.2927837
10.1109/TSG.2016.2517026
10.1109/TSG.2018.2810310
10.1109/TSG.2017.2685239
10.1049/iet-gtd.2015.1471
10.1109/TPWRS.2005.857921
10.1109/TSTE.2019.2950239
10.1016/j.energy.2013.10.065
10.1186/s41601-021-00184-0
10.1109/TSTE.2012.2222680
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
L7M
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
ADTOC
UNPAY
DOI 10.1186/s41601-022-00228-z
DatabaseName Springer Open Access Journals
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2367-0983
ExternalDocumentID 10.1186/s41601-022-00228-z
10_1186_s41601_022_00228_z
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52007193
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID 0R~
5VS
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACULB
ADBBV
AEUYN
AFGXO
AFKRA
AFPKN
AHSBF
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
C24
C6C
CCPQU
EBS
EJD
ESBDL
GROUPED_DOAJ
H13
IAO
IPNFZ
ISR
JAVBF
OK1
PIMPY
RIG
RSV
SOJ
AAYXX
ABJCF
ABVLG
BGLVJ
CITATION
M7S
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
7SP
7TB
8FD
8FE
8FG
ABUWG
ARAPS
AZQEC
DWQXO
FR3
HCIFZ
L6V
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
ID FETCH-LOGICAL-c363t-b14e02c22cef28d71e017b8c4e24c4ea08378e97f42cf7f0008f1e528e1523eb3
IEDL.DBID UNPAY
ISSN 2367-2617
2367-0983
IngestDate Tue Aug 19 20:04:12 EDT 2025
Sat Sep 06 07:32:05 EDT 2025
Wed Oct 01 00:49:32 EDT 2025
Thu Apr 24 23:07:29 EDT 2025
Fri Feb 21 02:47:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Statistical machine learning
Uncertainty
Renewable energy
Stochastic programming
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-b14e02c22cef28d71e017b8c4e24c4ea08378e97f42cf7f0008f1e528e1523eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7983-8700
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pcmp.springeropen.com/track/pdf/10.1186/s41601-022-00228-z
PQID 2630422842
PQPubID 4402868
ParticipantIDs unpaywall_primary_10_1186_s41601_022_00228_z
proquest_journals_2630422842
crossref_citationtrail_10_1186_s41601_022_00228_z
crossref_primary_10_1186_s41601_022_00228_z
springer_journals_10_1186_s41601_022_00228_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Xuchang
PublicationTitle Protection and control of modern power systems
PublicationTitleAbbrev Prot Control Mod Power Syst
PublicationYear 2022
Publisher Springer Singapore
Power System Protection and Control Press
Publisher_xml – name: Springer Singapore
– name: Power System Protection and Control Press
References Yan, Tang, Dai (CR9) 2021; 6
Fu, Wu, Liu (CR24) 2021; 9
Zhang, Li, Zhang, Xu (CR12) 2020; 11
Fu, Guo, Sun (CR17) 2020; 11
Zhang, Hu, Xu, Song (CR7) 2017; 8
Chen, Wen, Cheng (CR20) 2013; 4
Wang, Zhong, Xia, Kang (CR10) 2018; 9
Karaki, Chedid, Ramadan (CR21) 1999; 14
Lu (CR18) 2012; 3
Minchala-Avila, Garza-Castañon, Zhang, Ferrer (CR4) 2016; 12
Dai, Yu, Yang, Huang, Lin, Li (CR6) 2020; 11
Rohani, Nour (CR19) 2014; 64
Fu, Sun, Guo, Pan, Zhang, Zeng (CR15) 2017; 191
Hamad, Nassar, El-Saadany, Salama (CR11) 2019; 10
Fu, Chen, Xuan, Cai (CR14) 2016; 10
CR22
Zhang, Chen, Shi, Qiu, Hua, Ngan (CR3) 2018; 9
Yu, Dai, Li, Liu, Liu (CR5) 2018; 33
Liu, Zhou, Guo (CR2) 2021; 6
Chen, Gao, Chen, Wu, Fu, Chen (CR1) 2021; 49
Chun-Lien (CR23) 2005; 20
Chen, Xiao, Mo, Tian (CR8) 2021; 49
Fu, Chen, Cai, Yang (CR13) 2015; 137
Fu, Sun, Guo, Pan, Xiong, Wang (CR16) 2017; 122
Z Chen (228_CR1) 2021; 49
C Zhang (228_CR3) 2018; 9
X Fu (228_CR16) 2017; 122
Y Chen (228_CR20) 2013; 4
SH Karaki (228_CR21) 1999; 14
X Fu (228_CR14) 2016; 10
N Lu (228_CR18) 2012; 3
228_CR22
G Rohani (228_CR19) 2014; 64
X Fu (228_CR17) 2020; 11
J Chen (228_CR8) 2021; 49
W Dai (228_CR6) 2020; 11
X Fu (228_CR24) 2021; 9
LI Minchala-Avila (228_CR4) 2016; 12
X Fu (228_CR15) 2017; 191
S Liu (228_CR2) 2021; 6
J Yu (228_CR5) 2018; 33
AA Hamad (228_CR11) 2019; 10
X Fu (228_CR13) 2015; 137
J Wang (228_CR10) 2018; 9
H Zhang (228_CR7) 2017; 8
C Zhang (228_CR12) 2020; 11
C Yan (228_CR9) 2021; 6
Su Chun-Lien (228_CR23) 2005; 20
References_xml – ident: CR22
– volume: 137
  start-page: 173
  year: 2015
  end-page: 182
  ident: CR13
  article-title: Optimal allocation and adaptive VAR control of PV-DG in distribution networks
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2014.10.012
– volume: 191
  start-page: 582
  year: 2017
  end-page: 592
  ident: CR15
  article-title: Probabilistic power flow analysis considering the dependence between power and heat
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.02.002
– volume: 11
  start-page: 2904
  issue: 4
  year: 2020
  end-page: 2917
  ident: CR17
  article-title: Statistical machine learning model for stochastic optimal planning of distribution networks considering a dynamic correlation and dimension reduction
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2020.2974021
– volume: 9
  start-page: 809254
  year: 2021
  ident: CR24
  article-title: Statistical machine learning model for uncertainty planning of distributed renewable energy sources in distribution networks
  publication-title: Frontiers in Energy Research
  doi: 10.3389/fenrg.2021.809254
– volume: 6
  start-page: 22
  year: 2021
  ident: CR9
  article-title: Uncertainty modeling of wind power frequency regulation potential considering distributed characteristics of forecast errors
  publication-title: Protection and Control of Modern Power Systems
  doi: 10.1186/s41601-021-00200-3
– volume: 49
  start-page: 32
  issue: 8
  year: 2021
  end-page: 40
  ident: CR1
  article-title: Research on cooperative planning of an integrated energy system considering uncertainty
  publication-title: Power System Protection and Control
– volume: 122
  start-page: 649
  year: 2017
  end-page: 662
  ident: CR16
  article-title: Uncertainty analysis of an integrated energy system based on information theory
  publication-title: Energy
  doi: 10.1016/j.energy.2017.01.111
– volume: 33
  start-page: 421
  issue: 1
  year: 2018
  end-page: 429
  ident: CR5
  article-title: Optimal reactive power flow of interconnected power system based on static equivalent method using border PMU measurements
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2017.2699231
– volume: 3
  start-page: 1263
  issue: 3
  year: 2012
  end-page: 1270
  ident: CR18
  article-title: An evaluation of the HVAC load potential for providing load balancing service
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2012.2183649
– volume: 14
  start-page: 766
  issue: 3
  year: 1999
  end-page: 772
  ident: CR21
  article-title: Probabilistic performance assessment of autonomous solar-wind energy conversion systems
  publication-title: IEEE Transactions on Energy Conversion
  doi: 10.1109/60.790949
– volume: 9
  start-page: 5217
  issue: 5
  year: 2018
  end-page: 5226
  ident: CR3
  article-title: An interval power flow analysis through optimizing-scenarios method
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2017.2684238
– volume: 12
  start-page: 1361
  issue: 4
  year: 2016
  end-page: 1370
  ident: CR4
  article-title: Optimal energy management for stable operation of an islanded microgrid
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2016.2569525
– volume: 11
  start-page: 1473
  issue: 3
  year: 2020
  end-page: 1482
  ident: CR6
  article-title: A static equivalent model of natural gas network for electricity–gas co-optimization
  publication-title: IEEE Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2019.2927837
– volume: 49
  start-page: 59
  issue: 10
  year: 2021
  end-page: 66
  ident: CR8
  article-title: Optimized allocation of microgrid energy storage capacity considering photovoltaic correction
  publication-title: Power System Protection and Control
– volume: 8
  start-page: 2119
  issue: 5
  year: 2017
  end-page: 2128
  ident: CR7
  article-title: Optimal planning of PEV charging station with single output multiple cables charging spots
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2016.2517026
– volume: 10
  start-page: 2789
  issue: 3
  year: 2019
  end-page: 2798
  ident: CR11
  article-title: Optimal configuration of isolated hybrid AC/DC microgrids
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2018.2810310
– volume: 9
  start-page: 5236
  issue: 5
  year: 2018
  end-page: 5248
  ident: CR10
  article-title: Optimal planning strategy for distributed energy resources considering structural transmission cost allocation
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2017.2685239
– volume: 10
  start-page: 2512
  issue: 10
  year: 2016
  end-page: 2519
  ident: CR14
  article-title: Improved LSF method for loss estimation and its application in DG allocation
  publication-title: IET Generation, Transmission & Distribution
  doi: 10.1049/iet-gtd.2015.1471
– volume: 20
  start-page: 1843
  issue: 4
  year: 2005
  end-page: 1851
  ident: CR23
  article-title: Probabilistic load-flow computation using point estimate method
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2005.857921
– volume: 11
  start-page: 2003
  issue: 3
  year: 2020
  end-page: 2014
  ident: CR12
  article-title: Data-driven sizing planning of renewable distributed generation in distribution networks with optimality guarantee
  publication-title: IEEE Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2019.2950239
– volume: 64
  start-page: 828
  year: 2014
  end-page: 841
  ident: CR19
  article-title: Techno-economical analysis of stand-alone hybrid renewable power system for Ras Musherib in United Arab Emirates
  publication-title: Energy
  doi: 10.1016/j.energy.2013.10.065
– volume: 6
  start-page: 4
  year: 2021
  ident: CR2
  article-title: Operational optimization of a building-level integrated energy system considering additional potential benefits of energy storage
  publication-title: Protection and Control of Modern Power Systems
  doi: 10.1186/s41601-021-00184-0
– volume: 4
  start-page: 294
  issue: 2
  year: 2013
  end-page: 301
  ident: CR20
  article-title: "Probabilistic load flow method based on Nataf transformation and Latin hypercube sampling
  publication-title: IEEE Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2012.2222680
– volume: 11
  start-page: 2003
  issue: 3
  year: 2020
  ident: 228_CR12
  publication-title: IEEE Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2019.2950239
– volume: 49
  start-page: 32
  issue: 8
  year: 2021
  ident: 228_CR1
  publication-title: Power System Protection and Control
– volume: 6
  start-page: 4
  year: 2021
  ident: 228_CR2
  publication-title: Protection and Control of Modern Power Systems
  doi: 10.1186/s41601-021-00184-0
– volume: 6
  start-page: 22
  year: 2021
  ident: 228_CR9
  publication-title: Protection and Control of Modern Power Systems
  doi: 10.1186/s41601-021-00200-3
– volume: 14
  start-page: 766
  issue: 3
  year: 1999
  ident: 228_CR21
  publication-title: IEEE Transactions on Energy Conversion
  doi: 10.1109/60.790949
– ident: 228_CR22
– volume: 9
  start-page: 5236
  issue: 5
  year: 2018
  ident: 228_CR10
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2017.2685239
– volume: 3
  start-page: 1263
  issue: 3
  year: 2012
  ident: 228_CR18
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2012.2183649
– volume: 9
  start-page: 809254
  year: 2021
  ident: 228_CR24
  publication-title: Frontiers in Energy Research
  doi: 10.3389/fenrg.2021.809254
– volume: 191
  start-page: 582
  year: 2017
  ident: 228_CR15
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.02.002
– volume: 12
  start-page: 1361
  issue: 4
  year: 2016
  ident: 228_CR4
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2016.2569525
– volume: 137
  start-page: 173
  year: 2015
  ident: 228_CR13
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2014.10.012
– volume: 10
  start-page: 2512
  issue: 10
  year: 2016
  ident: 228_CR14
  publication-title: IET Generation, Transmission & Distribution
  doi: 10.1049/iet-gtd.2015.1471
– volume: 11
  start-page: 2904
  issue: 4
  year: 2020
  ident: 228_CR17
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2020.2974021
– volume: 10
  start-page: 2789
  issue: 3
  year: 2019
  ident: 228_CR11
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2018.2810310
– volume: 4
  start-page: 294
  issue: 2
  year: 2013
  ident: 228_CR20
  publication-title: IEEE Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2012.2222680
– volume: 49
  start-page: 59
  issue: 10
  year: 2021
  ident: 228_CR8
  publication-title: Power System Protection and Control
– volume: 11
  start-page: 1473
  issue: 3
  year: 2020
  ident: 228_CR6
  publication-title: IEEE Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2019.2927837
– volume: 20
  start-page: 1843
  issue: 4
  year: 2005
  ident: 228_CR23
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2005.857921
– volume: 9
  start-page: 5217
  issue: 5
  year: 2018
  ident: 228_CR3
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2017.2684238
– volume: 33
  start-page: 421
  issue: 1
  year: 2018
  ident: 228_CR5
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2017.2699231
– volume: 8
  start-page: 2119
  issue: 5
  year: 2017
  ident: 228_CR7
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2016.2517026
– volume: 122
  start-page: 649
  year: 2017
  ident: 228_CR16
  publication-title: Energy
  doi: 10.1016/j.energy.2017.01.111
– volume: 64
  start-page: 828
  year: 2014
  ident: 228_CR19
  publication-title: Energy
  doi: 10.1016/j.energy.2013.10.065
SSID ssj0001863852
ssib044757340
ssib044928846
Score 2.5435765
Snippet New energy integration and flexible demand response make smart grid operation scenarios complex and changeable, which bring challenges to network planning. If...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
Alternative energy sources
Artificial intelligence
Electric power distribution
Electrical Machines and Networks
Energy
Energy storage
Energy Systems
Load distribution
Machine learning
Markov chains
Mathematical programming
Maximum likelihood estimators
New-Generation Artificial Intelligence Techniques Applications on Smart Distribution Network Planning and Dispatching
Optimization
Original Research
Photovoltaics
Planning
Power Electronics
Power flow
Probability distribution
Renewable and Green Energy
Renewable resources
Response surface methodology
Smart grid
Statistical analysis
Thermal analysis
Uncertainty
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50PagH8Ynrixy8aXCbpml6EFFRRHARUfBW2jTVhbVbdUX01zuTTXf1sngpoU0bmEwn3-TxfQD7kUUQpBLNlSoEl3FZ8ExnJZZ0FuYql9ppLN101dWDvH6MHmeg25yFoW2VTUx0gboYGJojPxIqdHRVUpzUr5xUo2h1tZHQyLy0QnHsKMZmYU4QM1YL5s4uurd3jYcRu10cTthNpEyE1j4hcrMyGv3RyfQQsxknuvLmpI1WR--IXij7xvzN8cbw77-j2QSijldVF2H-o6qzr8-s3_81cF0uw5JHnOx05CIrMGOrVVj8xUO4Bj2CnI6xGSu-uO2Vlnk9iSfmxHIYgltmcGQ1GALeWO21jpjxgp9UxiFytMGASFpZr2L182A4wPiH9wyrSY9tHR4uL-7Pr7jXYOAmVOGQ54G0HWGEMLYUuogDi79wro20QuIl6xAhvU3iUgpTxiVBijKwkdAWgUGImfoGtKpBZTeBhaYoMBvFkIGwIUpMEuRClZ2ok-c6ioqoDUFjy9R4gnLSyeinLlHRKh3ZP0XTp87-6XcbDsbv1CN6jqm1d5ouSv2v-p5OHKsNh023TR5P-9rhuGv_0fjW9Ma3YUGQY7mdMjvQGr592F3EO8N8zzvxD6u59-w
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46D7qD-BOnU3Lw5optmqbpUYZjCHpysFto01QHsytbh7i_3pc0XSfI0EsJbdpA8l7e95rk-xC6DRSAIBZxh7GUODTMUifmcQYlHvsJSyg3GkvPL2w4ok_jYGwPhS3q3e71kqSZqY1bc3a_AOigU19Ingxpi7PaRXuAP4gWbOg3nOOawS70GwYTSiPCuU16zJ8XDjZnpHg0e5mjKcnr0zS_NvMzYjUwdL1y2kb7y7yIvz7j6XQjOA2O0KFFlfihMoNjtKPyE9Te4Bo8RRMNKw0rM1T8MFsoFbaaEW_YCOJgALBYQvSU4OZzXFg9IyytqKcuQxisNhFoIlY8yXHxPitnMMfBPYkLrbl2hkaDx9f-0LE6C470mV86iUeVSyQhUmWEp6GnwE0TLqkiFC6xq0nnVRRmlMgszDRsyDwVEK4g-PuQjZ-jVj7L1QXCvkxTyDhhWgBoEEQy8hLCMjdwk4QHQRp0kFf3pZCWhFxrYUyFSUY4E1X_C-h6YfpfrDrobv1OUVFwbK3drYdIWHdcCMJ8w3VGSQf16mFrHm_7Wm89tH9o_PJ_X79CB0Qbmtkd00Wtcr5U14BxyuTGmPQ3G-zupQ
  priority: 102
  providerName: Springer Nature
Title Statistical machine learning model for capacitor planning considering uncertainties in photovoltaic power
URI https://link.springer.com/article/10.1186/s41601-022-00228-z
https://www.proquest.com/docview/2630422842
https://pcmp.springeropen.com/track/pdf/10.1186/s41601-022-00228-z
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2367-0983
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044928846
  issn: 2367-2617
  databaseCode: ADMLS
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2367-0983
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044757340
  issn: 2367-2617
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2367-0983
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0001863852
  issn: 2367-0983
  databaseCode: BENPR
  dateStart: 20190801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Open Access Journals
  customDbUrl:
  eissn: 2367-0983
  dateEnd: 20230112
  omitProxy: true
  ssIdentifier: ssj0001863852
  issn: 2367-0983
  databaseCode: C6C
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2367-0983
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0001863852
  issn: 2367-0983
  databaseCode: C24
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH4a7WHjsN9oZazyYbeRkji26xxZRYeQqNBEJXaKYscGREkjSDXRv37PTlK6CSHQLpGTOI78673vyfb3AXzlBkGQSGQgRE4DNrR5kMnMYkpmsRKKSa-xdDwRh1N2dMbP1s7ClPq6HLRLkk5AyltrDPr11V6Z23qSS7F3i0DCBcIYSnkKl2C5AV3BEY93oDudnOz_8qpyaAXCxHNx-rSjH29PzjxYyN_e6R5yrlZJN-Hloiizu9_ZbLbmiMZvQK-q4PefXA0WlRro5T_sjv9Xx7fwusGpZL8eWO_ghSnew-Yae-EHuHRA1fM8Y8ZrvynTkEaF4px4iR2CkJho9McaDccNKRuFJKIbmVCXRsdab0tw1K7ksiDlxbyao9XEZ5qUTsXtI0zHB6ejw6BRbgh0LOIqUBEzIdWUamOpzIeRwYmvpGaGMrxkoaOxN8nQMqrt0DogYiPDqTQIJ2KM77egU8wL8wlIrPMcY1g0NAg2eKKTSFFhQx4qJTnPeQ-itsdS3dCaO3WNWerDGynSuhlTbMHUN2O67MG31TdlTerxaO6ddiCkzQS_TamIPXsaoz3Ybfvy_vVjpe2uBtATfr79vOyf4RV148Xvt9mBTnWzMF8QNVWqDxty_KMP3e8Hk5OfeDeizF3FqN9MmD_e0BLC
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB7xOAAHBOwiusvDBziBReM4jnNAiKfKAtVqBRI3kzgOIHXTLC1C8OP4bYxdp4VLtRcukZU4seSZzMMefx_AZmQwCBKJpELkjPK4yGkq0wJbMg0zkXHpOJYu26J1zX_dRDcT8FafhbFllbVNdIY672q7Rr7LROjgqjjbr_5Ryxpld1drCo3UUyvkew5izB_sODcvz5jC9fbOjlHeW4ydnlwdtahnGaA6FGGfZgE3TaYZ06ZgMo8Dg0qaSc0N43hJmxZy3SRxwZku4sI6zSIwEZMGXV-IuSh-dxKmecgTTP6mD0_av__UGm3R9OJwhKbCecKk9AmYWwWSqP-OFsgiqVELj16f7JFit4fRks32MV90ODX09bP3HIXEw13cOZh5Kqv05TntdD44ytMFmPcRLjkYqOQiTJhyCeY-4B5-gwcb4jqEaOz415VzGuL5K-6II-chGEwTjZ5co8l5JJXnViLaE4zaNrrkQUGDBYUlDyWp7rv9LtpbvKdJZfnfvsP1l0hjGabKbmlWgIQ6zzH7RROFYUqU6CTImCiaUTPLZBTlUQOCei6V9oDolpejo1xiJIUazL_CqVdu_tVrA7aH71QDOJCxvVdrESlvGnpqpMgN2KnFNno87ms7Q9H-x-A_xg--ATOtq8sLdXHWPv8Js8wqmavSWYWp_uOTWcNYq5-te4UmcPvV_9A7_Jo0ow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gI-D-MTVVXPwpsVtmqbpUVYXn4sHBW-hTRMV1m7Riuivd5K2uyuI6KWENm0gmWS-aSbfB7AfagRBPBYe5xn1WGQyLxGJwZJIgpSnTDiNpes-P7tjF_fh_cQpfpft3mxJVmcaLEtTXh4VmammuOBHrwgjbBiMgZQjcPE-p2GWoXezGgZd3m0syrLZRcGYzYSxmApRB0DuL4xA-3OyPJbJzLP05M3Jmh-b-e69xpB0tIu6CPNveZF8vCeDwYSj6i3DUo0wyXFlEiswpfNVWJzgHVyDJwsxHUMzVnx26ZSa1PoRD8SJ4xAEs0ShJ1U45V9IUWsbEVULfNoyusQqocCSspKnnBSPw3KI6x3eU6Sw-mvrcNc7ve2eebXmgqcCHpRe6jPdoYpSpQ0VWeRrnLKpUExThpekYwnodRwZRpWJjIUQxtchFRqBQICR-QbM5MNcbwIJVJZh9IlLBMKEMFaxn1JuOmEnTUUYZmEL_KYvpaoJya0uxkC6wERwWfW_xK6Xrv_lZwsORu8UFR3Hr7XbzRDJemq-SsoDx3vGaAsOm2EbP_7ta4ejof1D41v_-_oezN2c9OTVef9yGxaotTmXNNOGmfLlTe8g9CnTXWfdX89p9fY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEB10PagHv8X1ixy8adc2bbLpUUQRQfHggp5KkyYqrt2iXcT99U7Sdl1FRPFSQpu2JJlM3pDJewB7TCMI4rHwOM-oF3VN5qUiNVgSaSi5jITTWLq45Ge96PyG3UychSnUU9FptiStgJTz1hj0q8fDIjPVJBf88AWBhA2EMZRyFC7eaBpmOEM83oKZ3uXV0a1TlUMv4MeOi9OVLf14c3Lm2498Xp0-IOd4l3QeZod5kb69pv3-xEJ0ughq3ASXf_LYGZayo0Zf2B3_18YlWKhxKjmqDGsZpnS-AvMT7IWr8GCBquN5xopPLilTk1qF4o44iR2CkJgoXI8VOo5nUtQKSUTVMqG2jAtrlZZgqV3JQ06K-0E5QK-J9xQprIrbGvROT66Pz7xaucFTIQ9LTwaR9qmiVGlDRdYNNE58KVSkaYSX1Lc09jrumogq0zUWiJhAMyo0wokQ4_t1aOWDXG8ACVWWYQyLjgbBBotVHEjKjc98KQVjGWtD0IxYompac6uu0U9ceCN4UnVjgj2YuG5MRm3YH79TVKQeP9bebgwhqSf4S0J56NjTItqGg2YsPx7_9LWDsQH94uebf6u-BXPU2ovLt9mGVvk81DuImkq5W0-LdzfjDps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+machine+learning+model+for+capacitor+planning+considering+uncertainties+in+photovoltaic+power&rft.jtitle=Protection+and+control+of+modern+power+systems&rft.au=Fu%2C+Xueqian&rft.date=2022-12-01&rft.issn=2367-2617&rft.eissn=2367-0983&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1186%2Fs41601-022-00228-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s41601_022_00228_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2367-2617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2367-2617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2367-2617&client=summon