Statistical machine learning model for capacitor planning considering uncertainties in photovoltaic power
New energy integration and flexible demand response make smart grid operation scenarios complex and changeable, which bring challenges to network planning. If every possible scenario is considered, the solution to the planning can become extremely time-consuming and difficult. This paper introduces...
Saved in:
| Published in | Protection and control of modern power systems Vol. 7; no. 1 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
Springer Singapore
01.12.2022
Power System Protection and Control Press |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2367-2617 2367-0983 2367-0983 |
| DOI | 10.1186/s41601-022-00228-z |
Cover
| Abstract | New energy integration and flexible demand response make smart grid operation scenarios complex and changeable, which bring challenges to network planning. If every possible scenario is considered, the solution to the planning can become extremely time-consuming and difficult. This paper introduces statistical machine learning (SML) techniques to carry out multi-scenario based probabilistic power flow calculations and describes their application to the stochastic planning of distribution networks. The proposed SML includes linear regression, probability distribution, Markov chain, isoprobabilistic transformation, maximum likelihood estimator, stochastic response surface and center point method. Based on the above SML model, capricious weather, photovoltaic power generation, thermal load, power flow and uncertainty programming are simulated. Taking a 33-bus distribution system as an example, this paper compares the stochastic planning model based on SML with the traditional models published in the literature. The results verify that the proposed model greatly improves planning performance while meeting accuracy requirements. The case study also considers a realistic power distribution system operating under stressed conditions. |
|---|---|
| AbstractList | New energy integration and flexible demand response make smart grid operation scenarios complex and changeable, which bring challenges to network planning. If every possible scenario is considered, the solution to the planning can become extremely time-consuming and difficult. This paper introduces statistical machine learning (SML) techniques to carry out multi-scenario based probabilistic power flow calculations and describes their application to the stochastic planning of distribution networks. The proposed SML includes linear regression, probability distribution, Markov chain, isoprobabilistic transformation, maximum likelihood estimator, stochastic response surface and center point method. Based on the above SML model, capricious weather, photovoltaic power generation, thermal load, power flow and uncertainty programming are simulated. Taking a 33-bus distribution system as an example, this paper compares the stochastic planning model based on SML with the traditional models published in the literature. The results verify that the proposed model greatly improves planning performance while meeting accuracy requirements. The case study also considers a realistic power distribution system operating under stressed conditions. |
| ArticleNumber | 5 |
| Author | Fu, Xueqian |
| Author_xml | – sequence: 1 givenname: Xueqian orcidid: 0000-0001-7983-8700 surname: Fu fullname: Fu, Xueqian email: fuxueqian@cau.edu.cn organization: College of Information and Electrical Engineering, China Agricultural University |
| BookMark | eNqNkEtLAzEUhYNUsNb-AVcB16N5TGfSpRRfUHChrkOa3rEpaTImqaX99aadguCiuLm5JOfcnPtdop7zDhC6puSWUlHdxZJWhBaEsYLkIordGeozXtUFGQveO_asovUFGsa4JIRkGxcj1kfmLalkYjJaWbxSemEcYAsqOOM-8crPweLGB6xVq7RJuWutcodH7V00cwj7fu00hKSMSwYiNg63C5_8t7f5TuPWbyBcofNG2QjD4zlAH48P75PnYvr69DK5nxaaVzwVM1oCYZoxDQ0T85oCofVM6BJYmYsigtcCxnVTMt3UTd5FNBRGTAAdMQ4zPkC8m7t2rdpulLWyDWalwlZSIvfAZAdMZlbyAEzusuumc7XBf60hJrn06-ByUMkqTsqsKllWiU6lg48xQCMzk8zPuxSUsac_YH-s_0p13CW2e8wQflOdcP0AuFehGg |
| CitedBy_id | crossref_primary_10_1016_j_diamond_2024_111796 crossref_primary_10_3390_en16114510 crossref_primary_10_1016_j_apenergy_2023_122380 crossref_primary_10_1155_2023_4295384 crossref_primary_10_3389_fenrg_2022_934935 crossref_primary_10_3389_fenrg_2022_998493 crossref_primary_10_1016_j_egyr_2023_04_263 crossref_primary_10_1016_j_eswa_2023_121313 crossref_primary_10_3390_en16083408 crossref_primary_10_1016_j_renene_2022_06_063 crossref_primary_10_3389_fenrg_2022_948954 crossref_primary_10_3390_su151511852 crossref_primary_10_1049_rpg2_12932 crossref_primary_10_1049_rpg2_12978 crossref_primary_10_1186_s42162_024_00466_5 crossref_primary_10_1109_TIA_2024_3372515 crossref_primary_10_3390_su151612636 crossref_primary_10_1155_2023_1358099 crossref_primary_10_3389_fenrg_2023_1297356 crossref_primary_10_3390_en15207565 crossref_primary_10_3390_metrology3040021 crossref_primary_10_1186_s41601_023_00308_8 crossref_primary_10_3389_fenrg_2022_1089854 crossref_primary_10_3390_en15249441 crossref_primary_10_1155_2023_6678942 crossref_primary_10_1109_TPWRS_2022_3215510 crossref_primary_10_1155_2023_8828093 crossref_primary_10_3389_fenrg_2022_1006972 crossref_primary_10_1109_ACCESS_2023_3335191 crossref_primary_10_1109_TSG_2024_3411306 crossref_primary_10_1016_j_apenergy_2023_121786 crossref_primary_10_3389_fenrg_2023_1202701 crossref_primary_10_3390_su15108348 crossref_primary_10_3389_fenrg_2023_1280724 crossref_primary_10_1109_TSTE_2022_3220567 crossref_primary_10_3389_fenrg_2023_1277412 crossref_primary_10_1016_j_energy_2024_133546 crossref_primary_10_1109_TIA_2022_3218758 crossref_primary_10_3390_en16186465 crossref_primary_10_1049_rpg2_12786 crossref_primary_10_3389_fenrg_2023_1141374 crossref_primary_10_23919_PCMP_2023_000530 crossref_primary_10_3389_fenrg_2022_979599 crossref_primary_10_3390_buildings15040648 crossref_primary_10_1109_TSG_2024_3364182 crossref_primary_10_3389_fenrg_2022_916495 crossref_primary_10_1109_ACCESS_2023_3308067 crossref_primary_10_23919_PCMP_2023_000296 crossref_primary_10_32604_ee_2023_041881 crossref_primary_10_3390_en17010177 crossref_primary_10_1109_ACCESS_2024_3370911 crossref_primary_10_3389_fenrg_2023_1181310 crossref_primary_10_1016_j_engappai_2025_110367 crossref_primary_10_3389_fenrg_2022_919001 crossref_primary_10_1007_s10489_023_04980_z crossref_primary_10_1186_s41601_022_00259_6 crossref_primary_10_3389_fenrg_2022_968102 crossref_primary_10_1109_TIA_2024_3351621 crossref_primary_10_1016_j_inpa_2023_02_007 crossref_primary_10_1155_2023_6328119 crossref_primary_10_3389_fenrg_2022_902779 crossref_primary_10_1016_j_inpa_2023_02_008 crossref_primary_10_3390_en16104252 crossref_primary_10_1155_2023_6864403 crossref_primary_10_3390_en16145321 crossref_primary_10_3390_en17133139 crossref_primary_10_1016_j_eswa_2023_122226 crossref_primary_10_1016_j_inpa_2024_02_002 crossref_primary_10_1155_2023_9927608 crossref_primary_10_3390_su15129434 crossref_primary_10_3389_fenrg_2022_964305 crossref_primary_10_1155_2023_8685976 crossref_primary_10_3390_en18030503 crossref_primary_10_3389_fenrg_2022_993408 crossref_primary_10_1016_j_geits_2024_100181 crossref_primary_10_1186_s41601_022_00262_x crossref_primary_10_1016_j_ifacol_2024_07_104 crossref_primary_10_1109_TPWRD_2023_3307024 crossref_primary_10_1109_TSTE_2022_3223684 crossref_primary_10_3389_fenrg_2022_956543 crossref_primary_10_3389_fenrg_2022_1006474 crossref_primary_10_3389_fenrg_2022_999948 crossref_primary_10_3389_fenrg_2022_977979 crossref_primary_10_3390_en17040795 crossref_primary_10_1016_j_egyr_2024_09_073 crossref_primary_10_1016_j_apenergy_2024_123201 crossref_primary_10_1155_2023_6304877 crossref_primary_10_3390_math11102367 crossref_primary_10_1109_TNNLS_2024_3382763 crossref_primary_10_1049_gtd2_12895 crossref_primary_10_3389_fenrg_2022_1073976 crossref_primary_10_3389_fenrg_2022_968910 crossref_primary_10_61435_ijred_2024_60169 |
| Cites_doi | 10.1016/j.apenergy.2014.10.012 10.1016/j.apenergy.2017.02.002 10.1109/TSG.2020.2974021 10.3389/fenrg.2021.809254 10.1186/s41601-021-00200-3 10.1016/j.energy.2017.01.111 10.1109/TPWRS.2017.2699231 10.1109/TSG.2012.2183649 10.1109/60.790949 10.1109/TSG.2017.2684238 10.1109/TII.2016.2569525 10.1109/TSTE.2019.2927837 10.1109/TSG.2016.2517026 10.1109/TSG.2018.2810310 10.1109/TSG.2017.2685239 10.1049/iet-gtd.2015.1471 10.1109/TPWRS.2005.857921 10.1109/TSTE.2019.2950239 10.1016/j.energy.2013.10.065 10.1186/s41601-021-00184-0 10.1109/TSTE.2012.2222680 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 7SP 7TB 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V L7M M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS ADTOC UNPAY |
| DOI | 10.1186/s41601-022-00228-z |
| DatabaseName | Springer Open Access Journals CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2367-0983 |
| ExternalDocumentID | 10.1186/s41601-022-00228-z 10_1186_s41601_022_00228_z |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52007193 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | 0R~ 5VS AAFWJ AAKKN ABEEZ ACACY ACGFS ACULB ADBBV AEUYN AFGXO AFKRA AFPKN AHSBF ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG AVWKF BAPOH BCNDV BENPR C24 C6C CCPQU EBS EJD ESBDL GROUPED_DOAJ H13 IAO IPNFZ ISR JAVBF OK1 PIMPY RIG RSV SOJ AAYXX ABJCF ABVLG BGLVJ CITATION M7S PHGZM PHGZT PQGLB PTHSS PUEGO 7SP 7TB 8FD 8FE 8FG ABUWG ARAPS AZQEC DWQXO FR3 HCIFZ L6V L7M P62 PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY |
| ID | FETCH-LOGICAL-c363t-b14e02c22cef28d71e017b8c4e24c4ea08378e97f42cf7f0008f1e528e1523eb3 |
| IEDL.DBID | UNPAY |
| ISSN | 2367-2617 2367-0983 |
| IngestDate | Tue Aug 19 20:04:12 EDT 2025 Sat Sep 06 07:32:05 EDT 2025 Wed Oct 01 00:49:32 EDT 2025 Thu Apr 24 23:07:29 EDT 2025 Fri Feb 21 02:47:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Statistical machine learning Uncertainty Renewable energy Stochastic programming |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-b14e02c22cef28d71e017b8c4e24c4ea08378e97f42cf7f0008f1e528e1523eb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7983-8700 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pcmp.springeropen.com/track/pdf/10.1186/s41601-022-00228-z |
| PQID | 2630422842 |
| PQPubID | 4402868 |
| ParticipantIDs | unpaywall_primary_10_1186_s41601_022_00228_z proquest_journals_2630422842 crossref_citationtrail_10_1186_s41601_022_00228_z crossref_primary_10_1186_s41601_022_00228_z springer_journals_10_1186_s41601_022_00228_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Xuchang |
| PublicationTitle | Protection and control of modern power systems |
| PublicationTitleAbbrev | Prot Control Mod Power Syst |
| PublicationYear | 2022 |
| Publisher | Springer Singapore Power System Protection and Control Press |
| Publisher_xml | – name: Springer Singapore – name: Power System Protection and Control Press |
| References | Yan, Tang, Dai (CR9) 2021; 6 Fu, Wu, Liu (CR24) 2021; 9 Zhang, Li, Zhang, Xu (CR12) 2020; 11 Fu, Guo, Sun (CR17) 2020; 11 Zhang, Hu, Xu, Song (CR7) 2017; 8 Chen, Wen, Cheng (CR20) 2013; 4 Wang, Zhong, Xia, Kang (CR10) 2018; 9 Karaki, Chedid, Ramadan (CR21) 1999; 14 Lu (CR18) 2012; 3 Minchala-Avila, Garza-Castañon, Zhang, Ferrer (CR4) 2016; 12 Dai, Yu, Yang, Huang, Lin, Li (CR6) 2020; 11 Rohani, Nour (CR19) 2014; 64 Fu, Sun, Guo, Pan, Zhang, Zeng (CR15) 2017; 191 Hamad, Nassar, El-Saadany, Salama (CR11) 2019; 10 Fu, Chen, Xuan, Cai (CR14) 2016; 10 CR22 Zhang, Chen, Shi, Qiu, Hua, Ngan (CR3) 2018; 9 Yu, Dai, Li, Liu, Liu (CR5) 2018; 33 Liu, Zhou, Guo (CR2) 2021; 6 Chen, Gao, Chen, Wu, Fu, Chen (CR1) 2021; 49 Chun-Lien (CR23) 2005; 20 Chen, Xiao, Mo, Tian (CR8) 2021; 49 Fu, Chen, Cai, Yang (CR13) 2015; 137 Fu, Sun, Guo, Pan, Xiong, Wang (CR16) 2017; 122 Z Chen (228_CR1) 2021; 49 C Zhang (228_CR3) 2018; 9 X Fu (228_CR16) 2017; 122 Y Chen (228_CR20) 2013; 4 SH Karaki (228_CR21) 1999; 14 X Fu (228_CR14) 2016; 10 N Lu (228_CR18) 2012; 3 228_CR22 G Rohani (228_CR19) 2014; 64 X Fu (228_CR17) 2020; 11 J Chen (228_CR8) 2021; 49 W Dai (228_CR6) 2020; 11 X Fu (228_CR24) 2021; 9 LI Minchala-Avila (228_CR4) 2016; 12 X Fu (228_CR15) 2017; 191 S Liu (228_CR2) 2021; 6 J Yu (228_CR5) 2018; 33 AA Hamad (228_CR11) 2019; 10 X Fu (228_CR13) 2015; 137 J Wang (228_CR10) 2018; 9 H Zhang (228_CR7) 2017; 8 C Zhang (228_CR12) 2020; 11 C Yan (228_CR9) 2021; 6 Su Chun-Lien (228_CR23) 2005; 20 |
| References_xml | – ident: CR22 – volume: 137 start-page: 173 year: 2015 end-page: 182 ident: CR13 article-title: Optimal allocation and adaptive VAR control of PV-DG in distribution networks publication-title: Applied Energy doi: 10.1016/j.apenergy.2014.10.012 – volume: 191 start-page: 582 year: 2017 end-page: 592 ident: CR15 article-title: Probabilistic power flow analysis considering the dependence between power and heat publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.02.002 – volume: 11 start-page: 2904 issue: 4 year: 2020 end-page: 2917 ident: CR17 article-title: Statistical machine learning model for stochastic optimal planning of distribution networks considering a dynamic correlation and dimension reduction publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2020.2974021 – volume: 9 start-page: 809254 year: 2021 ident: CR24 article-title: Statistical machine learning model for uncertainty planning of distributed renewable energy sources in distribution networks publication-title: Frontiers in Energy Research doi: 10.3389/fenrg.2021.809254 – volume: 6 start-page: 22 year: 2021 ident: CR9 article-title: Uncertainty modeling of wind power frequency regulation potential considering distributed characteristics of forecast errors publication-title: Protection and Control of Modern Power Systems doi: 10.1186/s41601-021-00200-3 – volume: 49 start-page: 32 issue: 8 year: 2021 end-page: 40 ident: CR1 article-title: Research on cooperative planning of an integrated energy system considering uncertainty publication-title: Power System Protection and Control – volume: 122 start-page: 649 year: 2017 end-page: 662 ident: CR16 article-title: Uncertainty analysis of an integrated energy system based on information theory publication-title: Energy doi: 10.1016/j.energy.2017.01.111 – volume: 33 start-page: 421 issue: 1 year: 2018 end-page: 429 ident: CR5 article-title: Optimal reactive power flow of interconnected power system based on static equivalent method using border PMU measurements publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2017.2699231 – volume: 3 start-page: 1263 issue: 3 year: 2012 end-page: 1270 ident: CR18 article-title: An evaluation of the HVAC load potential for providing load balancing service publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2012.2183649 – volume: 14 start-page: 766 issue: 3 year: 1999 end-page: 772 ident: CR21 article-title: Probabilistic performance assessment of autonomous solar-wind energy conversion systems publication-title: IEEE Transactions on Energy Conversion doi: 10.1109/60.790949 – volume: 9 start-page: 5217 issue: 5 year: 2018 end-page: 5226 ident: CR3 article-title: An interval power flow analysis through optimizing-scenarios method publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2017.2684238 – volume: 12 start-page: 1361 issue: 4 year: 2016 end-page: 1370 ident: CR4 article-title: Optimal energy management for stable operation of an islanded microgrid publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2016.2569525 – volume: 11 start-page: 1473 issue: 3 year: 2020 end-page: 1482 ident: CR6 article-title: A static equivalent model of natural gas network for electricity–gas co-optimization publication-title: IEEE Transactions on Sustainable Energy doi: 10.1109/TSTE.2019.2927837 – volume: 49 start-page: 59 issue: 10 year: 2021 end-page: 66 ident: CR8 article-title: Optimized allocation of microgrid energy storage capacity considering photovoltaic correction publication-title: Power System Protection and Control – volume: 8 start-page: 2119 issue: 5 year: 2017 end-page: 2128 ident: CR7 article-title: Optimal planning of PEV charging station with single output multiple cables charging spots publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2016.2517026 – volume: 10 start-page: 2789 issue: 3 year: 2019 end-page: 2798 ident: CR11 article-title: Optimal configuration of isolated hybrid AC/DC microgrids publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2018.2810310 – volume: 9 start-page: 5236 issue: 5 year: 2018 end-page: 5248 ident: CR10 article-title: Optimal planning strategy for distributed energy resources considering structural transmission cost allocation publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2017.2685239 – volume: 10 start-page: 2512 issue: 10 year: 2016 end-page: 2519 ident: CR14 article-title: Improved LSF method for loss estimation and its application in DG allocation publication-title: IET Generation, Transmission & Distribution doi: 10.1049/iet-gtd.2015.1471 – volume: 20 start-page: 1843 issue: 4 year: 2005 end-page: 1851 ident: CR23 article-title: Probabilistic load-flow computation using point estimate method publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2005.857921 – volume: 11 start-page: 2003 issue: 3 year: 2020 end-page: 2014 ident: CR12 article-title: Data-driven sizing planning of renewable distributed generation in distribution networks with optimality guarantee publication-title: IEEE Transactions on Sustainable Energy doi: 10.1109/TSTE.2019.2950239 – volume: 64 start-page: 828 year: 2014 end-page: 841 ident: CR19 article-title: Techno-economical analysis of stand-alone hybrid renewable power system for Ras Musherib in United Arab Emirates publication-title: Energy doi: 10.1016/j.energy.2013.10.065 – volume: 6 start-page: 4 year: 2021 ident: CR2 article-title: Operational optimization of a building-level integrated energy system considering additional potential benefits of energy storage publication-title: Protection and Control of Modern Power Systems doi: 10.1186/s41601-021-00184-0 – volume: 4 start-page: 294 issue: 2 year: 2013 end-page: 301 ident: CR20 article-title: "Probabilistic load flow method based on Nataf transformation and Latin hypercube sampling publication-title: IEEE Transactions on Sustainable Energy doi: 10.1109/TSTE.2012.2222680 – volume: 11 start-page: 2003 issue: 3 year: 2020 ident: 228_CR12 publication-title: IEEE Transactions on Sustainable Energy doi: 10.1109/TSTE.2019.2950239 – volume: 49 start-page: 32 issue: 8 year: 2021 ident: 228_CR1 publication-title: Power System Protection and Control – volume: 6 start-page: 4 year: 2021 ident: 228_CR2 publication-title: Protection and Control of Modern Power Systems doi: 10.1186/s41601-021-00184-0 – volume: 6 start-page: 22 year: 2021 ident: 228_CR9 publication-title: Protection and Control of Modern Power Systems doi: 10.1186/s41601-021-00200-3 – volume: 14 start-page: 766 issue: 3 year: 1999 ident: 228_CR21 publication-title: IEEE Transactions on Energy Conversion doi: 10.1109/60.790949 – ident: 228_CR22 – volume: 9 start-page: 5236 issue: 5 year: 2018 ident: 228_CR10 publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2017.2685239 – volume: 3 start-page: 1263 issue: 3 year: 2012 ident: 228_CR18 publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2012.2183649 – volume: 9 start-page: 809254 year: 2021 ident: 228_CR24 publication-title: Frontiers in Energy Research doi: 10.3389/fenrg.2021.809254 – volume: 191 start-page: 582 year: 2017 ident: 228_CR15 publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.02.002 – volume: 12 start-page: 1361 issue: 4 year: 2016 ident: 228_CR4 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2016.2569525 – volume: 137 start-page: 173 year: 2015 ident: 228_CR13 publication-title: Applied Energy doi: 10.1016/j.apenergy.2014.10.012 – volume: 10 start-page: 2512 issue: 10 year: 2016 ident: 228_CR14 publication-title: IET Generation, Transmission & Distribution doi: 10.1049/iet-gtd.2015.1471 – volume: 11 start-page: 2904 issue: 4 year: 2020 ident: 228_CR17 publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2020.2974021 – volume: 10 start-page: 2789 issue: 3 year: 2019 ident: 228_CR11 publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2018.2810310 – volume: 4 start-page: 294 issue: 2 year: 2013 ident: 228_CR20 publication-title: IEEE Transactions on Sustainable Energy doi: 10.1109/TSTE.2012.2222680 – volume: 49 start-page: 59 issue: 10 year: 2021 ident: 228_CR8 publication-title: Power System Protection and Control – volume: 11 start-page: 1473 issue: 3 year: 2020 ident: 228_CR6 publication-title: IEEE Transactions on Sustainable Energy doi: 10.1109/TSTE.2019.2927837 – volume: 20 start-page: 1843 issue: 4 year: 2005 ident: 228_CR23 publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2005.857921 – volume: 9 start-page: 5217 issue: 5 year: 2018 ident: 228_CR3 publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2017.2684238 – volume: 33 start-page: 421 issue: 1 year: 2018 ident: 228_CR5 publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2017.2699231 – volume: 8 start-page: 2119 issue: 5 year: 2017 ident: 228_CR7 publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2016.2517026 – volume: 122 start-page: 649 year: 2017 ident: 228_CR16 publication-title: Energy doi: 10.1016/j.energy.2017.01.111 – volume: 64 start-page: 828 year: 2014 ident: 228_CR19 publication-title: Energy doi: 10.1016/j.energy.2013.10.065 |
| SSID | ssj0001863852 ssib044757340 ssib044928846 |
| Score | 2.5435765 |
| Snippet | New energy integration and flexible demand response make smart grid operation scenarios complex and changeable, which bring challenges to network planning. If... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Accuracy Algorithms Alternative energy sources Artificial intelligence Electric power distribution Electrical Machines and Networks Energy Energy storage Energy Systems Load distribution Machine learning Markov chains Mathematical programming Maximum likelihood estimators New-Generation Artificial Intelligence Techniques Applications on Smart Distribution Network Planning and Dispatching Optimization Original Research Photovoltaics Planning Power Electronics Power flow Probability distribution Renewable and Green Energy Renewable resources Response surface methodology Smart grid Statistical analysis Thermal analysis Uncertainty |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50PagH8Ynrixy8aXCbpml6EFFRRHARUfBW2jTVhbVbdUX01zuTTXf1sngpoU0bmEwn3-TxfQD7kUUQpBLNlSoEl3FZ8ExnJZZ0FuYql9ppLN101dWDvH6MHmeg25yFoW2VTUx0gboYGJojPxIqdHRVUpzUr5xUo2h1tZHQyLy0QnHsKMZmYU4QM1YL5s4uurd3jYcRu10cTthNpEyE1j4hcrMyGv3RyfQQsxknuvLmpI1WR--IXij7xvzN8cbw77-j2QSijldVF2H-o6qzr8-s3_81cF0uw5JHnOx05CIrMGOrVVj8xUO4Bj2CnI6xGSu-uO2Vlnk9iSfmxHIYgltmcGQ1GALeWO21jpjxgp9UxiFytMGASFpZr2L182A4wPiH9wyrSY9tHR4uL-7Pr7jXYOAmVOGQ54G0HWGEMLYUuogDi79wro20QuIl6xAhvU3iUgpTxiVBijKwkdAWgUGImfoGtKpBZTeBhaYoMBvFkIGwIUpMEuRClZ2ok-c6ioqoDUFjy9R4gnLSyeinLlHRKh3ZP0XTp87-6XcbDsbv1CN6jqm1d5ouSv2v-p5OHKsNh023TR5P-9rhuGv_0fjW9Ma3YUGQY7mdMjvQGr592F3EO8N8zzvxD6u59-w priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46D7qD-BOnU3Lw5optmqbpUYZjCHpysFto01QHsytbh7i_3pc0XSfI0EsJbdpA8l7e95rk-xC6DRSAIBZxh7GUODTMUifmcQYlHvsJSyg3GkvPL2w4ok_jYGwPhS3q3e71kqSZqY1bc3a_AOigU19Ingxpi7PaRXuAP4gWbOg3nOOawS70GwYTSiPCuU16zJ8XDjZnpHg0e5mjKcnr0zS_NvMzYjUwdL1y2kb7y7yIvz7j6XQjOA2O0KFFlfihMoNjtKPyE9Te4Bo8RRMNKw0rM1T8MFsoFbaaEW_YCOJgALBYQvSU4OZzXFg9IyytqKcuQxisNhFoIlY8yXHxPitnMMfBPYkLrbl2hkaDx9f-0LE6C470mV86iUeVSyQhUmWEp6GnwE0TLqkiFC6xq0nnVRRmlMgszDRsyDwVEK4g-PuQjZ-jVj7L1QXCvkxTyDhhWgBoEEQy8hLCMjdwk4QHQRp0kFf3pZCWhFxrYUyFSUY4E1X_C-h6YfpfrDrobv1OUVFwbK3drYdIWHdcCMJ8w3VGSQf16mFrHm_7Wm89tH9o_PJ_X79CB0Qbmtkd00Wtcr5U14BxyuTGmPQ3G-zupQ priority: 102 providerName: Springer Nature |
| Title | Statistical machine learning model for capacitor planning considering uncertainties in photovoltaic power |
| URI | https://link.springer.com/article/10.1186/s41601-022-00228-z https://www.proquest.com/docview/2630422842 https://pcmp.springeropen.com/track/pdf/10.1186/s41601-022-00228-z |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2367-0983 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044928846 issn: 2367-2617 databaseCode: ADMLS dateStart: 20181201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2367-0983 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044757340 issn: 2367-2617 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2367-0983 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0001863852 issn: 2367-0983 databaseCode: BENPR dateStart: 20190801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Open Access Journals customDbUrl: eissn: 2367-0983 dateEnd: 20230112 omitProxy: true ssIdentifier: ssj0001863852 issn: 2367-0983 databaseCode: C6C dateStart: 20161201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2367-0983 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0001863852 issn: 2367-0983 databaseCode: C24 dateStart: 20161201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH4a7WHjsN9oZazyYbeRkji26xxZRYeQqNBEJXaKYscGREkjSDXRv37PTlK6CSHQLpGTOI78673vyfb3AXzlBkGQSGQgRE4DNrR5kMnMYkpmsRKKSa-xdDwRh1N2dMbP1s7ClPq6HLRLkk5AyltrDPr11V6Z23qSS7F3i0DCBcIYSnkKl2C5AV3BEY93oDudnOz_8qpyaAXCxHNx-rSjH29PzjxYyN_e6R5yrlZJN-Hloiizu9_ZbLbmiMZvQK-q4PefXA0WlRro5T_sjv9Xx7fwusGpZL8eWO_ghSnew-Yae-EHuHRA1fM8Y8ZrvynTkEaF4px4iR2CkJho9McaDccNKRuFJKIbmVCXRsdab0tw1K7ksiDlxbyao9XEZ5qUTsXtI0zHB6ejw6BRbgh0LOIqUBEzIdWUamOpzIeRwYmvpGaGMrxkoaOxN8nQMqrt0DogYiPDqTQIJ2KM77egU8wL8wlIrPMcY1g0NAg2eKKTSFFhQx4qJTnPeQ-itsdS3dCaO3WNWerDGynSuhlTbMHUN2O67MG31TdlTerxaO6ddiCkzQS_TamIPXsaoz3Ybfvy_vVjpe2uBtATfr79vOyf4RV148Xvt9mBTnWzMF8QNVWqDxty_KMP3e8Hk5OfeDeizF3FqN9MmD_e0BLC |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB7xOAAHBOwiusvDBziBReM4jnNAiKfKAtVqBRI3kzgOIHXTLC1C8OP4bYxdp4VLtRcukZU4seSZzMMefx_AZmQwCBKJpELkjPK4yGkq0wJbMg0zkXHpOJYu26J1zX_dRDcT8FafhbFllbVNdIY672q7Rr7LROjgqjjbr_5Ryxpld1drCo3UUyvkew5izB_sODcvz5jC9fbOjlHeW4ydnlwdtahnGaA6FGGfZgE3TaYZ06ZgMo8Dg0qaSc0N43hJmxZy3SRxwZku4sI6zSIwEZMGXV-IuSh-dxKmecgTTP6mD0_av__UGm3R9OJwhKbCecKk9AmYWwWSqP-OFsgiqVELj16f7JFit4fRks32MV90ODX09bP3HIXEw13cOZh5Kqv05TntdD44ytMFmPcRLjkYqOQiTJhyCeY-4B5-gwcb4jqEaOz415VzGuL5K-6II-chGEwTjZ5co8l5JJXnViLaE4zaNrrkQUGDBYUlDyWp7rv9LtpbvKdJZfnfvsP1l0hjGabKbmlWgIQ6zzH7RROFYUqU6CTImCiaUTPLZBTlUQOCei6V9oDolpejo1xiJIUazL_CqVdu_tVrA7aH71QDOJCxvVdrESlvGnpqpMgN2KnFNno87ms7Q9H-x-A_xg--ATOtq8sLdXHWPv8Js8wqmavSWYWp_uOTWcNYq5-te4UmcPvV_9A7_Jo0ow |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gI-D-MTVVXPwpsVtmqbpUVYXn4sHBW-hTRMV1m7Riuivd5K2uyuI6KWENm0gmWS-aSbfB7AfagRBPBYe5xn1WGQyLxGJwZJIgpSnTDiNpes-P7tjF_fh_cQpfpft3mxJVmcaLEtTXh4VmammuOBHrwgjbBiMgZQjcPE-p2GWoXezGgZd3m0syrLZRcGYzYSxmApRB0DuL4xA-3OyPJbJzLP05M3Jmh-b-e69xpB0tIu6CPNveZF8vCeDwYSj6i3DUo0wyXFlEiswpfNVWJzgHVyDJwsxHUMzVnx26ZSa1PoRD8SJ4xAEs0ShJ1U45V9IUWsbEVULfNoyusQqocCSspKnnBSPw3KI6x3eU6Sw-mvrcNc7ve2eebXmgqcCHpRe6jPdoYpSpQ0VWeRrnLKpUExThpekYwnodRwZRpWJjIUQxtchFRqBQICR-QbM5MNcbwIJVJZh9IlLBMKEMFaxn1JuOmEnTUUYZmEL_KYvpaoJya0uxkC6wERwWfW_xK6Xrv_lZwsORu8UFR3Hr7XbzRDJemq-SsoDx3vGaAsOm2EbP_7ta4ejof1D41v_-_oezN2c9OTVef9yGxaotTmXNNOGmfLlTe8g9CnTXWfdX89p9fY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEB10PagHv8X1ixy8adc2bbLpUUQRQfHggp5KkyYqrt2iXcT99U7Sdl1FRPFSQpu2JJlM3pDJewB7TCMI4rHwOM-oF3VN5qUiNVgSaSi5jITTWLq45Ge96PyG3UychSnUU9FptiStgJTz1hj0q8fDIjPVJBf88AWBhA2EMZRyFC7eaBpmOEM83oKZ3uXV0a1TlUMv4MeOi9OVLf14c3Lm2498Xp0-IOd4l3QeZod5kb69pv3-xEJ0ughq3ASXf_LYGZayo0Zf2B3_18YlWKhxKjmqDGsZpnS-AvMT7IWr8GCBquN5xopPLilTk1qF4o44iR2CkJgoXI8VOo5nUtQKSUTVMqG2jAtrlZZgqV3JQ06K-0E5QK-J9xQprIrbGvROT66Pz7xaucFTIQ9LTwaR9qmiVGlDRdYNNE58KVSkaYSX1Lc09jrumogq0zUWiJhAMyo0wokQ4_t1aOWDXG8ACVWWYQyLjgbBBotVHEjKjc98KQVjGWtD0IxYompac6uu0U9ceCN4UnVjgj2YuG5MRm3YH79TVKQeP9bebgwhqSf4S0J56NjTItqGg2YsPx7_9LWDsQH94uebf6u-BXPU2ovLt9mGVvk81DuImkq5W0-LdzfjDps |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+machine+learning+model+for+capacitor+planning+considering+uncertainties+in+photovoltaic+power&rft.jtitle=Protection+and+control+of+modern+power+systems&rft.au=Fu%2C+Xueqian&rft.date=2022-12-01&rft.issn=2367-2617&rft.eissn=2367-0983&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1186%2Fs41601-022-00228-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s41601_022_00228_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2367-2617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2367-2617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2367-2617&client=summon |