A minimum-time obstacle-avoidance path planning algorithm for unmanned aerial vehicles
In this article, we present a new strategy to determine an unmanned aerial vehicle trajectory that minimizes its flight time in presence of avoidance areas and obstacles. The method combines classical results from optimal control theory, i.e. the Euler-Lagrange Theorem and the Pontryagin Minimum Pri...
Saved in:
| Published in | Numerical algorithms Vol. 89; no. 4; pp. 1639 - 1661 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.04.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1017-1398 1572-9265 1572-9265 |
| DOI | 10.1007/s11075-021-01167-w |
Cover
| Summary: | In this article, we present a new strategy to determine an unmanned aerial vehicle trajectory that minimizes its flight time in presence of avoidance areas and obstacles. The method combines classical results from optimal control theory, i.e. the Euler-Lagrange Theorem and the Pontryagin Minimum Principle, with a continuation technique that dynamically adapts the solution curve to the presence of obstacles. We initially consider the two-dimensional path planning problem and then move to the three-dimensional one, and include numerical illustrations for both cases to show the efficiency of our approach. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 1572-9265 |
| DOI: | 10.1007/s11075-021-01167-w |