Nonautonomous Volterra Series Expansion of the Variable Phase Approximation and its Application to the Nucleon-Nucleon Inverse Scattering Problem
In this paper, the nonlinear Volterra series expansion is extended and used to describe certain types of nonautonomous differential equations related to the inverse scattering problem in nuclear physics. The nonautonomous Volterra series expansion lets us determine a dynamic, polynomial approximatio...
        Saved in:
      
    
          | Published in | Progress of theoretical and experimental physics Vol. 2024; no. 8 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Oxford University Press
    
        01.08.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2050-3911 2050-3911  | 
| DOI | 10.1093/ptep/ptae111 | 
Cover
| Abstract | In this paper, the nonlinear Volterra series expansion is extended and used to describe certain types of nonautonomous differential equations related to the inverse scattering problem in nuclear physics. The nonautonomous Volterra series expansion lets us determine a dynamic, polynomial approximation of the variable phase approximation (VPA), which is used to determine the phase shifts from nuclear potentials through first-order nonlinear differential equations. By using the first-order Volterra expansion, a robust approximation is formulated to the inverse scattering problem for weak potentials and/or high energies. The method is then extended with the help of radial basis function neural networks by applying a nonlinear transformation on the measured phase shifts to be able to model the scattering system with a linear approximation given by the first-order Volterra expansion. The method is applied to describe the ^1S_0$ NN potentials in neutron+proton scattering below 200 MeV laboratory kinetic energies, giving physically sensible potentials and below $1\%$ averaged relative error between the recalculated and the measured phase shifts. | 
    
|---|---|
| AbstractList | In this paper, the nonlinear Volterra series expansion is extended and used to describe certain types of nonautonomous differential equations related to the inverse scattering problem in nuclear physics. The nonautonomous Volterra series expansion lets us determine a dynamic, polynomial approximation of the variable phase approximation (VPA), which is used to determine the phase shifts from nuclear potentials through first-order nonlinear differential equations. By using the first-order Volterra expansion, a robust approximation is formulated to the inverse scattering problem for weak potentials and/or high energies. The method is then extended with the help of radial basis function neural networks by applying a nonlinear transformation on the measured phase shifts to be able to model the scattering system with a linear approximation given by the first-order Volterra expansion. The method is applied to describe the ^1S_0$ NN potentials in neutron+proton scattering below 200 MeV laboratory kinetic energies, giving physically sensible potentials and below $1\%$ averaged relative error between the recalculated and the measured phase shifts. In this paper, the nonlinear Volterra series expansion is extended and used to describe certain types of nonautonomous differential equations related to the inverse scattering problem in nuclear physics. The nonautonomous Volterra series expansion lets us determine a dynamic, polynomial approximation of the variable phase approximation (VPA), which is used to determine the phase shifts from nuclear potentials through first-order nonlinear differential equations. By using the first-order Volterra expansion, a robust approximation is formulated to the inverse scattering problem for weak potentials and/or high energies. The method is then extended with the help of radial basis function neural networks by applying a nonlinear transformation on the measured phase shifts to be able to model the scattering system with a linear approximation given by the first-order Volterra expansion. The method is applied to describe the ^1S_0$ NN potentials in neutron+proton scattering below 200 MeV laboratory kinetic energies, giving physically sensible potentials and below $1\%$ averaged relative error between the recalculated and the measured phase shifts.  | 
    
| Author | Balassa, Gábor | 
    
| Author_xml | – sequence: 1 givenname: Gábor orcidid: 0000-0002-3395-9678 surname: Balassa fullname: Balassa, Gábor email: balassa.gabor@wigner.hun-ren.hu  | 
    
| BookMark | eNqFkMlOw0AMhkeoSJTlxgOMxIELgXEmzXKsKjYJlUos18hNHAhKZ8LMBNrH4I2ZkB44wcW2rM-_7X-fjZRWxNgxiHMQmbxoHbU-IAHADhuHYiICmQGMftV77MjaNyEEiCQREYzZ11wr7JxWeqU7y59148gY5A9karL8ct2isrVWXFfcvRJ_RlPjsiG-eEVLfNq2Rq_rFbqeQVXy2tm-29TF0HP6Z27eFQ1pFWwzv1UfZLzAg8f8xlq98IXRXnh1yHYrbCwdbfMBe7q6fJzdBHf317ez6V1QyFi6IKMJCplRJtJoUpZxRiCxSpcYQZnIciIBojjFtISiXJZpTEmBmC5BhGEUQgXygAWDbqda3Hxi0-St8Z-YTQ4i7y3Ne0vzraWePxl4__F7R9blb7ozyp-YS0ggyuIQpKfOBqow2lpD1X-ipwOuu_Zv8hvbPZlh | 
    
| Cites_doi | 10.1016/j.automatica.2017.07.055 10.1017/9781316995433 10.1016/j.chemolab.2023.104759 10.1016/j.ymssp.2022.109973 10.1007/BF02667354 10.1093/imamci/1.3.243 10.1016/0888-3270(90)90051-L 10.1016/j.arcontrol.2009.12.001 10.1080/002071704200024365 10.1061/(ASCE)AS.1943-5525.0001174 10.1140/epja/s10050-022-00839-y 10.3390/s18041024 10.1016/0375-9474(95)00171-V 10.1137/120864581 10.1016/j.amc.2004.08.002 10.1007/s00521-021-06373-0 10.2514/1.38964 10.1007/978-3-642-54464-4_1 10.1364/AO.20.001866 10.1093/ptep/ptad131 10.1119/1.1975005 10.1088/1402-4896/ace99e 10.1109/TAC.1974.1100705 10.1214/aos/1176344136 10.1063/1.1703790 10.1016/j.ymssp.2016.10.029 10.1006/jsco.1999.0270 10.1016/j.ijheatmasstransfer.2023.124847 10.1088/0954-3899/24/8/039 10.1016/j.conengprac.2014.02.023 10.1016/0888-3270(89)90012-5 10.3390/math10081257 10.1103/PhysRevD.28.97  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | TOX AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY  | 
    
| DOI | 10.1093/ptep/ptae111 | 
    
| DatabaseName | Oxford Journals Open Access Collection CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (via ProQuest) Science Database (via ProQuest SciTech Premium Collection) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences | 
    
| EISSN | 2050-3911 | 
    
| ExternalDocumentID | 10.1093/ptep/ptae111 10_1093_ptep_ptae111  | 
    
| GroupedDBID | .I3 0R~ 4.4 5VS 88I AAFWJ AAMVS AAPXW AAVAP ABEJV ABGNP ABPTD ABUWG ABXVV ACGFS ADHZD AENEX AENZO AFKRA AFPKN AIBLX ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AZQEC BAYMD BENPR CCPQU CIDKT DWQXO D~K EBS EJD ER. GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ISR ITC KQ8 KSI M2P M~E O9- OAWHX OJQWA OK1 PEELM PHGZM PHGZT PIMPY ROL RXO TOX ~D7 AAYXX CITATION PUEGO 3V. 7XB 8FK PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c363t-9e5a039e90845dd69e13af8ba41d73d5311468a8d1cdbd86e7caa8b1022421f13 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2050-3911 | 
    
| IngestDate | Sun Oct 26 04:15:19 EDT 2025 Sat Sep 20 13:21:35 EDT 2025 Wed Oct 01 02:50:24 EDT 2025 Mon Jun 30 08:34:42 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Language | English | 
    
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c363t-9e5a039e90845dd69e13af8ba41d73d5311468a8d1cdbd86e7caa8b1022421f13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-3395-9678 | 
    
| OpenAccessLink | https://www.proquest.com/docview/3171496213?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 3171496213 | 
    
| PQPubID | 7121340 | 
    
| ParticipantIDs | unpaywall_primary_10_1093_ptep_ptae111 proquest_journals_3171496213 crossref_primary_10_1093_ptep_ptae111 oup_primary_10_1093_ptep_ptae111  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-08-01 | 
    
| PublicationDateYYYYMMDD | 2024-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford | 
    
| PublicationTitle | Progress of theoretical and experimental physics | 
    
| PublicationYear | 2024 | 
    
| Publisher | Oxford University Press | 
    
| Publisher_xml | – name: Oxford University Press | 
    
| References | Kamyad (2024081011085882900_bib27) 2005; 167 Arndt (2024081011085882900_bib44) 1983; 28 Kauppinen (2024081011085882900_bib36) 1981; 20 Risuleo (2024081011085882900_bib2) 2017; 85 Alexander (2024081011085882900_bib12) 2023; 187 Newton (2024081011085882900_bib19) 1962; 3 Lipperheide (2024081011085882900_bib20) 1978; 286 Jiang (2024081011085882900_bib21) 2022; 34 Boyd (2024081011085882900_bib9) 1984; 1 Schetzen (2024081011085882900_bib8) 1980 Stepniak (2024081011085882900_bib16) 2018; 18 Barrio (2024081011085882900_bib37) 2013; 51 Billings (2024081011085882900_bib5) 1990; 4 Maachou (2024081011085882900_bib6) 2014; 29 Balajewicz (2024081011085882900_bib15) 2010; 48 Khachi (2024081011085882900_bib31) 2023; 98 Korenberg (2024081011085882900_bib14) 2007; 24 Eykhoff (2024081011085882900_bib3) 1974 Mackintosh (2024081011085882900_bib30) 1998; 24 Balassa (2024081011085882900_bib43) 2023; 2023 Mitsis (2024081011085882900_bib26) 2014 Griffiths (2024081011085882900_bib34) 2018 Balassa (2024081011085882900_bib10) 2022; 10 Munafò (2024081011085882900_bib7) 2024; 219 Hélie (2024081011085882900_bib23) 2004; 77 Akaike (2024081011085882900_bib40) 1974; 19 Andrews (2024081011085882900_bib39) 1999 Billings (2024081011085882900_bib4) 1989; 3 Thomas (2024081011085882900_bib24) 2006; 61 Schwarz (2024081011085882900_bib41) 1978; 6 Krack (2024081011085882900_bib25) 2019 Korn (2024081011085882900_bib28) , , , 1967 Calogero (2024081011085882900_bib17) 1968; 36 Balassa (2024081011085882900_bib33) 2022; 58 Wahab (2024081011085882900_bib35) 2023; 235 Engl (2024081011085882900_bib18) 2014 Aubry (2024081011085882900_bib42) 1999; 28 Zhang (2024081011085882900_bib13) 2020; 33 Arfken (2024081011085882900_bib38) 2012 Cheng (2024081011085882900_bib11) 2017; 87 Mackintosh (2024081011085882900_bib29) 1995; 589 Aygun (2024081011085882900_bib32) 2022; 96 Ljung (2024081011085882900_bib1) 2010; 34  | 
    
| References_xml | – volume: 85 start-page: 234 year: 2017 ident: 2024081011085882900_bib2 publication-title: Automatica doi: 10.1016/j.automatica.2017.07.055 – volume-title: Introduction to Quantum Mechanics year: 2018 ident: 2024081011085882900_bib34 doi: 10.1017/9781316995433 – volume: 235 start-page: 104759 year: 2023 ident: 2024081011085882900_bib35 publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2023.104759 – volume: 61 start-page: 1 year: 2006 ident: 2024081011085882900_bib24 publication-title: J. Appl. Math. – volume: 187 start-page: 109973 year: 2023 ident: 2024081011085882900_bib12 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109973 – volume: 24 start-page: 250 year: 2007 ident: 2024081011085882900_bib14 publication-title: Ann. Biomed. Eng. doi: 10.1007/BF02667354 – volume-title: Inverse and Ill-Posed Problems year: 2014 ident: 2024081011085882900_bib18 – volume: 1 start-page: 243 year: 1984 ident: 2024081011085882900_bib9 publication-title: IMA J. Math. Control Inf. doi: 10.1093/imamci/1.3.243 – volume: 4 start-page: 117 year: 1990 ident: 2024081011085882900_bib5 publication-title: Mech. Syst. Signal Process. doi: 10.1016/0888-3270(90)90051-L – volume: 34 start-page: 1 year: 2010 ident: 2024081011085882900_bib1 publication-title: Ann. Rev. Contr. doi: 10.1016/j.arcontrol.2009.12.001 – volume-title: The Volterra and Wiener Theories of Nonlinear Systems year: 1980 ident: 2024081011085882900_bib8 – volume: 77 start-page: 1071 year: 2004 ident: 2024081011085882900_bib23 publication-title: Int. J. Control doi: 10.1080/002071704200024365 – volume: 96 start-page: 209 year: 2022 ident: 2024081011085882900_bib32 publication-title: J. Phys. – volume: 33 start-page: 04020055 year: 2020 ident: 2024081011085882900_bib13 publication-title: J. Aerospace Eng. doi: 10.1061/(ASCE)AS.1943-5525.0001174 – volume: 58 start-page: 186 year: 2022 ident: 2024081011085882900_bib33 publication-title: Eur. Phys. J. A doi: 10.1140/epja/s10050-022-00839-y – volume: 18 start-page: 1024 year: 2018 ident: 2024081011085882900_bib16 publication-title: Sensors doi: 10.3390/s18041024 – volume-title: Mathematical Handbook for Scientists and Engineers year: , , , 1967 ident: 2024081011085882900_bib28 – volume-title: System Identification year: 1974 ident: 2024081011085882900_bib3 – volume: 589 start-page: 377 year: 1995 ident: 2024081011085882900_bib29 publication-title: Nucl. Phys. A. doi: 10.1016/0375-9474(95)00171-V – volume: 51 start-page: 1280 year: 2013 ident: 2024081011085882900_bib37 publication-title: SIAM J. Numer. Anal. doi: 10.1137/120864581 – volume: 167 start-page: 1041 year: 2005 ident: 2024081011085882900_bib27 publication-title: Appl. Math. Comp. doi: 10.1016/j.amc.2004.08.002 – volume-title: Mathematical Methods for Physicists: A Comprehensive Guide year: 2012 ident: 2024081011085882900_bib38 – volume: 34 start-page: 4133 year: 2022 ident: 2024081011085882900_bib21 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06373-0 – volume-title: Harmonic Balance for Nonlinear Vibration Problems, Mathematical Engineering year: 2019 ident: 2024081011085882900_bib25 – volume: 48 start-page: 56 year: 2010 ident: 2024081011085882900_bib15 publication-title: AIAA J. doi: 10.2514/1.38964 – volume-title: Data-driven Modeling for Diabetes. Lecture Notes in Bioengineering year: 2014 ident: 2024081011085882900_bib26 article-title: Data-Driven and Minimal-Type Compartmental Insulin-Glucose Models: Theory and Applications doi: 10.1007/978-3-642-54464-4_1 – volume: 20 start-page: 1866 year: 1981 ident: 2024081011085882900_bib36 publication-title: Appl. Opt. doi: 10.1364/AO.20.001866 – volume: 2023 start-page: 113A01 year: 2023 ident: 2024081011085882900_bib43 publication-title: Prog. Theor. Exp. Phys. doi: 10.1093/ptep/ptad131 – volume: 36 start-page: 566 year: 1968 ident: 2024081011085882900_bib17 publication-title: Am. J. Phys. doi: 10.1119/1.1975005 – volume: 98 start-page: 095301 year: 2023 ident: 2024081011085882900_bib31 publication-title: Phys. Scripta doi: 10.1088/1402-4896/ace99e – volume: 19 start-page: 716 year: 1974 ident: 2024081011085882900_bib40 publication-title: IEEE Trans. Automat. Contr. doi: 10.1109/TAC.1974.1100705 – volume-title: Special Functions, Encyclopedia of Mathematics and its Applications 71 year: 1999 ident: 2024081011085882900_bib39 – volume: 6 start-page: 461 year: 1978 ident: 2024081011085882900_bib41 publication-title: Ann. Statist. doi: 10.1214/aos/1176344136 – volume: 3 start-page: 75 year: 1962 ident: 2024081011085882900_bib19 publication-title: J. Math. Phys. doi: 10.1063/1.1703790 – volume: 87 start-page: 340 year: 2017 ident: 2024081011085882900_bib11 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.10.029 – volume: 28 start-page: 125 year: 1999 ident: 2024081011085882900_bib42 publication-title: J. Symb. Comput. doi: 10.1006/jsco.1999.0270 – volume: 219 start-page: 124847 year: 2024 ident: 2024081011085882900_bib7 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2023.124847 – volume: 286 start-page: 45 year: 1978 ident: 2024081011085882900_bib20 publication-title: Phys. A – volume: 24 start-page: 1599 year: 1998 ident: 2024081011085882900_bib30 publication-title: J. Phys. G Nucl. Part. Phys. doi: 10.1088/0954-3899/24/8/039 – volume: 29 start-page: 50 year: 2014 ident: 2024081011085882900_bib6 publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2014.02.023 – volume: 3 start-page: 123 year: 1989 ident: 2024081011085882900_bib4 publication-title: Mech. Syst. Signal Process. doi: 10.1016/0888-3270(89)90012-5 – volume: 10 start-page: 1257 year: 2022 ident: 2024081011085882900_bib10 publication-title: Maths. doi: 10.3390/math10081257 – volume: 28 start-page: 97 year: 1983 ident: 2024081011085882900_bib44 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.28.97  | 
    
| SSID | ssj0001077041 | 
    
| Score | 2.3124135 | 
    
| Snippet | In this paper, the nonlinear Volterra series expansion is extended and used to describe certain types of nonautonomous differential equations related to the... In this paper, the nonlinear Volterra series expansion is extended and used to describe certain types of nonautonomous differential equations related to the...  | 
    
| SourceID | unpaywall proquest crossref oup  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| SubjectTerms | Approximation | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED6h8gAvg8GmFdh0D4W3lCSOE_uxQkXVpFWVoIg9RXbsCgRKqjbVGP-Cf8y5cdnah7GX5MV2LPsu99l33x1AR8hQ69CRYwQPg4QMYKAyngR8QkefVOtML1muP4bpYJx8v-W3W9BZcWHW_PeSnU9rO6WHspEj8G6nnBB3C7bHw1Hvp6sbF9IXGCmsj2nf7LJmbdYYbA5I7izKqfr9Sz0-_mVTLvegv5pNE0ry0F3Uuls8byRqfG-6-_DBg0rsNVLwEbZseQB7HmCiV9_5IbwMCXcvasdjoAM_3lTOVT5T6K7I7Bz7T_RrcLdnWE2QgCHe0EHaUatwdEfGDnsu__jTfUN2RFUavK_n2PvjAse6WvYbuiTJVRn4N7pkHjMa4KpYZvMka4mjppDNJxhf9q8vBoGvyRAULGV1IC1XIZNWhiLhxqTSRkxNhFZJZDJmSKMdl0sJExVGG5HarFBK6GXiujgiAfgMrbIq7RdAglpSZS5shU0SKWJlbKy5UJqHhkAEb8Ppau_yaZN6I29c5ix365z7dW4D0sa-0-Rkteu519F5zlztd5nGEWvD2Zsk_HOco_9teAy7MaGfJlLwBFr1bGG_Enqp9TcvvK_13_NJ priority: 102 providerName: Unpaywall  | 
    
| Title | Nonautonomous Volterra Series Expansion of the Variable Phase Approximation and its Application to the Nucleon-Nucleon Inverse Scattering Problem | 
    
| URI | https://www.proquest.com/docview/3171496213 https://doi.org/10.1093/ptep/ptae111  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2024 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: TOX dateStart: 20120101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2050-3911 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwELXK9gAXyqdYKNUcgFvUOI4T54CqBW1VIRFW0K2WU2THXrVSlYTdrNr-jP7jziQOSy_lkkhR4kPG9rzxzHvD2AeVhcaERI5RMgxidICBTmUcyCWGPokxqelYrt_z5GQef1vIxQ7LBy4MlVUOe2K3Udu6pDPyQ0GdurMk4uKo-RNQ1yjKrg4tNLRvrWA_dxJjj9huRMpYI7b7ZZrPfm5PXcI0DWPuK-Axmj9sWtfgRTvO-T3fdI_vRrDz8aZq9M2Vvrz8xwMdP2NPPXSESW_r52zHVS_YnoeR4Bfp-iW7zRFdb1piK2BYD2c1JcRXGuggzK1heo0bAJ2RQb0EhH9whuEyEahgdo4uDSakMn590VMaQVcWLto1TLaJbmjr7rucpJDrKvB3IMmOFQ7wq-w0O9EnwqxvV_OKzY-np19PAt95IShFItogc1KHInNZqGJpbZI5LvRSGR1zmwqL65YYW1pZXlpjVeLSUmtlOnm6iKOZX7NRVVfuDQMEVJlOqThFLONMRdq6yEiljQwtQgU5Zh-Hf140vcBG0SfGRUG2KbxtxgzQIP95ZX-wVuFX4rrYzpsx-_TXgg-O8_bhcd6xJxEim74KcJ-N2tXGvUdk0poDP90Ousger6c_Fvhsns8mv-8Ah57sRw | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKeygX_hELBeZAuUW14ziJDxVaYKstbaMVtFVvwY69olKVhE1WbR-DF-LZGCcOSy_l1MvmshkpmcnMN575Zgh5l0qqNXXkmFTQIMIAGKhERIGYY-oTa53ojuV6lMXTk-jLmThbI78HLoxrqxx8YueoTVW4M_Id7jZ1yzhk_EP9M3Bbo1x1dVihofxqBbPbjRjzxI4De32JKVyzu_8Z9b0dhnuT40_TwG8ZCAoe8zaQVijKpZU0jYQxsbSMq3mqVcRMwg3aqGMnqdSwwmiTxjYplEp1N4otZPhIKPce2Yh4JDH52_g4yWZfV6c8NEloxHzHPZV8p25tjT_KMsZuxMIb_DoHczeXZa2uL9XFxT8Rb-8ReeChKox723pM1mz5hDz0sBW8U2iekl8Zovll69gR1bKB08oV4BcK3MGbbWByhQ7HnclBNQeEm3CK6bkjbMHsB4ZQGLup5lfnPYUSVGngvG1gvCqsQ1t192Vu9HJVBv4KbkTIAgV8K7oZoRiDYdavx3lGTu5EB8_JelmV9gUBBHBSJa4Zhs8jmYbK2FCLVGlBDUITMSLbwzvP636gR94X4nnudJN73YwIoEL-85etQVu5__KbfGWnI_L-rwZvlfPydjlvyeb0-OgwP9zPDl6R-yGiqr4DcYust4ulfY2oqNVvvOkB-X7X1v4HvCglPw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED6h8gAvg8GmFdh0D4W3lCSOE_uxQkXVpFWVoIg9RXbsCgRKqjbVGP-Cf8y5cdnah7GX5MV2LPsu99l33x1AR8hQ69CRYwQPg4QMYKAyngR8QkefVOtML1muP4bpYJx8v-W3W9BZcWHW_PeSnU9rO6WHspEj8G6nnBB3C7bHw1Hvp6sbF9IXGCmsj2nf7LJmbdYYbA5I7izKqfr9Sz0-_mVTLvegv5pNE0ry0F3Uuls8byRqfG-6-_DBg0rsNVLwEbZseQB7HmCiV9_5IbwMCXcvasdjoAM_3lTOVT5T6K7I7Bz7T_RrcLdnWE2QgCHe0EHaUatwdEfGDnsu__jTfUN2RFUavK_n2PvjAse6WvYbuiTJVRn4N7pkHjMa4KpYZvMka4mjppDNJxhf9q8vBoGvyRAULGV1IC1XIZNWhiLhxqTSRkxNhFZJZDJmSKMdl0sJExVGG5HarFBK6GXiujgiAfgMrbIq7RdAglpSZS5shU0SKWJlbKy5UJqHhkAEb8Ppau_yaZN6I29c5ix365z7dW4D0sa-0-Rkteu519F5zlztd5nGEWvD2Zsk_HOco_9teAy7MaGfJlLwBFr1bGG_Enqp9TcvvK_13_NJ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonautonomous+Volterra+Series+Expansion+of+the+Variable+Phase+Approximation+and+its+Application+to+the+Nucleon-Nucleon+Inverse+Scattering+Problem&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Balassa%2C+G%C3%A1bor&rft.date=2024-08-01&rft.pub=Oxford+University+Press&rft.eissn=2050-3911&rft.volume=2024&rft.issue=8&rft_id=info:doi/10.1093%2Fptep%2Fptae111 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon |