Nonautonomous Volterra Series Expansion of the Variable Phase Approximation and its Application to the Nucleon-Nucleon Inverse Scattering Problem

In this paper, the nonlinear Volterra series expansion is extended and used to describe certain types of nonautonomous differential equations related to the inverse scattering problem in nuclear physics. The nonautonomous Volterra series expansion lets us determine a dynamic, polynomial approximatio...

Full description

Saved in:
Bibliographic Details
Published inProgress of theoretical and experimental physics Vol. 2024; no. 8
Main Author Balassa, Gábor
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.08.2024
Subjects
Online AccessGet full text
ISSN2050-3911
2050-3911
DOI10.1093/ptep/ptae111

Cover

Abstract In this paper, the nonlinear Volterra series expansion is extended and used to describe certain types of nonautonomous differential equations related to the inverse scattering problem in nuclear physics. The nonautonomous Volterra series expansion lets us determine a dynamic, polynomial approximation of the variable phase approximation (VPA), which is used to determine the phase shifts from nuclear potentials through first-order nonlinear differential equations. By using the first-order Volterra expansion, a robust approximation is formulated to the inverse scattering problem for weak potentials and/or high energies. The method is then extended with the help of radial basis function neural networks by applying a nonlinear transformation on the measured phase shifts to be able to model the scattering system with a linear approximation given by the first-order Volterra expansion. The method is applied to describe the ^1S_0$ NN potentials in neutron+proton scattering below 200 MeV laboratory kinetic energies, giving physically sensible potentials and below $1\%$ averaged relative error between the recalculated and the measured phase shifts.
AbstractList In this paper, the nonlinear Volterra series expansion is extended and used to describe certain types of nonautonomous differential equations related to the inverse scattering problem in nuclear physics. The nonautonomous Volterra series expansion lets us determine a dynamic, polynomial approximation of the variable phase approximation (VPA), which is used to determine the phase shifts from nuclear potentials through first-order nonlinear differential equations. By using the first-order Volterra expansion, a robust approximation is formulated to the inverse scattering problem for weak potentials and/or high energies. The method is then extended with the help of radial basis function neural networks by applying a nonlinear transformation on the measured phase shifts to be able to model the scattering system with a linear approximation given by the first-order Volterra expansion. The method is applied to describe the ^1S_0$ NN potentials in neutron+proton scattering below 200 MeV laboratory kinetic energies, giving physically sensible potentials and below $1\%$ averaged relative error between the recalculated and the measured phase shifts.
In this paper, the nonlinear Volterra series expansion is extended and used to describe certain types of nonautonomous differential equations related to the inverse scattering problem in nuclear physics. The nonautonomous Volterra series expansion lets us determine a dynamic, polynomial approximation of the variable phase approximation (VPA), which is used to determine the phase shifts from nuclear potentials through first-order nonlinear differential equations. By using the first-order Volterra expansion, a robust approximation is formulated to the inverse scattering problem for weak potentials and/or high energies. The method is then extended with the help of radial basis function neural networks by applying a nonlinear transformation on the measured phase shifts to be able to model the scattering system with a linear approximation given by the first-order Volterra expansion. The method is applied to describe the ^1S_0$ NN potentials in neutron+proton scattering below 200 MeV laboratory kinetic energies, giving physically sensible potentials and below $1\%$ averaged relative error between the recalculated and the measured phase shifts.
Author Balassa, Gábor
Author_xml – sequence: 1
  givenname: Gábor
  orcidid: 0000-0002-3395-9678
  surname: Balassa
  fullname: Balassa, Gábor
  email: balassa.gabor@wigner.hun-ren.hu
BookMark eNqFkMlOw0AMhkeoSJTlxgOMxIELgXEmzXKsKjYJlUos18hNHAhKZ8LMBNrH4I2ZkB44wcW2rM-_7X-fjZRWxNgxiHMQmbxoHbU-IAHADhuHYiICmQGMftV77MjaNyEEiCQREYzZ11wr7JxWeqU7y59148gY5A9karL8ct2isrVWXFfcvRJ_RlPjsiG-eEVLfNq2Rq_rFbqeQVXy2tm-29TF0HP6Z27eFQ1pFWwzv1UfZLzAg8f8xlq98IXRXnh1yHYrbCwdbfMBe7q6fJzdBHf317ez6V1QyFi6IKMJCplRJtJoUpZxRiCxSpcYQZnIciIBojjFtISiXJZpTEmBmC5BhGEUQgXygAWDbqda3Hxi0-St8Z-YTQ4i7y3Ne0vzraWePxl4__F7R9blb7ozyp-YS0ggyuIQpKfOBqow2lpD1X-ipwOuu_Zv8hvbPZlh
Cites_doi 10.1016/j.automatica.2017.07.055
10.1017/9781316995433
10.1016/j.chemolab.2023.104759
10.1016/j.ymssp.2022.109973
10.1007/BF02667354
10.1093/imamci/1.3.243
10.1016/0888-3270(90)90051-L
10.1016/j.arcontrol.2009.12.001
10.1080/002071704200024365
10.1061/(ASCE)AS.1943-5525.0001174
10.1140/epja/s10050-022-00839-y
10.3390/s18041024
10.1016/0375-9474(95)00171-V
10.1137/120864581
10.1016/j.amc.2004.08.002
10.1007/s00521-021-06373-0
10.2514/1.38964
10.1007/978-3-642-54464-4_1
10.1364/AO.20.001866
10.1093/ptep/ptad131
10.1119/1.1975005
10.1088/1402-4896/ace99e
10.1109/TAC.1974.1100705
10.1214/aos/1176344136
10.1063/1.1703790
10.1016/j.ymssp.2016.10.029
10.1006/jsco.1999.0270
10.1016/j.ijheatmasstransfer.2023.124847
10.1088/0954-3899/24/8/039
10.1016/j.conengprac.2014.02.023
10.1016/0888-3270(89)90012-5
10.3390/math10081257
10.1103/PhysRevD.28.97
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024
The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.1093/ptep/ptae111
DatabaseName Oxford Journals Open Access Collection
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
Science Database (via ProQuest SciTech Premium Collection)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2050-3911
ExternalDocumentID 10.1093/ptep/ptae111
10_1093_ptep_ptae111
GroupedDBID .I3
0R~
4.4
5VS
88I
AAFWJ
AAMVS
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABUWG
ABXVV
ACGFS
ADHZD
AENEX
AENZO
AFKRA
AFPKN
AIBLX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AZQEC
BAYMD
BENPR
CCPQU
CIDKT
DWQXO
D~K
EBS
EJD
ER.
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ISR
ITC
KQ8
KSI
M2P
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
PHGZM
PHGZT
PIMPY
ROL
RXO
TOX
~D7
AAYXX
CITATION
PUEGO
3V.
7XB
8FK
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c363t-9e5a039e90845dd69e13af8ba41d73d5311468a8d1cdbd86e7caa8b1022421f13
IEDL.DBID BENPR
ISSN 2050-3911
IngestDate Sun Oct 26 04:15:19 EDT 2025
Sat Sep 20 13:21:35 EDT 2025
Wed Oct 01 02:50:24 EDT 2025
Mon Jun 30 08:34:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-9e5a039e90845dd69e13af8ba41d73d5311468a8d1cdbd86e7caa8b1022421f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3395-9678
OpenAccessLink https://www.proquest.com/docview/3171496213?pq-origsite=%requestingapplication%&accountid=15518
PQID 3171496213
PQPubID 7121340
ParticipantIDs unpaywall_primary_10_1093_ptep_ptae111
proquest_journals_3171496213
crossref_primary_10_1093_ptep_ptae111
oup_primary_10_1093_ptep_ptae111
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Progress of theoretical and experimental physics
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Kamyad (2024081011085882900_bib27) 2005; 167
Arndt (2024081011085882900_bib44) 1983; 28
Kauppinen (2024081011085882900_bib36) 1981; 20
Risuleo (2024081011085882900_bib2) 2017; 85
Alexander (2024081011085882900_bib12) 2023; 187
Newton (2024081011085882900_bib19) 1962; 3
Lipperheide (2024081011085882900_bib20) 1978; 286
Jiang (2024081011085882900_bib21) 2022; 34
Boyd (2024081011085882900_bib9) 1984; 1
Schetzen (2024081011085882900_bib8) 1980
Stepniak (2024081011085882900_bib16) 2018; 18
Barrio (2024081011085882900_bib37) 2013; 51
Billings (2024081011085882900_bib5) 1990; 4
Maachou (2024081011085882900_bib6) 2014; 29
Balajewicz (2024081011085882900_bib15) 2010; 48
Khachi (2024081011085882900_bib31) 2023; 98
Korenberg (2024081011085882900_bib14) 2007; 24
Eykhoff (2024081011085882900_bib3) 1974
Mackintosh (2024081011085882900_bib30) 1998; 24
Balassa (2024081011085882900_bib43) 2023; 2023
Mitsis (2024081011085882900_bib26) 2014
Griffiths (2024081011085882900_bib34) 2018
Balassa (2024081011085882900_bib10) 2022; 10
Munafò (2024081011085882900_bib7) 2024; 219
Hélie (2024081011085882900_bib23) 2004; 77
Akaike (2024081011085882900_bib40) 1974; 19
Andrews (2024081011085882900_bib39) 1999
Billings (2024081011085882900_bib4) 1989; 3
Thomas (2024081011085882900_bib24) 2006; 61
Schwarz (2024081011085882900_bib41) 1978; 6
Krack (2024081011085882900_bib25) 2019
Korn (2024081011085882900_bib28) , , , 1967
Calogero (2024081011085882900_bib17) 1968; 36
Balassa (2024081011085882900_bib33) 2022; 58
Wahab (2024081011085882900_bib35) 2023; 235
Engl (2024081011085882900_bib18) 2014
Aubry (2024081011085882900_bib42) 1999; 28
Zhang (2024081011085882900_bib13) 2020; 33
Arfken (2024081011085882900_bib38) 2012
Cheng (2024081011085882900_bib11) 2017; 87
Mackintosh (2024081011085882900_bib29) 1995; 589
Aygun (2024081011085882900_bib32) 2022; 96
Ljung (2024081011085882900_bib1) 2010; 34
References_xml – volume: 85
  start-page: 234
  year: 2017
  ident: 2024081011085882900_bib2
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.07.055
– volume-title: Introduction to Quantum Mechanics
  year: 2018
  ident: 2024081011085882900_bib34
  doi: 10.1017/9781316995433
– volume: 235
  start-page: 104759
  year: 2023
  ident: 2024081011085882900_bib35
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2023.104759
– volume: 61
  start-page: 1
  year: 2006
  ident: 2024081011085882900_bib24
  publication-title: J. Appl. Math.
– volume: 187
  start-page: 109973
  year: 2023
  ident: 2024081011085882900_bib12
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109973
– volume: 24
  start-page: 250
  year: 2007
  ident: 2024081011085882900_bib14
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/BF02667354
– volume-title: Inverse and Ill-Posed Problems
  year: 2014
  ident: 2024081011085882900_bib18
– volume: 1
  start-page: 243
  year: 1984
  ident: 2024081011085882900_bib9
  publication-title: IMA J. Math. Control Inf.
  doi: 10.1093/imamci/1.3.243
– volume: 4
  start-page: 117
  year: 1990
  ident: 2024081011085882900_bib5
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/0888-3270(90)90051-L
– volume: 34
  start-page: 1
  year: 2010
  ident: 2024081011085882900_bib1
  publication-title: Ann. Rev. Contr.
  doi: 10.1016/j.arcontrol.2009.12.001
– volume-title: The Volterra and Wiener Theories of Nonlinear Systems
  year: 1980
  ident: 2024081011085882900_bib8
– volume: 77
  start-page: 1071
  year: 2004
  ident: 2024081011085882900_bib23
  publication-title: Int. J. Control
  doi: 10.1080/002071704200024365
– volume: 96
  start-page: 209
  year: 2022
  ident: 2024081011085882900_bib32
  publication-title: J. Phys.
– volume: 33
  start-page: 04020055
  year: 2020
  ident: 2024081011085882900_bib13
  publication-title: J. Aerospace Eng.
  doi: 10.1061/(ASCE)AS.1943-5525.0001174
– volume: 58
  start-page: 186
  year: 2022
  ident: 2024081011085882900_bib33
  publication-title: Eur. Phys. J. A
  doi: 10.1140/epja/s10050-022-00839-y
– volume: 18
  start-page: 1024
  year: 2018
  ident: 2024081011085882900_bib16
  publication-title: Sensors
  doi: 10.3390/s18041024
– volume-title: Mathematical Handbook for Scientists and Engineers
  year: , , , 1967
  ident: 2024081011085882900_bib28
– volume-title: System Identification
  year: 1974
  ident: 2024081011085882900_bib3
– volume: 589
  start-page: 377
  year: 1995
  ident: 2024081011085882900_bib29
  publication-title: Nucl. Phys. A.
  doi: 10.1016/0375-9474(95)00171-V
– volume: 51
  start-page: 1280
  year: 2013
  ident: 2024081011085882900_bib37
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/120864581
– volume: 167
  start-page: 1041
  year: 2005
  ident: 2024081011085882900_bib27
  publication-title: Appl. Math. Comp.
  doi: 10.1016/j.amc.2004.08.002
– volume-title: Mathematical Methods for Physicists: A Comprehensive Guide
  year: 2012
  ident: 2024081011085882900_bib38
– volume: 34
  start-page: 4133
  year: 2022
  ident: 2024081011085882900_bib21
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06373-0
– volume-title: Harmonic Balance for Nonlinear Vibration Problems, Mathematical Engineering
  year: 2019
  ident: 2024081011085882900_bib25
– volume: 48
  start-page: 56
  year: 2010
  ident: 2024081011085882900_bib15
  publication-title: AIAA J.
  doi: 10.2514/1.38964
– volume-title: Data-driven Modeling for Diabetes. Lecture Notes in Bioengineering
  year: 2014
  ident: 2024081011085882900_bib26
  article-title: Data-Driven and Minimal-Type Compartmental Insulin-Glucose Models: Theory and Applications
  doi: 10.1007/978-3-642-54464-4_1
– volume: 20
  start-page: 1866
  year: 1981
  ident: 2024081011085882900_bib36
  publication-title: Appl. Opt.
  doi: 10.1364/AO.20.001866
– volume: 2023
  start-page: 113A01
  year: 2023
  ident: 2024081011085882900_bib43
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptad131
– volume: 36
  start-page: 566
  year: 1968
  ident: 2024081011085882900_bib17
  publication-title: Am. J. Phys.
  doi: 10.1119/1.1975005
– volume: 98
  start-page: 095301
  year: 2023
  ident: 2024081011085882900_bib31
  publication-title: Phys. Scripta
  doi: 10.1088/1402-4896/ace99e
– volume: 19
  start-page: 716
  year: 1974
  ident: 2024081011085882900_bib40
  publication-title: IEEE Trans. Automat. Contr.
  doi: 10.1109/TAC.1974.1100705
– volume-title: Special Functions, Encyclopedia of Mathematics and its Applications 71
  year: 1999
  ident: 2024081011085882900_bib39
– volume: 6
  start-page: 461
  year: 1978
  ident: 2024081011085882900_bib41
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176344136
– volume: 3
  start-page: 75
  year: 1962
  ident: 2024081011085882900_bib19
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1703790
– volume: 87
  start-page: 340
  year: 2017
  ident: 2024081011085882900_bib11
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.10.029
– volume: 28
  start-page: 125
  year: 1999
  ident: 2024081011085882900_bib42
  publication-title: J. Symb. Comput.
  doi: 10.1006/jsco.1999.0270
– volume: 219
  start-page: 124847
  year: 2024
  ident: 2024081011085882900_bib7
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2023.124847
– volume: 286
  start-page: 45
  year: 1978
  ident: 2024081011085882900_bib20
  publication-title: Phys. A
– volume: 24
  start-page: 1599
  year: 1998
  ident: 2024081011085882900_bib30
  publication-title: J. Phys. G Nucl. Part. Phys.
  doi: 10.1088/0954-3899/24/8/039
– volume: 29
  start-page: 50
  year: 2014
  ident: 2024081011085882900_bib6
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2014.02.023
– volume: 3
  start-page: 123
  year: 1989
  ident: 2024081011085882900_bib4
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/0888-3270(89)90012-5
– volume: 10
  start-page: 1257
  year: 2022
  ident: 2024081011085882900_bib10
  publication-title: Maths.
  doi: 10.3390/math10081257
– volume: 28
  start-page: 97
  year: 1983
  ident: 2024081011085882900_bib44
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.28.97
SSID ssj0001077041
Score 2.3124135
Snippet In this paper, the nonlinear Volterra series expansion is extended and used to describe certain types of nonautonomous differential equations related to the...
In this paper, the nonlinear Volterra series expansion is extended and used to describe certain types of nonautonomous differential equations related to the...
SourceID unpaywall
proquest
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Approximation
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED6h8gAvg8GmFdh0D4W3lCSOE_uxQkXVpFWVoIg9RXbsCgRKqjbVGP-Cf8y5cdnah7GX5MV2LPsu99l33x1AR8hQ69CRYwQPg4QMYKAyngR8QkefVOtML1muP4bpYJx8v-W3W9BZcWHW_PeSnU9rO6WHspEj8G6nnBB3C7bHw1Hvp6sbF9IXGCmsj2nf7LJmbdYYbA5I7izKqfr9Sz0-_mVTLvegv5pNE0ry0F3Uuls8byRqfG-6-_DBg0rsNVLwEbZseQB7HmCiV9_5IbwMCXcvasdjoAM_3lTOVT5T6K7I7Bz7T_RrcLdnWE2QgCHe0EHaUatwdEfGDnsu__jTfUN2RFUavK_n2PvjAse6WvYbuiTJVRn4N7pkHjMa4KpYZvMka4mjppDNJxhf9q8vBoGvyRAULGV1IC1XIZNWhiLhxqTSRkxNhFZJZDJmSKMdl0sJExVGG5HarFBK6GXiujgiAfgMrbIq7RdAglpSZS5shU0SKWJlbKy5UJqHhkAEb8Ppau_yaZN6I29c5ix365z7dW4D0sa-0-Rkteu519F5zlztd5nGEWvD2Zsk_HOco_9teAy7MaGfJlLwBFr1bGG_Enqp9TcvvK_13_NJ
  priority: 102
  providerName: Unpaywall
Title Nonautonomous Volterra Series Expansion of the Variable Phase Approximation and its Application to the Nucleon-Nucleon Inverse Scattering Problem
URI https://www.proquest.com/docview/3171496213
https://doi.org/10.1093/ptep/ptae111
UnpaywallVersion publishedVersion
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: TOX
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwELXK9gAXyqdYKNUcgFvUOI4T54CqBW1VIRFW0K2WU2THXrVSlYTdrNr-jP7jziQOSy_lkkhR4kPG9rzxzHvD2AeVhcaERI5RMgxidICBTmUcyCWGPokxqelYrt_z5GQef1vIxQ7LBy4MlVUOe2K3Udu6pDPyQ0GdurMk4uKo-RNQ1yjKrg4tNLRvrWA_dxJjj9huRMpYI7b7ZZrPfm5PXcI0DWPuK-Axmj9sWtfgRTvO-T3fdI_vRrDz8aZq9M2Vvrz8xwMdP2NPPXSESW_r52zHVS_YnoeR4Bfp-iW7zRFdb1piK2BYD2c1JcRXGuggzK1heo0bAJ2RQb0EhH9whuEyEahgdo4uDSakMn590VMaQVcWLto1TLaJbmjr7rucpJDrKvB3IMmOFQ7wq-w0O9EnwqxvV_OKzY-np19PAt95IShFItogc1KHInNZqGJpbZI5LvRSGR1zmwqL65YYW1pZXlpjVeLSUmtlOnm6iKOZX7NRVVfuDQMEVJlOqThFLONMRdq6yEiljQwtQgU5Zh-Hf140vcBG0SfGRUG2KbxtxgzQIP95ZX-wVuFX4rrYzpsx-_TXgg-O8_bhcd6xJxEim74KcJ-N2tXGvUdk0poDP90Ousger6c_Fvhsns8mv-8Ah57sRw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKeygX_hELBeZAuUW14ziJDxVaYKstbaMVtFVvwY69olKVhE1WbR-DF-LZGCcOSy_l1MvmshkpmcnMN575Zgh5l0qqNXXkmFTQIMIAGKhERIGYY-oTa53ojuV6lMXTk-jLmThbI78HLoxrqxx8YueoTVW4M_Id7jZ1yzhk_EP9M3Bbo1x1dVihofxqBbPbjRjzxI4De32JKVyzu_8Z9b0dhnuT40_TwG8ZCAoe8zaQVijKpZU0jYQxsbSMq3mqVcRMwg3aqGMnqdSwwmiTxjYplEp1N4otZPhIKPce2Yh4JDH52_g4yWZfV6c8NEloxHzHPZV8p25tjT_KMsZuxMIb_DoHczeXZa2uL9XFxT8Rb-8ReeChKox723pM1mz5hDz0sBW8U2iekl8Zovll69gR1bKB08oV4BcK3MGbbWByhQ7HnclBNQeEm3CK6bkjbMHsB4ZQGLup5lfnPYUSVGngvG1gvCqsQ1t192Vu9HJVBv4KbkTIAgV8K7oZoRiDYdavx3lGTu5EB8_JelmV9gUBBHBSJa4Zhs8jmYbK2FCLVGlBDUITMSLbwzvP636gR94X4nnudJN73YwIoEL-85etQVu5__KbfGWnI_L-rwZvlfPydjlvyeb0-OgwP9zPDl6R-yGiqr4DcYust4ulfY2oqNVvvOkB-X7X1v4HvCglPw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED6h8gAvg8GmFdh0D4W3lCSOE_uxQkXVpFWVoIg9RXbsCgRKqjbVGP-Cf8y5cdnah7GX5MV2LPsu99l33x1AR8hQ69CRYwQPg4QMYKAyngR8QkefVOtML1muP4bpYJx8v-W3W9BZcWHW_PeSnU9rO6WHspEj8G6nnBB3C7bHw1Hvp6sbF9IXGCmsj2nf7LJmbdYYbA5I7izKqfr9Sz0-_mVTLvegv5pNE0ry0F3Uuls8byRqfG-6-_DBg0rsNVLwEbZseQB7HmCiV9_5IbwMCXcvasdjoAM_3lTOVT5T6K7I7Bz7T_RrcLdnWE2QgCHe0EHaUatwdEfGDnsu__jTfUN2RFUavK_n2PvjAse6WvYbuiTJVRn4N7pkHjMa4KpYZvMka4mjppDNJxhf9q8vBoGvyRAULGV1IC1XIZNWhiLhxqTSRkxNhFZJZDJmSKMdl0sJExVGG5HarFBK6GXiujgiAfgMrbIq7RdAglpSZS5shU0SKWJlbKy5UJqHhkAEb8Ppau_yaZN6I29c5ix365z7dW4D0sa-0-Rkteu519F5zlztd5nGEWvD2Zsk_HOco_9teAy7MaGfJlLwBFr1bGG_Enqp9TcvvK_13_NJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonautonomous+Volterra+Series+Expansion+of+the+Variable+Phase+Approximation+and+its+Application+to+the+Nucleon-Nucleon+Inverse+Scattering+Problem&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Balassa%2C+G%C3%A1bor&rft.date=2024-08-01&rft.pub=Oxford+University+Press&rft.eissn=2050-3911&rft.volume=2024&rft.issue=8&rft_id=info:doi/10.1093%2Fptep%2Fptae111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon