Fault Detection in Power Distribution Systems Using Sensor Data and Hybrid YOLO with Adaptive Context Refinement
Ensuring the reliability of power transmission systems depends on the accurate detection of defects in insulators, which are subject to environmental degradation and mechanical stress. Traditional inspection methods are time-consuming and often ineffective, particularly in complex aerial environment...
Saved in:
| Published in | Applied sciences Vol. 15; no. 16; p. 9186 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.08.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app15169186 |
Cover
| Abstract | Ensuring the reliability of power transmission systems depends on the accurate detection of defects in insulators, which are subject to environmental degradation and mechanical stress. Traditional inspection methods are time-consuming and often ineffective, particularly in complex aerial environments. This paper presents a fault detection framework that integrates the YOLOv8 object detection model with an Adaptive Context Refinement (ACR) mechanism. YOLOv8 provides real-time detection, while ACR incorporates multi-scale contextual information surrounding detected objects to improve classification and localization. The system is evaluated across 25 YOLO model variants (YOLOv8 to YOLOv12) using high-resolution UAV datasets from operational power distribution networks. Results show that ACR improves mean Average Precision (mAP) in all cases, with gains of up to 22.9% for YOLOv10n (from 0.556 to 0.684 mAP) and average improvements of 12.6% for YOLOv10, 8.6% for YOLOv12, 5.6% for YOLOv9, and 4.0% for YOLOv8. The method maintains computational efficiency and performs consistently under varied environmental and fault conditions, making it suitable for the real-time UAV-based inspection of power systems. |
|---|---|
| AbstractList | Ensuring the reliability of power transmission systems depends on the accurate detection of defects in insulators, which are subject to environmental degradation and mechanical stress. Traditional inspection methods are time-consuming and often ineffective, particularly in complex aerial environments. This paper presents a fault detection framework that integrates the YOLOv8 object detection model with an Adaptive Context Refinement (ACR) mechanism. YOLOv8 provides real-time detection, while ACR incorporates multi-scale contextual information surrounding detected objects to improve classification and localization. The system is evaluated across 25 YOLO model variants (YOLOv8 to YOLOv12) using high-resolution UAV datasets from operational power distribution networks. Results show that ACR improves mean Average Precision (mAP) in all cases, with gains of up to 22.9% for YOLOv10n (from 0.556 to 0.684 mAP) and average improvements of 12.6% for YOLOv10, 8.6% for YOLOv12, 5.6% for YOLOv9, and 4.0% for YOLOv8. The method maintains computational efficiency and performs consistently under varied environmental and fault conditions, making it suitable for the real-time UAV-based inspection of power systems. |
| Audience | Academic |
| Author | Scapinello Aquino, Luiza Rodrigues Agottani, Luis Fernando Cocco Mariani, Viviana Seman, Laio Oriel González, Gabriel Villarrubia Coelho, Leandro dos Santos |
| Author_xml | – sequence: 1 givenname: Luiza orcidid: 0000-0003-4026-1662 surname: Scapinello Aquino fullname: Scapinello Aquino, Luiza – sequence: 2 givenname: Luis Fernando surname: Rodrigues Agottani fullname: Rodrigues Agottani, Luis Fernando – sequence: 3 givenname: Laio Oriel orcidid: 0000-0002-6806-9122 surname: Seman fullname: Seman, Laio Oriel – sequence: 4 givenname: Viviana orcidid: 0000-0003-2490-4568 surname: Cocco Mariani fullname: Cocco Mariani, Viviana – sequence: 5 givenname: Leandro dos Santos orcidid: 0000-0001-5728-943X surname: Coelho fullname: Coelho, Leandro dos Santos – sequence: 6 givenname: Gabriel Villarrubia orcidid: 0000-0002-6536-2251 surname: González fullname: González, Gabriel Villarrubia |
| BookMark | eNp9kU9vEzEQxVeoSJTSE1_AEkdIsdfePz5GaUsrRQqi9MBpNbbHwdHGXmyHkG-P6SLUE56DraffPD3PvK7OfPBYVW8ZveJc0o8wTaxhrWR9-6I6r2nXLrhg3dmz96vqMqUdLUcy3jN6Xk23cBgzucaMOrvgifPkczhiJNcu5ejU4Ul9OKWM-0Qek_Nb8oA-hUJABgLekLuTis6Qb5v1hhxd_k6WBqbsfiJZBZ_xVyZf0DqPe_T5TfXSwpjw8u99UT3e3nxd3S3Wm0_3q-V6oXnL80Iaw6loakNb1kAjmBJccdXZXrVWS6W55Lbpe9tJhUa2ErmlSiCA1iBrwS-q-9nXBNgNU3R7iKchgBuehBC3A8Ts9IhDLzXWrG5sj1xAJ5So27rRRjDZgu5U8fowex38BKcjjOM_Q0aHP8Mfng2_4O9mfIrhxwFTHnbhEH357cBLMtnXlPJCXc3UFkoG523IEXQpg3uny2qtK_qyb3jTdYLK0vB-btAxpBTR_jfEbwDqo6A |
| Cites_doi | 10.1016/j.epsr.2022.108199 10.1109/ACCESS.2024.3496514 10.1007/978-3-031-43990-2_58 10.1080/08839514.2021.1998974 10.1109/TII.2024.3485813 10.3390/s22134720 10.1016/j.measurement.2025.117410 10.3390/app12031207 10.3390/s25051327 10.1109/CVPR52733.2024.01447 10.1016/j.epsr.2020.106602 10.1109/TPWRD.2023.3328178 10.1007/s11554-023-01401-9 10.3390/math11092092 10.3390/en15103550 10.3390/app15020526 10.1109/TII.2024.3507936 10.3390/app14198770 10.1109/TIM.2024.3381693 10.1016/j.ijepes.2023.109269 10.1007/s00202-022-01729-8 10.1016/j.compeleceng.2024.109259 10.1016/j.ijepes.2025.110682 10.1016/j.engfailanal.2019.04.034 10.1109/ACCESS.2020.2974798 10.1155/2022/8955292 10.1109/TIM.2021.3112227 10.1109/TIM.2023.3305667 10.1109/CVCI63518.2024.10830267 10.1109/ACCESS.2025.3551289 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY DOA |
| DOI | 10.3390/app15169186 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_89ce2125f8e34a74b42625cd4196ac7b 10.3390/app15169186 A853577409 10_3390_app15169186 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c363t-9dd30452d0615a541b43b3b7f8b6fc9bc393f588f79bed969e3f0b4eaacca9243 |
| IEDL.DBID | DOA |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:03:15 EDT 2025 Tue Aug 26 13:23:39 EDT 2025 Fri Aug 29 05:19:22 EDT 2025 Mon Oct 20 16:51:34 EDT 2025 Thu Oct 16 04:38:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-9dd30452d0615a541b43b3b7f8b6fc9bc393f588f79bed969e3f0b4eaacca9243 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4026-1662 0000-0003-2490-4568 0000-0001-5728-943X 0000-0002-6536-2251 0000-0002-6806-9122 |
| OpenAccessLink | https://doaj.org/article/89ce2125f8e34a74b42625cd4196ac7b |
| PQID | 3243982003 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_89ce2125f8e34a74b42625cd4196ac7b unpaywall_primary_10_3390_app15169186 proquest_journals_3243982003 gale_infotracacademiconefile_A853577409 crossref_primary_10_3390_app15169186 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | You (ref_9) 2025; 253 Stefenon (ref_30) 2025; 168 ref_14 ref_32 ref_31 Yi (ref_6) 2025; 21 ref_19 He (ref_21) 2024; 39 ref_17 Tao (ref_20) 2024; 117 Costa (ref_16) 2021; 35 (ref_2) 2019; 102 (ref_7) 2020; 189 Liang (ref_15) 2020; 8 Gong (ref_5) 2023; 105 Lu (ref_28) 2025; 13 Liquan (ref_18) 2022; 2022 Zhang (ref_22) 2024; 21 Liao (ref_10) 2025; 21 Zhao (ref_12) 2021; 70 Shuang (ref_13) 2023; 72 ref_25 ref_24 ref_23 Li (ref_11) 2024; 12 Panigrahy (ref_29) 2024; 73 ref_27 ref_26 ref_8 Ahmed (ref_1) 2022; 211 Seman (ref_3) 2023; 152 ref_4 |
| References_xml | – volume: 211 start-page: 108199 year: 2022 ident: ref_1 article-title: Inspection and identification of transmission line insulator breakdown based on deep learning using aerial images publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2022.108199 – volume: 12 start-page: 167388 year: 2024 ident: ref_11 article-title: IF-YOLO: An Efficient and Accurate Detection Algorithm for Insulator Faults in Transmission Lines publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3496514 – ident: ref_26 doi: 10.1007/978-3-031-43990-2_58 – volume: 35 start-page: 2067 year: 2021 ident: ref_16 article-title: A Convolutional Neural Network for Detecting Faults in Power Distribution Networks along a Railway: A Case Study Using YOLO publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2021.1998974 – volume: 21 start-page: 1754 year: 2025 ident: ref_10 article-title: Mitigating Class Imbalance Issues in Electricity Theft Detection via a Sample-Weighted Loss publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2024.3485813 – ident: ref_32 – ident: ref_14 doi: 10.3390/s22134720 – volume: 253 start-page: 117410 year: 2025 ident: ref_9 article-title: A insulator defect detection network based on improved YOLOv7 for UAV aerial images publication-title: Measurement doi: 10.1016/j.measurement.2025.117410 – ident: ref_17 doi: 10.3390/app12031207 – ident: ref_23 doi: 10.3390/s25051327 – ident: ref_24 doi: 10.1109/CVPR52733.2024.01447 – volume: 189 start-page: 106602 year: 2020 ident: ref_7 article-title: Faults in smart grid systems: Monitoring, detection and classification publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2020.106602 – volume: 39 start-page: 168 year: 2024 ident: ref_21 article-title: MFI-YOLO: Multi-Fault Insulator Detection Based on an Improved YOLOv8 publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2023.3328178 – volume: 21 start-page: 22 year: 2024 ident: ref_22 article-title: Research on improved YOLOv8 algorithm for insulator defect detection publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-023-01401-9 – ident: ref_4 doi: 10.3390/math11092092 – ident: ref_8 doi: 10.3390/en15103550 – ident: ref_27 doi: 10.3390/app15020526 – volume: 21 start-page: 2829 year: 2025 ident: ref_6 article-title: Balancing Accuracy and Efficiency With a Multiscale Uncertainty-Aware Knowledge-Based Network for Transmission Line Inspection publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2024.3507936 – ident: ref_19 doi: 10.3390/app14198770 – ident: ref_31 – volume: 73 start-page: 2514109 year: 2024 ident: ref_29 article-title: Real-Time Condition Monitoring of Transmission Line Insulators Using the YOLO Object Detection Model With a UAV publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2024.3381693 – volume: 152 start-page: 109269 year: 2023 ident: ref_3 article-title: Ensemble learning methods using the Hodrick–Prescott filter for fault forecasting in insulators of the electrical power grids publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2023.109269 – volume: 105 start-page: 1251 year: 2023 ident: ref_5 article-title: Defect detection of small cotter pins in electric power transmission system from UAV images using deep learning techniques publication-title: Electr. Eng. doi: 10.1007/s00202-022-01729-8 – volume: 117 start-page: 109259 year: 2024 ident: ref_20 article-title: SnakeNet: An adaptive network for small object and complex background for insulator surface defect detection publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2024.109259 – volume: 168 start-page: 110682 year: 2025 ident: ref_30 article-title: Enhanced insulator fault detection using optimized ensemble of deep learning models based on weighted boxes fusion publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2025.110682 – volume: 102 start-page: 123 year: 2019 ident: ref_2 article-title: Insulation failure caused by special pollution around industrial environments publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2019.04.034 – volume: 8 start-page: 38448 year: 2020 ident: ref_15 article-title: Detection and Evaluation Method of Transmission Line Defects Based on Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2974798 – volume: 2022 start-page: 8955292 year: 2022 ident: ref_18 article-title: Fast Detection of Defective Insulator Based on Improved YOLOv5s publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/8955292 – volume: 70 start-page: 5016408 year: 2021 ident: ref_12 article-title: An Insulator in Transmission Lines Recognition and Fault Detection Model Based on Improved Faster RCNN publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3112227 – volume: 72 start-page: 2524414 year: 2023 ident: ref_13 article-title: Detail R-CNN: Insulator Detection Based on Detail Feature Enhancement and Metric Learning publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3305667 – ident: ref_25 doi: 10.1109/CVCI63518.2024.10830267 – volume: 13 start-page: 49062 year: 2025 ident: ref_28 article-title: Precision in Aerial Surveillance: Integrating YOLOv8 With PConv and CoT for Accurate Insulator Defect Detection publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3551289 |
| SSID | ssj0000913810 |
| Score | 2.3286161 |
| Snippet | Ensuring the reliability of power transmission systems depends on the accurate detection of defects in insulators, which are subject to environmental... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 9186 |
| SubjectTerms | Accuracy Analysis Automation Computer vision convolutional neural network Deep learning Defects Efficiency Electric power systems Electricity distribution Fault diagnosis insulator multi-scale analysis Neural networks object detection Sensors Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEB7q9UH7ILYqXa2Sh4r6sHi7yd4mDyJX2-MQvZZqoT4tk18iHHvrdQ_tf29mL3seCH1blhBCvsxkZjLzDcCxKIQPIuTT4CvnafjmKWJRpJLLoTFGWyOoUPjLbDS9Ep-ui-sdmPW1MJRW2evETlHbhaEY-btw8XMlKZXqQ_Mrpa5R9Lrat9DA2FrBvu8oxu7Bbk7MWAPYPTmbXVxuoi7Egimz4bpQjwd_n96JM3oryqiaeutq6hj8_9fTe3B_VTd4-xvn862LaPIIHkYLko3XkO_DjqsPYG-LV_AA9qPE3rA3kVb67WNoJriat-zUtV32Vc1-1uyCeqSxUyLPjX2vWKQwZ10uAfsavNxFGIEtMqwtm95ShRf7fv75nFEIl40tNqQxWUdz9adll86HhVDM8QlcTc6-fZymsd9CaviIt6mylt5Nc0tmDhYi04JrrksvqSJIacMV94WUvlTaWTVSjvuhFg7D7mPw4_hTGNSL2h0C8zKYDZnX6FCJPHNaDqXNSl1mYQI94gkc91tdNWtajSq4I4RItYVIAicEw2YIcWF3PxbLH1UUrUoq4wLahZeOCyyFJpL9wlgRlAuaUifwmkCsSGLbJRqMhQdhpcR9VY2DxVIEK3ioEjjqca6iKN9U_w5eAq822N-16md3T_McHuTURLjLIjyCQbtcuRfBsmn1y3hc_wJA5vhe priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED5B9wB7ADaYKAzkhyHgIWsT24n9hAqjqhBsE1Bpe4psx0YTVVp1KTB-PXepO0UgISTeosqpHN357jvf3XcAB0KKgEcoJBgrZwk-88QYKRPF1dA5ZysnqFH4w3E-mYp3Z_Ks08VPZZUYil-0RjrDIDtBM1sMUjlI84FOVT5YVOHVt3iXhL4P8TJlYG_CVi4Rjfdga3p8OjqnmXKbt9dteRyje8oKp5QZSql3uuOIWr7-P63yNtxa1Qtz9d3MZh23M74LZrPhdbXJ18NVYw_dz9-4HP_ni-7BnYhJ2WitRDtww9e7sN1hKtyFnWgDLtmLSFT98j4sxmY1a9iRb9p6rppd1OyUpq6xI6LjjZO0WCRFZ211AvuEcfMcV5jGMFNXbHJFPWPs_OT9CaNLYTaqzIJsMGuJs3407KMPuBG6xXwA0_Hbz28mSZzgkDie8ybRVUWZ2Kwi4GSkSK3gltsiKOox0tZxzYNUKhTa-krn2vMwtMIbg4qFkSHfg149r_1DYEEhEEmDNd5okaXeqqGq0sIWKf6BzXkfDjbiLBdroo4SAxySetmReh9ek6ivlxC7dvvDfPmljIe1VNp5dOkyKM-FKYQl2n7pKoHmyrjC9uE5KUpJNqBZGmdiKwPulNi0yhFiIIm4eqj7sL_RpTIah8sSMSzXiqoC-_DsWr_-tutH_7juMdzOaD5xW6C4D71mufJPEDQ19mk8F78AmjAQiQ priority: 102 providerName: Unpaywall |
| Title | Fault Detection in Power Distribution Systems Using Sensor Data and Hybrid YOLO with Adaptive Context Refinement |
| URI | https://www.proquest.com/docview/3243982003 https://www.mdpi.com/2076-3417/15/16/9186/pdf?version=1755760387 https://doaj.org/article/89ce2125f8e34a74b42625cd4196ac7b |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-0PmgfxFbFaD32oaI-BJPbzWX38Wp7HqLXo3rQPi37CcKRHm0O7X_vTLItAUFffEvCEoadj53ZmfkNwKGoREQVijnGyuMcn3luTFXlksvCOWe9E9Qo_HUxma_E5_PqfDDqi2rCenjgfuM-SOUCmtcqysCFqYUlCPXKeYGiY1xtyfoWUg2Cqc4Gq5Kgq_qGPI5xPeWDS8oJldQ1PTiCOqT-P-3xLjzcNhtz89Os14MDZ_YEHidPkU17CvfgXmj2YXeAH7gPe0kzr9m7BB_9_ilsZma7btlxaLsqq4b9aNiSZqGxYwLJTfOtWIIqZ13NAPuG0ewlrjCtYabxbH5DnVzs4vTLKaOrWjb1ZkOWkXVwVr9adhYiEkJ3i89gNTv5_nGep7kKueMT3ubKe8qPjj25M6YSpRXccltHSZ0_yjqueKykjLWywauJCjwWVgRjkN0Yr_HnsNNcNuEFsCjRPSijNcEoMS6DlYX0ZW3rEn9gJzyDw9ut1psePkNj2EEc0QOOZHBEbLhbQpjX3QeUBJ0kQf9LEjJ4S0zUpJntlXEmNRggpYRxpafomVTo7RYqg4NbPuukstcaPUuuJNXqZfDmjvd_o_rl_6D6FTwa00jhrqbwAHbaq214jX5Oa0dwX84-jeDB0clieTbqBBzfVovl9OI337r-XQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH4a22HsgNgA0THAh03AISKJncY-TKijqzrWddPYpO0U7NhBSFXatalG_zn-Nt5L3VIJabfdoihyLD_7_fB77_sA9kUiCjxCRYCxchzgMw-0TpJAchnmeW5sLqhR-Kzf7F6LbzfJzRr8WfTCUFnlQifWitoOc7oj_4yGnytJpVRfRncBsUZRdnVBoaE9tYI9rCHGfGPHqZvdYwg3OTxpo7wP4rhzfPW1G3iWgSDnTV4FylrKFsaWjLtORGQEN9ykhaQ-GGVyrniRSFmkyjirmsrxIjTCafynxuiF47hPYENwoTD42zg67l9cLm95CHVTRuG8MZBzFVJeOqLcVETd2yumsGYM-N8ubMHmtBzp2b0eDFYMX-c5PPMeK2vNt9g2rLlyB7ZWcAx3YNtriAn76GGsP72AUUdPBxVru6qu9irZr5JdECcbaxNYr-fZYh4yndW1C-w7RtVD_EJXmunSsu6MOsrY7XnvnNGVMWtZPSINzWpYrd8Vu3QFToTuOF_C9aOs_CtYL4elew2skOimRIXRTisRR87IUNooNWmEA5gmb8D-Yqmz0RzGI8PwhySSrUikAUckhuUnhL1dvxiOf2b-KGdS5Q4NflJIx4VOhSFQ_yS3ApWZzlPTgA8kxIw0RDXWufaNDjhTwtrKWughJeh1h6oBews5Z151TLJ_G70BB0vZPzTr3YeHeQ-b3auzXtY76Z--gacxERjXFYx7sF6Np-4telWVeee3LoMfj31a_gIVtTZl |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIQF7QGyACAzwwybgIVoSO439gFChhI6NbQImjadgOzZCqtLQphr9anw67tK0VELa296iyLKc3H_f3e8A9kQqPIqQDzFWTkJ85qHWaRpKLiNrrSmtoEbhTye94bn4eJFebMCfZS8MlVUudWKrqMuxpTvyAzT8XEkqpTrwXVnE2SB_U_8KaYIUZVqX4zQWLHLk5pcYvk1fHw6Q1vtJkr__-m4YdhMGQst7vAlVWVKmMCnJsOtUxEZww03mJfXAKGO54j6V0mfKuFL1lOM-MsJpjR-OkQvHfW_AzYxQ3KlLPf-wut8hvE0ZR4uWQM5VRBnpmLJSMfVtrxnBdlbA_xZhC27PqlrPL_VotGby8ntwt_NVWX_BXNuw4aod2FpDMNyB7U43TNnLDsD61X2ocz0bNWzgmrbOq2I_K3ZG09jYgGB6uwlbrANLZ23VAvuC8fQYV-hGM12VbDinXjL27fT4lNFlMeuXuibdzFpArd8N--w8HoRuNx_A-bX894ewWY0r9wiYl-igxN5op5VIYmdkJMs4M1mMG5geD2Bv-auLegHgUWDgQxQp1igSwFsiw2oJoW63L8aTH0UnxIVU1qGpT710XOhMGILzT20pUI1pm5kAXhARC9INzURb3bU44EkJZavoo2-Uor8dqQB2l3QuOqUxLf6xeAD7K9pfderHV2_zHG6hjBTHhydHT-BOQpOL29LFXdhsJjP3FN2pxjxr-ZbB9-sWlL-hYjP_ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED5B9wB7ADaYKAzkhyHgIWsT24n9hAqjqhBsE1Bpe4psx0YTVVp1KTB-PXepO0UgISTeosqpHN357jvf3XcAB0KKgEcoJBgrZwk-88QYKRPF1dA5ZysnqFH4w3E-mYp3Z_Ks08VPZZUYil-0RjrDIDtBM1sMUjlI84FOVT5YVOHVt3iXhL4P8TJlYG_CVi4Rjfdga3p8OjqnmXKbt9dteRyje8oKp5QZSql3uuOIWr7-P63yNtxa1Qtz9d3MZh23M74LZrPhdbXJ18NVYw_dz9-4HP_ni-7BnYhJ2WitRDtww9e7sN1hKtyFnWgDLtmLSFT98j4sxmY1a9iRb9p6rppd1OyUpq6xI6LjjZO0WCRFZ211AvuEcfMcV5jGMFNXbHJFPWPs_OT9CaNLYTaqzIJsMGuJs3407KMPuBG6xXwA0_Hbz28mSZzgkDie8ybRVUWZ2Kwi4GSkSK3gltsiKOox0tZxzYNUKhTa-krn2vMwtMIbg4qFkSHfg149r_1DYEEhEEmDNd5okaXeqqGq0sIWKf6BzXkfDjbiLBdroo4SAxySetmReh9ek6ivlxC7dvvDfPmljIe1VNp5dOkyKM-FKYQl2n7pKoHmyrjC9uE5KUpJNqBZGmdiKwPulNi0yhFiIIm4eqj7sL_RpTIah8sSMSzXiqoC-_DsWr_-tutH_7juMdzOaD5xW6C4D71mufJPEDQ19mk8F78AmjAQiQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Detection+in+Power+Distribution+Systems+Using+Sensor+Data+and+Hybrid+YOLO+with+Adaptive+Context+Refinement&rft.jtitle=Applied+sciences&rft.au=Scapinello+Aquino%2C+Luiza&rft.au=Rodrigues+Agottani%2C+Luis+Fernando&rft.au=Seman%2C+Laio+Oriel&rft.au=Cocco+Mariani%2C+Viviana&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=16&rft_id=info:doi/10.3390%2Fapp15169186&rft.externalDocID=A853577409 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |