Fault Detection in Power Distribution Systems Using Sensor Data and Hybrid YOLO with Adaptive Context Refinement

Ensuring the reliability of power transmission systems depends on the accurate detection of defects in insulators, which are subject to environmental degradation and mechanical stress. Traditional inspection methods are time-consuming and often ineffective, particularly in complex aerial environment...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 15; no. 16; p. 9186
Main Authors Scapinello Aquino, Luiza, Rodrigues Agottani, Luis Fernando, Seman, Laio Oriel, Cocco Mariani, Viviana, Coelho, Leandro dos Santos, González, Gabriel Villarrubia
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2025
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app15169186

Cover

Abstract Ensuring the reliability of power transmission systems depends on the accurate detection of defects in insulators, which are subject to environmental degradation and mechanical stress. Traditional inspection methods are time-consuming and often ineffective, particularly in complex aerial environments. This paper presents a fault detection framework that integrates the YOLOv8 object detection model with an Adaptive Context Refinement (ACR) mechanism. YOLOv8 provides real-time detection, while ACR incorporates multi-scale contextual information surrounding detected objects to improve classification and localization. The system is evaluated across 25 YOLO model variants (YOLOv8 to YOLOv12) using high-resolution UAV datasets from operational power distribution networks. Results show that ACR improves mean Average Precision (mAP) in all cases, with gains of up to 22.9% for YOLOv10n (from 0.556 to 0.684 mAP) and average improvements of 12.6% for YOLOv10, 8.6% for YOLOv12, 5.6% for YOLOv9, and 4.0% for YOLOv8. The method maintains computational efficiency and performs consistently under varied environmental and fault conditions, making it suitable for the real-time UAV-based inspection of power systems.
AbstractList Ensuring the reliability of power transmission systems depends on the accurate detection of defects in insulators, which are subject to environmental degradation and mechanical stress. Traditional inspection methods are time-consuming and often ineffective, particularly in complex aerial environments. This paper presents a fault detection framework that integrates the YOLOv8 object detection model with an Adaptive Context Refinement (ACR) mechanism. YOLOv8 provides real-time detection, while ACR incorporates multi-scale contextual information surrounding detected objects to improve classification and localization. The system is evaluated across 25 YOLO model variants (YOLOv8 to YOLOv12) using high-resolution UAV datasets from operational power distribution networks. Results show that ACR improves mean Average Precision (mAP) in all cases, with gains of up to 22.9% for YOLOv10n (from 0.556 to 0.684 mAP) and average improvements of 12.6% for YOLOv10, 8.6% for YOLOv12, 5.6% for YOLOv9, and 4.0% for YOLOv8. The method maintains computational efficiency and performs consistently under varied environmental and fault conditions, making it suitable for the real-time UAV-based inspection of power systems.
Audience Academic
Author Scapinello Aquino, Luiza
Rodrigues Agottani, Luis Fernando
Cocco Mariani, Viviana
Seman, Laio Oriel
González, Gabriel Villarrubia
Coelho, Leandro dos Santos
Author_xml – sequence: 1
  givenname: Luiza
  orcidid: 0000-0003-4026-1662
  surname: Scapinello Aquino
  fullname: Scapinello Aquino, Luiza
– sequence: 2
  givenname: Luis Fernando
  surname: Rodrigues Agottani
  fullname: Rodrigues Agottani, Luis Fernando
– sequence: 3
  givenname: Laio Oriel
  orcidid: 0000-0002-6806-9122
  surname: Seman
  fullname: Seman, Laio Oriel
– sequence: 4
  givenname: Viviana
  orcidid: 0000-0003-2490-4568
  surname: Cocco Mariani
  fullname: Cocco Mariani, Viviana
– sequence: 5
  givenname: Leandro dos Santos
  orcidid: 0000-0001-5728-943X
  surname: Coelho
  fullname: Coelho, Leandro dos Santos
– sequence: 6
  givenname: Gabriel Villarrubia
  orcidid: 0000-0002-6536-2251
  surname: González
  fullname: González, Gabriel Villarrubia
BookMark eNp9kU9vEzEQxVeoSJTSE1_AEkdIsdfePz5GaUsrRQqi9MBpNbbHwdHGXmyHkG-P6SLUE56DraffPD3PvK7OfPBYVW8ZveJc0o8wTaxhrWR9-6I6r2nXLrhg3dmz96vqMqUdLUcy3jN6Xk23cBgzucaMOrvgifPkczhiJNcu5ejU4Ul9OKWM-0Qek_Nb8oA-hUJABgLekLuTis6Qb5v1hhxd_k6WBqbsfiJZBZ_xVyZf0DqPe_T5TfXSwpjw8u99UT3e3nxd3S3Wm0_3q-V6oXnL80Iaw6loakNb1kAjmBJccdXZXrVWS6W55Lbpe9tJhUa2ErmlSiCA1iBrwS-q-9nXBNgNU3R7iKchgBuehBC3A8Ts9IhDLzXWrG5sj1xAJ5So27rRRjDZgu5U8fowex38BKcjjOM_Q0aHP8Mfng2_4O9mfIrhxwFTHnbhEH357cBLMtnXlPJCXc3UFkoG523IEXQpg3uny2qtK_qyb3jTdYLK0vB-btAxpBTR_jfEbwDqo6A
Cites_doi 10.1016/j.epsr.2022.108199
10.1109/ACCESS.2024.3496514
10.1007/978-3-031-43990-2_58
10.1080/08839514.2021.1998974
10.1109/TII.2024.3485813
10.3390/s22134720
10.1016/j.measurement.2025.117410
10.3390/app12031207
10.3390/s25051327
10.1109/CVPR52733.2024.01447
10.1016/j.epsr.2020.106602
10.1109/TPWRD.2023.3328178
10.1007/s11554-023-01401-9
10.3390/math11092092
10.3390/en15103550
10.3390/app15020526
10.1109/TII.2024.3507936
10.3390/app14198770
10.1109/TIM.2024.3381693
10.1016/j.ijepes.2023.109269
10.1007/s00202-022-01729-8
10.1016/j.compeleceng.2024.109259
10.1016/j.ijepes.2025.110682
10.1016/j.engfailanal.2019.04.034
10.1109/ACCESS.2020.2974798
10.1155/2022/8955292
10.1109/TIM.2021.3112227
10.1109/TIM.2023.3305667
10.1109/CVCI63518.2024.10830267
10.1109/ACCESS.2025.3551289
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
DOA
DOI 10.3390/app15169186
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_89ce2125f8e34a74b42625cd4196ac7b
10.3390/app15169186
A853577409
10_3390_app15169186
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c363t-9dd30452d0615a541b43b3b7f8b6fc9bc393f588f79bed969e3f0b4eaacca9243
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Tue Oct 14 19:03:15 EDT 2025
Tue Aug 26 13:23:39 EDT 2025
Fri Aug 29 05:19:22 EDT 2025
Mon Oct 20 16:51:34 EDT 2025
Thu Oct 16 04:38:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-9dd30452d0615a541b43b3b7f8b6fc9bc393f588f79bed969e3f0b4eaacca9243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4026-1662
0000-0003-2490-4568
0000-0001-5728-943X
0000-0002-6536-2251
0000-0002-6806-9122
OpenAccessLink https://doaj.org/article/89ce2125f8e34a74b42625cd4196ac7b
PQID 3243982003
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_89ce2125f8e34a74b42625cd4196ac7b
unpaywall_primary_10_3390_app15169186
proquest_journals_3243982003
gale_infotracacademiconefile_A853577409
crossref_primary_10_3390_app15169186
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References You (ref_9) 2025; 253
Stefenon (ref_30) 2025; 168
ref_14
ref_32
ref_31
Yi (ref_6) 2025; 21
ref_19
He (ref_21) 2024; 39
ref_17
Tao (ref_20) 2024; 117
Costa (ref_16) 2021; 35
(ref_2) 2019; 102
(ref_7) 2020; 189
Liang (ref_15) 2020; 8
Gong (ref_5) 2023; 105
Lu (ref_28) 2025; 13
Liquan (ref_18) 2022; 2022
Zhang (ref_22) 2024; 21
Liao (ref_10) 2025; 21
Zhao (ref_12) 2021; 70
Shuang (ref_13) 2023; 72
ref_25
ref_24
ref_23
Li (ref_11) 2024; 12
Panigrahy (ref_29) 2024; 73
ref_27
ref_26
ref_8
Ahmed (ref_1) 2022; 211
Seman (ref_3) 2023; 152
ref_4
References_xml – volume: 211
  start-page: 108199
  year: 2022
  ident: ref_1
  article-title: Inspection and identification of transmission line insulator breakdown based on deep learning using aerial images
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.108199
– volume: 12
  start-page: 167388
  year: 2024
  ident: ref_11
  article-title: IF-YOLO: An Efficient and Accurate Detection Algorithm for Insulator Faults in Transmission Lines
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3496514
– ident: ref_26
  doi: 10.1007/978-3-031-43990-2_58
– volume: 35
  start-page: 2067
  year: 2021
  ident: ref_16
  article-title: A Convolutional Neural Network for Detecting Faults in Power Distribution Networks along a Railway: A Case Study Using YOLO
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2021.1998974
– volume: 21
  start-page: 1754
  year: 2025
  ident: ref_10
  article-title: Mitigating Class Imbalance Issues in Electricity Theft Detection via a Sample-Weighted Loss
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2024.3485813
– ident: ref_32
– ident: ref_14
  doi: 10.3390/s22134720
– volume: 253
  start-page: 117410
  year: 2025
  ident: ref_9
  article-title: A insulator defect detection network based on improved YOLOv7 for UAV aerial images
  publication-title: Measurement
  doi: 10.1016/j.measurement.2025.117410
– ident: ref_17
  doi: 10.3390/app12031207
– ident: ref_23
  doi: 10.3390/s25051327
– ident: ref_24
  doi: 10.1109/CVPR52733.2024.01447
– volume: 189
  start-page: 106602
  year: 2020
  ident: ref_7
  article-title: Faults in smart grid systems: Monitoring, detection and classification
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106602
– volume: 39
  start-page: 168
  year: 2024
  ident: ref_21
  article-title: MFI-YOLO: Multi-Fault Insulator Detection Based on an Improved YOLOv8
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2023.3328178
– volume: 21
  start-page: 22
  year: 2024
  ident: ref_22
  article-title: Research on improved YOLOv8 algorithm for insulator defect detection
  publication-title: J. Real-Time Image Process.
  doi: 10.1007/s11554-023-01401-9
– ident: ref_4
  doi: 10.3390/math11092092
– ident: ref_8
  doi: 10.3390/en15103550
– ident: ref_27
  doi: 10.3390/app15020526
– volume: 21
  start-page: 2829
  year: 2025
  ident: ref_6
  article-title: Balancing Accuracy and Efficiency With a Multiscale Uncertainty-Aware Knowledge-Based Network for Transmission Line Inspection
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2024.3507936
– ident: ref_19
  doi: 10.3390/app14198770
– ident: ref_31
– volume: 73
  start-page: 2514109
  year: 2024
  ident: ref_29
  article-title: Real-Time Condition Monitoring of Transmission Line Insulators Using the YOLO Object Detection Model With a UAV
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2024.3381693
– volume: 152
  start-page: 109269
  year: 2023
  ident: ref_3
  article-title: Ensemble learning methods using the Hodrick–Prescott filter for fault forecasting in insulators of the electrical power grids
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2023.109269
– volume: 105
  start-page: 1251
  year: 2023
  ident: ref_5
  article-title: Defect detection of small cotter pins in electric power transmission system from UAV images using deep learning techniques
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-022-01729-8
– volume: 117
  start-page: 109259
  year: 2024
  ident: ref_20
  article-title: SnakeNet: An adaptive network for small object and complex background for insulator surface defect detection
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2024.109259
– volume: 168
  start-page: 110682
  year: 2025
  ident: ref_30
  article-title: Enhanced insulator fault detection using optimized ensemble of deep learning models based on weighted boxes fusion
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2025.110682
– volume: 102
  start-page: 123
  year: 2019
  ident: ref_2
  article-title: Insulation failure caused by special pollution around industrial environments
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2019.04.034
– volume: 8
  start-page: 38448
  year: 2020
  ident: ref_15
  article-title: Detection and Evaluation Method of Transmission Line Defects Based on Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974798
– volume: 2022
  start-page: 8955292
  year: 2022
  ident: ref_18
  article-title: Fast Detection of Defective Insulator Based on Improved YOLOv5s
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/8955292
– volume: 70
  start-page: 5016408
  year: 2021
  ident: ref_12
  article-title: An Insulator in Transmission Lines Recognition and Fault Detection Model Based on Improved Faster RCNN
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3112227
– volume: 72
  start-page: 2524414
  year: 2023
  ident: ref_13
  article-title: Detail R-CNN: Insulator Detection Based on Detail Feature Enhancement and Metric Learning
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3305667
– ident: ref_25
  doi: 10.1109/CVCI63518.2024.10830267
– volume: 13
  start-page: 49062
  year: 2025
  ident: ref_28
  article-title: Precision in Aerial Surveillance: Integrating YOLOv8 With PConv and CoT for Accurate Insulator Defect Detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3551289
SSID ssj0000913810
Score 2.3286161
Snippet Ensuring the reliability of power transmission systems depends on the accurate detection of defects in insulators, which are subject to environmental...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 9186
SubjectTerms Accuracy
Analysis
Automation
Computer vision
convolutional neural network
Deep learning
Defects
Efficiency
Electric power systems
Electricity distribution
Fault diagnosis
insulator
multi-scale analysis
Neural networks
object detection
Sensors
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEB7q9UH7ILYqXa2Sh4r6sHi7yd4mDyJX2-MQvZZqoT4tk18iHHvrdQ_tf29mL3seCH1blhBCvsxkZjLzDcCxKIQPIuTT4CvnafjmKWJRpJLLoTFGWyOoUPjLbDS9Ep-ui-sdmPW1MJRW2evETlHbhaEY-btw8XMlKZXqQ_Mrpa5R9Lrat9DA2FrBvu8oxu7Bbk7MWAPYPTmbXVxuoi7Egimz4bpQjwd_n96JM3oryqiaeutq6hj8_9fTe3B_VTd4-xvn862LaPIIHkYLko3XkO_DjqsPYG-LV_AA9qPE3rA3kVb67WNoJriat-zUtV32Vc1-1uyCeqSxUyLPjX2vWKQwZ10uAfsavNxFGIEtMqwtm95ShRf7fv75nFEIl40tNqQxWUdz9adll86HhVDM8QlcTc6-fZymsd9CaviIt6mylt5Nc0tmDhYi04JrrksvqSJIacMV94WUvlTaWTVSjvuhFg7D7mPw4_hTGNSL2h0C8zKYDZnX6FCJPHNaDqXNSl1mYQI94gkc91tdNWtajSq4I4RItYVIAicEw2YIcWF3PxbLH1UUrUoq4wLahZeOCyyFJpL9wlgRlAuaUifwmkCsSGLbJRqMhQdhpcR9VY2DxVIEK3ioEjjqca6iKN9U_w5eAq822N-16md3T_McHuTURLjLIjyCQbtcuRfBsmn1y3hc_wJA5vhe
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED5B9wB7ADaYKAzkhyHgIWsT24n9hAqjqhBsE1Bpe4psx0YTVVp1KTB-PXepO0UgISTeosqpHN357jvf3XcAB0KKgEcoJBgrZwk-88QYKRPF1dA5ZysnqFH4w3E-mYp3Z_Ks08VPZZUYil-0RjrDIDtBM1sMUjlI84FOVT5YVOHVt3iXhL4P8TJlYG_CVi4Rjfdga3p8OjqnmXKbt9dteRyje8oKp5QZSql3uuOIWr7-P63yNtxa1Qtz9d3MZh23M74LZrPhdbXJ18NVYw_dz9-4HP_ni-7BnYhJ2WitRDtww9e7sN1hKtyFnWgDLtmLSFT98j4sxmY1a9iRb9p6rppd1OyUpq6xI6LjjZO0WCRFZ211AvuEcfMcV5jGMFNXbHJFPWPs_OT9CaNLYTaqzIJsMGuJs3407KMPuBG6xXwA0_Hbz28mSZzgkDie8ybRVUWZ2Kwi4GSkSK3gltsiKOox0tZxzYNUKhTa-krn2vMwtMIbg4qFkSHfg149r_1DYEEhEEmDNd5okaXeqqGq0sIWKf6BzXkfDjbiLBdroo4SAxySetmReh9ek6ivlxC7dvvDfPmljIe1VNp5dOkyKM-FKYQl2n7pKoHmyrjC9uE5KUpJNqBZGmdiKwPulNi0yhFiIIm4eqj7sL_RpTIah8sSMSzXiqoC-_DsWr_-tutH_7juMdzOaD5xW6C4D71mufJPEDQ19mk8F78AmjAQiQ
  priority: 102
  providerName: Unpaywall
Title Fault Detection in Power Distribution Systems Using Sensor Data and Hybrid YOLO with Adaptive Context Refinement
URI https://www.proquest.com/docview/3243982003
https://www.mdpi.com/2076-3417/15/16/9186/pdf?version=1755760387
https://doaj.org/article/89ce2125f8e34a74b42625cd4196ac7b
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-0PmgfxFbFaD32oaI-BJPbzWX38Wp7HqLXo3rQPi37CcKRHm0O7X_vTLItAUFffEvCEoadj53ZmfkNwKGoREQVijnGyuMcn3luTFXlksvCOWe9E9Qo_HUxma_E5_PqfDDqi2rCenjgfuM-SOUCmtcqysCFqYUlCPXKeYGiY1xtyfoWUg2Cqc4Gq5Kgq_qGPI5xPeWDS8oJldQ1PTiCOqT-P-3xLjzcNhtz89Os14MDZ_YEHidPkU17CvfgXmj2YXeAH7gPe0kzr9m7BB_9_ilsZma7btlxaLsqq4b9aNiSZqGxYwLJTfOtWIIqZ13NAPuG0ewlrjCtYabxbH5DnVzs4vTLKaOrWjb1ZkOWkXVwVr9adhYiEkJ3i89gNTv5_nGep7kKueMT3ubKe8qPjj25M6YSpRXccltHSZ0_yjqueKykjLWywauJCjwWVgRjkN0Yr_HnsNNcNuEFsCjRPSijNcEoMS6DlYX0ZW3rEn9gJzyDw9ut1psePkNj2EEc0QOOZHBEbLhbQpjX3QeUBJ0kQf9LEjJ4S0zUpJntlXEmNRggpYRxpafomVTo7RYqg4NbPuukstcaPUuuJNXqZfDmjvd_o_rl_6D6FTwa00jhrqbwAHbaq214jX5Oa0dwX84-jeDB0clieTbqBBzfVovl9OI337r-XQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH4a22HsgNgA0THAh03AISKJncY-TKijqzrWddPYpO0U7NhBSFXatalG_zn-Nt5L3VIJabfdoihyLD_7_fB77_sA9kUiCjxCRYCxchzgMw-0TpJAchnmeW5sLqhR-Kzf7F6LbzfJzRr8WfTCUFnlQifWitoOc7oj_4yGnytJpVRfRncBsUZRdnVBoaE9tYI9rCHGfGPHqZvdYwg3OTxpo7wP4rhzfPW1G3iWgSDnTV4FylrKFsaWjLtORGQEN9ykhaQ-GGVyrniRSFmkyjirmsrxIjTCafynxuiF47hPYENwoTD42zg67l9cLm95CHVTRuG8MZBzFVJeOqLcVETd2yumsGYM-N8ubMHmtBzp2b0eDFYMX-c5PPMeK2vNt9g2rLlyB7ZWcAx3YNtriAn76GGsP72AUUdPBxVru6qu9irZr5JdECcbaxNYr-fZYh4yndW1C-w7RtVD_EJXmunSsu6MOsrY7XnvnNGVMWtZPSINzWpYrd8Vu3QFToTuOF_C9aOs_CtYL4elew2skOimRIXRTisRR87IUNooNWmEA5gmb8D-Yqmz0RzGI8PwhySSrUikAUckhuUnhL1dvxiOf2b-KGdS5Q4NflJIx4VOhSFQ_yS3ApWZzlPTgA8kxIw0RDXWufaNDjhTwtrKWughJeh1h6oBews5Z151TLJ_G70BB0vZPzTr3YeHeQ-b3auzXtY76Z--gacxERjXFYx7sF6Np-4telWVeee3LoMfj31a_gIVtTZl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIQF7QGyACAzwwybgIVoSO439gFChhI6NbQImjadgOzZCqtLQphr9anw67tK0VELa296iyLKc3H_f3e8A9kQqPIqQDzFWTkJ85qHWaRpKLiNrrSmtoEbhTye94bn4eJFebMCfZS8MlVUudWKrqMuxpTvyAzT8XEkqpTrwXVnE2SB_U_8KaYIUZVqX4zQWLHLk5pcYvk1fHw6Q1vtJkr__-m4YdhMGQst7vAlVWVKmMCnJsOtUxEZww03mJfXAKGO54j6V0mfKuFL1lOM-MsJpjR-OkQvHfW_AzYxQ3KlLPf-wut8hvE0ZR4uWQM5VRBnpmLJSMfVtrxnBdlbA_xZhC27PqlrPL_VotGby8ntwt_NVWX_BXNuw4aod2FpDMNyB7U43TNnLDsD61X2ocz0bNWzgmrbOq2I_K3ZG09jYgGB6uwlbrANLZ23VAvuC8fQYV-hGM12VbDinXjL27fT4lNFlMeuXuibdzFpArd8N--w8HoRuNx_A-bX894ewWY0r9wiYl-igxN5op5VIYmdkJMs4M1mMG5geD2Bv-auLegHgUWDgQxQp1igSwFsiw2oJoW63L8aTH0UnxIVU1qGpT710XOhMGILzT20pUI1pm5kAXhARC9INzURb3bU44EkJZavoo2-Uor8dqQB2l3QuOqUxLf6xeAD7K9pfderHV2_zHG6hjBTHhydHT-BOQpOL29LFXdhsJjP3FN2pxjxr-ZbB9-sWlL-hYjP_
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED5B9wB7ADaYKAzkhyHgIWsT24n9hAqjqhBsE1Bpe4psx0YTVVp1KTB-PXepO0UgISTeosqpHN357jvf3XcAB0KKgEcoJBgrZwk-88QYKRPF1dA5ZysnqFH4w3E-mYp3Z_Ks08VPZZUYil-0RjrDIDtBM1sMUjlI84FOVT5YVOHVt3iXhL4P8TJlYG_CVi4Rjfdga3p8OjqnmXKbt9dteRyje8oKp5QZSql3uuOIWr7-P63yNtxa1Qtz9d3MZh23M74LZrPhdbXJ18NVYw_dz9-4HP_ni-7BnYhJ2WitRDtww9e7sN1hKtyFnWgDLtmLSFT98j4sxmY1a9iRb9p6rppd1OyUpq6xI6LjjZO0WCRFZ211AvuEcfMcV5jGMFNXbHJFPWPs_OT9CaNLYTaqzIJsMGuJs3407KMPuBG6xXwA0_Hbz28mSZzgkDie8ybRVUWZ2Kwi4GSkSK3gltsiKOox0tZxzYNUKhTa-krn2vMwtMIbg4qFkSHfg149r_1DYEEhEEmDNd5okaXeqqGq0sIWKf6BzXkfDjbiLBdroo4SAxySetmReh9ek6ivlxC7dvvDfPmljIe1VNp5dOkyKM-FKYQl2n7pKoHmyrjC9uE5KUpJNqBZGmdiKwPulNi0yhFiIIm4eqj7sL_RpTIah8sSMSzXiqoC-_DsWr_-tutH_7juMdzOaD5xW6C4D71mufJPEDQ19mk8F78AmjAQiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Detection+in+Power+Distribution+Systems+Using+Sensor+Data+and+Hybrid+YOLO+with+Adaptive+Context+Refinement&rft.jtitle=Applied+sciences&rft.au=Scapinello+Aquino%2C+Luiza&rft.au=Rodrigues+Agottani%2C+Luis+Fernando&rft.au=Seman%2C+Laio+Oriel&rft.au=Cocco+Mariani%2C+Viviana&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=16&rft_id=info:doi/10.3390%2Fapp15169186&rft.externalDocID=A853577409
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon