Interpolation-based immersogeometric analysis methods for multi-material and multi-physics problems

Immersed boundary methods are high-order accurate computational tools used to model geometrically complex problems in computational mechanics. While traditional finite element methods require the construction of high-quality boundary-fitted meshes, immersed boundary methods instead embed the computa...

Full description

Saved in:
Bibliographic Details
Published inComputational mechanics Vol. 75; no. 1; pp. 301 - 325
Main Authors Fromm, Jennifer E., Wunsch, Nils, Maute, Kurt, Evans, John A., Chen, Jiun-Shyan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0178-7675
1432-0924
1432-0924
DOI10.1007/s00466-024-02506-z

Cover

Abstract Immersed boundary methods are high-order accurate computational tools used to model geometrically complex problems in computational mechanics. While traditional finite element methods require the construction of high-quality boundary-fitted meshes, immersed boundary methods instead embed the computational domain in a structured background grid. Interpolation-based immersed boundary methods augment existing finite element software to non-invasively implement immersed boundary capabilities through extraction. Extraction interpolates the structured background basis as a linear combination of Lagrange polynomials defined on a foreground mesh, creating an interpolated basis that can be easily integrated by existing methods. This work extends the interpolation-based immersed isogeometric method to multi-material and multi-physics problems. Beginning from level-set descriptions of domain geometries, Heaviside enrichment is implemented to accommodate discontinuities in state variable fields across material interfaces. Adaptive refinement with truncated hierarchically refined B-splines (THB-splines) is used to both improve interface geometry representations and to resolve large solution gradients near interfaces. Multi-physics problems typically involve coupled fields where each field has unique discretization requirements. This work presents a novel discretization method for coupled problems through the application of extraction, using a single foreground mesh for all fields. Numerical examples illustrate optimal convergence rates for this method in both 2D and 3D, for partial differential equations representing heat conduction, linear elasticity, and a coupled thermo-mechanical problem. The utility of this method is demonstrated through image-based analysis of a composite sample, where in addition to circumventing typical meshing difficulties, this method reduces the required degrees of freedom when compared to classical boundary-fitted finite element methods.
AbstractList Immersed boundary methods are high-order accurate computational tools used to model geometrically complex problems in computational mechanics. While traditional finite element methods require the construction of high-quality boundary-fitted meshes, immersed boundary methods instead embed the computational domain in a structured background grid. Interpolation-based immersed boundary methods augment existing finite element software to non-invasively implement immersed boundary capabilities through extraction. Extraction interpolates the structured background basis as a linear combination of Lagrange polynomials defined on a foreground mesh, creating an interpolated basis that can be easily integrated by existing methods. This work extends the interpolation-based immersed isogeometric method to multi-material and multi-physics problems. Beginning from level-set descriptions of domain geometries, Heaviside enrichment is implemented to accommodate discontinuities in state variable fields across material interfaces. Adaptive refinement with truncated hierarchically refined B-splines (THB-splines) is used to both improve interface geometry representations and to resolve large solution gradients near interfaces. Multi-physics problems typically involve coupled fields where each field has unique discretization requirements. This work presents a novel discretization method for coupled problems through the application of extraction, using a single foreground mesh for all fields. Numerical examples illustrate optimal convergence rates for this method in both 2D and 3D, for partial differential equations representing heat conduction, linear elasticity, and a coupled thermo-mechanical problem. The utility of this method is demonstrated through image-based analysis of a composite sample, where in addition to circumventing typical meshing difficulties, this method reduces the required degrees of freedom when compared to classical boundary-fitted finite element methods.
Author Chen, Jiun-Shyan
Evans, John A.
Maute, Kurt
Wunsch, Nils
Fromm, Jennifer E.
Author_xml – sequence: 1
  givenname: Jennifer E.
  surname: Fromm
  fullname: Fromm, Jennifer E.
  organization: Mechanical and Aerospace Engineering, University of California San Diego
– sequence: 2
  givenname: Nils
  surname: Wunsch
  fullname: Wunsch, Nils
  organization: Aerospace Engineering, University of Colorado, Boulder
– sequence: 3
  givenname: Kurt
  surname: Maute
  fullname: Maute, Kurt
  organization: Aerospace Engineering, University of Colorado, Boulder
– sequence: 4
  givenname: John A.
  surname: Evans
  fullname: Evans, John A.
  organization: Aerospace Engineering, University of Colorado, Boulder
– sequence: 5
  givenname: Jiun-Shyan
  orcidid: 0000-0002-6871-8815
  surname: Chen
  fullname: Chen, Jiun-Shyan
  email: js-chen@ucsd.edu
  organization: Structural Engineering, University of California San Diego
BookMark eNqNkEtLAzEUhYNUsK3-AVcDrqPJ5DVdSvFRKLjRdUgnSZuSmYzJFGl_vbFTEFwUF-GS8J2bc84EjNrQGgBuMbrHCImHhBDlHKKS5sMQh4cLMMaUlBDNSjoCY4RFBQUX7ApMUtoihFlF2BjUi7Y3sQte9S60cKWS0YVrGhNTWJvQmD66ulCt8vvkUpHvm6BTYUMsmp3vHWxU1jvlM6NPT90ms3UquhhW3jTpGlxa5ZO5Oc0p-Hh-ep-_wuXby2L-uIQ14aSHM41QRWzFNBHU2qqsSztjnHJBDLVGUyWIJRjneKbSFHPFLNFCmJlWmUNkCsiwd9d2av-lvJdddI2Ke4mR_OlJDj3J3JM89iQPWXU3qLLdz51JvdyGXcyBkySYEYIIZ2WmqoGqY0gpGitr1x8766Ny_vwH5R_pv1ydsqQMt2sTf12dUX0DvH-d6w
CitedBy_id crossref_primary_10_1016_j_cma_2024_117426
Cites_doi 10.1016/j.cma.2013.11.012
10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
10.1007/s11831-014-9115-y
10.1007/s00466-022-02200-y
10.1007/s00466-023-02306-x
10.1016/j.cam.2009.05.014
10.1016/j.cma.2004.10.008
10.1002/nme.2768
10.1002/nme.4569
10.1002/nme.2968
10.1016/j.cma.2014.10.040
10.5281/zenodo.10447666
10.1016/j.cma.2023.115890
10.1016/j.cma.2013.01.007
10.1016/0021-9045(72)90080-9
10.1016/j.cma.2008.04.006
10.1016/j.jcp.2014.06.016
10.1016/j.cagd.2012.03.025
10.1016/0021-9991(72)90065-4
10.1007/s00466-007-0173-y
10.1016/j.cma.2008.02.036
10.1016/j.cma.2012.03.008
10.1016/j.cma.2018.10.002
10.1016/j.jcp.2017.10.026
10.11588/ans.2015.100.20553
10.1016/0021-9991(88)90002-2
10.1186/s40323-018-0099-2
10.1007/s11831-023-09913-0
10.1007/s00466-023-02394-9
10.1016/j.matdes.2023.111661
10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
10.1016/j.cma.2020.113420
10.1016/j.jcp.2007.05.032
10.1016/j.cma.2021.114396
10.1016/j.cma.2003.12.041
10.1016/j.cma.2018.03.022
10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
10.1002/zamm.200310088
10.1016/j.camwa.2020.01.023
10.1016/j.jbiomech.2013.03.022
10.1016/j.cad.2021.103093
10.2172/876325
10.1002/nme.820
10.1137/S1064827500371499
10.1016/j.jcp.2018.01.023
10.1016/j.crma.2010.10.006
10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.3.CO;2-A
10.1016/S0045-7825(99)00072-9
10.1016/j.cma.2020.113521
10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8
10.1108/EC-03-2019-0108
10.1016/j.camwa.2020.03.026
10.3390/polym11101667
10.48550/arXiv.2304.06150
10.1016/j.apnum.2017.08.006
10.1016/j.cma.2012.03.017
10.1016/S0168-874X(03)00058-1
10.1016/j.cma.2022.115707
10.1002/nme.5216
10.48550/arXiv.2005.07780
10.1023/A:1020874308076
10.1016/j.cma.2022.114885
10.1016/j.cma.2020.113305
10.1016/j.cma.2016.10.019
10.1007/BF02995904
10.1016/j.cma.2021.113910
10.1016/j.cma.2009.01.021
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. Jan 2025
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. Jan 2025
DBID C6C
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1007/s00466-024-02506-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1432-0924
EndPage 325
ExternalDocumentID 10.1007/s00466-024-02506-z
10_1007_s00466_024_02506_z
GrantInformation_xml – fundername: Directorate for Computer and Information Science and Engineering
  grantid: 2103939; 2104106
  funderid: http://dx.doi.org/10.13039/100000083
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
E.L
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WIP
WK8
XH6
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ADTOC
UNPAY
ID FETCH-LOGICAL-c363t-9d0083f85d374ff82c2f9564673e4fed4a73f311506e8d416a5f3d77e9da95603
IEDL.DBID UNPAY
ISSN 0178-7675
1432-0924
IngestDate Sun Sep 07 11:27:17 EDT 2025
Fri Jul 25 10:58:13 EDT 2025
Wed Oct 01 04:31:36 EDT 2025
Thu Apr 24 23:06:32 EDT 2025
Fri Feb 21 02:34:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Immersed finite element method
XIGA
Lagrange extraction
Multi-material problems
Multi-physics problems
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-9d0083f85d374ff82c2f9564673e4fed4a73f311506e8d416a5f3d77e9da95603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6871-8815
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/s00466-024-02506-z
PQID 3153303652
PQPubID 2043755
PageCount 25
ParticipantIDs unpaywall_primary_10_1007_s00466_024_02506_z
proquest_journals_3153303652
crossref_citationtrail_10_1007_s00466_024_02506_z
crossref_primary_10_1007_s00466_024_02506_z
springer_journals_10_1007_s00466_024_02506_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Solids, Materials, Complex Fluids, Fluid-Structure-Interaction, Biological Systems, Micromechanics, Multiscale Mechanics, Additive Manufacturing
PublicationTitle Computational mechanics
PublicationTitleAbbrev Comput Mech
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References 2506_CR45
2506_CR44
D Wang (2506_CR70) 2003; 39
D Gunderman (2506_CR29) 2021; 141
2506_CR40
A Nazir (2506_CR50) 2023; 226
D Schillinger (2506_CR59) 2016; 108
EM Garau (2506_CR27) 2018; 123
L Noël (2506_CR52) 2022; 70
S Soghrati (2506_CR62) 2014; 275
2506_CR48
F de Prenter (2506_CR18) 2023; 30
SC Divi (2506_CR19) 2020; 80
L Engvall (2506_CR22) 2020; 371
MJ Borden (2506_CR11) 2011; 87
S Badia (2506_CR5) 2018; 336
2506_CR30
2506_CR72
D Schillinger (2506_CR57) 2015; 22
D Kamensky (2506_CR37) 2021; 81
NM Atallah (2506_CR3) 2022; 394
TJR Hughes (2506_CR35) 2014; 272
TJR Hughes (2506_CR34) 2008; 197
G Moutsanidis (2506_CR47) 2021; 373
C Min (2506_CR46) 2007; 226
D Kamensky (2506_CR38) 2019; 344
D Kamensky (2506_CR39) 2015; 284
TJR Hughes (2506_CR33) 2005; 194
S Osher (2506_CR53) 1988; 79
A Hansbo (2506_CR31) 2004; 193
2506_CR68
2506_CR8
2506_CR66
2506_CR6
B Müller (2506_CR49) 2013; 96
2506_CR65
JA Evans (2506_CR23) 2009; 198
2506_CR9
E Burman (2506_CR14) 2023; 403
C Annavarapu (2506_CR2) 2012; 225–228
T Strouboulis (2506_CR64) 2000; 181
A Düster (2506_CR20) 2008; 197
D Schillinger (2506_CR58) 2012; 249–252
2506_CR25
CS Peskin (2506_CR55) 1972; 10
J Nitsche (2506_CR51) 1971; 36
TA Burkhart (2506_CR12) 2013; 46
B Cockburn (2506_CR16) 2003; 83
D Elfverson (2506_CR21) 2018; 5
A Johansson (2506_CR36) 2020; 372
J Parvizian (2506_CR54) 2007; 41
A Sommariva (2506_CR63) 2009; 231
2506_CR71
A Main (2506_CR43) 2018; 372
C Giannelli (2506_CR28) 2012; 29
M Bauccio (2506_CR7) 1994
2506_CR4
2506_CR1
TH Huang (2506_CR32) 2022; 389
KW Cheng (2506_CR15) 2010; 82
2506_CR10
TP Fries (2506_CR24) 2016; 106
LA Vese (2506_CR69) 2002; 50
PM Knupp (2506_CR41) 2001; 23
JE Fromm (2506_CR26) 2023; 405
DK Rajak (2506_CR56) 2019; 11
A Main (2506_CR42) 2018; 372
E Burman (2506_CR13) 2010; 348
K Terada (2506_CR67) 2003; 58
2506_CR60
C de Boor (2506_CR17) 1972; 6
M Schmidt (2506_CR61) 2023; 71
References_xml – volume: 272
  start-page: 290
  year: 2014
  ident: 2506_CR35
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2013.11.012
– ident: 2506_CR4
  doi: 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
– volume: 22
  start-page: 391
  issue: 3
  year: 2015
  ident: 2506_CR57
  publication-title: Arch Computat Methods Eng
  doi: 10.1007/s11831-014-9115-y
– volume: 70
  start-page: 1281
  issue: 6
  year: 2022
  ident: 2506_CR52
  publication-title: Comput Mech
  doi: 10.1007/s00466-022-02200-y
– volume: 71
  start-page: 1179
  issue: 6
  year: 2023
  ident: 2506_CR61
  publication-title: Comput Mech
  doi: 10.1007/s00466-023-02306-x
– volume: 231
  start-page: 886
  issue: 2
  year: 2009
  ident: 2506_CR63
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2009.05.014
– volume: 194
  start-page: 4135
  issue: 39
  year: 2005
  ident: 2506_CR33
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2004.10.008
– volume: 82
  start-page: 564
  issue: 5
  year: 2010
  ident: 2506_CR15
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2768
– volume: 96
  start-page: 512
  issue: 8
  year: 2013
  ident: 2506_CR49
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4569
– volume: 87
  start-page: 15
  issue: 1–5
  year: 2011
  ident: 2506_CR11
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2968
– volume: 284
  start-page: 1005
  year: 2015
  ident: 2506_CR39
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2014.10.040
– ident: 2506_CR6
  doi: 10.5281/zenodo.10447666
– volume: 405
  year: 2023
  ident: 2506_CR26
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2023.115890
– ident: 2506_CR66
  doi: 10.1016/j.cma.2013.01.007
– volume: 6
  start-page: 50
  issue: 1
  year: 1972
  ident: 2506_CR17
  publication-title: J Approx Theory
  doi: 10.1016/0021-9045(72)90080-9
– volume: 197
  start-page: 4104
  issue: 49
  year: 2008
  ident: 2506_CR34
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2008.04.006
– volume: 275
  start-page: 41
  year: 2014
  ident: 2506_CR62
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2014.06.016
– volume: 29
  start-page: 485
  issue: 7
  year: 2012
  ident: 2506_CR28
  publication-title: Comput Aided Geometric Des
  doi: 10.1016/j.cagd.2012.03.025
– volume: 10
  start-page: 252
  issue: 2
  year: 1972
  ident: 2506_CR55
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(72)90065-4
– volume-title: ASM engineered materials reference book
  year: 1994
  ident: 2506_CR7
– volume: 41
  start-page: 121
  issue: 1
  year: 2007
  ident: 2506_CR54
  publication-title: Comput Mech
  doi: 10.1007/s00466-007-0173-y
– volume: 197
  start-page: 3768
  issue: 45
  year: 2008
  ident: 2506_CR20
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2008.02.036
– volume: 225–228
  start-page: 44
  year: 2012
  ident: 2506_CR2
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2012.03.008
– volume: 344
  start-page: 477
  year: 2019
  ident: 2506_CR38
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.10.002
– volume: 372
  start-page: 972
  year: 2018
  ident: 2506_CR42
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2017.10.026
– ident: 2506_CR1
  doi: 10.11588/ans.2015.100.20553
– volume: 79
  start-page: 12
  issue: 1
  year: 1988
  ident: 2506_CR53
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(88)90002-2
– volume: 5
  start-page: 6
  issue: 1
  year: 2018
  ident: 2506_CR21
  publication-title: Adv Model Simul Eng Sci
  doi: 10.1186/s40323-018-0099-2
– volume: 30
  start-page: 3617
  issue: 6
  year: 2023
  ident: 2506_CR18
  publication-title: Arch Computat Methods Eng
  doi: 10.1007/s11831-023-09913-0
– ident: 2506_CR71
  doi: 10.1007/s00466-023-02394-9
– volume: 226
  year: 2023
  ident: 2506_CR50
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2023.111661
– ident: 2506_CR8
  doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
– volume: 372
  year: 2020
  ident: 2506_CR36
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113420
– ident: 2506_CR40
– volume: 226
  start-page: 1432
  issue: 2
  year: 2007
  ident: 2506_CR46
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2007.05.032
– volume: 389
  year: 2022
  ident: 2506_CR32
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.114396
– volume: 193
  start-page: 3523
  issue: 33
  year: 2004
  ident: 2506_CR31
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2003.12.041
– ident: 2506_CR44
– volume: 336
  start-page: 533
  year: 2018
  ident: 2506_CR5
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.03.022
– ident: 2506_CR9
  doi: 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
– volume: 83
  start-page: 731
  issue: 11
  year: 2003
  ident: 2506_CR16
  publication-title: ZAMM J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik
  doi: 10.1002/zamm.200310088
– ident: 2506_CR25
– volume: 81
  start-page: 634
  year: 2021
  ident: 2506_CR37
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2020.01.023
– volume: 46
  start-page: 1477
  issue: 9
  year: 2013
  ident: 2506_CR12
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2013.03.022
– volume: 141
  year: 2021
  ident: 2506_CR29
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2021.103093
– ident: 2506_CR10
  doi: 10.2172/876325
– volume: 58
  start-page: 1321
  issue: 9
  year: 2003
  ident: 2506_CR67
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.820
– volume: 23
  start-page: 193
  issue: 1
  year: 2001
  ident: 2506_CR41
  publication-title: SIAM J Sci Comput
  doi: 10.1137/S1064827500371499
– volume: 372
  start-page: 996
  year: 2018
  ident: 2506_CR43
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2018.01.023
– volume: 348
  start-page: 1217
  issue: 21
  year: 2010
  ident: 2506_CR13
  publication-title: CR Math
  doi: 10.1016/j.crma.2010.10.006
– ident: 2506_CR48
  doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.3.CO;2-A
– volume: 181
  start-page: 43
  issue: 1
  year: 2000
  ident: 2506_CR64
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(99)00072-9
– volume: 373
  year: 2021
  ident: 2506_CR47
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113521
– ident: 2506_CR65
  doi: 10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8
– ident: 2506_CR68
  doi: 10.1108/EC-03-2019-0108
– volume: 80
  start-page: 2481
  issue: 11
  year: 2020
  ident: 2506_CR19
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2020.03.026
– volume: 11
  start-page: 1667
  issue: 10
  year: 2019
  ident: 2506_CR56
  publication-title: Polymers
  doi: 10.3390/polym11101667
– ident: 2506_CR60
  doi: 10.48550/arXiv.2304.06150
– volume: 123
  start-page: 58
  year: 2018
  ident: 2506_CR27
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2017.08.006
– volume: 249–252
  start-page: 116
  year: 2012
  ident: 2506_CR58
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2012.03.017
– volume: 39
  start-page: 765
  issue: 8
  year: 2003
  ident: 2506_CR70
  publication-title: Finite Elem Anal Des
  doi: 10.1016/S0168-874X(03)00058-1
– ident: 2506_CR45
– volume: 403
  year: 2023
  ident: 2506_CR14
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.115707
– volume: 108
  start-page: 515
  issue: 6
  year: 2016
  ident: 2506_CR59
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.5216
– ident: 2506_CR30
  doi: 10.48550/arXiv.2005.07780
– volume: 50
  start-page: 271
  issue: 3
  year: 2002
  ident: 2506_CR69
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1020874308076
– volume: 394
  year: 2022
  ident: 2506_CR3
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114885
– volume: 371
  year: 2020
  ident: 2506_CR22
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113305
– volume: 106
  start-page: 323
  issue: 5
  year: 2016
  ident: 2506_CR24
  publication-title: Int J Numer Methods Eng
  doi: 10.1016/j.cma.2016.10.019
– volume: 36
  start-page: 9
  issue: 1
  year: 1971
  ident: 2506_CR51
  publication-title: AbhMathSeminUnivHambg
  doi: 10.1007/BF02995904
– ident: 2506_CR72
  doi: 10.1016/j.cma.2021.113910
– volume: 198
  start-page: 1726
  issue: 21–29
  year: 2009
  ident: 2506_CR23
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2009.01.021
SSID ssj0015835
Score 2.4532337
Snippet Immersed boundary methods are high-order accurate computational tools used to model geometrically complex problems in computational mechanics. While...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 301
SubjectTerms B spline functions
Classical and Continuum Physics
Computational mechanics
Computational Science and Engineering
Conduction heating
Conductive heat transfer
Discretization
Engineering
Finite element method
Interpolation
Methods
Original Paper
Partial differential equations
Physics
Polynomials
Software
Theoretical and Applied Mechanics
Thermomechanical analysis
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9ROCgHUdSIounBm5TA2n0diQGJRk-S4GnZ-mGMCMRBjPz1tl030Rgi163rtva17_de3_s9gMtOIOKA6rgwJhmm1GU45JzjWEHbxOM09EwW__2DNxjS25E7sklhaR7tnh9Jmp26SHbTppwOmKVY620PL7ehbPi2SlDu3jzd9YrTAzfICmt2lIWkyUpssszfvfxUSN8oszgYrcDOYjKLPz_i8XhF9_SrMMy_Ogs5eW0t5kmLLX8ROm76W_uwZ8Eo6mbScwBbYlKDqgWmyC77tAaVFdbCQ2BZoOI0i6LDWg9y9GIc4NNnMX3TNboYii3bCcpqVKdIoWNkwhexAslG7lUbbi9lDpYU2fo26REM-73H6wG2tRowIx6ZqwnWYE4GLic-lTJwmCOV6aW2YSKoFJzGPpGa2aftiYArFBi7knDfFyGPtYlGjqE0mU7ECSAaKBiYJFwo45ySNgtUY-k6TFk-TIR-WIdOPmERs0Tmup7GOCoomM2YRmpMIzOm0bIOV8Uzs4zGY23rRi4HkV3SaUQ0Mlb63nXq0Myn8vv2ut6ahfz84-Wnm_V-BruOLklsvEINKM3fF-Jc4aR5cmGXxRdSfQiC
  priority: 102
  providerName: Springer Nature
Title Interpolation-based immersogeometric analysis methods for multi-material and multi-physics problems
URI https://link.springer.com/article/10.1007/s00466-024-02506-z
https://www.proquest.com/docview/3153303652
https://doi.org/10.1007/s00466-024-02506-z
UnpaywallVersion publishedVersion
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0924
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 1432-0924
  databaseCode: AFBBN
  dateStart: 19860301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 1432-0924
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015835
  issn: 1432-0924
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90exAfnJ840ZEH3zQymzRtH-fYFMXhgwN9Km0-RJzbsBvi_novaTY_ENGXFtprSpNL73fJ3e8ADk9jncXcxoVJIynnoaSJUopmCG1zoXgiXBb_dU9c9PnlXXjnaXJsLsy3_XtH9ilsmCyn1loLOluGqggRd1eg2u_dtO5djCK6QpaVxKUSsYA20avwGTI_N_LVCn1Ay8Vu6CqsTIfj7O01Gww-GZxuraxcVDieQhtn8nQyneQncvaNxfFv37IOax53klapKBuwpIebUPMYlPgZXmzC6ieCwi2QZUziqAyYo9bkKfLo1rpHD3r0bMtxSZJ5YhNSlqMuCAJh4iIVKeJhp-Ioo_ylci2lIL6UTbEN_W7ntn1BfVkGKplgExxLi9tMHCoWcWPiQAYGvSz84zLNjVY8i5ixJD5NoWOFgC8LDVNRpBOVWW-M7UBlOBrqXSA8RsSX50qjH85ZU8YobMJAopMjdRIldTidD1MqPWe5LZ0xSBdsy65PU-zT1PVpOqvD0eKZccnY8av0_nz0Uz97i5RZEIymPQzqcDzXiI_bv7V2vNCaP7x873_i-1CZvEz1AaKgSd6Aaqt7dtaz5_P7q04Dltuijcd-0Gr4qfEONRcChQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RPCAHP1AjitqDN2kCa_d1JEaCCpwg4baMfhgT3IiDGPnrbbtuaGKIXre2S_Zr-36vfe_3AG47gYgDquPCmGSYUpfhkHOOY0VtZx6noWey-Icjrz-hT1N3apPCsiLavbiSNDt1meymXTkdMEuxttseXu_Cnhaw0or5E6db3h24QV5Ws6P8Iy1VYlNlfh_jpznacMzyWrQG1VWyiD8_4vn8m-XpHcGBpYyom2N8DDsiqcOhpY_ILs6sDrVv2oInwPJwwjSPdcPaWnH0ao6p0xeRvulKWgzFVpME5ZWkM6Q4LDJBhlhRWTM7VRtuH-XHIBmyVWiyU5j0Hsb3fWwrKmBGPLJUMGjKJQOXE59KGTjMkcpBUpslEVQKTmOfSK2_0_ZEwBVXi11JuO-LkMfakSJnUEnSRJwDooEia7MZF8qFpqTNAtVYug5T_gkToR82oFP82IhZuXFd9WIelULJBoxIgREZMKJ1A-7KPotcbGNr62aBV2QXXhYRzV-VVXadBrQKDDevt43WKnH-w8cv_jf6DVT74-EgGjyOni9h39FFhM05ThMqy_eVuFLMZjm7NhP5C27k7h0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkVgO7Iiy-sCNWm1jZzuiQlVWcQCJW5R6QUglrUgQol_P2HHTIiEE18RxpLwk88aeeQ_gpB2pNOKmLkxoQTn3BY2llDRFatsPJI8D28V_exf0HvnVk_8008Vvq90nW5JlT4NRacqK5kjqZtX4ZtI6UzzLqYnhAR3PwwLH6GY8DDpBp9pH8KPSYrONuZKRLXFtMz_P8T00TflmtUW6Akvv2Sj9_EgHg5ko1F2HVUcfyVmJ9wbMqWwT1hyVJO5DzTdhZUZncAtEWVo4LOveqIlckrzYJevhsxq-GlctQVKnT0JKV-mcIJ8ltuCQIq21byqOke5QuSSSE-dIk2_DY_fiodOjzl2BChawAiEx9EtHvmQh1zryhKcxWcIfJ1NcK8nTkGmjxdMKVCSRt6W-ZjIMVSxTk1SxHahlw0ztAuERErd-XypMpzlriQgHa98TmKsIFYdxHdqTB5sIJz1uHDAGSSWabMFIEIzEgpGM63BaXTMqhTd-HX0wwStxH2GeMMNlMUL7Xh0aEwynp3-brVHh_Ieb7_1v9mNYvD_vJjeXd9f7sOwZP2G7pHMAteLtXR0iySn6R_Y9_gIN4vJD
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60PUgP1idWquzBm67U7OZ1FLGIYPFgoZ5Csg8RayMmReyvd3azTauI1Gsy2ZDZ2cw3uzPfAJxcRCqNuMkLE1pQzn1BYyklTRHaZoHkcWCr-O8Gwc2Q3478kaPJMbUwP87vLdlnYNJkOTXeOqCzdWgGPuLuBjSHg_vLR5ujiKGQYSWxpUTMoz2MKlyFzO-DfPdCC2hZn4a2YGM6eUs_P9LxeMnh9NtV56LC8hSaPJOX82mZnYvZDxbH1b5lCzYd7iSXlaFsw5qa7EDbYVDiVnixA60lgsJdEFVOYl4lzFHj8iR5tnvd-ZPKX007LkFSR2xCqnbUBUEgTGymIkU8bE0cZaS7VO2lFMS1sin2YNi_fri6oa4tAxUsYCXOpcFtOvIlC7nWkSc8jVEW_nGZ4lpJnoZMGxKfXqAiiYAv9TWTYahimZpojO1DY5JP1AEQHiHiyzKpMA7nrCciFNa-JzDIESoO4w5czKcpEY6z3LTOGCc127LVaYI6TaxOk1kHTutn3irGjj-lu_PZT9zqLRJmQDC6dt_rwNncIha3_xrtrLaaFV5--D_xLjTK96k6QhRUZsfO_L8AOcH9oA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpolation-based+immersogeometric+analysis+methods+for+multi-material+and+multi-physics+problems&rft.jtitle=Computational+mechanics&rft.au=Fromm%2C+Jennifer+E.&rft.au=Wunsch%2C+Nils&rft.au=Maute%2C+Kurt&rft.au=Evans%2C+John+A.&rft.date=2025-01-01&rft.issn=0178-7675&rft.eissn=1432-0924&rft.volume=75&rft.issue=1&rft.spage=301&rft.epage=325&rft_id=info:doi/10.1007%2Fs00466-024-02506-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00466_024_02506_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-7675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-7675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-7675&client=summon