Topology optimization of dynamic acoustic–mechanical structures using the ersatz material model
Topology optimization of dynamic acoustic–mechanical structures is challenging due to the interaction between the acoustic and structural domains and artificial localized vibration modes of structures. This paper presents a floating projection topology optimization (FPTO) method based on the mixed d...
Saved in:
| Published in | Computer methods in applied mechanics and engineering Vol. 372; p. 113387 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.12.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0045-7825 1879-2138 |
| DOI | 10.1016/j.cma.2020.113387 |
Cover
| Abstract | Topology optimization of dynamic acoustic–mechanical structures is challenging due to the interaction between the acoustic and structural domains and artificial localized vibration modes of structures. This paper presents a floating projection topology optimization (FPTO) method based on the mixed displacement/pressure (u/p) finite element formulation and the ersatz material model. The former is able to release the need for tracking the interface boundaries explicitly between the structural and acoustic domains during the optimization process. The ersatz material model enables us to entirely avoid artificial localized vibration modes caused by the extremely high ratio between mass and stiffness. The floating projection simulates the original 0/1 constraints, and it gradually pushes the design variables toward 0 or 1 at the desired level so that the optimized element-based design can be accurately represented by a smooth design. Some 2D and 3D numerical examples, including minimizing sound pressure at the designated domain, restraining structural vibration, and maximizing sound transmission loss, are presented to demonstrate the effectiveness of the proposed topology optimization algorithm. The optimized solutions achieve the consistency of the objective function between the element-based design using the mixed formulation and the smooth design using the segregated formulation. The study suggests that the FPTO method using the ersatz material model is a promising approach for optimizing dynamic acoustic-mechanical structures.
•A new topology optimization algorithm for acoustic–mechanical structures is proposed.•Topology optimization using the ersatz material model avoids any artificial local modes.•Both 2D and 3D numerical examples are presented with element-based and smooth designs.•The performance of element-based designs is consistent with that of smooth designs using the segregated formulation. |
|---|---|
| AbstractList | Topology optimization of dynamic acoustic–mechanical structures is challenging due to the interaction between the acoustic and structural domains and artificial localized vibration modes of structures. This paper presents a floating projection topology optimization (FPTO) method based on the mixed displacement/pressure (u/p) finite element formulation and the ersatz material model. The former is able to release the need for tracking the interface boundaries explicitly between the structural and acoustic domains during the optimization process. The ersatz material model enables us to entirely avoid artificial localized vibration modes caused by the extremely high ratio between mass and stiffness. The floating projection simulates the original 0/1 constraints, and it gradually pushes the design variables toward 0 or 1 at the desired level so that the optimized element-based design can be accurately represented by a smooth design. Some 2D and 3D numerical examples, including minimizing sound pressure at the designated domain, restraining structural vibration, and maximizing sound transmission loss, are presented to demonstrate the effectiveness of the proposed topology optimization algorithm. The optimized solutions achieve the consistency of the objective function between the element-based design using the mixed formulation and the smooth design using the segregated formulation. The study suggests that the FPTO method using the ersatz material model is a promising approach for optimizing dynamic acoustic-mechanical structures.
•A new topology optimization algorithm for acoustic–mechanical structures is proposed.•Topology optimization using the ersatz material model avoids any artificial local modes.•Both 2D and 3D numerical examples are presented with element-based and smooth designs.•The performance of element-based designs is consistent with that of smooth designs using the segregated formulation. |
| ArticleNumber | 113387 |
| Author | Huang, Xiaodong Hu, Jie Yao, Song |
| Author_xml | – sequence: 1 givenname: Jie surname: Hu fullname: Hu, Jie organization: Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Hunan Changsha, 410075, China – sequence: 2 givenname: Song surname: Yao fullname: Yao, Song organization: Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Hunan Changsha, 410075, China – sequence: 3 givenname: Xiaodong surname: Huang fullname: Huang, Xiaodong email: xhuang@swin.edu.au organization: Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia |
| BookMark | eNp9kMtKAzEUQINUsK1-gLv8wNQ8Oi9cSfEFBTd1HTJ37rQpM5OSZIR25T_4h36JqXXlotlcAvdcOGdCRr3tkZBbzmac8exuO4NOzwQT8c-lLPILMuZFXiaCy2JExozN0yQvRHpFJt5vWXwFF2OiV3ZnW7veU7sLpjMHHYztqW1ove91Z4BqsIMPBr4_vzqEje4N6Jb64AYIg0NPB2_6NQ0bpOi8Dgfa6YDOxKXO1thek8tGtx5v_uaUvD89rhYvyfLt-XXxsExAZjIkZQXAimJeIGdpVbFoNUdR1logqxvGS1FmXAuZR6E0z6CRVZXJTDSZzEuBWk5JfroLznrvsFFgwq9NcNq0ijN1LKW2KpZSx1LqVCqS_B-5c6bTbn-WuT8xGJU-DDrlwWAPWBuHEFRtzRn6BxGJhZI |
| CitedBy_id | crossref_primary_10_1016_j_cma_2024_117204 crossref_primary_10_1360_SST_2023_0096 crossref_primary_10_1002_nme_7447 crossref_primary_10_1016_j_cma_2024_116870 crossref_primary_10_1016_j_cma_2022_115444 crossref_primary_10_1016_j_compstruct_2024_118442 crossref_primary_10_1007_s00158_021_03052_5 crossref_primary_10_1016_j_finel_2021_103650 crossref_primary_10_1016_j_ymssp_2022_108911 crossref_primary_10_1007_s10338_023_00408_w crossref_primary_10_1016_j_finel_2022_103892 crossref_primary_10_1061_JAEEEZ_ASENG_4687 crossref_primary_10_1016_j_apacoust_2024_110347 crossref_primary_10_1016_j_finel_2021_103633 crossref_primary_10_1016_j_ymssp_2022_109420 crossref_primary_10_3390_app13158811 crossref_primary_10_1016_j_engstruct_2023_116843 crossref_primary_10_1016_j_finel_2021_103701 crossref_primary_10_32604_cmes_2022_021641 crossref_primary_10_1007_s00158_021_02971_7 crossref_primary_10_1016_j_compstruct_2022_115372 crossref_primary_10_1007_s11081_023_09857_1 crossref_primary_10_1002_adfm_202206309 crossref_primary_10_1016_j_isci_2024_110648 |
| Cites_doi | 10.1002/nme.2777 10.1007/BF01650949 10.1016/j.jsv.2017.05.040 10.1016/j.jcp.2008.08.022 10.1016/j.compstruc.2013.10.019 10.1016/j.finel.2007.06.006 10.1063/1.4936997 10.1016/j.engstruct.2017.03.067 10.1080/15397734.2018.1557527 10.1007/s001580100129 10.1007/s00158-018-2147-4 10.1007/s00158-013-0978-6 10.1016/j.engstruct.2020.110330 10.1007/s11831-016-9203-2 10.1016/j.jsv.2018.01.032 10.1016/j.finel.2015.07.010 10.1002/(SICI)1097-0207(19970615)40:11<2001::AID-NME152>3.0.CO;2-W 10.1016/S0045-7825(02)00559-5 10.1016/j.cma.2006.09.021 10.1016/j.jsv.2008.03.042 10.1007/BF01744690 10.1016/0045-7825(88)90086-2 10.1016/j.jcp.2003.09.032 10.1007/s00158-018-2012-5 10.1016/j.ijheatmasstransfer.2016.05.013 10.1016/j.compstruc.2009.11.011 10.1007/s00158-019-02236-4 10.1002/nme.1900 10.1080/0305215X.2018.1517259 10.1007/s00158-018-1967-6 10.1016/j.ijsolstr.2017.06.001 10.1016/j.finel.2015.01.009 10.1016/j.apacoust.2013.06.002 10.1016/S0045-7825(01)00251-1 10.1007/s001580050130 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cma.2020.113387 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-2138 |
| ExternalDocumentID | 10_1016_j_cma_2020_113387 S0045782520305727 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW VH1 VOH WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c363t-9bcc08848e105bb01014e29da2e0df0192961a237213576cf3bb6362f63792ea3 |
| IEDL.DBID | .~1 |
| ISSN | 0045-7825 |
| IngestDate | Wed Oct 01 05:19:09 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 Fri Feb 23 02:45:36 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | The mixed displacement/pressure finite element formulation Topology optimization acoustic–structure interaction Sound transmission loss The ersatz material model |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-9bcc08848e105bb01014e29da2e0df0192961a237213576cf3bb6362f63792ea3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cma_2020_113387 crossref_primary_10_1016_j_cma_2020_113387 elsevier_sciencedirect_doi_10_1016_j_cma_2020_113387 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 2020-12-00 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Munjal (b44) 1987 Vicente, Picelli, Pavanello, Xie (b28) 2015; 98 Desai, Faure, Michailidis, Parry, Estevez (b23) 2018; 420 Dühring, Jensen, Sigmund (b40) 2008; 317 Meng, Jia, Huang (b16) 2018; 1800122 Zienkiewicz, Taylor (b32) 2000 Stolpe, Svanberg (b37) 2001; 22 Olhoff, Du (b41) 2014 Allaire, Jouve, Toader (b11) 2004; 194 Bendsøe, Kikuchi (b1) 1988; 71 Bendsøe (b3) 1989; 1 Zhou, Li (b14) 2008; 227 Azevedo, Moura, Vicente, Picelli, Pavanello (b45) 2018; 58 Kook, Jensen (b19) 2017; 122–123 Huang, Xie (b7) 2007; 43 Alexandersen, Sigmund, Aage (b12) 2016; 100 Yoon (b18) 2010; 82 Huang, Xie (b8) 2009; 42 Liu, Huang, Huang, Sun, Sun, Li (b42) 2017; 142 C.M. Ester, J.S. Jensen, J. Brunskog, M. Larsen, Topology optimization of vibroacoustic systems with strong coupling, in: The 6th Noise and Vibration Emerging Methods Conference, Spain, vol. 171629, 2018, pp. 1–12. Huang (b38) 2020; 208 Wang, Wang, Guo (b10) 2003; 192 Zhou, Rozvany (b4) 1992; 5 Huang, Xie (b2) 2010 Jensen (b39) 2019; 59 Shu, Wang, Ma (b22) 2014; 132 Pedersen (b36) 2000; 20 Xia, Xia, Huang, Xie (b9) 2017; 25 Wang, Bathe (b33) 1997; 40 Zhou, Bhaskar, Zhang (b43) 2013; 74 Sigmund, Clausen (b35) 2007; 196 Yin, Chen, Yu, Ma (b29) 2018; 51 Sigmund (b17) 2001; 190 Kook (b21) 2019; 47 Bendse, Sigmund (b5) 2004 Sumer, Dilgen, Fuhrman, Sigmund, Lazarov (b13) 2018; 57 Noguchi, Yamamoto, Yamada, Izui, Nishiwaki (b26) 2017; 404 Picelli, Vicente, Pavanello, Xie (b27) 2015; 106 Li, Meng, Chen, Li, Huang (b15) 2019; 2 Novotny, Sokokołowski (b25) 2013 Sigmund, Maute (b6) 2013; 48 Noguchi, Yamada, Otomori, Izui, Nishiwaki (b24) 2015; 107 Huang, Zuo, Xie (b30) 2010; 88 Yoon, Jensen, Sigmund (b34) 2007; 70 Cetin, Dilgen, Aage, Jensen (b20) 2019; 60 Pedersen (10.1016/j.cma.2020.113387_b36) 2000; 20 Sumer (10.1016/j.cma.2020.113387_b13) 2018; 57 Olhoff (10.1016/j.cma.2020.113387_b41) 2014 Yoon (10.1016/j.cma.2020.113387_b34) 2007; 70 Liu (10.1016/j.cma.2020.113387_b42) 2017; 142 Sigmund (10.1016/j.cma.2020.113387_b17) 2001; 190 Meng (10.1016/j.cma.2020.113387_b16) 2018; 1800122 Noguchi (10.1016/j.cma.2020.113387_b26) 2017; 404 10.1016/j.cma.2020.113387_b31 Huang (10.1016/j.cma.2020.113387_b2) 2010 Zhou (10.1016/j.cma.2020.113387_b43) 2013; 74 Bendsøe (10.1016/j.cma.2020.113387_b3) 1989; 1 Li (10.1016/j.cma.2020.113387_b15) 2019; 2 Kook (10.1016/j.cma.2020.113387_b21) 2019; 47 Zhou (10.1016/j.cma.2020.113387_b14) 2008; 227 Noguchi (10.1016/j.cma.2020.113387_b24) 2015; 107 Allaire (10.1016/j.cma.2020.113387_b11) 2004; 194 Shu (10.1016/j.cma.2020.113387_b22) 2014; 132 Vicente (10.1016/j.cma.2020.113387_b28) 2015; 98 Dühring (10.1016/j.cma.2020.113387_b40) 2008; 317 Bendse (10.1016/j.cma.2020.113387_b5) 2004 Wang (10.1016/j.cma.2020.113387_b10) 2003; 192 Munjal (10.1016/j.cma.2020.113387_b44) 1987 Zienkiewicz (10.1016/j.cma.2020.113387_b32) 2000 Bendsøe (10.1016/j.cma.2020.113387_b1) 1988; 71 Kook (10.1016/j.cma.2020.113387_b19) 2017; 122–123 Picelli (10.1016/j.cma.2020.113387_b27) 2015; 106 Wang (10.1016/j.cma.2020.113387_b33) 1997; 40 Azevedo (10.1016/j.cma.2020.113387_b45) 2018; 58 Cetin (10.1016/j.cma.2020.113387_b20) 2019; 60 Desai (10.1016/j.cma.2020.113387_b23) 2018; 420 Zhou (10.1016/j.cma.2020.113387_b4) 1992; 5 Huang (10.1016/j.cma.2020.113387_b8) 2009; 42 Sigmund (10.1016/j.cma.2020.113387_b35) 2007; 196 Jensen (10.1016/j.cma.2020.113387_b39) 2019; 59 Alexandersen (10.1016/j.cma.2020.113387_b12) 2016; 100 Novotny (10.1016/j.cma.2020.113387_b25) 2013 Yin (10.1016/j.cma.2020.113387_b29) 2018; 51 Huang (10.1016/j.cma.2020.113387_b38) 2020; 208 Huang (10.1016/j.cma.2020.113387_b7) 2007; 43 Sigmund (10.1016/j.cma.2020.113387_b6) 2013; 48 Xia (10.1016/j.cma.2020.113387_b9) 2017; 25 Yoon (10.1016/j.cma.2020.113387_b18) 2010; 82 Stolpe (10.1016/j.cma.2020.113387_b37) 2001; 22 Huang (10.1016/j.cma.2020.113387_b30) 2010; 88 |
| References_xml | – volume: 107 year: 2015 ident: b24 article-title: An acoustic metasurface design for wave motion conversion of longitudinal waves to transverse waves using topology optimization publication-title: Appl. Phys. Lett. – volume: 60 start-page: 779 year: 2019 end-page: 801 ident: b20 article-title: Topology optimization of acoustic mechanical interaction problems: a comparative review publication-title: Struct. Multidiscip. Optim. – volume: 47 start-page: 356 year: 2019 end-page: 374 ident: b21 article-title: Evolutionary topology optimization for acoustic-structure interaction problems using a mixed u/p finite element formulation publication-title: Mech. Based Des. Struct. Mach. – volume: 208 year: 2020 ident: b38 article-title: Smooth topological design of structures using floating projection publication-title: Eng. Struct. – volume: 100 start-page: 876 year: 2016 end-page: 891 ident: b12 article-title: Large scale three-dimensional topology optimization of heat sinks cooled by natural convection publication-title: Int. J. Heat Mass Transfer – volume: 132 start-page: 34 year: 2014 end-page: 42 ident: b22 article-title: Level set based topology optimization of vibrating structures for coupled acoustic-structural dynamics publication-title: Comput. Struct. – volume: 82 start-page: 591 year: 2010 end-page: 616 ident: b18 article-title: Topology optimization for stationary fluid–structure interaction problems using a new monolithic formulation publication-title: Internat. J. Numer. Methods Engrg. – volume: 227 start-page: 10178 year: 2008 end-page: 10195 ident: b14 article-title: A variational level set method for the topology optimization of steady-state Navier–Stokes flow publication-title: J. Comput. Phys. – volume: 106 start-page: 56 year: 2015 end-page: 64 ident: b27 article-title: Evolutionary topology optimization for natural frequency maximization problems considering acoustic–structure interaction publication-title: Finite Elem. Anal. Des. – volume: 57 start-page: 1905 year: 2018 end-page: 1918 ident: b13 article-title: Density based topology optimization of turbulent flow heat transfer systems publication-title: Struct. Multidiscip. Optim. – volume: 70 start-page: 1049 year: 2007 end-page: 1075 ident: b34 article-title: Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation publication-title: Internat. J. Numer. Methods Engrg. – volume: 192 start-page: 227 year: 2003 end-page: 246 ident: b10 article-title: A level set method for structural topology optimization publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 51 start-page: 1185 year: 2018 end-page: 1206 ident: b29 article-title: Microstructural topology optimization for minimizing the sound pressure level of structural-acoustic coupled systems with multi-scale random parameters publication-title: Eng. Optim. – year: 2010 ident: b2 article-title: Topology Optimization of Continuum Structures: Methods and Applications – volume: 194 start-page: 363 year: 2004 end-page: 393 ident: b11 article-title: Structural optimization using sensitivity analysis and a level-set method publication-title: J. Comput. Phys. – reference: C.M. Ester, J.S. Jensen, J. Brunskog, M. Larsen, Topology optimization of vibroacoustic systems with strong coupling, in: The 6th Noise and Vibration Emerging Methods Conference, Spain, vol. 171629, 2018, pp. 1–12. – year: 2000 ident: b32 article-title: The Finite Element Method – volume: 317 start-page: 557 year: 2008 end-page: 575 ident: b40 article-title: Acoustic design by topology optimization publication-title: J. Sound Vib. – volume: 71 start-page: 197 year: 1988 end-page: 224 ident: b1 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 420 start-page: 73 year: 2018 end-page: 103 ident: b23 article-title: Topology optimization in acoustics and elasto-acoustics via a level-set method publication-title: J. Sound Vib. – volume: 88 start-page: 357 year: 2010 end-page: 364 ident: b30 article-title: Evolutionary topological optimization of vibrating continuum structures for natural frequencies publication-title: Compos. Struct. – volume: 122–123 start-page: 59 year: 2017 end-page: 68 ident: b19 article-title: Topology optimization of periodic microstructures for enhanced loss factor using acoustic–structure interaction publication-title: Int. J. Solids Struct. – volume: 40 start-page: 2001 year: 1997 end-page: 2017 ident: b33 article-title: Displacement/pressure based mixed finite element formulations for acoustic fluid–structure interaction problems publication-title: Internat. J. Numer. Methods Engrg. – volume: 74 start-page: 1422 year: 2013 end-page: 1428 ident: b43 article-title: Optimization for sound transmission through a double-wall panel publication-title: Appl. Acoust. – year: 2004 ident: b5 article-title: Topology Optimization: Theory, Methods, and Applications – volume: 404 start-page: 15 year: 2017 end-page: 30 ident: b26 article-title: A level set-based topology optimization method for simultaneous design of elastic structure and coupled acoustic cavity using a two-phase material model publication-title: J. Sound Vib. – year: 1987 ident: b44 article-title: Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design – volume: 196 start-page: 1874 year: 2007 end-page: 1889 ident: b35 article-title: Topology optimization using a mixed formulation: an alternative way to solve pressure load problems publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 142 start-page: 128 year: 2017 end-page: 136 ident: b42 article-title: Topological design of structures under dynamic periodic loads publication-title: Eng. Struct. – volume: 20 start-page: 2 year: 2000 end-page: 11 ident: b36 article-title: Maximization of eigenvalues using topology optimization publication-title: Struct. Multidiscip. Optim. – volume: 5 start-page: 12 year: 1992 end-page: 25 ident: b4 article-title: DCOC – an optimality criteria method for large systems, Part I: Theory publication-title: Struct. Optim. – volume: 48 start-page: 1031 year: 2013 end-page: 1055 ident: b6 article-title: Topology optimization approaches: a comparative review publication-title: Struct. Multidiscip. Optim. – volume: 190 start-page: 6577 year: 2001 end-page: 6604 ident: b17 article-title: Design of multiphysics actuators using topology optimization – part i publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 58 start-page: 2239 year: 2018 end-page: 2252 ident: b45 article-title: Topology optimization of reactive acoustic mufflers using a bi-directional evolutionary optimization method publication-title: Struct. Multidiscip. Optim. – volume: 98 start-page: 1 year: 2015 end-page: 13 ident: b28 article-title: Topology optimization of frequency responses of fluid–structure interaction systems publication-title: Finite Elem. Anal. Des. – volume: 43 start-page: 1039 year: 2007 end-page: 1049 ident: b7 article-title: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method publication-title: Finite Elem. Anal. Des. – volume: 22 start-page: 116 year: 2001 end-page: 124 ident: b37 article-title: An alternative interpolation scheme for minimum compliance topology optimization publication-title: Struct. Multidiscip. Optim. – volume: 59 start-page: 1567 year: 2019 end-page: 1580 ident: b39 article-title: A simple method for coupled acoustic-mechanical analysis with application to gradient-based topology optimization publication-title: Struct. Multidiscip. Optim. – volume: 1800122 start-page: 1 year: 2018 end-page: 5 ident: b16 article-title: Topology-optimized 3D photonic structures with maximal omnidirectional bandgaps publication-title: Adv. Theory Simul. – start-page: 325 year: 2014 end-page: 359 ident: b41 article-title: Topological design for minimum dynamic compliance of continuum structures subjected to forced vibration publication-title: Topology Optimization in Structural and Continuum Mechanics – volume: 1 start-page: 193 year: 1989 end-page: 202 ident: b3 article-title: Optimal shape design as a material distribution problem publication-title: Struct. Optim. – volume: 2 start-page: 1 year: 2019 end-page: 22 ident: b15 article-title: Topology optimization of photonic and phononic crystals and metamaterials: A review publication-title: Adv. Theory Simul. – volume: 25 start-page: 437 year: 2017 end-page: 478 ident: b9 article-title: Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review publication-title: Arch. Comput. Methods Eng. – year: 2013 ident: b25 article-title: Topological Derivatives in Shape Optimization – volume: 42 start-page: 393 year: 2009 end-page: 401 ident: b8 article-title: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials publication-title: Comput. Optim. Appl. – year: 2010 ident: 10.1016/j.cma.2020.113387_b2 – start-page: 325 year: 2014 ident: 10.1016/j.cma.2020.113387_b41 article-title: Topological design for minimum dynamic compliance of continuum structures subjected to forced vibration – volume: 82 start-page: 591 year: 2010 ident: 10.1016/j.cma.2020.113387_b18 article-title: Topology optimization for stationary fluid–structure interaction problems using a new monolithic formulation publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.2777 – volume: 1 start-page: 193 year: 1989 ident: 10.1016/j.cma.2020.113387_b3 article-title: Optimal shape design as a material distribution problem publication-title: Struct. Optim. doi: 10.1007/BF01650949 – volume: 404 start-page: 15 year: 2017 ident: 10.1016/j.cma.2020.113387_b26 article-title: A level set-based topology optimization method for simultaneous design of elastic structure and coupled acoustic cavity using a two-phase material model publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.05.040 – volume: 227 start-page: 10178 year: 2008 ident: 10.1016/j.cma.2020.113387_b14 article-title: A variational level set method for the topology optimization of steady-state Navier–Stokes flow publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.08.022 – volume: 132 start-page: 34 year: 2014 ident: 10.1016/j.cma.2020.113387_b22 article-title: Level set based topology optimization of vibrating structures for coupled acoustic-structural dynamics publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2013.10.019 – volume: 43 start-page: 1039 year: 2007 ident: 10.1016/j.cma.2020.113387_b7 article-title: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2007.06.006 – volume: 107 year: 2015 ident: 10.1016/j.cma.2020.113387_b24 article-title: An acoustic metasurface design for wave motion conversion of longitudinal waves to transverse waves using topology optimization publication-title: Appl. Phys. Lett. doi: 10.1063/1.4936997 – volume: 142 start-page: 128 year: 2017 ident: 10.1016/j.cma.2020.113387_b42 article-title: Topological design of structures under dynamic periodic loads publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2017.03.067 – volume: 2 start-page: 1 issue: 1900017 year: 2019 ident: 10.1016/j.cma.2020.113387_b15 article-title: Topology optimization of photonic and phononic crystals and metamaterials: A review publication-title: Adv. Theory Simul. – volume: 47 start-page: 356 year: 2019 ident: 10.1016/j.cma.2020.113387_b21 article-title: Evolutionary topology optimization for acoustic-structure interaction problems using a mixed u/p finite element formulation publication-title: Mech. Based Des. Struct. Mach. doi: 10.1080/15397734.2018.1557527 – volume: 22 start-page: 116 year: 2001 ident: 10.1016/j.cma.2020.113387_b37 article-title: An alternative interpolation scheme for minimum compliance topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s001580100129 – volume: 59 start-page: 1567 issue: 5 year: 2019 ident: 10.1016/j.cma.2020.113387_b39 article-title: A simple method for coupled acoustic-mechanical analysis with application to gradient-based topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-2147-4 – volume: 1800122 start-page: 1 year: 2018 ident: 10.1016/j.cma.2020.113387_b16 article-title: Topology-optimized 3D photonic structures with maximal omnidirectional bandgaps publication-title: Adv. Theory Simul. – volume: 48 start-page: 1031 issue: 6 year: 2013 ident: 10.1016/j.cma.2020.113387_b6 article-title: Topology optimization approaches: a comparative review publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-0978-6 – volume: 208 year: 2020 ident: 10.1016/j.cma.2020.113387_b38 article-title: Smooth topological design of structures using floating projection publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.110330 – volume: 25 start-page: 437 issue: 2 year: 2017 ident: 10.1016/j.cma.2020.113387_b9 article-title: Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-016-9203-2 – volume: 420 start-page: 73 year: 2018 ident: 10.1016/j.cma.2020.113387_b23 article-title: Topology optimization in acoustics and elasto-acoustics via a level-set method publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2018.01.032 – volume: 106 start-page: 56 issue: 15 year: 2015 ident: 10.1016/j.cma.2020.113387_b27 article-title: Evolutionary topology optimization for natural frequency maximization problems considering acoustic–structure interaction publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2015.07.010 – year: 2000 ident: 10.1016/j.cma.2020.113387_b32 – volume: 40 start-page: 2001 issue: 11 year: 1997 ident: 10.1016/j.cma.2020.113387_b33 article-title: Displacement/pressure based mixed finite element formulations for acoustic fluid–structure interaction problems publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/(SICI)1097-0207(19970615)40:11<2001::AID-NME152>3.0.CO;2-W – volume: 192 start-page: 227 issue: 1 year: 2003 ident: 10.1016/j.cma.2020.113387_b10 article-title: A level set method for structural topology optimization publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(02)00559-5 – volume: 196 start-page: 1874 issue: 13–16 year: 2007 ident: 10.1016/j.cma.2020.113387_b35 article-title: Topology optimization using a mixed formulation: an alternative way to solve pressure load problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2006.09.021 – volume: 317 start-page: 557 issue: 3–5 year: 2008 ident: 10.1016/j.cma.2020.113387_b40 article-title: Acoustic design by topology optimization publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2008.03.042 – year: 1987 ident: 10.1016/j.cma.2020.113387_b44 – volume: 5 start-page: 12 year: 1992 ident: 10.1016/j.cma.2020.113387_b4 article-title: DCOC – an optimality criteria method for large systems, Part I: Theory publication-title: Struct. Optim. doi: 10.1007/BF01744690 – volume: 71 start-page: 197 year: 1988 ident: 10.1016/j.cma.2020.113387_b1 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(88)90086-2 – volume: 194 start-page: 363 issue: 1 year: 2004 ident: 10.1016/j.cma.2020.113387_b11 article-title: Structural optimization using sensitivity analysis and a level-set method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.09.032 – ident: 10.1016/j.cma.2020.113387_b31 – volume: 58 start-page: 2239 year: 2018 ident: 10.1016/j.cma.2020.113387_b45 article-title: Topology optimization of reactive acoustic mufflers using a bi-directional evolutionary optimization method publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-2012-5 – volume: 100 start-page: 876 year: 2016 ident: 10.1016/j.cma.2020.113387_b12 article-title: Large scale three-dimensional topology optimization of heat sinks cooled by natural convection publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.05.013 – volume: 88 start-page: 357 issue: 5–6 year: 2010 ident: 10.1016/j.cma.2020.113387_b30 article-title: Evolutionary topological optimization of vibrating continuum structures for natural frequencies publication-title: Compos. Struct. doi: 10.1016/j.compstruc.2009.11.011 – volume: 60 start-page: 779 issue: 2 year: 2019 ident: 10.1016/j.cma.2020.113387_b20 article-title: Topology optimization of acoustic mechanical interaction problems: a comparative review publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-019-02236-4 – year: 2013 ident: 10.1016/j.cma.2020.113387_b25 – year: 2004 ident: 10.1016/j.cma.2020.113387_b5 – volume: 70 start-page: 1049 issue: 9 year: 2007 ident: 10.1016/j.cma.2020.113387_b34 article-title: Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1900 – volume: 51 start-page: 1185 issue: 7 year: 2018 ident: 10.1016/j.cma.2020.113387_b29 article-title: Microstructural topology optimization for minimizing the sound pressure level of structural-acoustic coupled systems with multi-scale random parameters publication-title: Eng. Optim. doi: 10.1080/0305215X.2018.1517259 – volume: 57 start-page: 1905 issue: 5 year: 2018 ident: 10.1016/j.cma.2020.113387_b13 article-title: Density based topology optimization of turbulent flow heat transfer systems publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-1967-6 – volume: 122–123 start-page: 59 year: 2017 ident: 10.1016/j.cma.2020.113387_b19 article-title: Topology optimization of periodic microstructures for enhanced loss factor using acoustic–structure interaction publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2017.06.001 – volume: 42 start-page: 393 issue: 2 year: 2009 ident: 10.1016/j.cma.2020.113387_b8 article-title: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials publication-title: Comput. Optim. Appl. – volume: 98 start-page: 1 year: 2015 ident: 10.1016/j.cma.2020.113387_b28 article-title: Topology optimization of frequency responses of fluid–structure interaction systems publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2015.01.009 – volume: 74 start-page: 1422 year: 2013 ident: 10.1016/j.cma.2020.113387_b43 article-title: Optimization for sound transmission through a double-wall panel publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2013.06.002 – volume: 190 start-page: 6577 issue: 49–50 year: 2001 ident: 10.1016/j.cma.2020.113387_b17 article-title: Design of multiphysics actuators using topology optimization – part i publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(01)00251-1 – volume: 20 start-page: 2 year: 2000 ident: 10.1016/j.cma.2020.113387_b36 article-title: Maximization of eigenvalues using topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s001580050130 |
| SSID | ssj0000812 |
| Score | 2.49229 |
| Snippet | Topology optimization of dynamic acoustic–mechanical structures is challenging due to the interaction between the acoustic and structural domains and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 113387 |
| SubjectTerms | acoustic–structure interaction Sound transmission loss The ersatz material model The mixed displacement/pressure finite element formulation Topology optimization |
| Title | Topology optimization of dynamic acoustic–mechanical structures using the ersatz material model |
| URI | https://dx.doi.org/10.1016/j.cma.2020.113387 |
| Volume | 372 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: AKRWK dateStart: 19720601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEC1CvOjBJSrGJfTBkzCadPdMMscQlKiYUwK5Db1KRJOA8aAH8R_8Q7_E6mVcQD14nKEbhurqV6-YqnoAh5ZqrQRewDZCZMI7Oks6NrcJb1mZUpEr7bverwZZf8Qvxum4Ar2yF8aVVUbsD5ju0Tq-OYnWPJlPJq7Hl7tZ7Cl1Poth2HWw87ZTMTh-_izzwJAXJobzNHGryz-bvsZL-dFD1CubMFdV91Ns-hJvztZhNRJF0g3fsgEVM63BWiSNJF7J-xqsfJkouAliGEQPHskMseAuNlmSmSU6SM8TREAv4PX28npnXNuvOyUSxsg-YO5NXCX8NUFeSJAZisUTQU7r3ZR41ZwtGJ2dDnv9JKooJIplbJHkUimEEt4xSKWk9OK8huZaUNPU1jG8PGsJyjAVZJh8KMukzDCs2Yy1c2oE24bqdDY1O0AkRtSWwpRLcMmtbkumbaqoMBZhwTJRh2Zpv0LFEeNO6eK2KGvJbgo0eeFMXgST1-HoY8s8zNf4azEvD6X45iQF4v_v23b_t20Plt1TqF3ZhyoehDlABrKQDe9iDVjqnl_2B--3rtyX |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TgMxEB1xFEDBEUCE0wUV0hJiezfZEiGicIQqSOlWPhGIHBKhgALxD_whX8L4WAgSUNDu2tJqPH7zRjszD2DfUq2VwAvYQIhMeFNnSdPmNuF1K1MqcqV913vnKmtf8_Ne2puCk7IXxpVVRuwPmO7ROj6pRWvWRre3rseXu1nsKXU-i2F4GmZ5ShsuAzt8-arzwJgXRobzNHHLy1-bvshL-dlD1EubMFdW91Nwmgg4rWVYjEyRHIePWYEpM6jAUmSNJN7JhwosTIwUXAXRDaoHT2SIYNCPXZZkaIkO2vMEIdAreL2_vvWN6_t1x0TCHNlHTL6JK4W_IUgMCVJDMX4mSGq9nxIvm7MG163T7kk7iTIKiWIZGye5VAqxhDcNcikpvTqvobkW1Bxp6yhentUFZZgLMsw-lGVSZhjXbMYaOTWCrcPMYDgwG0AkhtS6wpxLcMmtbkimbaqoMBZxwTJRhaPSfoWKM8ad1MV9URaT3RVo8sKZvAgmr8LB55ZRGLDx12JeHkrxzUsKDAC_b9v837Y9mGt3O5fF5dnVxRbMuzehkGUbZvBQzA7SkbHc9e72AfCF3iw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+optimization+of+dynamic+acoustic%E2%80%93mechanical+structures+using+the+ersatz+material+model&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Hu%2C+Jie&rft.au=Yao%2C+Song&rft.au=Huang%2C+Xiaodong&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=372&rft_id=info:doi/10.1016%2Fj.cma.2020.113387&rft.externalDocID=S0045782520305727 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |