Topology optimization of dynamic acoustic–mechanical structures using the ersatz material model

Topology optimization of dynamic acoustic–mechanical structures is challenging due to the interaction between the acoustic and structural domains and artificial localized vibration modes of structures. This paper presents a floating projection topology optimization (FPTO) method based on the mixed d...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 372; p. 113387
Main Authors Hu, Jie, Yao, Song, Huang, Xiaodong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2020
Subjects
Online AccessGet full text
ISSN0045-7825
1879-2138
DOI10.1016/j.cma.2020.113387

Cover

Abstract Topology optimization of dynamic acoustic–mechanical structures is challenging due to the interaction between the acoustic and structural domains and artificial localized vibration modes of structures. This paper presents a floating projection topology optimization (FPTO) method based on the mixed displacement/pressure (u/p) finite element formulation and the ersatz material model. The former is able to release the need for tracking the interface boundaries explicitly between the structural and acoustic domains during the optimization process. The ersatz material model enables us to entirely avoid artificial localized vibration modes caused by the extremely high ratio between mass and stiffness. The floating projection simulates the original 0/1 constraints, and it gradually pushes the design variables toward 0 or 1 at the desired level so that the optimized element-based design can be accurately represented by a smooth design. Some 2D and 3D numerical examples, including minimizing sound pressure at the designated domain, restraining structural vibration, and maximizing sound transmission loss, are presented to demonstrate the effectiveness of the proposed topology optimization algorithm. The optimized solutions achieve the consistency of the objective function between the element-based design using the mixed formulation and the smooth design using the segregated formulation. The study suggests that the FPTO method using the ersatz material model is a promising approach for optimizing dynamic acoustic-mechanical structures. •A new topology optimization algorithm for acoustic–mechanical structures is proposed.•Topology optimization using the ersatz material model avoids any artificial local modes.•Both 2D and 3D numerical examples are presented with element-based and smooth designs.•The performance of element-based designs is consistent with that of smooth designs using the segregated formulation.
AbstractList Topology optimization of dynamic acoustic–mechanical structures is challenging due to the interaction between the acoustic and structural domains and artificial localized vibration modes of structures. This paper presents a floating projection topology optimization (FPTO) method based on the mixed displacement/pressure (u/p) finite element formulation and the ersatz material model. The former is able to release the need for tracking the interface boundaries explicitly between the structural and acoustic domains during the optimization process. The ersatz material model enables us to entirely avoid artificial localized vibration modes caused by the extremely high ratio between mass and stiffness. The floating projection simulates the original 0/1 constraints, and it gradually pushes the design variables toward 0 or 1 at the desired level so that the optimized element-based design can be accurately represented by a smooth design. Some 2D and 3D numerical examples, including minimizing sound pressure at the designated domain, restraining structural vibration, and maximizing sound transmission loss, are presented to demonstrate the effectiveness of the proposed topology optimization algorithm. The optimized solutions achieve the consistency of the objective function between the element-based design using the mixed formulation and the smooth design using the segregated formulation. The study suggests that the FPTO method using the ersatz material model is a promising approach for optimizing dynamic acoustic-mechanical structures. •A new topology optimization algorithm for acoustic–mechanical structures is proposed.•Topology optimization using the ersatz material model avoids any artificial local modes.•Both 2D and 3D numerical examples are presented with element-based and smooth designs.•The performance of element-based designs is consistent with that of smooth designs using the segregated formulation.
ArticleNumber 113387
Author Huang, Xiaodong
Hu, Jie
Yao, Song
Author_xml – sequence: 1
  givenname: Jie
  surname: Hu
  fullname: Hu, Jie
  organization: Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Hunan Changsha, 410075, China
– sequence: 2
  givenname: Song
  surname: Yao
  fullname: Yao, Song
  organization: Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Hunan Changsha, 410075, China
– sequence: 3
  givenname: Xiaodong
  surname: Huang
  fullname: Huang, Xiaodong
  email: xhuang@swin.edu.au
  organization: Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
BookMark eNp9kMtKAzEUQINUsK1-gLv8wNQ8Oi9cSfEFBTd1HTJ37rQpM5OSZIR25T_4h36JqXXlotlcAvdcOGdCRr3tkZBbzmac8exuO4NOzwQT8c-lLPILMuZFXiaCy2JExozN0yQvRHpFJt5vWXwFF2OiV3ZnW7veU7sLpjMHHYztqW1ove91Z4BqsIMPBr4_vzqEje4N6Jb64AYIg0NPB2_6NQ0bpOi8Dgfa6YDOxKXO1thek8tGtx5v_uaUvD89rhYvyfLt-XXxsExAZjIkZQXAimJeIGdpVbFoNUdR1logqxvGS1FmXAuZR6E0z6CRVZXJTDSZzEuBWk5JfroLznrvsFFgwq9NcNq0ijN1LKW2KpZSx1LqVCqS_B-5c6bTbn-WuT8xGJU-DDrlwWAPWBuHEFRtzRn6BxGJhZI
CitedBy_id crossref_primary_10_1016_j_cma_2024_117204
crossref_primary_10_1360_SST_2023_0096
crossref_primary_10_1002_nme_7447
crossref_primary_10_1016_j_cma_2024_116870
crossref_primary_10_1016_j_cma_2022_115444
crossref_primary_10_1016_j_compstruct_2024_118442
crossref_primary_10_1007_s00158_021_03052_5
crossref_primary_10_1016_j_finel_2021_103650
crossref_primary_10_1016_j_ymssp_2022_108911
crossref_primary_10_1007_s10338_023_00408_w
crossref_primary_10_1016_j_finel_2022_103892
crossref_primary_10_1061_JAEEEZ_ASENG_4687
crossref_primary_10_1016_j_apacoust_2024_110347
crossref_primary_10_1016_j_finel_2021_103633
crossref_primary_10_1016_j_ymssp_2022_109420
crossref_primary_10_3390_app13158811
crossref_primary_10_1016_j_engstruct_2023_116843
crossref_primary_10_1016_j_finel_2021_103701
crossref_primary_10_32604_cmes_2022_021641
crossref_primary_10_1007_s00158_021_02971_7
crossref_primary_10_1016_j_compstruct_2022_115372
crossref_primary_10_1007_s11081_023_09857_1
crossref_primary_10_1002_adfm_202206309
crossref_primary_10_1016_j_isci_2024_110648
Cites_doi 10.1002/nme.2777
10.1007/BF01650949
10.1016/j.jsv.2017.05.040
10.1016/j.jcp.2008.08.022
10.1016/j.compstruc.2013.10.019
10.1016/j.finel.2007.06.006
10.1063/1.4936997
10.1016/j.engstruct.2017.03.067
10.1080/15397734.2018.1557527
10.1007/s001580100129
10.1007/s00158-018-2147-4
10.1007/s00158-013-0978-6
10.1016/j.engstruct.2020.110330
10.1007/s11831-016-9203-2
10.1016/j.jsv.2018.01.032
10.1016/j.finel.2015.07.010
10.1002/(SICI)1097-0207(19970615)40:11<2001::AID-NME152>3.0.CO;2-W
10.1016/S0045-7825(02)00559-5
10.1016/j.cma.2006.09.021
10.1016/j.jsv.2008.03.042
10.1007/BF01744690
10.1016/0045-7825(88)90086-2
10.1016/j.jcp.2003.09.032
10.1007/s00158-018-2012-5
10.1016/j.ijheatmasstransfer.2016.05.013
10.1016/j.compstruc.2009.11.011
10.1007/s00158-019-02236-4
10.1002/nme.1900
10.1080/0305215X.2018.1517259
10.1007/s00158-018-1967-6
10.1016/j.ijsolstr.2017.06.001
10.1016/j.finel.2015.01.009
10.1016/j.apacoust.2013.06.002
10.1016/S0045-7825(01)00251-1
10.1007/s001580050130
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cma.2020.113387
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2020_113387
S0045782520305727
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c363t-9bcc08848e105bb01014e29da2e0df0192961a237213576cf3bb6362f63792ea3
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Wed Oct 01 05:19:09 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Fri Feb 23 02:45:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords The mixed displacement/pressure finite element formulation
Topology optimization
acoustic–structure interaction
Sound transmission loss
The ersatz material model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-9bcc08848e105bb01014e29da2e0df0192961a237213576cf3bb6362f63792ea3
ParticipantIDs crossref_citationtrail_10_1016_j_cma_2020_113387
crossref_primary_10_1016_j_cma_2020_113387
elsevier_sciencedirect_doi_10_1016_j_cma_2020_113387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Munjal (b44) 1987
Vicente, Picelli, Pavanello, Xie (b28) 2015; 98
Desai, Faure, Michailidis, Parry, Estevez (b23) 2018; 420
Dühring, Jensen, Sigmund (b40) 2008; 317
Meng, Jia, Huang (b16) 2018; 1800122
Zienkiewicz, Taylor (b32) 2000
Stolpe, Svanberg (b37) 2001; 22
Olhoff, Du (b41) 2014
Allaire, Jouve, Toader (b11) 2004; 194
Bendsøe, Kikuchi (b1) 1988; 71
Bendsøe (b3) 1989; 1
Zhou, Li (b14) 2008; 227
Azevedo, Moura, Vicente, Picelli, Pavanello (b45) 2018; 58
Kook, Jensen (b19) 2017; 122–123
Huang, Xie (b7) 2007; 43
Alexandersen, Sigmund, Aage (b12) 2016; 100
Yoon (b18) 2010; 82
Huang, Xie (b8) 2009; 42
Liu, Huang, Huang, Sun, Sun, Li (b42) 2017; 142
C.M. Ester, J.S. Jensen, J. Brunskog, M. Larsen, Topology optimization of vibroacoustic systems with strong coupling, in: The 6th Noise and Vibration Emerging Methods Conference, Spain, vol. 171629, 2018, pp. 1–12.
Huang (b38) 2020; 208
Wang, Wang, Guo (b10) 2003; 192
Zhou, Rozvany (b4) 1992; 5
Huang, Xie (b2) 2010
Jensen (b39) 2019; 59
Shu, Wang, Ma (b22) 2014; 132
Pedersen (b36) 2000; 20
Xia, Xia, Huang, Xie (b9) 2017; 25
Wang, Bathe (b33) 1997; 40
Zhou, Bhaskar, Zhang (b43) 2013; 74
Sigmund, Clausen (b35) 2007; 196
Yin, Chen, Yu, Ma (b29) 2018; 51
Sigmund (b17) 2001; 190
Kook (b21) 2019; 47
Bendse, Sigmund (b5) 2004
Sumer, Dilgen, Fuhrman, Sigmund, Lazarov (b13) 2018; 57
Noguchi, Yamamoto, Yamada, Izui, Nishiwaki (b26) 2017; 404
Picelli, Vicente, Pavanello, Xie (b27) 2015; 106
Li, Meng, Chen, Li, Huang (b15) 2019; 2
Novotny, Sokokołowski (b25) 2013
Sigmund, Maute (b6) 2013; 48
Noguchi, Yamada, Otomori, Izui, Nishiwaki (b24) 2015; 107
Huang, Zuo, Xie (b30) 2010; 88
Yoon, Jensen, Sigmund (b34) 2007; 70
Cetin, Dilgen, Aage, Jensen (b20) 2019; 60
Pedersen (10.1016/j.cma.2020.113387_b36) 2000; 20
Sumer (10.1016/j.cma.2020.113387_b13) 2018; 57
Olhoff (10.1016/j.cma.2020.113387_b41) 2014
Yoon (10.1016/j.cma.2020.113387_b34) 2007; 70
Liu (10.1016/j.cma.2020.113387_b42) 2017; 142
Sigmund (10.1016/j.cma.2020.113387_b17) 2001; 190
Meng (10.1016/j.cma.2020.113387_b16) 2018; 1800122
Noguchi (10.1016/j.cma.2020.113387_b26) 2017; 404
10.1016/j.cma.2020.113387_b31
Huang (10.1016/j.cma.2020.113387_b2) 2010
Zhou (10.1016/j.cma.2020.113387_b43) 2013; 74
Bendsøe (10.1016/j.cma.2020.113387_b3) 1989; 1
Li (10.1016/j.cma.2020.113387_b15) 2019; 2
Kook (10.1016/j.cma.2020.113387_b21) 2019; 47
Zhou (10.1016/j.cma.2020.113387_b14) 2008; 227
Noguchi (10.1016/j.cma.2020.113387_b24) 2015; 107
Allaire (10.1016/j.cma.2020.113387_b11) 2004; 194
Shu (10.1016/j.cma.2020.113387_b22) 2014; 132
Vicente (10.1016/j.cma.2020.113387_b28) 2015; 98
Dühring (10.1016/j.cma.2020.113387_b40) 2008; 317
Bendse (10.1016/j.cma.2020.113387_b5) 2004
Wang (10.1016/j.cma.2020.113387_b10) 2003; 192
Munjal (10.1016/j.cma.2020.113387_b44) 1987
Zienkiewicz (10.1016/j.cma.2020.113387_b32) 2000
Bendsøe (10.1016/j.cma.2020.113387_b1) 1988; 71
Kook (10.1016/j.cma.2020.113387_b19) 2017; 122–123
Picelli (10.1016/j.cma.2020.113387_b27) 2015; 106
Wang (10.1016/j.cma.2020.113387_b33) 1997; 40
Azevedo (10.1016/j.cma.2020.113387_b45) 2018; 58
Cetin (10.1016/j.cma.2020.113387_b20) 2019; 60
Desai (10.1016/j.cma.2020.113387_b23) 2018; 420
Zhou (10.1016/j.cma.2020.113387_b4) 1992; 5
Huang (10.1016/j.cma.2020.113387_b8) 2009; 42
Sigmund (10.1016/j.cma.2020.113387_b35) 2007; 196
Jensen (10.1016/j.cma.2020.113387_b39) 2019; 59
Alexandersen (10.1016/j.cma.2020.113387_b12) 2016; 100
Novotny (10.1016/j.cma.2020.113387_b25) 2013
Yin (10.1016/j.cma.2020.113387_b29) 2018; 51
Huang (10.1016/j.cma.2020.113387_b38) 2020; 208
Huang (10.1016/j.cma.2020.113387_b7) 2007; 43
Sigmund (10.1016/j.cma.2020.113387_b6) 2013; 48
Xia (10.1016/j.cma.2020.113387_b9) 2017; 25
Yoon (10.1016/j.cma.2020.113387_b18) 2010; 82
Stolpe (10.1016/j.cma.2020.113387_b37) 2001; 22
Huang (10.1016/j.cma.2020.113387_b30) 2010; 88
References_xml – volume: 107
  year: 2015
  ident: b24
  article-title: An acoustic metasurface design for wave motion conversion of longitudinal waves to transverse waves using topology optimization
  publication-title: Appl. Phys. Lett.
– volume: 60
  start-page: 779
  year: 2019
  end-page: 801
  ident: b20
  article-title: Topology optimization of acoustic mechanical interaction problems: a comparative review
  publication-title: Struct. Multidiscip. Optim.
– volume: 47
  start-page: 356
  year: 2019
  end-page: 374
  ident: b21
  article-title: Evolutionary topology optimization for acoustic-structure interaction problems using a mixed u/p finite element formulation
  publication-title: Mech. Based Des. Struct. Mach.
– volume: 208
  year: 2020
  ident: b38
  article-title: Smooth topological design of structures using floating projection
  publication-title: Eng. Struct.
– volume: 100
  start-page: 876
  year: 2016
  end-page: 891
  ident: b12
  article-title: Large scale three-dimensional topology optimization of heat sinks cooled by natural convection
  publication-title: Int. J. Heat Mass Transfer
– volume: 132
  start-page: 34
  year: 2014
  end-page: 42
  ident: b22
  article-title: Level set based topology optimization of vibrating structures for coupled acoustic-structural dynamics
  publication-title: Comput. Struct.
– volume: 82
  start-page: 591
  year: 2010
  end-page: 616
  ident: b18
  article-title: Topology optimization for stationary fluid–structure interaction problems using a new monolithic formulation
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 227
  start-page: 10178
  year: 2008
  end-page: 10195
  ident: b14
  article-title: A variational level set method for the topology optimization of steady-state Navier–Stokes flow
  publication-title: J. Comput. Phys.
– volume: 106
  start-page: 56
  year: 2015
  end-page: 64
  ident: b27
  article-title: Evolutionary topology optimization for natural frequency maximization problems considering acoustic–structure interaction
  publication-title: Finite Elem. Anal. Des.
– volume: 57
  start-page: 1905
  year: 2018
  end-page: 1918
  ident: b13
  article-title: Density based topology optimization of turbulent flow heat transfer systems
  publication-title: Struct. Multidiscip. Optim.
– volume: 70
  start-page: 1049
  year: 2007
  end-page: 1075
  ident: b34
  article-title: Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 192
  start-page: 227
  year: 2003
  end-page: 246
  ident: b10
  article-title: A level set method for structural topology optimization
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 51
  start-page: 1185
  year: 2018
  end-page: 1206
  ident: b29
  article-title: Microstructural topology optimization for minimizing the sound pressure level of structural-acoustic coupled systems with multi-scale random parameters
  publication-title: Eng. Optim.
– year: 2010
  ident: b2
  article-title: Topology Optimization of Continuum Structures: Methods and Applications
– volume: 194
  start-page: 363
  year: 2004
  end-page: 393
  ident: b11
  article-title: Structural optimization using sensitivity analysis and a level-set method
  publication-title: J. Comput. Phys.
– reference: C.M. Ester, J.S. Jensen, J. Brunskog, M. Larsen, Topology optimization of vibroacoustic systems with strong coupling, in: The 6th Noise and Vibration Emerging Methods Conference, Spain, vol. 171629, 2018, pp. 1–12.
– year: 2000
  ident: b32
  article-title: The Finite Element Method
– volume: 317
  start-page: 557
  year: 2008
  end-page: 575
  ident: b40
  article-title: Acoustic design by topology optimization
  publication-title: J. Sound Vib.
– volume: 71
  start-page: 197
  year: 1988
  end-page: 224
  ident: b1
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 420
  start-page: 73
  year: 2018
  end-page: 103
  ident: b23
  article-title: Topology optimization in acoustics and elasto-acoustics via a level-set method
  publication-title: J. Sound Vib.
– volume: 88
  start-page: 357
  year: 2010
  end-page: 364
  ident: b30
  article-title: Evolutionary topological optimization of vibrating continuum structures for natural frequencies
  publication-title: Compos. Struct.
– volume: 122–123
  start-page: 59
  year: 2017
  end-page: 68
  ident: b19
  article-title: Topology optimization of periodic microstructures for enhanced loss factor using acoustic–structure interaction
  publication-title: Int. J. Solids Struct.
– volume: 40
  start-page: 2001
  year: 1997
  end-page: 2017
  ident: b33
  article-title: Displacement/pressure based mixed finite element formulations for acoustic fluid–structure interaction problems
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 74
  start-page: 1422
  year: 2013
  end-page: 1428
  ident: b43
  article-title: Optimization for sound transmission through a double-wall panel
  publication-title: Appl. Acoust.
– year: 2004
  ident: b5
  article-title: Topology Optimization: Theory, Methods, and Applications
– volume: 404
  start-page: 15
  year: 2017
  end-page: 30
  ident: b26
  article-title: A level set-based topology optimization method for simultaneous design of elastic structure and coupled acoustic cavity using a two-phase material model
  publication-title: J. Sound Vib.
– year: 1987
  ident: b44
  article-title: Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design
– volume: 196
  start-page: 1874
  year: 2007
  end-page: 1889
  ident: b35
  article-title: Topology optimization using a mixed formulation: an alternative way to solve pressure load problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 142
  start-page: 128
  year: 2017
  end-page: 136
  ident: b42
  article-title: Topological design of structures under dynamic periodic loads
  publication-title: Eng. Struct.
– volume: 20
  start-page: 2
  year: 2000
  end-page: 11
  ident: b36
  article-title: Maximization of eigenvalues using topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 5
  start-page: 12
  year: 1992
  end-page: 25
  ident: b4
  article-title: DCOC – an optimality criteria method for large systems, Part I: Theory
  publication-title: Struct. Optim.
– volume: 48
  start-page: 1031
  year: 2013
  end-page: 1055
  ident: b6
  article-title: Topology optimization approaches: a comparative review
  publication-title: Struct. Multidiscip. Optim.
– volume: 190
  start-page: 6577
  year: 2001
  end-page: 6604
  ident: b17
  article-title: Design of multiphysics actuators using topology optimization – part i
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 58
  start-page: 2239
  year: 2018
  end-page: 2252
  ident: b45
  article-title: Topology optimization of reactive acoustic mufflers using a bi-directional evolutionary optimization method
  publication-title: Struct. Multidiscip. Optim.
– volume: 98
  start-page: 1
  year: 2015
  end-page: 13
  ident: b28
  article-title: Topology optimization of frequency responses of fluid–structure interaction systems
  publication-title: Finite Elem. Anal. Des.
– volume: 43
  start-page: 1039
  year: 2007
  end-page: 1049
  ident: b7
  article-title: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method
  publication-title: Finite Elem. Anal. Des.
– volume: 22
  start-page: 116
  year: 2001
  end-page: 124
  ident: b37
  article-title: An alternative interpolation scheme for minimum compliance topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 59
  start-page: 1567
  year: 2019
  end-page: 1580
  ident: b39
  article-title: A simple method for coupled acoustic-mechanical analysis with application to gradient-based topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 1800122
  start-page: 1
  year: 2018
  end-page: 5
  ident: b16
  article-title: Topology-optimized 3D photonic structures with maximal omnidirectional bandgaps
  publication-title: Adv. Theory Simul.
– start-page: 325
  year: 2014
  end-page: 359
  ident: b41
  article-title: Topological design for minimum dynamic compliance of continuum structures subjected to forced vibration
  publication-title: Topology Optimization in Structural and Continuum Mechanics
– volume: 1
  start-page: 193
  year: 1989
  end-page: 202
  ident: b3
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct. Optim.
– volume: 2
  start-page: 1
  year: 2019
  end-page: 22
  ident: b15
  article-title: Topology optimization of photonic and phononic crystals and metamaterials: A review
  publication-title: Adv. Theory Simul.
– volume: 25
  start-page: 437
  year: 2017
  end-page: 478
  ident: b9
  article-title: Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review
  publication-title: Arch. Comput. Methods Eng.
– year: 2013
  ident: b25
  article-title: Topological Derivatives in Shape Optimization
– volume: 42
  start-page: 393
  year: 2009
  end-page: 401
  ident: b8
  article-title: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials
  publication-title: Comput. Optim. Appl.
– year: 2010
  ident: 10.1016/j.cma.2020.113387_b2
– start-page: 325
  year: 2014
  ident: 10.1016/j.cma.2020.113387_b41
  article-title: Topological design for minimum dynamic compliance of continuum structures subjected to forced vibration
– volume: 82
  start-page: 591
  year: 2010
  ident: 10.1016/j.cma.2020.113387_b18
  article-title: Topology optimization for stationary fluid–structure interaction problems using a new monolithic formulation
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.2777
– volume: 1
  start-page: 193
  year: 1989
  ident: 10.1016/j.cma.2020.113387_b3
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct. Optim.
  doi: 10.1007/BF01650949
– volume: 404
  start-page: 15
  year: 2017
  ident: 10.1016/j.cma.2020.113387_b26
  article-title: A level set-based topology optimization method for simultaneous design of elastic structure and coupled acoustic cavity using a two-phase material model
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.05.040
– volume: 227
  start-page: 10178
  year: 2008
  ident: 10.1016/j.cma.2020.113387_b14
  article-title: A variational level set method for the topology optimization of steady-state Navier–Stokes flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.08.022
– volume: 132
  start-page: 34
  year: 2014
  ident: 10.1016/j.cma.2020.113387_b22
  article-title: Level set based topology optimization of vibrating structures for coupled acoustic-structural dynamics
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2013.10.019
– volume: 43
  start-page: 1039
  year: 2007
  ident: 10.1016/j.cma.2020.113387_b7
  article-title: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2007.06.006
– volume: 107
  year: 2015
  ident: 10.1016/j.cma.2020.113387_b24
  article-title: An acoustic metasurface design for wave motion conversion of longitudinal waves to transverse waves using topology optimization
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4936997
– volume: 142
  start-page: 128
  year: 2017
  ident: 10.1016/j.cma.2020.113387_b42
  article-title: Topological design of structures under dynamic periodic loads
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.03.067
– volume: 2
  start-page: 1
  issue: 1900017
  year: 2019
  ident: 10.1016/j.cma.2020.113387_b15
  article-title: Topology optimization of photonic and phononic crystals and metamaterials: A review
  publication-title: Adv. Theory Simul.
– volume: 47
  start-page: 356
  year: 2019
  ident: 10.1016/j.cma.2020.113387_b21
  article-title: Evolutionary topology optimization for acoustic-structure interaction problems using a mixed u/p finite element formulation
  publication-title: Mech. Based Des. Struct. Mach.
  doi: 10.1080/15397734.2018.1557527
– volume: 22
  start-page: 116
  year: 2001
  ident: 10.1016/j.cma.2020.113387_b37
  article-title: An alternative interpolation scheme for minimum compliance topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s001580100129
– volume: 59
  start-page: 1567
  issue: 5
  year: 2019
  ident: 10.1016/j.cma.2020.113387_b39
  article-title: A simple method for coupled acoustic-mechanical analysis with application to gradient-based topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-2147-4
– volume: 1800122
  start-page: 1
  year: 2018
  ident: 10.1016/j.cma.2020.113387_b16
  article-title: Topology-optimized 3D photonic structures with maximal omnidirectional bandgaps
  publication-title: Adv. Theory Simul.
– volume: 48
  start-page: 1031
  issue: 6
  year: 2013
  ident: 10.1016/j.cma.2020.113387_b6
  article-title: Topology optimization approaches: a comparative review
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-0978-6
– volume: 208
  year: 2020
  ident: 10.1016/j.cma.2020.113387_b38
  article-title: Smooth topological design of structures using floating projection
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110330
– volume: 25
  start-page: 437
  issue: 2
  year: 2017
  ident: 10.1016/j.cma.2020.113387_b9
  article-title: Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-016-9203-2
– volume: 420
  start-page: 73
  year: 2018
  ident: 10.1016/j.cma.2020.113387_b23
  article-title: Topology optimization in acoustics and elasto-acoustics via a level-set method
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2018.01.032
– volume: 106
  start-page: 56
  issue: 15
  year: 2015
  ident: 10.1016/j.cma.2020.113387_b27
  article-title: Evolutionary topology optimization for natural frequency maximization problems considering acoustic–structure interaction
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2015.07.010
– year: 2000
  ident: 10.1016/j.cma.2020.113387_b32
– volume: 40
  start-page: 2001
  issue: 11
  year: 1997
  ident: 10.1016/j.cma.2020.113387_b33
  article-title: Displacement/pressure based mixed finite element formulations for acoustic fluid–structure interaction problems
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/(SICI)1097-0207(19970615)40:11<2001::AID-NME152>3.0.CO;2-W
– volume: 192
  start-page: 227
  issue: 1
  year: 2003
  ident: 10.1016/j.cma.2020.113387_b10
  article-title: A level set method for structural topology optimization
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(02)00559-5
– volume: 196
  start-page: 1874
  issue: 13–16
  year: 2007
  ident: 10.1016/j.cma.2020.113387_b35
  article-title: Topology optimization using a mixed formulation: an alternative way to solve pressure load problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2006.09.021
– volume: 317
  start-page: 557
  issue: 3–5
  year: 2008
  ident: 10.1016/j.cma.2020.113387_b40
  article-title: Acoustic design by topology optimization
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2008.03.042
– year: 1987
  ident: 10.1016/j.cma.2020.113387_b44
– volume: 5
  start-page: 12
  year: 1992
  ident: 10.1016/j.cma.2020.113387_b4
  article-title: DCOC – an optimality criteria method for large systems, Part I: Theory
  publication-title: Struct. Optim.
  doi: 10.1007/BF01744690
– volume: 71
  start-page: 197
  year: 1988
  ident: 10.1016/j.cma.2020.113387_b1
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(88)90086-2
– volume: 194
  start-page: 363
  issue: 1
  year: 2004
  ident: 10.1016/j.cma.2020.113387_b11
  article-title: Structural optimization using sensitivity analysis and a level-set method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.09.032
– ident: 10.1016/j.cma.2020.113387_b31
– volume: 58
  start-page: 2239
  year: 2018
  ident: 10.1016/j.cma.2020.113387_b45
  article-title: Topology optimization of reactive acoustic mufflers using a bi-directional evolutionary optimization method
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-2012-5
– volume: 100
  start-page: 876
  year: 2016
  ident: 10.1016/j.cma.2020.113387_b12
  article-title: Large scale three-dimensional topology optimization of heat sinks cooled by natural convection
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.05.013
– volume: 88
  start-page: 357
  issue: 5–6
  year: 2010
  ident: 10.1016/j.cma.2020.113387_b30
  article-title: Evolutionary topological optimization of vibrating continuum structures for natural frequencies
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruc.2009.11.011
– volume: 60
  start-page: 779
  issue: 2
  year: 2019
  ident: 10.1016/j.cma.2020.113387_b20
  article-title: Topology optimization of acoustic mechanical interaction problems: a comparative review
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-019-02236-4
– year: 2013
  ident: 10.1016/j.cma.2020.113387_b25
– year: 2004
  ident: 10.1016/j.cma.2020.113387_b5
– volume: 70
  start-page: 1049
  issue: 9
  year: 2007
  ident: 10.1016/j.cma.2020.113387_b34
  article-title: Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1900
– volume: 51
  start-page: 1185
  issue: 7
  year: 2018
  ident: 10.1016/j.cma.2020.113387_b29
  article-title: Microstructural topology optimization for minimizing the sound pressure level of structural-acoustic coupled systems with multi-scale random parameters
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2018.1517259
– volume: 57
  start-page: 1905
  issue: 5
  year: 2018
  ident: 10.1016/j.cma.2020.113387_b13
  article-title: Density based topology optimization of turbulent flow heat transfer systems
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-1967-6
– volume: 122–123
  start-page: 59
  year: 2017
  ident: 10.1016/j.cma.2020.113387_b19
  article-title: Topology optimization of periodic microstructures for enhanced loss factor using acoustic–structure interaction
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2017.06.001
– volume: 42
  start-page: 393
  issue: 2
  year: 2009
  ident: 10.1016/j.cma.2020.113387_b8
  article-title: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials
  publication-title: Comput. Optim. Appl.
– volume: 98
  start-page: 1
  year: 2015
  ident: 10.1016/j.cma.2020.113387_b28
  article-title: Topology optimization of frequency responses of fluid–structure interaction systems
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2015.01.009
– volume: 74
  start-page: 1422
  year: 2013
  ident: 10.1016/j.cma.2020.113387_b43
  article-title: Optimization for sound transmission through a double-wall panel
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2013.06.002
– volume: 190
  start-page: 6577
  issue: 49–50
  year: 2001
  ident: 10.1016/j.cma.2020.113387_b17
  article-title: Design of multiphysics actuators using topology optimization – part i
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(01)00251-1
– volume: 20
  start-page: 2
  year: 2000
  ident: 10.1016/j.cma.2020.113387_b36
  article-title: Maximization of eigenvalues using topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s001580050130
SSID ssj0000812
Score 2.49229
Snippet Topology optimization of dynamic acoustic–mechanical structures is challenging due to the interaction between the acoustic and structural domains and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113387
SubjectTerms acoustic–structure interaction
Sound transmission loss
The ersatz material model
The mixed displacement/pressure finite element formulation
Topology optimization
Title Topology optimization of dynamic acoustic–mechanical structures using the ersatz material model
URI https://dx.doi.org/10.1016/j.cma.2020.113387
Volume 372
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AKRWK
  dateStart: 19720601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEC1CvOjBJSrGJfTBkzCadPdMMscQlKiYUwK5Db1KRJOA8aAH8R_8Q7_E6mVcQD14nKEbhurqV6-YqnoAh5ZqrQRewDZCZMI7Oks6NrcJb1mZUpEr7bverwZZf8Qvxum4Ar2yF8aVVUbsD5ju0Tq-OYnWPJlPJq7Hl7tZ7Cl1Poth2HWw87ZTMTh-_izzwJAXJobzNHGryz-bvsZL-dFD1CubMFdV91Ns-hJvztZhNRJF0g3fsgEVM63BWiSNJF7J-xqsfJkouAliGEQPHskMseAuNlmSmSU6SM8TREAv4PX28npnXNuvOyUSxsg-YO5NXCX8NUFeSJAZisUTQU7r3ZR41ZwtGJ2dDnv9JKooJIplbJHkUimEEt4xSKWk9OK8huZaUNPU1jG8PGsJyjAVZJh8KMukzDCs2Yy1c2oE24bqdDY1O0AkRtSWwpRLcMmtbkumbaqoMBZhwTJRh2Zpv0LFEeNO6eK2KGvJbgo0eeFMXgST1-HoY8s8zNf4azEvD6X45iQF4v_v23b_t20Plt1TqF3ZhyoehDlABrKQDe9iDVjqnl_2B--3rtyX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TgMxEB1xFEDBEUCE0wUV0hJiezfZEiGicIQqSOlWPhGIHBKhgALxD_whX8L4WAgSUNDu2tJqPH7zRjszD2DfUq2VwAvYQIhMeFNnSdPmNuF1K1MqcqV913vnKmtf8_Ne2puCk7IXxpVVRuwPmO7ROj6pRWvWRre3rseXu1nsKXU-i2F4GmZ5ShsuAzt8-arzwJgXRobzNHHLy1-bvshL-dlD1EubMFdW91Nwmgg4rWVYjEyRHIePWYEpM6jAUmSNJN7JhwosTIwUXAXRDaoHT2SIYNCPXZZkaIkO2vMEIdAreL2_vvWN6_t1x0TCHNlHTL6JK4W_IUgMCVJDMX4mSGq9nxIvm7MG163T7kk7iTIKiWIZGye5VAqxhDcNcikpvTqvobkW1Bxp6yhentUFZZgLMsw-lGVSZhjXbMYaOTWCrcPMYDgwG0AkhtS6wpxLcMmtbkimbaqoMBZxwTJRhaPSfoWKM8ad1MV9URaT3RVo8sKZvAgmr8LB55ZRGLDx12JeHkrxzUsKDAC_b9v837Y9mGt3O5fF5dnVxRbMuzehkGUbZvBQzA7SkbHc9e72AfCF3iw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+optimization+of+dynamic+acoustic%E2%80%93mechanical+structures+using+the+ersatz+material+model&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Hu%2C+Jie&rft.au=Yao%2C+Song&rft.au=Huang%2C+Xiaodong&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=372&rft_id=info:doi/10.1016%2Fj.cma.2020.113387&rft.externalDocID=S0045782520305727
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon