Cross-Language Code Smell Detection via Transfer Learning

Code smells are code structures that indicate a potential issue in code design or implementation. These issues could affect the processes of code testing and maintenance, and overall software quality. Therefore, it is important to detect code smells in the early stages of software development to enh...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 15; no. 17; p. 9293
Main Authors Sandouka, Rana, Aljamaan, Hamoud
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2025
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app15179293

Cover

Abstract Code smells are code structures that indicate a potential issue in code design or implementation. These issues could affect the processes of code testing and maintenance, and overall software quality. Therefore, it is important to detect code smells in the early stages of software development to enhance system quality. Most studies have focused on detecting code smells of a single programming language. This article explores TL for cross-language code smell detection, where Java is the source, and both C# and Python are the target datasets, focusing on Large Class, Long Method, and Long Parameter List code smells. We conducted a comparison study across two transfer learning approaches—instance-based (Importance Weighting Classifier, Nearest Neighbors Weighting, and Transfer AdaBoost) and parameter-based (Transfer Tree, Transfer Forest)—with various base models. The results showed that the instance-based approach outperformed the parameter-based approach, particularly with Transfer AdaBoost using ensemble learning base models. The Transfer AdaBoost approach with Gradient Boosting and Extra Trees achieved consistent and robust results across both C# and Python, with an 83% winning rate, as indicated by the Wilcoxon signed-rank test. These findings underscore the effectiveness of transfer learning for cross-language code smell detection, supporting its generalizability across different programming languages.
AbstractList Code smells are code structures that indicate a potential issue in code design or implementation. These issues could affect the processes of code testing and maintenance, and overall software quality. Therefore, it is important to detect code smells in the early stages of software development to enhance system quality. Most studies have focused on detecting code smells of a single programming language. This article explores TL for cross-language code smell detection, where Java is the source, and both C# and Python are the target datasets, focusing on Large Class, Long Method, and Long Parameter List code smells. We conducted a comparison study across two transfer learning approaches—instance-based (Importance Weighting Classifier, Nearest Neighbors Weighting, and Transfer AdaBoost) and parameter-based (Transfer Tree, Transfer Forest)—with various base models. The results showed that the instance-based approach outperformed the parameter-based approach, particularly with Transfer AdaBoost using ensemble learning base models. The Transfer AdaBoost approach with Gradient Boosting and Extra Trees achieved consistent and robust results across both C# and Python, with an 83% winning rate, as indicated by the Wilcoxon signed-rank test. These findings underscore the effectiveness of transfer learning for cross-language code smell detection, supporting its generalizability across different programming languages.
Audience Academic
Author Aljamaan, Hamoud
Sandouka, Rana
Author_xml – sequence: 1
  givenname: Rana
  surname: Sandouka
  fullname: Sandouka, Rana
– sequence: 2
  givenname: Hamoud
  orcidid: 0000-0002-2146-9348
  surname: Aljamaan
  fullname: Aljamaan, Hamoud
BookMark eNp9UctOxDAMjBBIPE_8QCWOUEiaNG2OaHlKK3EAzpGbOlVW3aSkXRB_T5YixAn7YMsaj-3xIdn1wSMhp4xecq7oFQwDK1mlCsV3yEFBK5lzwardP_k-ORnHFU2mGK8ZPSBqEcM45kvw3QY6zBahxex5jX2f3eCEZnLBZ-8OspcIfrQYsyVC9M53x2TPQj_iyU88Iq93ty-Lh3z5dP-4uF7mhks-5Uo1VPFWtqqRtOG2LQ2vkVtZqIIpWdCSSSmgEq3htsFatI2wWDe2oLaqKfAj8jjztgFWeohuDfFTB3D6uxBipyFOzvSojeC2LEEItCAMFaAaZFjX1soyzTCJ62Lm2vgBPj-g738JGdVbFfUfFRP8bIYPMbxtcJz0KmyiT9dqXgglq3ShSqjLGdVB2sF5G6YIJnmLa2fSj6xL9eu6LEVVsYKmhvO5wWy1j2j_XeILtQOPiA
Cites_doi 10.1007/s10664-015-9378-4
10.1016/j.infsof.2018.12.009
10.1007/s11042-024-19756-x
10.1016/j.scico.2021.102713
10.1109/SATE.2016.10
10.1109/ICTAI.2019.00141
10.7717/peerj-cs.2254
10.1186/s12864-019-6413-7
10.18653/v1/2020.findings-emnlp.139
10.1109/WCRE.2012.31
10.1007/978-3-642-23780-5_14
10.1007/978-3-030-75075-6_10
10.18653/v1/2021.naacl-main.211
10.3390/app14146149
10.1002/smr.2454
10.1016/j.entcs.2005.02.059
10.5220/0006709801370146
10.1145/3387906.3388618
10.1007/978-3-030-89010-0
10.18293/SEKE2019-140
10.1109/ICMLA52953.2021.00148
10.1016/j.jss.2020.110610
10.1016/j.jss.2010.11.921
10.3390/app15137472
10.1109/MLSP.2012.6349714
10.1016/j.enbuild.2022.112530
10.1109/CEC.2019.8790217
10.1109/ACCESS.2021.3084050
10.1016/j.jss.2021.110936
10.1142/S0218194025500287
10.1109/TSE.2009.50
10.1007/978-3-030-80851-8_12
10.1109/TENCON.2019.8929628
10.1007/978-3-031-11748-0_9
10.1016/j.infsof.2021.106648
10.1006/jcss.1997.1504
10.1109/MIUCC52538.2021.9447669
10.1145/2351676.2351701
10.1109/TSE.2016.2584050
10.1016/j.asoc.2019.105524
10.1007/s10664-021-10110-5
10.1109/ISSRE.2015.7381819
10.1007/978-981-19-0901-6_25
10.1186/s40537-016-0043-6
10.1007/s13369-019-04311-w
10.1109/WCRE.2009.23
10.7717/peerj-cs.1370
10.1109/TKDE.2009.191
10.1109/ICSEC56337.2022.10049330
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
DOA
DOI 10.3390/app15179293
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_c43f55a44efa4c04a9be1e88ff6564ac
10.3390/app15179293
A855477120
10_3390_app15179293
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c363t-99b093d6d9b60b3fd5c38e3f62921962051664a74dc3fbe84db4fe8bf20f780a3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Fri Oct 03 12:45:25 EDT 2025
Wed Aug 27 07:00:05 EDT 2025
Fri Sep 12 10:31:49 EDT 2025
Mon Oct 20 16:52:07 EDT 2025
Thu Oct 16 04:43:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-99b093d6d9b60b3fd5c38e3f62921962051664a74dc3fbe84db4fe8bf20f780a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2146-9348
OpenAccessLink https://doaj.org/article/c43f55a44efa4c04a9be1e88ff6564ac
PQID 3249673639
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_c43f55a44efa4c04a9be1e88ff6564ac
unpaywall_primary_10_3390_app15179293
proquest_journals_3249673639
gale_infotracacademiconefile_A855477120
crossref_primary_10_3390_app15179293
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Kreimer (ref_18) 2005; 141
ref_13
Pan (ref_45) 2010; 22
ref_11
Sandouka (ref_41) 2025; 35
ref_10
ref_54
ref_52
ref_51
Alazba (ref_31) 2021; 138
ref_19
ref_15
ref_59
Pinto (ref_12) 2022; 276
Sharma (ref_40) 2021; 176
ref_60
Khomh (ref_23) 2011; 84
Sandouka (ref_28) 2023; 9
ref_25
Chicco (ref_57) 2021; 9
ref_24
ref_20
ref_64
Aktas (ref_1) 2016; 5
ref_62
Liu (ref_36) 2019; 47
ref_29
ref_27
Moinuddin (ref_56) 2017; 8
ref_26
Singh (ref_58) 2020; 97
Dmytrenko (ref_48) 2023; 3
Zanoni (ref_21) 2016; 21
Abdou (ref_55) 2024; 36
Freund (ref_9) 1997; 55
ref_35
Jain (ref_32) 2021; 212
ref_34
Azeem (ref_63) 2019; 108
ref_30
Pan (ref_4) 2020; 21
Aljamaan (ref_17) 2020; 45
ref_39
Lacerda (ref_14) 2020; 167
ref_38
ref_37
Moha (ref_16) 2009; 36
Srinath (ref_49) 2017; 4
Kim (ref_22) 2017; 7
ref_47
Tantithamthavorn (ref_61) 2016; 43
ref_46
ref_44
ref_43
ref_42
Malhotra (ref_5) 2024; 83
Reis (ref_53) 2022; 27
ref_3
ref_2
ref_8
Aljamaan (ref_33) 2024; 10
ref_7
ref_6
References_xml – volume: 21
  start-page: 1143
  year: 2016
  ident: ref_21
  article-title: Comparing and experimenting machine learning techniques for code smell detection
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-015-9378-4
– volume: 108
  start-page: 115
  year: 2019
  ident: ref_63
  article-title: Machine learning techniques for code smell detection: A systematic literature review and meta-analysis
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2018.12.009
– volume: 83
  start-page: 87237
  year: 2024
  ident: ref_5
  article-title: A systematic review of transfer learning in software engineering
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-024-19756-x
– volume: 212
  start-page: 102713
  year: 2021
  ident: ref_32
  article-title: Improving performance with hybrid feature selection and ensemble machine learning techniques for code smell detection
  publication-title: Sci. Comput. Program.
  doi: 10.1016/j.scico.2021.102713
– volume: 21
  start-page: 1
  year: 2020
  ident: ref_4
  article-title: Transfer learning
  publication-title: Learning
– ident: ref_29
  doi: 10.1109/SATE.2016.10
– ident: ref_13
  doi: 10.1109/ICTAI.2019.00141
– volume: 10
  start-page: e2254
  year: 2024
  ident: ref_33
  article-title: Dynamic stacking ensemble for cross-language code smell detection
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.2254
– ident: ref_64
  doi: 10.1186/s12864-019-6413-7
– ident: ref_42
  doi: 10.18653/v1/2020.findings-emnlp.139
– ident: ref_20
  doi: 10.1109/WCRE.2012.31
– ident: ref_10
  doi: 10.1007/978-3-642-23780-5_14
– ident: ref_39
  doi: 10.1007/978-3-030-75075-6_10
– ident: ref_44
  doi: 10.18653/v1/2021.naacl-main.211
– ident: ref_54
  doi: 10.3390/app14146149
– volume: 3
  start-page: 93
  year: 2023
  ident: ref_48
  article-title: Using java and C# programming languages for server platforms and workstations
  publication-title: Navig. Commun. Control Syst. Collect. Sci. Pap.
– volume: 36
  start-page: e2454
  year: 2024
  ident: ref_55
  article-title: Severity classification of software code smells using machine learning techniques: A comparative study
  publication-title: J. Softw. Evol. Process
  doi: 10.1002/smr.2454
– volume: 141
  start-page: 117
  year: 2005
  ident: ref_18
  article-title: Adaptive detection of design flaws
  publication-title: Electron. Notes Theor. Comput. Sci.
  doi: 10.1016/j.entcs.2005.02.059
– ident: ref_35
  doi: 10.5220/0006709801370146
– ident: ref_52
  doi: 10.1145/3387906.3388618
– ident: ref_62
  doi: 10.1007/978-3-030-89010-0
– volume: 8
  start-page: 11
  year: 2017
  ident: ref_56
  article-title: Empirical study of Long Parameter List code smell and refactoring tool comparison
  publication-title: Int. J. Multidiscip. Sci. Eng.
– ident: ref_51
  doi: 10.18293/SEKE2019-140
– volume: 5
  start-page: 114
  year: 2016
  ident: ref_1
  article-title: A survey on bad smells in codes and usage of algorithm analysis
  publication-title: Int. J. Comput. Sci. Softw. Eng.
– ident: ref_59
– ident: ref_30
  doi: 10.1109/ICMLA52953.2021.00148
– volume: 167
  start-page: 110610
  year: 2020
  ident: ref_14
  article-title: Code smells and refactoring: A tertiary systematic review of challenges and observations
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2020.110610
– volume: 84
  start-page: 559
  year: 2011
  ident: ref_23
  article-title: BDTEX: A GQM-based Bayesian approach for the detection of antipatterns
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2010.11.921
– ident: ref_34
  doi: 10.3390/app15137472
– ident: ref_11
  doi: 10.1109/MLSP.2012.6349714
– volume: 276
  start-page: 112530
  year: 2022
  ident: ref_12
  article-title: Sharing is caring: An extensive analysis of parameter-based transfer learning for the prediction of building thermal dynamics
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.112530
– ident: ref_6
  doi: 10.1109/CEC.2019.8790217
– ident: ref_7
– volume: 9
  start-page: 78368
  year: 2021
  ident: ref_57
  article-title: The Matthews correlation coefficient (MCC) is more informative than Cohen’s Kappa and Brier score in binary classification assessment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3084050
– volume: 7
  start-page: 3613
  year: 2017
  ident: ref_22
  article-title: Finding bad code smells with neural network models
  publication-title: Int. J. Electr. Comput. Eng.
– volume: 176
  start-page: 110936
  year: 2021
  ident: ref_40
  article-title: Code smell detection by deep direct-learning and transfer-learning
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2021.110936
– volume: 35
  start-page: 963
  year: 2025
  ident: ref_41
  article-title: Enhancing Python Code Smell Detection with Heterogeneous Ensembles
  publication-title: Int. J. Softw. Eng. Knowl. Eng.
  doi: 10.1142/S0218194025500287
– ident: ref_47
– volume: 36
  start-page: 20
  year: 2009
  ident: ref_16
  article-title: Decor: A method for the specification and detection of code and design smells
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2009.50
– ident: ref_38
  doi: 10.1007/978-3-030-80851-8_12
– ident: ref_37
  doi: 10.1109/TENCON.2019.8929628
– ident: ref_8
  doi: 10.1007/978-3-031-11748-0_9
– volume: 138
  start-page: 106648
  year: 2021
  ident: ref_31
  article-title: Code smell detection using feature selection and stacking ensemble: An empirical investigation
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2021.106648
– volume: 47
  start-page: 1811
  year: 2019
  ident: ref_36
  article-title: Deep learning based code smell detection
  publication-title: IEEE Trans. Softw. Eng.
– volume: 55
  start-page: 119
  year: 1997
  ident: ref_9
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– ident: ref_15
  doi: 10.1109/MIUCC52538.2021.9447669
– ident: ref_25
  doi: 10.1145/2351676.2351701
– volume: 43
  start-page: 1
  year: 2016
  ident: ref_61
  article-title: An empirical comparison of model validation techniques for defect prediction models
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2016.2584050
– volume: 97
  start-page: 105524
  year: 2020
  ident: ref_58
  article-title: Investigating the impact of data normalization on classification performance
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105524
– volume: 4
  start-page: 354
  year: 2017
  ident: ref_49
  article-title: Python–the fastest growing programming language
  publication-title: Int. Res. J. Eng. Technol.
– volume: 27
  start-page: 69
  year: 2022
  ident: ref_53
  article-title: Crowdsmelling: A preliminary study on using collective knowledge in code smells detection
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-021-10110-5
– ident: ref_50
– ident: ref_19
  doi: 10.1109/ISSRE.2015.7381819
– ident: ref_2
– ident: ref_26
  doi: 10.1007/978-981-19-0901-6_25
– ident: ref_46
– ident: ref_3
  doi: 10.1186/s40537-016-0043-6
– volume: 45
  start-page: 2341
  year: 2020
  ident: ref_17
  article-title: Bad smell detection using machine learning techniques: A systematic literature review
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-019-04311-w
– ident: ref_24
  doi: 10.1109/WCRE.2009.23
– ident: ref_43
– ident: ref_60
– volume: 9
  start-page: e1370
  year: 2023
  ident: ref_28
  article-title: Python code smells detection using conventional machine learning models
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.1370
– volume: 22
  start-page: 1345
  year: 2010
  ident: ref_45
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– ident: ref_27
  doi: 10.1109/ICSEC56337.2022.10049330
SSID ssj0000913810
Score 2.331797
Snippet Code smells are code structures that indicate a potential issue in code design or implementation. These issues could affect the processes of code testing and...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 9293
SubjectTerms Algorithms
Classification
code smell
Datasets
detection
Knowledge
Literature reviews
machine learning
Methods
Programming languages
Software engineering
Software quality
transfer learning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_q9UH7ILYqbq2yDxX1YTGXZLObB5H2bCmih6iFvi35miKce-d1W_G_N7OXPU-EvoYlG2Yyn5n5DcChRIXSByxE6WQRPWJZmKgrC6WpT5JzawQ1Cn-aqrNz-eGivNiC6dALQ2WVg07sFbWfO8qRv4mGX1MNktDvFj8LmhpFr6vDCA2TRiv4tz3E2B3Y5oSMNYLt45Pp5y_rrAuhYNZjtmrUEzHep3fiMcFUcS3-MU09gv__enoH7l63C_P7l5nNNgzR6QO4nzzI_GjF8l3YCu0e7GzgCu7BbpLYq_xVgpV-_RD0hP5afEwJynwy9yH_-iPMZvn70PUVWW1-893kvfnCsMwT9urlIzg_Pfk2OSvS4ITCRQJ1hdaWaeGV11YxK9CXTtRBoOI6KijFoyAqJU0lvRNoQy29lRhqi5xhVTMjHsOonbfhCeSOayZ9hWhj4IExNqsYstop1CVqJ3wGhwPNmsUKH6OJcQWRttkgbQbHRM_1JwRq3S_Ml5dNkpHGSYFlaaQMaKRj0mgbxqGuEaPTKY3L4CVxoyHR65bGmdRBEE9KIFbNEZXcVdWYswwOBoY1SSavmr83KIMXaybedur927d5Cvc4TQPuK84OYNQtr8Oz6KJ09nm6d38A5L7kTA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_k-qB9sB8qjW0lDxX1Ib3c7maTfSrX01JEi6AH9Sns15TimTuuuYr-9c7m9sqpIIIveQgb2GVmfjOzmfkNwJFAicJ5zHhhRUYRscg0YWUmVeiTZMxoHhqF31_I87F4e1lcrnXxh7JKSsWvO5BmlGRnBLNlf1D06UmunPdnDk9u410S-T4Zgt4AwhuyoGi8Bxvjiw_Dz2Gm3OrrZVsep-w-_BUeBFIqpvgvjqjj6_8TlTfh_qKZ6e_f9GSy5nbOtkCvNrysNvlyvGjNsf3xG5fj_5xoGx7GmDQdLpVoB-75Zhc215gKd2EnYsBN-jISVb96BGoUTpa9i1ee6WjqfPrxq59M0te-7Wq8mvT2WqedQ0Q_TyOb69VjGJ-9-TQ6z-IohsxyydtMKZMr7qRTRuaGoyssrzxHyRRBnmRk2lIKXQpnORpfCWcE-sogy7Gscs2fQK-ZNn4PUstULlyJaCiVQcr2yhzzykpUBSrLXQJHK7nUsyXjRk2ZShBfvSa-BE6DzO6WBJrs7sV0flVHq6ut4FgUWgiPWthcaGX8wFcVIoWxQtsEXgSJ18GY27m2OvYk0E4DLVY9DEV8ZTlgeQIHK6Woo5Xf1BSMqlAXx1UCz-8U5W-7fvqP6_bhAQuDhrtitgPotfOFP6TopzXPooL_BGzE_Co
  priority: 102
  providerName: Unpaywall
Title Cross-Language Code Smell Detection via Transfer Learning
URI https://www.proquest.com/docview/3249673639
https://www.mdpi.com/2076-3417/15/17/9293/pdf?version=1756030662
https://doaj.org/article/c43f55a44efa4c04a9be1e88ff6564ac
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BOUAPiBYQKWWVQxFwiPDajmMft0uXCsGqAlYqJ8uvQUhLWm3TIv49duJWQUhw4ZgoUkbzeV7JzDcABxwFch-wYrXjVcyIeWWir6yESnOSlFrD0qDwh6U4XvF3p_XpaNVX6gkb6IEHxb12nGFdG84DGu4IN8qGaZASMWYi3LjkfYlUo2Kq98FqmqirhoE8Fuv69D94muioqGK_haCeqf9Pf7wNdy_bc_Pzh1mvRwFn8QDu50yxnA0S7sCt0O7C9og_cBd2smVelC8zffSrh6Dm6a3V-_whspyf-VB--h7W6_JN6PrOq7a8-mbKPkxh2JSZY_XrI1gtjj7Pj6u8IKFyTLCuUsoSxbzwygpiGfraMRkYCqqiIxI0GpyIOmq4dwxtkNxbjkFapAQbSQx7DFvtWRueQOmoItw3iDYWGBhrsIYgkU6gqlE55gs4uNaZPh94MHSsH5Jq9Ui1BRwmfd48ksir-xsRUp0h1f-CtIAXCQ2dTKzbGGfypECUNJFV6VlqrWuaKSUF7F8DprPtXeiYIqrUrcZUAc9vQPyb1Hv_Q-qncI-m3cB9_9k-bHWby_AsJiydncBtuXg7gTuHR8uTj5P-pMar1fJk9uUXVVHrpw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxQxFH9BOCAHI6hxFLUHiHqY2G07nemBGFggiywbo5Bwq_0kJuvsurtI-Of822xnO-saE25cJ5O2ed-vfe_3AHaY555Z53NaGJaHiJjlKtjKnIvYJ0mIVjQ2Cp8NeO-CfbosLlfgd9sLE8sqW5vYGGo7MvGO_ENw_CLWIFHxcfwzj1Oj4utqO0JDpdEKdq-BGEuNHafu9iakcNO9k8PA711Cjo_Ou708TRnITVhtlguhQ1ZvuRWaY029LQytHPWciKDNnASp5ZypkllDvXYVs5p5V2lPsC8rrGhY9wGsMcpESP7WDo4Gn78sbnki6mbVwfPGQEoFju_SnQiLRQT9xxU2EwP-9wsbsH5dj9XtjRoOlxzf8WN4lCJWtD8XsU1YcfUWbCzhGG7BZrIQU_QuwVi_fwKiG3fN--lCFHVH1qGvP9xwiA7drKkAq9Gv7wo17tK7CUpYr1dP4eJeSPgMVutR7Z4DMkRgZkvvdUh0fMgFS-xxZbgXhReG2gx2WprJ8RyPQ4Y8JpJWLpE2g4NIz8UvEUS7-TCaXMmkk9Iw6otCMea8YgYzJbTruKryPgS5TJkM3kZuyKjqs4kyKnUshJNG0Cy5H0v8yrJDcAbbLcNksgFT-VdiM9hdMPGuU7-4e5k3sN47P-vL_sng9CU8JHEScVPttg2rs8m1exXCo5l-nWQQwbf7Fvs_N6YhOw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gJioPRlDjKmofIOrDhr22-9EHY_DOEwSJiZLwVtpuh5gce8fdIuFf86-zs7d7njHhjdfNpm3me9qZ3wBsScxQlh5jkToZh4hYxibYyjhT1CfJuTWCGoW_HmV7x_LLSXqyAr-7Xhgqq-xsYmOoy7GjO_Kd4PgV1SAJtYNtWcS3wfDD5CKmCVL00tqN05iLyIG_vgrp2-z9_iDwepvz4acf_b24nTAQu7BSHStlQ0ZfZqWyWWIFlqkThReYcRU0OeNBYrNMmlyWTqD1hSytRF9Y5AnmRWJEWPcO3M0JxZ261IefF_c7hLdZ9JJ5S6AQKqEX6R4BYnEl_nGCzayA_z3CGty_rCbm-sqMRksub_gIHraxKtudC9c6rPhqA9aWEAw3YL21DTP2tgWwfvcYVJ92jQ_bq1DWH5eefT_3oxEb-Lqp_arYr5-GNY4S_ZS1KK9nT-D4Vgj4FFarceWfAXNcJbLMEW1IcTBkgXmCSeEyVCkqJ8oItjqa6ckciUOHDIZIq5dIG8FHoufiF4LPbj6Mp2e61UbtpMA0NVJ6NNIl0ijre74oEEN4K42L4A1xQ5OS11PjTNurEE5KcFl6l4r78rzHkwg2O4bpVvtn-q-sRrC9YOJNp35-8zKv4V4Qdn24f3TwAh5wGkHclLltwmo9vfQvQ1xU21eNADI4vW2J_wNNBx7V
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_k-qB9sB8qjW0lDxX1Ib3c7maTfSrX01JEi6AH9Sns15TimTuuuYr-9c7m9sqpIIIveQgb2GVmfjOzmfkNwJFAicJ5zHhhRUYRscg0YWUmVeiTZMxoHhqF31_I87F4e1lcrnXxh7JKSsWvO5BmlGRnBLNlf1D06UmunPdnDk9u410S-T4Zgt4AwhuyoGi8Bxvjiw_Dz2Gm3OrrZVsep-w-_BUeBFIqpvgvjqjj6_8TlTfh_qKZ6e_f9GSy5nbOtkCvNrysNvlyvGjNsf3xG5fj_5xoGx7GmDQdLpVoB-75Zhc215gKd2EnYsBN-jISVb96BGoUTpa9i1ee6WjqfPrxq59M0te-7Wq8mvT2WqedQ0Q_TyOb69VjGJ-9-TQ6z-IohsxyydtMKZMr7qRTRuaGoyssrzxHyRRBnmRk2lIKXQpnORpfCWcE-sogy7Gscs2fQK-ZNn4PUstULlyJaCiVQcr2yhzzykpUBSrLXQJHK7nUsyXjRk2ZShBfvSa-BE6DzO6WBJrs7sV0flVHq6ut4FgUWgiPWthcaGX8wFcVIoWxQtsEXgSJ18GY27m2OvYk0E4DLVY9DEV8ZTlgeQIHK6Woo5Xf1BSMqlAXx1UCz-8U5W-7fvqP6_bhAQuDhrtitgPotfOFP6TopzXPooL_BGzE_Co
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Language+Code+Smell+Detection+via+Transfer+Learning&rft.jtitle=Applied+sciences&rft.au=Sandouka%2C+Rana&rft.au=Aljamaan%2C+Hamoud&rft.date=2025-09-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=17&rft.spage=9293&rft_id=info:doi/10.3390%2Fapp15179293&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app15179293
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon