Cross-Language Code Smell Detection via Transfer Learning
Code smells are code structures that indicate a potential issue in code design or implementation. These issues could affect the processes of code testing and maintenance, and overall software quality. Therefore, it is important to detect code smells in the early stages of software development to enh...
Saved in:
| Published in | Applied sciences Vol. 15; no. 17; p. 9293 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app15179293 |
Cover
| Abstract | Code smells are code structures that indicate a potential issue in code design or implementation. These issues could affect the processes of code testing and maintenance, and overall software quality. Therefore, it is important to detect code smells in the early stages of software development to enhance system quality. Most studies have focused on detecting code smells of a single programming language. This article explores TL for cross-language code smell detection, where Java is the source, and both C# and Python are the target datasets, focusing on Large Class, Long Method, and Long Parameter List code smells. We conducted a comparison study across two transfer learning approaches—instance-based (Importance Weighting Classifier, Nearest Neighbors Weighting, and Transfer AdaBoost) and parameter-based (Transfer Tree, Transfer Forest)—with various base models. The results showed that the instance-based approach outperformed the parameter-based approach, particularly with Transfer AdaBoost using ensemble learning base models. The Transfer AdaBoost approach with Gradient Boosting and Extra Trees achieved consistent and robust results across both C# and Python, with an 83% winning rate, as indicated by the Wilcoxon signed-rank test. These findings underscore the effectiveness of transfer learning for cross-language code smell detection, supporting its generalizability across different programming languages. |
|---|---|
| AbstractList | Code smells are code structures that indicate a potential issue in code design or implementation. These issues could affect the processes of code testing and maintenance, and overall software quality. Therefore, it is important to detect code smells in the early stages of software development to enhance system quality. Most studies have focused on detecting code smells of a single programming language. This article explores TL for cross-language code smell detection, where Java is the source, and both C# and Python are the target datasets, focusing on Large Class, Long Method, and Long Parameter List code smells. We conducted a comparison study across two transfer learning approaches—instance-based (Importance Weighting Classifier, Nearest Neighbors Weighting, and Transfer AdaBoost) and parameter-based (Transfer Tree, Transfer Forest)—with various base models. The results showed that the instance-based approach outperformed the parameter-based approach, particularly with Transfer AdaBoost using ensemble learning base models. The Transfer AdaBoost approach with Gradient Boosting and Extra Trees achieved consistent and robust results across both C# and Python, with an 83% winning rate, as indicated by the Wilcoxon signed-rank test. These findings underscore the effectiveness of transfer learning for cross-language code smell detection, supporting its generalizability across different programming languages. |
| Audience | Academic |
| Author | Aljamaan, Hamoud Sandouka, Rana |
| Author_xml | – sequence: 1 givenname: Rana surname: Sandouka fullname: Sandouka, Rana – sequence: 2 givenname: Hamoud orcidid: 0000-0002-2146-9348 surname: Aljamaan fullname: Aljamaan, Hamoud |
| BookMark | eNp9UctOxDAMjBBIPE_8QCWOUEiaNG2OaHlKK3EAzpGbOlVW3aSkXRB_T5YixAn7YMsaj-3xIdn1wSMhp4xecq7oFQwDK1mlCsV3yEFBK5lzwardP_k-ORnHFU2mGK8ZPSBqEcM45kvw3QY6zBahxex5jX2f3eCEZnLBZ-8OspcIfrQYsyVC9M53x2TPQj_iyU88Iq93ty-Lh3z5dP-4uF7mhks-5Uo1VPFWtqqRtOG2LQ2vkVtZqIIpWdCSSSmgEq3htsFatI2wWDe2oLaqKfAj8jjztgFWeohuDfFTB3D6uxBipyFOzvSojeC2LEEItCAMFaAaZFjX1soyzTCJ62Lm2vgBPj-g738JGdVbFfUfFRP8bIYPMbxtcJz0KmyiT9dqXgglq3ShSqjLGdVB2sF5G6YIJnmLa2fSj6xL9eu6LEVVsYKmhvO5wWy1j2j_XeILtQOPiA |
| Cites_doi | 10.1007/s10664-015-9378-4 10.1016/j.infsof.2018.12.009 10.1007/s11042-024-19756-x 10.1016/j.scico.2021.102713 10.1109/SATE.2016.10 10.1109/ICTAI.2019.00141 10.7717/peerj-cs.2254 10.1186/s12864-019-6413-7 10.18653/v1/2020.findings-emnlp.139 10.1109/WCRE.2012.31 10.1007/978-3-642-23780-5_14 10.1007/978-3-030-75075-6_10 10.18653/v1/2021.naacl-main.211 10.3390/app14146149 10.1002/smr.2454 10.1016/j.entcs.2005.02.059 10.5220/0006709801370146 10.1145/3387906.3388618 10.1007/978-3-030-89010-0 10.18293/SEKE2019-140 10.1109/ICMLA52953.2021.00148 10.1016/j.jss.2020.110610 10.1016/j.jss.2010.11.921 10.3390/app15137472 10.1109/MLSP.2012.6349714 10.1016/j.enbuild.2022.112530 10.1109/CEC.2019.8790217 10.1109/ACCESS.2021.3084050 10.1016/j.jss.2021.110936 10.1142/S0218194025500287 10.1109/TSE.2009.50 10.1007/978-3-030-80851-8_12 10.1109/TENCON.2019.8929628 10.1007/978-3-031-11748-0_9 10.1016/j.infsof.2021.106648 10.1006/jcss.1997.1504 10.1109/MIUCC52538.2021.9447669 10.1145/2351676.2351701 10.1109/TSE.2016.2584050 10.1016/j.asoc.2019.105524 10.1007/s10664-021-10110-5 10.1109/ISSRE.2015.7381819 10.1007/978-981-19-0901-6_25 10.1186/s40537-016-0043-6 10.1007/s13369-019-04311-w 10.1109/WCRE.2009.23 10.7717/peerj-cs.1370 10.1109/TKDE.2009.191 10.1109/ICSEC56337.2022.10049330 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY DOA |
| DOI | 10.3390/app15179293 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_c43f55a44efa4c04a9be1e88ff6564ac 10.3390/app15179293 A855477120 10_3390_app15179293 |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c363t-99b093d6d9b60b3fd5c38e3f62921962051664a74dc3fbe84db4fe8bf20f780a3 |
| IEDL.DBID | DOA |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:45:25 EDT 2025 Wed Aug 27 07:00:05 EDT 2025 Fri Sep 12 10:31:49 EDT 2025 Mon Oct 20 16:52:07 EDT 2025 Thu Oct 16 04:43:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-99b093d6d9b60b3fd5c38e3f62921962051664a74dc3fbe84db4fe8bf20f780a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2146-9348 |
| OpenAccessLink | https://doaj.org/article/c43f55a44efa4c04a9be1e88ff6564ac |
| PQID | 3249673639 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c43f55a44efa4c04a9be1e88ff6564ac unpaywall_primary_10_3390_app15179293 proquest_journals_3249673639 gale_infotracacademiconefile_A855477120 crossref_primary_10_3390_app15179293 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Kreimer (ref_18) 2005; 141 ref_13 Pan (ref_45) 2010; 22 ref_11 Sandouka (ref_41) 2025; 35 ref_10 ref_54 ref_52 ref_51 Alazba (ref_31) 2021; 138 ref_19 ref_15 ref_59 Pinto (ref_12) 2022; 276 Sharma (ref_40) 2021; 176 ref_60 Khomh (ref_23) 2011; 84 Sandouka (ref_28) 2023; 9 ref_25 Chicco (ref_57) 2021; 9 ref_24 ref_20 ref_64 Aktas (ref_1) 2016; 5 ref_62 Liu (ref_36) 2019; 47 ref_29 ref_27 Moinuddin (ref_56) 2017; 8 ref_26 Singh (ref_58) 2020; 97 Dmytrenko (ref_48) 2023; 3 Zanoni (ref_21) 2016; 21 Abdou (ref_55) 2024; 36 Freund (ref_9) 1997; 55 ref_35 Jain (ref_32) 2021; 212 ref_34 Azeem (ref_63) 2019; 108 ref_30 Pan (ref_4) 2020; 21 Aljamaan (ref_17) 2020; 45 ref_39 Lacerda (ref_14) 2020; 167 ref_38 ref_37 Moha (ref_16) 2009; 36 Srinath (ref_49) 2017; 4 Kim (ref_22) 2017; 7 ref_47 Tantithamthavorn (ref_61) 2016; 43 ref_46 ref_44 ref_43 ref_42 Malhotra (ref_5) 2024; 83 Reis (ref_53) 2022; 27 ref_3 ref_2 ref_8 Aljamaan (ref_33) 2024; 10 ref_7 ref_6 |
| References_xml | – volume: 21 start-page: 1143 year: 2016 ident: ref_21 article-title: Comparing and experimenting machine learning techniques for code smell detection publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-015-9378-4 – volume: 108 start-page: 115 year: 2019 ident: ref_63 article-title: Machine learning techniques for code smell detection: A systematic literature review and meta-analysis publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2018.12.009 – volume: 83 start-page: 87237 year: 2024 ident: ref_5 article-title: A systematic review of transfer learning in software engineering publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-024-19756-x – volume: 212 start-page: 102713 year: 2021 ident: ref_32 article-title: Improving performance with hybrid feature selection and ensemble machine learning techniques for code smell detection publication-title: Sci. Comput. Program. doi: 10.1016/j.scico.2021.102713 – volume: 21 start-page: 1 year: 2020 ident: ref_4 article-title: Transfer learning publication-title: Learning – ident: ref_29 doi: 10.1109/SATE.2016.10 – ident: ref_13 doi: 10.1109/ICTAI.2019.00141 – volume: 10 start-page: e2254 year: 2024 ident: ref_33 article-title: Dynamic stacking ensemble for cross-language code smell detection publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.2254 – ident: ref_64 doi: 10.1186/s12864-019-6413-7 – ident: ref_42 doi: 10.18653/v1/2020.findings-emnlp.139 – ident: ref_20 doi: 10.1109/WCRE.2012.31 – ident: ref_10 doi: 10.1007/978-3-642-23780-5_14 – ident: ref_39 doi: 10.1007/978-3-030-75075-6_10 – ident: ref_44 doi: 10.18653/v1/2021.naacl-main.211 – ident: ref_54 doi: 10.3390/app14146149 – volume: 3 start-page: 93 year: 2023 ident: ref_48 article-title: Using java and C# programming languages for server platforms and workstations publication-title: Navig. Commun. Control Syst. Collect. Sci. Pap. – volume: 36 start-page: e2454 year: 2024 ident: ref_55 article-title: Severity classification of software code smells using machine learning techniques: A comparative study publication-title: J. Softw. Evol. Process doi: 10.1002/smr.2454 – volume: 141 start-page: 117 year: 2005 ident: ref_18 article-title: Adaptive detection of design flaws publication-title: Electron. Notes Theor. Comput. Sci. doi: 10.1016/j.entcs.2005.02.059 – ident: ref_35 doi: 10.5220/0006709801370146 – ident: ref_52 doi: 10.1145/3387906.3388618 – ident: ref_62 doi: 10.1007/978-3-030-89010-0 – volume: 8 start-page: 11 year: 2017 ident: ref_56 article-title: Empirical study of Long Parameter List code smell and refactoring tool comparison publication-title: Int. J. Multidiscip. Sci. Eng. – ident: ref_51 doi: 10.18293/SEKE2019-140 – volume: 5 start-page: 114 year: 2016 ident: ref_1 article-title: A survey on bad smells in codes and usage of algorithm analysis publication-title: Int. J. Comput. Sci. Softw. Eng. – ident: ref_59 – ident: ref_30 doi: 10.1109/ICMLA52953.2021.00148 – volume: 167 start-page: 110610 year: 2020 ident: ref_14 article-title: Code smells and refactoring: A tertiary systematic review of challenges and observations publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2020.110610 – volume: 84 start-page: 559 year: 2011 ident: ref_23 article-title: BDTEX: A GQM-based Bayesian approach for the detection of antipatterns publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2010.11.921 – ident: ref_34 doi: 10.3390/app15137472 – ident: ref_11 doi: 10.1109/MLSP.2012.6349714 – volume: 276 start-page: 112530 year: 2022 ident: ref_12 article-title: Sharing is caring: An extensive analysis of parameter-based transfer learning for the prediction of building thermal dynamics publication-title: Energy Build. doi: 10.1016/j.enbuild.2022.112530 – ident: ref_6 doi: 10.1109/CEC.2019.8790217 – ident: ref_7 – volume: 9 start-page: 78368 year: 2021 ident: ref_57 article-title: The Matthews correlation coefficient (MCC) is more informative than Cohen’s Kappa and Brier score in binary classification assessment publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3084050 – volume: 7 start-page: 3613 year: 2017 ident: ref_22 article-title: Finding bad code smells with neural network models publication-title: Int. J. Electr. Comput. Eng. – volume: 176 start-page: 110936 year: 2021 ident: ref_40 article-title: Code smell detection by deep direct-learning and transfer-learning publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2021.110936 – volume: 35 start-page: 963 year: 2025 ident: ref_41 article-title: Enhancing Python Code Smell Detection with Heterogeneous Ensembles publication-title: Int. J. Softw. Eng. Knowl. Eng. doi: 10.1142/S0218194025500287 – ident: ref_47 – volume: 36 start-page: 20 year: 2009 ident: ref_16 article-title: Decor: A method for the specification and detection of code and design smells publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2009.50 – ident: ref_38 doi: 10.1007/978-3-030-80851-8_12 – ident: ref_37 doi: 10.1109/TENCON.2019.8929628 – ident: ref_8 doi: 10.1007/978-3-031-11748-0_9 – volume: 138 start-page: 106648 year: 2021 ident: ref_31 article-title: Code smell detection using feature selection and stacking ensemble: An empirical investigation publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2021.106648 – volume: 47 start-page: 1811 year: 2019 ident: ref_36 article-title: Deep learning based code smell detection publication-title: IEEE Trans. Softw. Eng. – volume: 55 start-page: 119 year: 1997 ident: ref_9 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1997.1504 – ident: ref_15 doi: 10.1109/MIUCC52538.2021.9447669 – ident: ref_25 doi: 10.1145/2351676.2351701 – volume: 43 start-page: 1 year: 2016 ident: ref_61 article-title: An empirical comparison of model validation techniques for defect prediction models publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2016.2584050 – volume: 97 start-page: 105524 year: 2020 ident: ref_58 article-title: Investigating the impact of data normalization on classification performance publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105524 – volume: 4 start-page: 354 year: 2017 ident: ref_49 article-title: Python–the fastest growing programming language publication-title: Int. Res. J. Eng. Technol. – volume: 27 start-page: 69 year: 2022 ident: ref_53 article-title: Crowdsmelling: A preliminary study on using collective knowledge in code smells detection publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-021-10110-5 – ident: ref_50 – ident: ref_19 doi: 10.1109/ISSRE.2015.7381819 – ident: ref_2 – ident: ref_26 doi: 10.1007/978-981-19-0901-6_25 – ident: ref_46 – ident: ref_3 doi: 10.1186/s40537-016-0043-6 – volume: 45 start-page: 2341 year: 2020 ident: ref_17 article-title: Bad smell detection using machine learning techniques: A systematic literature review publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-019-04311-w – ident: ref_24 doi: 10.1109/WCRE.2009.23 – ident: ref_43 – ident: ref_60 – volume: 9 start-page: e1370 year: 2023 ident: ref_28 article-title: Python code smells detection using conventional machine learning models publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.1370 – volume: 22 start-page: 1345 year: 2010 ident: ref_45 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – ident: ref_27 doi: 10.1109/ICSEC56337.2022.10049330 |
| SSID | ssj0000913810 |
| Score | 2.331797 |
| Snippet | Code smells are code structures that indicate a potential issue in code design or implementation. These issues could affect the processes of code testing and... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 9293 |
| SubjectTerms | Algorithms Classification code smell Datasets detection Knowledge Literature reviews machine learning Methods Programming languages Software engineering Software quality transfer learning |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_q9UH7ILYqbq2yDxX1YTGXZLObB5H2bCmih6iFvi35miKce-d1W_G_N7OXPU-EvoYlG2Yyn5n5DcChRIXSByxE6WQRPWJZmKgrC6WpT5JzawQ1Cn-aqrNz-eGivNiC6dALQ2WVg07sFbWfO8qRv4mGX1MNktDvFj8LmhpFr6vDCA2TRiv4tz3E2B3Y5oSMNYLt45Pp5y_rrAuhYNZjtmrUEzHep3fiMcFUcS3-MU09gv__enoH7l63C_P7l5nNNgzR6QO4nzzI_GjF8l3YCu0e7GzgCu7BbpLYq_xVgpV-_RD0hP5afEwJynwy9yH_-iPMZvn70PUVWW1-893kvfnCsMwT9urlIzg_Pfk2OSvS4ITCRQJ1hdaWaeGV11YxK9CXTtRBoOI6KijFoyAqJU0lvRNoQy29lRhqi5xhVTMjHsOonbfhCeSOayZ9hWhj4IExNqsYstop1CVqJ3wGhwPNmsUKH6OJcQWRttkgbQbHRM_1JwRq3S_Ml5dNkpHGSYFlaaQMaKRj0mgbxqGuEaPTKY3L4CVxoyHR65bGmdRBEE9KIFbNEZXcVdWYswwOBoY1SSavmr83KIMXaybedur927d5Cvc4TQPuK84OYNQtr8Oz6KJ09nm6d38A5L7kTA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_k-qB9sB8qjW0lDxX1Ib3c7maTfSrX01JEi6AH9Sns15TimTuuuYr-9c7m9sqpIIIveQgb2GVmfjOzmfkNwJFAicJ5zHhhRUYRscg0YWUmVeiTZMxoHhqF31_I87F4e1lcrnXxh7JKSsWvO5BmlGRnBLNlf1D06UmunPdnDk9u410S-T4Zgt4AwhuyoGi8Bxvjiw_Dz2Gm3OrrZVsep-w-_BUeBFIqpvgvjqjj6_8TlTfh_qKZ6e_f9GSy5nbOtkCvNrysNvlyvGjNsf3xG5fj_5xoGx7GmDQdLpVoB-75Zhc215gKd2EnYsBN-jISVb96BGoUTpa9i1ee6WjqfPrxq59M0te-7Wq8mvT2WqedQ0Q_TyOb69VjGJ-9-TQ6z-IohsxyydtMKZMr7qRTRuaGoyssrzxHyRRBnmRk2lIKXQpnORpfCWcE-sogy7Gscs2fQK-ZNn4PUstULlyJaCiVQcr2yhzzykpUBSrLXQJHK7nUsyXjRk2ZShBfvSa-BE6DzO6WBJrs7sV0flVHq6ut4FgUWgiPWthcaGX8wFcVIoWxQtsEXgSJ18GY27m2OvYk0E4DLVY9DEV8ZTlgeQIHK6Woo5Xf1BSMqlAXx1UCz-8U5W-7fvqP6_bhAQuDhrtitgPotfOFP6TopzXPooL_BGzE_Co priority: 102 providerName: Unpaywall |
| Title | Cross-Language Code Smell Detection via Transfer Learning |
| URI | https://www.proquest.com/docview/3249673639 https://www.mdpi.com/2076-3417/15/17/9293/pdf?version=1756030662 https://doaj.org/article/c43f55a44efa4c04a9be1e88ff6564ac |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BOUAPiBYQKWWVQxFwiPDajmMft0uXCsGqAlYqJ8uvQUhLWm3TIv49duJWQUhw4ZgoUkbzeV7JzDcABxwFch-wYrXjVcyIeWWir6yESnOSlFrD0qDwh6U4XvF3p_XpaNVX6gkb6IEHxb12nGFdG84DGu4IN8qGaZASMWYi3LjkfYlUo2Kq98FqmqirhoE8Fuv69D94muioqGK_haCeqf9Pf7wNdy_bc_Pzh1mvRwFn8QDu50yxnA0S7sCt0O7C9og_cBd2smVelC8zffSrh6Dm6a3V-_whspyf-VB--h7W6_JN6PrOq7a8-mbKPkxh2JSZY_XrI1gtjj7Pj6u8IKFyTLCuUsoSxbzwygpiGfraMRkYCqqiIxI0GpyIOmq4dwxtkNxbjkFapAQbSQx7DFvtWRueQOmoItw3iDYWGBhrsIYgkU6gqlE55gs4uNaZPh94MHSsH5Jq9Ui1BRwmfd48ksir-xsRUp0h1f-CtIAXCQ2dTKzbGGfypECUNJFV6VlqrWuaKSUF7F8DprPtXeiYIqrUrcZUAc9vQPyb1Hv_Q-qncI-m3cB9_9k-bHWby_AsJiydncBtuXg7gTuHR8uTj5P-pMar1fJk9uUXVVHrpw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxQxFH9BOCAHI6hxFLUHiHqY2G07nemBGFggiywbo5Bwq_0kJuvsurtI-Of822xnO-saE25cJ5O2ed-vfe_3AHaY555Z53NaGJaHiJjlKtjKnIvYJ0mIVjQ2Cp8NeO-CfbosLlfgd9sLE8sqW5vYGGo7MvGO_ENw_CLWIFHxcfwzj1Oj4utqO0JDpdEKdq-BGEuNHafu9iakcNO9k8PA711Cjo_Ou708TRnITVhtlguhQ1ZvuRWaY029LQytHPWciKDNnASp5ZypkllDvXYVs5p5V2lPsC8rrGhY9wGsMcpESP7WDo4Gn78sbnki6mbVwfPGQEoFju_SnQiLRQT9xxU2EwP-9wsbsH5dj9XtjRoOlxzf8WN4lCJWtD8XsU1YcfUWbCzhGG7BZrIQU_QuwVi_fwKiG3fN--lCFHVH1qGvP9xwiA7drKkAq9Gv7wo17tK7CUpYr1dP4eJeSPgMVutR7Z4DMkRgZkvvdUh0fMgFS-xxZbgXhReG2gx2WprJ8RyPQ4Y8JpJWLpE2g4NIz8UvEUS7-TCaXMmkk9Iw6otCMea8YgYzJbTruKryPgS5TJkM3kZuyKjqs4kyKnUshJNG0Cy5H0v8yrJDcAbbLcNksgFT-VdiM9hdMPGuU7-4e5k3sN47P-vL_sng9CU8JHEScVPttg2rs8m1exXCo5l-nWQQwbf7Fvs_N6YhOw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gJioPRlDjKmofIOrDhr22-9EHY_DOEwSJiZLwVtpuh5gce8fdIuFf86-zs7d7njHhjdfNpm3me9qZ3wBsScxQlh5jkToZh4hYxibYyjhT1CfJuTWCGoW_HmV7x_LLSXqyAr-7Xhgqq-xsYmOoy7GjO_Kd4PgV1SAJtYNtWcS3wfDD5CKmCVL00tqN05iLyIG_vgrp2-z9_iDwepvz4acf_b24nTAQu7BSHStlQ0ZfZqWyWWIFlqkThReYcRU0OeNBYrNMmlyWTqD1hSytRF9Y5AnmRWJEWPcO3M0JxZ261IefF_c7hLdZ9JJ5S6AQKqEX6R4BYnEl_nGCzayA_z3CGty_rCbm-sqMRksub_gIHraxKtudC9c6rPhqA9aWEAw3YL21DTP2tgWwfvcYVJ92jQ_bq1DWH5eefT_3oxEb-Lqp_arYr5-GNY4S_ZS1KK9nT-D4Vgj4FFarceWfAXNcJbLMEW1IcTBkgXmCSeEyVCkqJ8oItjqa6ckciUOHDIZIq5dIG8FHoufiF4LPbj6Mp2e61UbtpMA0NVJ6NNIl0ijre74oEEN4K42L4A1xQ5OS11PjTNurEE5KcFl6l4r78rzHkwg2O4bpVvtn-q-sRrC9YOJNp35-8zKv4V4Qdn24f3TwAh5wGkHclLltwmo9vfQvQ1xU21eNADI4vW2J_wNNBx7V |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_k-qB9sB8qjW0lDxX1Ib3c7maTfSrX01JEi6AH9Sns15TimTuuuYr-9c7m9sqpIIIveQgb2GVmfjOzmfkNwJFAicJ5zHhhRUYRscg0YWUmVeiTZMxoHhqF31_I87F4e1lcrnXxh7JKSsWvO5BmlGRnBLNlf1D06UmunPdnDk9u410S-T4Zgt4AwhuyoGi8Bxvjiw_Dz2Gm3OrrZVsep-w-_BUeBFIqpvgvjqjj6_8TlTfh_qKZ6e_f9GSy5nbOtkCvNrysNvlyvGjNsf3xG5fj_5xoGx7GmDQdLpVoB-75Zhc215gKd2EnYsBN-jISVb96BGoUTpa9i1ee6WjqfPrxq59M0te-7Wq8mvT2WqedQ0Q_TyOb69VjGJ-9-TQ6z-IohsxyydtMKZMr7qRTRuaGoyssrzxHyRRBnmRk2lIKXQpnORpfCWcE-sogy7Gscs2fQK-ZNn4PUstULlyJaCiVQcr2yhzzykpUBSrLXQJHK7nUsyXjRk2ZShBfvSa-BE6DzO6WBJrs7sV0flVHq6ut4FgUWgiPWthcaGX8wFcVIoWxQtsEXgSJ18GY27m2OvYk0E4DLVY9DEV8ZTlgeQIHK6Woo5Xf1BSMqlAXx1UCz-8U5W-7fvqP6_bhAQuDhrtitgPotfOFP6TopzXPooL_BGzE_Co |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Language+Code+Smell+Detection+via+Transfer+Learning&rft.jtitle=Applied+sciences&rft.au=Sandouka%2C+Rana&rft.au=Aljamaan%2C+Hamoud&rft.date=2025-09-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=17&rft.spage=9293&rft_id=info:doi/10.3390%2Fapp15179293&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app15179293 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |