Old perturbative methods for a new problem in Celestial Mechanics: the space debris dynamics

Perturbative methods have been developed and widely used in the XVIII and XIX century to study the behavior of N -body problems in Celestial Mechanics. Such methods apply to nearly-integrable Hamiltonian systems and they have the remarkable property to be constructive. A well-known application of pe...

Full description

Saved in:
Bibliographic Details
Published inBollettino della Unione matematica italiana (2008) Vol. 16; no. 2; pp. 411 - 428
Main Authors Celletti, Alessandra, Vartolomei, Tudor
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1972-6724
2198-2759
2198-2759
DOI10.1007/s40574-023-00347-x

Cover

Abstract Perturbative methods have been developed and widely used in the XVIII and XIX century to study the behavior of N -body problems in Celestial Mechanics. Such methods apply to nearly-integrable Hamiltonian systems and they have the remarkable property to be constructive. A well-known application of perturbative techniques is represented by the construction of the so-called proper elements , which are quasi-invariants of the dynamics, obtained by removing the perturbing function to higher orders. They have been used to identify families of asteroids; more recently, they have been used in the context of space debris, which is the main core of this work. We describe the dynamics of space debris, considering a model including the Earth’s gravitational attraction, the influence of Sun and Moon, and the Solar radiation pressure. We construct a Lie series normalization procedure and we compute the proper elements associated to the orbital elements. To provide a concrete example, we analyze three different break-up events with nearby initial orbital elements. We use the information coming from proper elements to successfully group the fragments; the clusterization is supported by statistical data analysis and by machine learning methods. These results show that perturbative methods still play an important role in the study of the dynamics of space objects.
AbstractList Perturbative methods have been developed and widely used in the XVIII and XIX century to study the behavior of N-body problems in Celestial Mechanics. Such methods apply to nearly-integrable Hamiltonian systems and they have the remarkable property to be constructive. A well-known application of perturbative techniques is represented by the construction of the so-called proper elements, which are quasi-invariants of the dynamics, obtained by removing the perturbing function to higher orders. They have been used to identify families of asteroids; more recently, they have been used in the context of space debris, which is the main core of this work. We describe the dynamics of space debris, considering a model including the Earth’s gravitational attraction, the influence of Sun and Moon, and the Solar radiation pressure. We construct a Lie series normalization procedure and we compute the proper elements associated to the orbital elements. To provide a concrete example, we analyze three different break-up events with nearby initial orbital elements. We use the information coming from proper elements to successfully group the fragments; the clusterization is supported by statistical data analysis and by machine learning methods. These results show that perturbative methods still play an important role in the study of the dynamics of space objects.
Perturbative methods have been developed and widely used in the XVIII and XIX century to study the behavior of N -body problems in Celestial Mechanics. Such methods apply to nearly-integrable Hamiltonian systems and they have the remarkable property to be constructive. A well-known application of perturbative techniques is represented by the construction of the so-called proper elements , which are quasi-invariants of the dynamics, obtained by removing the perturbing function to higher orders. They have been used to identify families of asteroids; more recently, they have been used in the context of space debris, which is the main core of this work. We describe the dynamics of space debris, considering a model including the Earth’s gravitational attraction, the influence of Sun and Moon, and the Solar radiation pressure. We construct a Lie series normalization procedure and we compute the proper elements associated to the orbital elements. To provide a concrete example, we analyze three different break-up events with nearby initial orbital elements. We use the information coming from proper elements to successfully group the fragments; the clusterization is supported by statistical data analysis and by machine learning methods. These results show that perturbative methods still play an important role in the study of the dynamics of space objects.
Author Celletti, Alessandra
Vartolomei, Tudor
Author_xml – sequence: 1
  givenname: Alessandra
  orcidid: 0000-0001-8315-8433
  surname: Celletti
  fullname: Celletti, Alessandra
  email: celletti@mat.uniroma2.it
  organization: Department of Mathematics, University of Roma Tor Vergata
– sequence: 2
  givenname: Tudor
  surname: Vartolomei
  fullname: Vartolomei, Tudor
  organization: Department of Mathematics, University of Roma Tor Vergata
BookMark eNqNkMtOwzAQRS1UJErpD7CyxDrgR1Lb7FDFSyrqBnZIluNMaKrECXYC7d9jaCUkFhUrL2bO9dxzikaudYDQOSWXlBBxFVKSiTQhjCeE8FQkmyM0ZlTJhIlMjdCYKsGSmWDpCZqGsCaEUMqlUGKMXpd1gTvw_eBz01cfgBvoV20RcNl6bLCDT9z5Nq-hwZXDc6gh9JWp8RPYlXGVDde4XwEOnbGAC8h9FXCxdaaJozN0XJo6wHT_TtDL3e3z_CFZLO8f5zeLxPIZ7xOlMqmspLmMGVYQnlEBTHImSmNVIRTLRVFIleaGsIzMDCslGFtkOaVllgs-QXyXO7jObD9NXevOV43xW02J_nakd450dKR_HOlNpC52VOz3PsRaet0O3sVDNZNUzFgmqYxbbLdlfRuCh_J_0fIPZKs-6m1d701VH0b3XUL8x72B_73qAPUFnGSa2g
CitedBy_id crossref_primary_10_1007_s10509_023_04264_5
crossref_primary_10_1016_j_cnsns_2023_107556
crossref_primary_10_3390_sym15051107
Cites_doi 10.1086/104299
10.1126/science.168.3939.1569
10.1023/A:1011187405509
10.1086/106480
10.1007/BF00049444
10.1051/0004-6361:20030475
10.1007/s10569-022-10091-7
10.1007/s10569-019-9912-6
10.1093/mnras/staa713
10.1086/111116
10.1038/s41598-022-05696-9
10.1016/S0273-1177(01)00423-9
10.1007/s00332-014-9217-6
10.1093/mnras/stz1795
10.1006/icar.1994.1020
10.1007/s10569-015-9644-1
10.1007/s10569-016-9726-8
10.1017/9781009151122
10.1007/BF01230629
10.1007/s10569-022-10078-4
10.1137/17M1118671
10.1016/j.ijnonlinmec.2016.12.015
10.2307/j.ctv1v7zdn4.45
10.1016/j.icarus.2011.08.016
10.1093/mnras/stw927
10.1007/s10569-019-9895-3
10.1007/s10569-022-10064-w
10.1017/S1743921315008728
10.1007/s10569-022-10088-2
10.1006/icar.1993.1110
10.1007/BF00699724
10.1007/s10569-019-9906-4
10.1007/s10569-016-9746-4
10.1007/s10569-018-9865-1
10.1007/s10569-021-10021-z
10.1007/978-3-319-03762-2
10.1007/BF00693091
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1007/s40574-023-00347-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2198-2759
EndPage 428
ExternalDocumentID 10.1007/s40574-023-00347-x
10_1007_s40574_023_00347_x
GrantInformation_xml – fundername: Horizon 2020 Framework Programme
  grantid: MSCA ETN Stardust-R Grant Agreement 813644
  funderid: http://dx.doi.org/10.13039/100010661
GroupedDBID -EM
-~X
0R~
203
2KM
4.4
406
8UJ
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJOX
ABKCH
ABMQK
ABPLI
ABQBU
ABTAH
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACNCT
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFFNX
AFLOW
AFQWF
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARMRJ
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
BAPOH
BGNMA
C6C
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
HRMNR
I0C
IKXTQ
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
TSG
UG4
UOJIU
UPT
UTJUX
UZXMN
VFIZW
W48
ZMTXR
ZY4
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c363t-99589c81b8acec703517e28327fac9d792b7dd894ba02506a2f8eacd5b11f5b73
IEDL.DBID C6C
ISSN 1972-6724
2198-2759
IngestDate Tue Aug 19 21:33:13 EDT 2025
Thu Oct 02 15:08:35 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
Wed Oct 01 02:24:21 EDT 2025
Fri Feb 21 02:43:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Nearly-integrable systems
Space debris
Proper elements
Normal forms
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-99589c81b8acec703517e28327fac9d792b7dd894ba02506a2f8eacd5b11f5b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8315-8433
OpenAccessLink https://doi.org/10.1007/s40574-023-00347-x
PQID 2817625818
PQPubID 2044283
PageCount 18
ParticipantIDs unpaywall_primary_10_1007_s40574_023_00347_x
proquest_journals_2817625818
crossref_primary_10_1007_s40574_023_00347_x
crossref_citationtrail_10_1007_s40574_023_00347_x
springer_journals_10_1007_s40574_023_00347_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Bollettino della Unione matematica italiana (2008)
PublicationTitleAbbrev Boll Unione Mat Ital
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References LemaitreAMorbidelliAProper elements for highly inclined asteroidal orbitsCelest. Mech. Dyn. Astron.19946029560825.70061
DepritACanonical transformations depending on a small parameterCelest. Mech.1969112302536110172.26002
CellettiAGachetFGaleşCPucaccoGEfthymiopoulosCDynamical models and the onset of chaos in space debrisInt. J. Nonlinear Mech.20179047163
KneževićZMilaniASynthetic proper elements for outer main belt asteroidsCelest. Mech. Dyn. Astron.20007817460992.85502
Kozai, Y.: The dynamical evolution of the Hirayama family. In: Gehrels, T. (ed.) Asteroids. Univ. Arizona Press, pp. 334–335 (1979)
LemaitreAProper elements: what are they?Celest. Mech. Dyn. Astron.199256103119
CellettiAGalesCRodriguez-FernandezVVasileMClassification of regular and chaotic motions in Hamiltonian systems with deep learningSci. Rep.2022121890
KneževićZMilaniAProper element catalogs and asteroid familiesAstron. Astrophys.200340311651173
Apetrii, M., Celletti, A., Efthymiopoulos, E., Galeş, C., Vartolomei, T.: On a simulator of break-up events for space debris. Work Progress (2022)
CellettiAGaleşCLhotkaCResonance in the Earth’s space environmentNonlinear Sci. Num. Sim.20208440562501444.70008
Fenucci, M., Gronchi, G., Saillenfest, M.: Proper elements for resonant planet-crossing asteroids. Celest. Mech. Dynam. Astron. 3 (2022)
SchubartJAdditional results on orbits of Hilda-type asteroidsAstron. Astrophys.1991241297302
CellettiAGaleşCDynamics of resonances and equilibria of Low Earth ObjectsSIAM J. Appl. Dyn. Syst.20181720323537556541390.70029
HirayamaKGroups of asteroids probably of common originAstron. J.191831185188
BreenPGFoleyCNBoekholtTPortegies ZwartSNewton versus the machine: solving the chaotic three-body problem using deep neural networksMNRAS2020494224652470
Rosengren, A., Bombardelli, C., Amato, D.: Geocentric proper orbital elements. In: AAS/Division of dynamical astronomy meeting, vol. 51, p. P3 (2019)
YuasaMTheory of secular perturbations of asteroids including terms of higher orders and higher degreesPubl. Astron. Soc. Jpn.197325399
Knežević, Z.: Asteroid family identification: history and state of the art. In: Chesley, S.R., Morbidelli, A., Jedicke, R., Farnocchia, D. (eds.) Proceedings IAU Symposium No. 318, 2015, International Astronomical Union (2016)
BrouwerDSecular variations of the orbital elements of minor planetsAstron. J.195156932
CasanovaDPetitALemaitreALong-term evolution of space debris under the J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document} effect, the solar radiation pressure and the solar and lunar perturbationsCelest. Mech. Dyn. Astr.20151232232381428.70025
Tisserand, F.: Traité de Mécanique Céleste, I, Ch. 23. Édition Jacques Gabay, Paris (1889)
JohnsonNLKriskoPHLieuJ-CAm-MeadorPDNASA’s new break-up model of EVOLVE 4.0Adv. Sp. Res.200128913771384
Knežević, Z., Lemaitre, A., Milani, A.: The determination of asteroid proper elements. In: Bottke, W., et al. (ed.) Asteroids III. Arizona Univ. Press and LPI, Tucson, p. 603 (2003)
DepritAHenrardJRomAAnalytical lunar ephemeris: Delaunay’s theoryAstron. J.19717632692720216.50304
SchubartJThree characteristic parameters of orbits of Hilda-type asteroidsAstron. Astrophys.19821141200204
Schettino, G., Alessi, E.M., Rossi, A., Valsecchi, G.B.: A frequency portrait of Low Earth Orbits. Celest. Mech. Dyn. Astron. 131(35) (2019)
DepritAHenrardJRomALunar ephemeris: Delaunay’s theory revisitedScience1970168393915691570
GiorgilliANotes on Hamiltonian Dynamical Systems2022CambridgeCambridge University Press07504269
CarrubaVAljbaaeSDomingosRCHuamanMBarlettaWMachine learning applied to asteroid dynamicsCelest. Mech. Dyn. Astron.202213436446272707592111
CarrubaVAljbaaeSDomingosRCIdentification of asteroid groups in the z1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_1$$\end{document} and z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_2$$\end{document} nonlinear secular resonances through genetic algorithmsCelest. Mech. Dyn. Astron.2021133241472.70033
CarpinoMMilaniANobiliAMLong-term numerical integrations and synthetic theories for the motion of the outer planetsAstron. Astrophys.198718111821940618.70006
NovakovicBVokrouhlickyDSpotoFNesvornyDAsteroid families: properties, recent advances, and future opportunitiesCelest. Mech. Dyn. Astron.2022134344456206
Delaunay, C.E.: Theorie du Mouvement de la Lune, Vol. I and Vol. II. Mallet-Bachelier, Paris (1867)
Rosengren, A., Amato, D., Bombardelli, C., Jah, M.: Resident space object proper orbital elements. In: Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, Kaanapali, Maui, HI, Paper AAS 19-557 (2019)
CellettiAGaleşCOn the dynamics of space debris: 1:1 and 2:1 resonancesJ. Nonlinear Sci.20142461231126232752241302.70036
EfthymiopoulosCCanonical perturbation theory, stability and diffusion in Hamiltonian systems: applications in dynamical astronomyWorkshop Ser. Assoc. Argent. Astron.201133146
KneževićZMilaniAAre the analytical proper elements of asteroids still needed?Celest. Mech. Dyn. Astron.20191312739595641451.70045
CellettiAPucaccoGVartolomeiTReconnecting groups of space debris to their parent body through proper elementsNat. Sci. Rep.20211122676
Bien, R., Schubart, J.: Methods of determination of periods in the motion of asteroids. In: Asteroids, Comets, and Meteors (1983)
AAVV, NASA Standard break-up Model 1998 Revision, prepared by Lockheed Martin Space Mission Systems & Services for NASA (1998)
KneževićZMilaniADvorakRHenrardJSynthetic proper elements for outer main belt asteroidsNew Developments in the Dynamics of Planetary Systems2001NetherlandsSpringer1274.85012
NovacovićBCellinoAKneževićZFamilies among high-inclination asteroidsIcarus20112166981
HirayamaKFamilies of asteroidsJpn. J. Astron. Geophys.1922155
GachetFCellettiAPucaccoGEfthymiopoulosCGeostationary secular dynamics revisited: application to high area-to-mass ratio objectsCelest. Mech. Dyn. Astr.20171282-314918136583481367.70054
BernardEIntroduction to Machine Learning2021ChampaignWolfram Media Inc
CarrubaVAljbaaeSLucchiniAMachine-learning identification of asteroid groupsMNRAS2019488113771386
CellettiAGaleşCPucaccoGRosengrenAAnalytical development of the lunisolar disturbing function and the critical inclination secular resonanceCelest. Mech. Dyn. Astron.2017127325928336075151374.70029
MilaniAKneževićZSecular perturbation theory and computation of asteroid proper elementsMech. Dyn. Astron.19904934741111034130724.70008
Wolfram Documentation Center for “KMeans”, https://reference.wolfram.com/language/ref/method/KMeans.html
Williams, J.G.: Secular Perturbations in the Solar System. Ph.D. thesis, University of California, Los Angeles (1969)
BrandtSData Analysis2014ChamSpringer
Gkolias, I., Colombo, C.: Towards a sustainable exploitation of the geosynchronous orbital region. Celest. Mech. Dyn. Astr. 131(19) (2019)
MorbidelliAAsteroid secular resonant proper elementsIcarus19931054866
SkoulidouDKRosengrenAJTsiganisKVoyatzisGDynamical lifetime survey of geostationary transfer orbitsCelest. Mech. Dyn. Astron.201813077
CellettiAPucaccoGVartolomeiTProper elements for space debrisCelest. Mech. Dyn. Astr.20221341143993021490.70040
Wu, D., Rosengren, A.J.: RSO proper elements for space situational and domain awareness. In: Advanced Maui Optical and Space Surveillance Technologies Conference AMOS (2021)
MilaniAKneževićZAsteroid proper elements and the dynamical structure of the asteroid main beltIcarus1994107219254
LhotkaCCellettiAGaleşCPoynting–Robertson drag and solar wind in the space debris problemMon. Not. R. Ast. Soc.2016460802815
A Celletti (347_CR16) 2017; 127
DK Skoulidou (347_CR53) 2018; 130
347_CR48
347_CR49
Z Knežević (347_CR35) 2001
A Celletti (347_CR19) 2022; 134
NL Johnson (347_CR32) 2001; 28
347_CR4
K Hirayama (347_CR31) 1922; 1
347_CR1
M Yuasa (347_CR58) 1973; 25
347_CR2
J Schubart (347_CR51) 1982; 114
V Carruba (347_CR10) 2021; 133
A Giorgilli (347_CR28) 2022
A Milani (347_CR44) 1994; 107
A Celletti (347_CR17) 2020; 84
A Morbidelli (347_CR45) 1993; 105
M Carpino (347_CR8) 1987; 181
A Celletti (347_CR14) 2018; 17
C Lhotka (347_CR42) 2016; 460
J Schubart (347_CR52) 1991; 241
347_CR54
347_CR50
347_CR55
347_CR56
347_CR57
D Casanova (347_CR12) 2015; 123
E Bernard (347_CR3) 2021
F Gachet (347_CR27) 2017; 128
Z Knežević (347_CR36) 2003; 403
A Deprit (347_CR23) 1970; 168
B Novakovic (347_CR47) 2022; 134
A Celletti (347_CR18) 2021; 11
A Deprit (347_CR24) 1971; 76
K Hirayama (347_CR30) 1918; 31
D Brouwer (347_CR7) 1951; 56
A Celletti (347_CR15) 2017; 90
347_CR21
A Deprit (347_CR22) 1969; 1
347_CR26
B Novacović (347_CR46) 2011; 216
A Lemaitre (347_CR40) 1992; 56
347_CR29
A Celletti (347_CR20) 2022; 12
S Brandt (347_CR5) 2014
Z Knežević (347_CR34) 2000; 78
C Efthymiopoulos (347_CR25) 2011; 3
A Celletti (347_CR13) 2014; 24
347_CR38
347_CR39
347_CR33
A Lemaitre (347_CR41) 1994; 60
V Carruba (347_CR9) 2019; 488
Z Knežević (347_CR37) 2019; 131
V Carruba (347_CR11) 2022; 134
A Milani (347_CR43) 1990; 49
PG Breen (347_CR6) 2020; 494
References_xml – reference: GiorgilliANotes on Hamiltonian Dynamical Systems2022CambridgeCambridge University Press07504269
– reference: LemaitreAMorbidelliAProper elements for highly inclined asteroidal orbitsCelest. Mech. Dyn. Astron.19946029560825.70061
– reference: CellettiAGaleşCDynamics of resonances and equilibria of Low Earth ObjectsSIAM J. Appl. Dyn. Syst.20181720323537556541390.70029
– reference: Tisserand, F.: Traité de Mécanique Céleste, I, Ch. 23. Édition Jacques Gabay, Paris (1889)
– reference: BrouwerDSecular variations of the orbital elements of minor planetsAstron. J.195156932
– reference: Knežević, Z., Lemaitre, A., Milani, A.: The determination of asteroid proper elements. In: Bottke, W., et al. (ed.) Asteroids III. Arizona Univ. Press and LPI, Tucson, p. 603 (2003)
– reference: SchubartJAdditional results on orbits of Hilda-type asteroidsAstron. Astrophys.1991241297302
– reference: CellettiAGaleşCPucaccoGRosengrenAAnalytical development of the lunisolar disturbing function and the critical inclination secular resonanceCelest. Mech. Dyn. Astron.2017127325928336075151374.70029
– reference: Apetrii, M., Celletti, A., Efthymiopoulos, E., Galeş, C., Vartolomei, T.: On a simulator of break-up events for space debris. Work Progress (2022)
– reference: HirayamaKGroups of asteroids probably of common originAstron. J.191831185188
– reference: Schettino, G., Alessi, E.M., Rossi, A., Valsecchi, G.B.: A frequency portrait of Low Earth Orbits. Celest. Mech. Dyn. Astron. 131(35) (2019)
– reference: CellettiAPucaccoGVartolomeiTProper elements for space debrisCelest. Mech. Dyn. Astr.20221341143993021490.70040
– reference: CellettiAGaleşCLhotkaCResonance in the Earth’s space environmentNonlinear Sci. Num. Sim.20208440562501444.70008
– reference: AAVV, NASA Standard break-up Model 1998 Revision, prepared by Lockheed Martin Space Mission Systems & Services for NASA (1998)
– reference: BernardEIntroduction to Machine Learning2021ChampaignWolfram Media Inc
– reference: CasanovaDPetitALemaitreALong-term evolution of space debris under the J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document} effect, the solar radiation pressure and the solar and lunar perturbationsCelest. Mech. Dyn. Astr.20151232232381428.70025
– reference: Wolfram Documentation Center for “KMeans”, https://reference.wolfram.com/language/ref/method/KMeans.html
– reference: DepritAHenrardJRomAAnalytical lunar ephemeris: Delaunay’s theoryAstron. J.19717632692720216.50304
– reference: Wu, D., Rosengren, A.J.: RSO proper elements for space situational and domain awareness. In: Advanced Maui Optical and Space Surveillance Technologies Conference AMOS (2021)
– reference: NovakovicBVokrouhlickyDSpotoFNesvornyDAsteroid families: properties, recent advances, and future opportunitiesCelest. Mech. Dyn. Astron.2022134344456206
– reference: YuasaMTheory of secular perturbations of asteroids including terms of higher orders and higher degreesPubl. Astron. Soc. Jpn.197325399
– reference: CarpinoMMilaniANobiliAMLong-term numerical integrations and synthetic theories for the motion of the outer planetsAstron. Astrophys.198718111821940618.70006
– reference: CellettiAPucaccoGVartolomeiTReconnecting groups of space debris to their parent body through proper elementsNat. Sci. Rep.20211122676
– reference: NovacovićBCellinoAKneževićZFamilies among high-inclination asteroidsIcarus20112166981
– reference: Gkolias, I., Colombo, C.: Towards a sustainable exploitation of the geosynchronous orbital region. Celest. Mech. Dyn. Astr. 131(19) (2019)
– reference: LhotkaCCellettiAGaleşCPoynting–Robertson drag and solar wind in the space debris problemMon. Not. R. Ast. Soc.2016460802815
– reference: MilaniAKneževićZAsteroid proper elements and the dynamical structure of the asteroid main beltIcarus1994107219254
– reference: Bien, R., Schubart, J.: Methods of determination of periods in the motion of asteroids. In: Asteroids, Comets, and Meteors (1983)
– reference: Rosengren, A., Bombardelli, C., Amato, D.: Geocentric proper orbital elements. In: AAS/Division of dynamical astronomy meeting, vol. 51, p. P3 (2019)
– reference: Fenucci, M., Gronchi, G., Saillenfest, M.: Proper elements for resonant planet-crossing asteroids. Celest. Mech. Dynam. Astron. 3 (2022)
– reference: Kozai, Y.: The dynamical evolution of the Hirayama family. In: Gehrels, T. (ed.) Asteroids. Univ. Arizona Press, pp. 334–335 (1979)
– reference: JohnsonNLKriskoPHLieuJ-CAm-MeadorPDNASA’s new break-up model of EVOLVE 4.0Adv. Sp. Res.200128913771384
– reference: CarrubaVAljbaaeSDomingosRCHuamanMBarlettaWMachine learning applied to asteroid dynamicsCelest. Mech. Dyn. Astron.202213436446272707592111
– reference: GachetFCellettiAPucaccoGEfthymiopoulosCGeostationary secular dynamics revisited: application to high area-to-mass ratio objectsCelest. Mech. Dyn. Astr.20171282-314918136583481367.70054
– reference: Rosengren, A., Amato, D., Bombardelli, C., Jah, M.: Resident space object proper orbital elements. In: Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, Kaanapali, Maui, HI, Paper AAS 19-557 (2019)
– reference: HirayamaKFamilies of asteroidsJpn. J. Astron. Geophys.1922155
– reference: SchubartJThree characteristic parameters of orbits of Hilda-type asteroidsAstron. Astrophys.19821141200204
– reference: CellettiAGachetFGaleşCPucaccoGEfthymiopoulosCDynamical models and the onset of chaos in space debrisInt. J. Nonlinear Mech.20179047163
– reference: DepritAHenrardJRomALunar ephemeris: Delaunay’s theory revisitedScience1970168393915691570
– reference: LemaitreAProper elements: what are they?Celest. Mech. Dyn. Astron.199256103119
– reference: KneževićZMilaniASynthetic proper elements for outer main belt asteroidsCelest. Mech. Dyn. Astron.20007817460992.85502
– reference: Delaunay, C.E.: Theorie du Mouvement de la Lune, Vol. I and Vol. II. Mallet-Bachelier, Paris (1867)
– reference: MilaniAKneževićZSecular perturbation theory and computation of asteroid proper elementsMech. Dyn. Astron.19904934741111034130724.70008
– reference: Williams, J.G.: Secular Perturbations in the Solar System. Ph.D. thesis, University of California, Los Angeles (1969)
– reference: BreenPGFoleyCNBoekholtTPortegies ZwartSNewton versus the machine: solving the chaotic three-body problem using deep neural networksMNRAS2020494224652470
– reference: EfthymiopoulosCCanonical perturbation theory, stability and diffusion in Hamiltonian systems: applications in dynamical astronomyWorkshop Ser. Assoc. Argent. Astron.201133146
– reference: KneževićZMilaniAAre the analytical proper elements of asteroids still needed?Celest. Mech. Dyn. Astron.20191312739595641451.70045
– reference: CellettiAGalesCRodriguez-FernandezVVasileMClassification of regular and chaotic motions in Hamiltonian systems with deep learningSci. Rep.2022121890
– reference: CarrubaVAljbaaeSLucchiniAMachine-learning identification of asteroid groupsMNRAS2019488113771386
– reference: CarrubaVAljbaaeSDomingosRCIdentification of asteroid groups in the z1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_1$$\end{document} and z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_2$$\end{document} nonlinear secular resonances through genetic algorithmsCelest. Mech. Dyn. Astron.2021133241472.70033
– reference: KneževićZMilaniADvorakRHenrardJSynthetic proper elements for outer main belt asteroidsNew Developments in the Dynamics of Planetary Systems2001NetherlandsSpringer1274.85012
– reference: KneževićZMilaniAProper element catalogs and asteroid familiesAstron. Astrophys.200340311651173
– reference: MorbidelliAAsteroid secular resonant proper elementsIcarus19931054866
– reference: CellettiAGaleşCOn the dynamics of space debris: 1:1 and 2:1 resonancesJ. Nonlinear Sci.20142461231126232752241302.70036
– reference: BrandtSData Analysis2014ChamSpringer
– reference: Knežević, Z.: Asteroid family identification: history and state of the art. In: Chesley, S.R., Morbidelli, A., Jedicke, R., Farnocchia, D. (eds.) Proceedings IAU Symposium No. 318, 2015, International Astronomical Union (2016)
– reference: SkoulidouDKRosengrenAJTsiganisKVoyatzisGDynamical lifetime survey of geostationary transfer orbitsCelest. Mech. Dyn. Astron.201813077
– reference: DepritACanonical transformations depending on a small parameterCelest. Mech.1969112302536110172.26002
– volume: 31
  start-page: 185
  year: 1918
  ident: 347_CR30
  publication-title: Astron. J.
  doi: 10.1086/104299
– volume: 168
  start-page: 1569
  issue: 3939
  year: 1970
  ident: 347_CR23
  publication-title: Science
  doi: 10.1126/science.168.3939.1569
– volume: 1
  start-page: 55
  year: 1922
  ident: 347_CR31
  publication-title: Jpn. J. Astron. Geophys.
– volume: 78
  start-page: 17
  year: 2000
  ident: 347_CR34
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1023/A:1011187405509
– volume: 241
  start-page: 297
  year: 1991
  ident: 347_CR52
  publication-title: Astron. Astrophys.
– volume: 56
  start-page: 9
  year: 1951
  ident: 347_CR7
  publication-title: Astron. J.
  doi: 10.1086/106480
– volume: 49
  start-page: 347
  year: 1990
  ident: 347_CR43
  publication-title: Mech. Dyn. Astron.
  doi: 10.1007/BF00049444
– volume: 403
  start-page: 1165
  year: 2003
  ident: 347_CR36
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20030475
– ident: 347_CR55
– volume-title: New Developments in the Dynamics of Planetary Systems
  year: 2001
  ident: 347_CR35
– volume: 134
  start-page: 34
  year: 2022
  ident: 347_CR47
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1007/s10569-022-10091-7
– ident: 347_CR50
  doi: 10.1007/s10569-019-9912-6
– volume: 494
  start-page: 2465
  issue: 2
  year: 2020
  ident: 347_CR6
  publication-title: MNRAS
  doi: 10.1093/mnras/staa713
– volume: 76
  start-page: 269
  issue: 3
  year: 1971
  ident: 347_CR24
  publication-title: Astron. J.
  doi: 10.1086/111116
– volume: 12
  start-page: 1890
  year: 2022
  ident: 347_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-05696-9
– volume: 28
  start-page: 1377
  issue: 9
  year: 2001
  ident: 347_CR32
  publication-title: Adv. Sp. Res.
  doi: 10.1016/S0273-1177(01)00423-9
– ident: 347_CR49
– volume: 24
  start-page: 1231
  issue: 6
  year: 2014
  ident: 347_CR13
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-014-9217-6
– volume: 488
  start-page: 1377
  issue: 1
  year: 2019
  ident: 347_CR9
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1795
– volume: 107
  start-page: 219
  year: 1994
  ident: 347_CR44
  publication-title: Icarus
  doi: 10.1006/icar.1994.1020
– volume: 114
  start-page: 200
  issue: 1
  year: 1982
  ident: 347_CR51
  publication-title: Astron. Astrophys.
– volume: 123
  start-page: 223
  year: 2015
  ident: 347_CR12
  publication-title: Celest. Mech. Dyn. Astr.
  doi: 10.1007/s10569-015-9644-1
– volume: 127
  start-page: 259
  issue: 3
  year: 2017
  ident: 347_CR16
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1007/s10569-016-9726-8
– volume-title: Notes on Hamiltonian Dynamical Systems
  year: 2022
  ident: 347_CR28
  doi: 10.1017/9781009151122
– ident: 347_CR56
– ident: 347_CR4
– volume: 11
  start-page: 22676
  year: 2021
  ident: 347_CR18
  publication-title: Nat. Sci. Rep.
– ident: 347_CR21
– volume: 1
  start-page: 12
  year: 1969
  ident: 347_CR22
  publication-title: Celest. Mech.
  doi: 10.1007/BF01230629
– ident: 347_CR26
  doi: 10.1007/s10569-022-10078-4
– volume: 17
  start-page: 203
  year: 2018
  ident: 347_CR14
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/17M1118671
– ident: 347_CR57
– ident: 347_CR1
– volume: 90
  start-page: 47
  year: 2017
  ident: 347_CR15
  publication-title: Int. J. Nonlinear Mech.
  doi: 10.1016/j.ijnonlinmec.2016.12.015
– ident: 347_CR39
  doi: 10.2307/j.ctv1v7zdn4.45
– volume: 216
  start-page: 69
  year: 2011
  ident: 347_CR46
  publication-title: Icarus
  doi: 10.1016/j.icarus.2011.08.016
– volume-title: Introduction to Machine Learning
  year: 2021
  ident: 347_CR3
– volume: 460
  start-page: 802
  year: 2016
  ident: 347_CR42
  publication-title: Mon. Not. R. Ast. Soc.
  doi: 10.1093/mnras/stw927
– ident: 347_CR29
  doi: 10.1007/s10569-019-9895-3
– volume: 3
  start-page: 3
  year: 2011
  ident: 347_CR25
  publication-title: Workshop Ser. Assoc. Argent. Astron.
– volume: 134
  start-page: 11
  year: 2022
  ident: 347_CR19
  publication-title: Celest. Mech. Dyn. Astr.
  doi: 10.1007/s10569-022-10064-w
– ident: 347_CR33
  doi: 10.1017/S1743921315008728
– volume: 134
  start-page: 36
  year: 2022
  ident: 347_CR11
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1007/s10569-022-10088-2
– volume: 105
  start-page: 48
  year: 1993
  ident: 347_CR45
  publication-title: Icarus
  doi: 10.1006/icar.1993.1110
– ident: 347_CR54
– volume: 181
  start-page: 182
  issue: 1
  year: 1987
  ident: 347_CR8
  publication-title: Astron. Astrophys.
– volume: 56
  start-page: 103
  year: 1992
  ident: 347_CR40
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1007/BF00699724
– volume: 131
  start-page: 27
  year: 2019
  ident: 347_CR37
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1007/s10569-019-9906-4
– ident: 347_CR38
– volume: 128
  start-page: 149
  issue: 2-3
  year: 2017
  ident: 347_CR27
  publication-title: Celest. Mech. Dyn. Astr.
  doi: 10.1007/s10569-016-9746-4
– volume: 130
  start-page: 77
  year: 2018
  ident: 347_CR53
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1007/s10569-018-9865-1
– ident: 347_CR2
– volume: 133
  start-page: 24
  year: 2021
  ident: 347_CR10
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1007/s10569-021-10021-z
– volume-title: Data Analysis
  year: 2014
  ident: 347_CR5
  doi: 10.1007/978-3-319-03762-2
– volume: 25
  start-page: 399
  year: 1973
  ident: 347_CR58
  publication-title: Publ. Astron. Soc. Jpn.
– volume: 84
  year: 2020
  ident: 347_CR17
  publication-title: Nonlinear Sci. Num. Sim.
– volume: 60
  start-page: 29
  year: 1994
  ident: 347_CR41
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1007/BF00693091
– ident: 347_CR48
SSID ssj0001138797
Score 2.3206186
Snippet Perturbative methods have been developed and widely used in the XVIII and XIX century to study the behavior of N -body problems in Celestial Mechanics. Such...
Perturbative methods have been developed and widely used in the XVIII and XIX century to study the behavior of N-body problems in Celestial Mechanics. Such...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 411
SubjectTerms Celestial mechanics
Data analysis
Dynamics
Hamiltonian functions
Machine learning
Mathematics
Mathematics and Statistics
Orbital elements
Radiation pressure
Solar radiation
Space debris
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5BOACHPmgrwqPyoTdwyG7stc0tSkGoUmgPRAIJaeXXSqjbbUQ24vHrO94XbVWhVj3bnpU9M55PO55vAD5wayMhrKZKslCS4xnVcpjRJM7QmWJhXEW7OD1Pzmbs0yW_XIGPbS1M9dq9TUnWNQ2Bpakoj-YuO-oK3wLMYBTjDQ0EK4LeD3B4FdYSjoi8B2uz8y_jqyqhLGKaiKq3LfomGoXgqqmd-bOgX-PTE-js8qSbsL4s5vrhTuf5T6Ho9CX4dhP1C5Svg2VpBvbxN37H_93lK3jRYFUyro3rNaz4Ygs2px3R6-INXH_OHZn7WwxcpqIQJ3VL6gVBMEw0QdBOmp415KYgEwxy4U7JydSHkmOUcUxQHMF7zXrifKg_IO6h0N9w6C3MTk8uJme0adhA7SgZlVQpLpVFICxxjRUhSSl86IUkMm2VEyo2wjmpmNEBeiU6ziRe_I6bKMq4EaN30Cu-F34bSMIyJR2ajmWGDa0wyTB2IyZ13b2R9yFq1ZTahs08NNXI046HuTq9FE8vrU4vve_DQbdmXnN5PDt7r9V-2vj1Io1lhNGDI8rpw2GrwKfh56QddlbzFx_f-bfpu7ARV2YS_g7tQa-8Xfp9BEuled_4wg83DQn1
  priority: 102
  providerName: Unpaywall
Title Old perturbative methods for a new problem in Celestial Mechanics: the space debris dynamics
URI https://link.springer.com/article/10.1007/s40574-023-00347-x
https://www.proquest.com/docview/2817625818
https://link.springer.com/content/pdf/10.1007/s40574-023-00347-x.pdf
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2198-2759
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001138797
  issn: 1972-6724
  databaseCode: AFBBN
  dateStart: 20140301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2198-2759
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001138797
  issn: 1972-6724
  databaseCode: AGYKE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB_UgPnF9kYM3DW7TNA9vy-IDZdWDCwpCyasglLrYFfXfO2m7XRURPZY2U5hJMh-ZzPchtJ9YGwlhNVGShZYcz4iW3YxwmsFiosK4inZxcMXPh-ziLrlraHJCL8y3-v1RGQAFI5BZSKBSEQTw4hwkKV4VZnl_ep4SxVLUWipKUMIFZU2PzM9mvuahKbhs66GLaP6lGOn3V53nn1LO6TJaarAi7tXBXUEzvlhFi4OWaLVcQw_XucMj_wyJw1QU3riWhC4xgFGsMYBm3GjG4McC9yHJhDWd44EPLb9g4xiDOQz7ivXY-XD_H7tapb5cR8PTk9v-OWkEE4iNeTwmSiVSWQCiEsZYEYqEwgctIpFpq5xQ1AjnpGJGB-jDNc0kbLwuMVGUJUbEG2i2eCr8JsKcZUo6CJ1lhnWtMLxLXcykrtUTkw6KJu5LbcMmHkQt8rTlQa5cnoLL08rl6VsHHbRjRjWXxq9f70yikjbrqkypjGD3TgBldNDhJFLT179ZO2yj-Yefb_3P-jZaoNXcCqczO2h2_PzidwGsjM0emuud3V-e7FWzFZ6GVze9-w8lXODu
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5Vy4FyKPQlltLWh966RhvHiW1uCHXZFpZediUqVYr8ilQ1pCt2VxR-PeO82FYVKufEk8Qez3yxPd8H8CGxNhLCaqokDyU5nlMthzlNWY6TiQnjKtrFyXk6nvEvF8lFUxS2aE-7t1uSVaTuit0CtOAUcwwNpCqCInLc4PiDwnqwcXTy7XRtbSWKpah1VZRgNBWMN_Uy_zb0Z066B5rd3ugWbK7Kub651kWxln5G2zBrX7w-dfLzYLU0B_b2L07Hx37ZDjxr8Cg5qh3oOTzx5QvYmnRkrouX8P1r4cjcX2FyMhVNOKllpxcEAS_RBIE5aXRpyI-SHGMiC3GjIBMfyorRxiFBcwRjl_XE-VBjQNxNqS_x0iuYjT5Nj8e0EWWgNk7jJVUqkcoi2JXYxoqwESl80DsSubbKCcWMcE4qbnSAV6lmucTg7hITRXliRPwaeuWv0u8CSXmupEP3sNzwoRUmHTIXc6lrhcakD1E7LJltGMuDcEaRdVzLVc9l2HNZ1XPZ7z587NrMa76OB-_eb0c7a-buImMywgyRIJLpw6AdsPvLD1kbdF7yHw_fe5z197A5nk7OsrPP56dv4Cmr3CWsBu1Db3m18m8RHC3Nu2Yu3AHSbAIA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6i4OVBvOK85sE3F7amaZP4JtPhbeqDgz0IJbeCUOrYJuq_96TtOgURfW5zCuckOR9Jv-9D6DgyJuDcKCIF85Qcx4gS7ZTENIXFRLm2hexi7y6-7LPrQTT4wuIv_nafXkmWnAav0pRPWkObtmrim4cZjEC_IV5ghRNAkQsMupv3MOjEndkpSxAKXjqsSE5JzCmrmDM_h_nenWaQs74lXUFLr_lQfbypLPvSiLpraLVCkPisLPk6mnP5Blrp1fKr4030dJ9ZPHQjaCe6EPbGpVH0GANExQoDlMaVkwx-znEHWo9f6RnuOU8EhhinGMJh2G2Mw9Z5VgC2pXf9eAv1uxePnUtS2SgQE8bhhEgZCWkAngoYY7i_OuTOOxTxVBlpuaSaWysk08oDoljRVMB2bCMdBGmkebiN5vOX3O0gHLNUCgsFNUyztuE6blMbMqFKT8WogYJp-hJTaYx7q4ssqdWRi5QnkPKkSHny3kAn9ZhhqbDx69v706ok1WobJ1QEsKdHgD0aqDmt1Ozxb9GadTX_8PHd_0U_QosP593k9uruZg8t02Ka-eObfTQ_Gb26A0AzE31YTNhPfDPo4A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5BOACHPmgrwqPyoTdwyG7stc0tSkGoUmgPRAIJaeXXSqjbbUQ24vHrO94XbVWhVj3bnpU9M55PO55vAD5wayMhrKZKslCS4xnVcpjRJM7QmWJhXEW7OD1Pzmbs0yW_XIGPbS1M9dq9TUnWNQ2Bpakoj-YuO-oK3wLMYBTjDQ0EK4LeD3B4FdYSjoi8B2uz8y_jqyqhLGKaiKq3LfomGoXgqqmd-bOgX-PTE-js8qSbsL4s5vrhTuf5T6Ho9CX4dhP1C5Svg2VpBvbxN37H_93lK3jRYFUyro3rNaz4Ygs2px3R6-INXH_OHZn7WwxcpqIQJ3VL6gVBMEw0QdBOmp415KYgEwxy4U7JydSHkmOUcUxQHMF7zXrifKg_IO6h0N9w6C3MTk8uJme0adhA7SgZlVQpLpVFICxxjRUhSSl86IUkMm2VEyo2wjmpmNEBeiU6ziRe_I6bKMq4EaN30Cu-F34bSMIyJR2ajmWGDa0wyTB2IyZ13b2R9yFq1ZTahs08NNXI046HuTq9FE8vrU4vve_DQbdmXnN5PDt7r9V-2vj1Io1lhNGDI8rpw2GrwKfh56QddlbzFx_f-bfpu7ARV2YS_g7tQa-8Xfp9BEuled_4wg83DQn1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Old+perturbative+methods+for+a+new+problem+in+Celestial+Mechanics%3A+the+space+debris+dynamics&rft.jtitle=Bollettino+della+Unione+matematica+italiana+%282008%29&rft.au=Celletti+Alessandra&rft.au=Tudor%2C+Vartolomei&rft.date=2023-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1972-6724&rft.eissn=2198-2759&rft.volume=16&rft.issue=2&rft.spage=411&rft.epage=428&rft_id=info:doi/10.1007%2Fs40574-023-00347-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1972-6724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1972-6724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1972-6724&client=summon