Split-based elevational localization of photoacoustic guidewire tip by 1D array probe using spatial impulse response
Objective . Photoacoustic emitters on the tip of a therapeutic device have been intensively studied for echo-guided intervention purposes. In this study, a novel method for localizing the guidewire tip emitter in the elevation direction using a 1D array probe is proposed to resolve the issue of the...
Saved in:
| Published in | Physics in medicine & biology Vol. 69; no. 6; pp. 65013 - 65028 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
IOP Publishing
21.03.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0031-9155 1361-6560 1361-6560 |
| DOI | 10.1088/1361-6560/ad27fe |
Cover
| Abstract | Objective . Photoacoustic emitters on the tip of a therapeutic device have been intensively studied for echo-guided intervention purposes. In this study, a novel method for localizing the guidewire tip emitter in the elevation direction using a 1D array probe is proposed to resolve the issue of the tip potentially deviating from the ultrasound-imaged plane. Approach . Our method uses the ‘interference split’ that appears when the emitter is off-plane. Here, a point source from the emitter splits into two points in images. Based on the split, ‘split-based elevation localization (SEL)’ is introduced to estimate the absolute elevation position of the emitter. Additionally, ‘Signed SEL’ incorporates an asymmetric feature into the 1D probe to obtain the sign of the elevation localization. An attenuative coupler is attached to the half side of the probe to control the interference split. In SEL and Signed SEL, we propose a modeled split matching (MSM) algorithm to localize the tip position. MSM performs pattern matching of a measured split waveform with modeled split waveforms corresponding to all emitter positions in a region of interest. The modeled waveforms are precalculated using the spatial impulse response. The proposed method is numerically and experimentally validated. Main results . Numerical simulations for time-domain wave propagation clearly demonstrated the interference split phenomena. In the experimental validation with a vessel-mimicking phantom, the proposed methods successfully estimated the elevation positions, y b . SEL exhibited a root-mean-squared error (RMSE) of 2.0 mm for the range of 0 mm ≤ y b ≤ 30 mm, while Signed SEL estimated the absolute position with an RMSE of 2.4 mm and the sign with an accuracy of 80.8% for the range of −30 mm ≤ y b ≤ 30 mm. Significance. These results suggest that the proposed method could provide approximate tip positions and help sonographers track it by fanning the probe. |
|---|---|
| AbstractList | Objective. Photoacoustic emitters on the tip of a therapeutic device have been intensively studied for echo-guided intervention purposes. In this study, a novel method for localizing the guidewire tip emitter in the elevation direction using a 1D array probe is proposed to resolve the issue of the tip potentially deviating from the ultrasound-imaged plane.Approach. Our method uses the 'interference split' that appears when the emitter is off-plane. Here, a point source from the emitter splits into two points in images. Based on the split, 'split-based elevation localization (SEL)' is introduced to estimate the absolute elevation position of the emitter. Additionally, 'Signed SEL' incorporates an asymmetric feature into the 1D probe to obtain the sign of the elevation localization. An attenuative coupler is attached to the half side of the probe to control the interference split. In SEL and Signed SEL, we propose a modeled split matching (MSM) algorithm to localize the tip position. MSM performs pattern matching of a measured split waveform with modeled split waveforms corresponding to all emitter positions in a region of interest. The modeled waveforms are precalculated using the spatial impulse response. The proposed method is numerically and experimentally validated.Main results. Numerical simulations for time-domain wave propagation clearly demonstrated the interference split phenomena. In the experimental validation with a vessel-mimicking phantom, the proposed methods successfully estimated the elevation positions,yb.SEL exhibited a root-mean-squared error (RMSE) of 2.0 mm for the range of 0 mm ≤yb≤ 30 mm, while Signed SEL estimated the absolute position with an RMSE of 2.4 mm and the sign with an accuracy of 80.8% for the range of -30 mm ≤yb≤ 30 mm.Significance.These results suggest that the proposed method could provide approximate tip positions and help sonographers track it by fanning the probe.Objective. Photoacoustic emitters on the tip of a therapeutic device have been intensively studied for echo-guided intervention purposes. In this study, a novel method for localizing the guidewire tip emitter in the elevation direction using a 1D array probe is proposed to resolve the issue of the tip potentially deviating from the ultrasound-imaged plane.Approach. Our method uses the 'interference split' that appears when the emitter is off-plane. Here, a point source from the emitter splits into two points in images. Based on the split, 'split-based elevation localization (SEL)' is introduced to estimate the absolute elevation position of the emitter. Additionally, 'Signed SEL' incorporates an asymmetric feature into the 1D probe to obtain the sign of the elevation localization. An attenuative coupler is attached to the half side of the probe to control the interference split. In SEL and Signed SEL, we propose a modeled split matching (MSM) algorithm to localize the tip position. MSM performs pattern matching of a measured split waveform with modeled split waveforms corresponding to all emitter positions in a region of interest. The modeled waveforms are precalculated using the spatial impulse response. The proposed method is numerically and experimentally validated.Main results. Numerical simulations for time-domain wave propagation clearly demonstrated the interference split phenomena. In the experimental validation with a vessel-mimicking phantom, the proposed methods successfully estimated the elevation positions,yb.SEL exhibited a root-mean-squared error (RMSE) of 2.0 mm for the range of 0 mm ≤yb≤ 30 mm, while Signed SEL estimated the absolute position with an RMSE of 2.4 mm and the sign with an accuracy of 80.8% for the range of -30 mm ≤yb≤ 30 mm.Significance.These results suggest that the proposed method could provide approximate tip positions and help sonographers track it by fanning the probe. . Photoacoustic emitters on the tip of a therapeutic device have been intensively studied for echo-guided intervention purposes. In this study, a novel method for localizing the guidewire tip emitter in the elevation direction using a 1D array probe is proposed to resolve the issue of the tip potentially deviating from the ultrasound-imaged plane. . Our method uses the 'interference split' that appears when the emitter is off-plane. Here, a point source from the emitter splits into two points in images. Based on the split, 'split-based elevation localization (SEL)' is introduced to estimate the absolute elevation position of the emitter. Additionally, 'Signed SEL' incorporates an asymmetric feature into the 1D probe to obtain the sign of the elevation localization. An attenuative coupler is attached to the half side of the probe to control the interference split. In SEL and Signed SEL, we propose a modeled split matching (MSM) algorithm to localize the tip position. MSM performs pattern matching of a measured split waveform with modeled split waveforms corresponding to all emitter positions in a region of interest. The modeled waveforms are precalculated using the spatial impulse response. The proposed method is numerically and experimentally validated. . Numerical simulations for time-domain wave propagation clearly demonstrated the interference split phenomena. In the experimental validation with a vessel-mimicking phantom, the proposed methods successfully estimated the elevation positions,yb.SEL exhibited a root-mean-squared error (RMSE) of 2.0 mm for the range of 0 mm ≤yb≤ 30 mm, while Signed SEL estimated the absolute position with an RMSE of 2.4 mm and the sign with an accuracy of 80.8% for the range of -30 mm ≤yb≤ 30 mm. These results suggest that the proposed method could provide approximate tip positions and help sonographers track it by fanning the probe. Objective . Photoacoustic emitters on the tip of a therapeutic device have been intensively studied for echo-guided intervention purposes. In this study, a novel method for localizing the guidewire tip emitter in the elevation direction using a 1D array probe is proposed to resolve the issue of the tip potentially deviating from the ultrasound-imaged plane. Approach . Our method uses the ‘interference split’ that appears when the emitter is off-plane. Here, a point source from the emitter splits into two points in images. Based on the split, ‘split-based elevation localization (SEL)’ is introduced to estimate the absolute elevation position of the emitter. Additionally, ‘Signed SEL’ incorporates an asymmetric feature into the 1D probe to obtain the sign of the elevation localization. An attenuative coupler is attached to the half side of the probe to control the interference split. In SEL and Signed SEL, we propose a modeled split matching (MSM) algorithm to localize the tip position. MSM performs pattern matching of a measured split waveform with modeled split waveforms corresponding to all emitter positions in a region of interest. The modeled waveforms are precalculated using the spatial impulse response. The proposed method is numerically and experimentally validated. Main results . Numerical simulations for time-domain wave propagation clearly demonstrated the interference split phenomena. In the experimental validation with a vessel-mimicking phantom, the proposed methods successfully estimated the elevation positions, y b . SEL exhibited a root-mean-squared error (RMSE) of 2.0 mm for the range of 0 mm ≤ y b ≤ 30 mm, while Signed SEL estimated the absolute position with an RMSE of 2.4 mm and the sign with an accuracy of 80.8% for the range of −30 mm ≤ y b ≤ 30 mm. Significance. These results suggest that the proposed method could provide approximate tip positions and help sonographers track it by fanning the probe. |
| Author | Imai, Ryo Takeshima, Hirozumi Tanaka, Tomohiko |
| Author_xml | – sequence: 1 givenname: Tomohiko surname: Tanaka fullname: Tanaka, Tomohiko organization: FUJIFILM Healthcare Corporation Innovative Technology Laboratory, Tokyo, Japan – sequence: 2 givenname: Ryo surname: Imai fullname: Imai, Ryo organization: Hitachi, Ltd Research & Development Group, Tokyo, Japan – sequence: 3 givenname: Hirozumi surname: Takeshima fullname: Takeshima, Hirozumi organization: FUJIFILM Healthcare Corporation Innovative Technology Laboratory, Tokyo, Japan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38344935$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv1TAQhS3Uit4W9qyQd7AgrR0njrNE5SlVYgGsLT_GxZUTGzuhuvx6fEnpClX1ZuTRd85ozpyioznOgNALSs4pEeKCMk4b3nNyoWw7OHiCdvetI7QjhNFmpH1_gk5LuSGEUtF2T9EJE6zrRtbv0PI1Bb80WhWwGAL8UouPswo4RKOC__33i6PD6UdcojJxLYs3-Hr1Fm59Brz4hPUe03dY5az2OOWoAa_Fz9e4pCqvXn5KayiAM5QU5wLP0LFTtfH8rp6h7x_ef7v81Fx9-fj58u1VYxhnSzMKq5Wx4Li2jnCqaSdobwcNYjTCaGJda8B1tjO9YkQJMxLR1-fcoF1H2Bmim-86J7W_VSHIlP2k8l5SIg8JykNc8hCX3BKsmtebpi7yc4WyyMkXAyGoGerysh1bToZuELyiL-_QVU9g773_pVsBsgEmx1IyuMeMf7NJfEzyJq653qI8hL_6D54mLfkouSS8J5TJZB37A6dOquw |
| CODEN | PHMBA7 |
| Cites_doi | 10.1097/ACO.0b013e328356b835 10.1007/s00270-017-1798-7 10.4329/wjr.v4.i6.273 10.1038/s41598-018-27490-2 10.1109/TBME.2013.2267742 10.1117/12.2253806 10.1121/1.400497 10.3390/s20185370 10.1097/00115550-200811000-00005 10.1016/j.ultrasmedbio.2018.01.016 10.1016/j.bjae.2019.11.003 10.1016/j.ultras.2012.12.002 10.1213/ane.0b013e318161528a 10.1016/j.jen.2017.07.009 10.1109/TUFFC.2016.2602242 10.3791/57207 10.1016/j.cult.2012.03.001 10.1109/TUFFC.2018.2799725 10.1117/1.3233916 10.1016/j.accpm.2020.06.019 10.1213/01.ane.0000286814.79988.0a 10.1016/0301-5629(96)00086-5 10.1016/j.jvs.2010.03.025 10.1093/bja/aet198 10.1016/j.cult.2014.07.012 10.1109/58.139123 10.1111/anae.13921 10.35848/1347-4065/aba328 10.1016/j.pmr.2016.04.003 10.1109/TMI.2019.2939568 10.1109/TBME.2016.2612229 10.35848/1347-4065/ac0c37 10.1121/1.424654 10.3390/s22176417 10.1109/TUFFC.2008.798 10.1213/01.ANE.0000153020.84780.A5 10.1016/j.pmr.2016.04.006 10.1016/j.cult.2010.04.001 10.1109/TUFFC.2014.006728 10.1016/S1051-0443(07)61429-8 10.1117/1.3360308 |
| ContentType | Journal Article |
| Copyright | 2024 Institute of Physics and Engineering in Medicine. All rights, including for text and data mining, AI training, and similar technologies, are reserved. 2024 Institute of Physics and Engineering in Medicine. |
| Copyright_xml | – notice: 2024 Institute of Physics and Engineering in Medicine. All rights, including for text and data mining, AI training, and similar technologies, are reserved. – notice: 2024 Institute of Physics and Engineering in Medicine. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1088/1361-6560/ad27fe |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology Physics |
| EISSN | 1361-6560 |
| ExternalDocumentID | 10.1088/1361-6560/ad27fe 38344935 10_1088_1361_6560_ad27fe pmbad27fe |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X 123 1JI 4.4 5B3 5RE 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP ADEQX AEFHF AEINN AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 .GJ .HR 02O 1WK 29O 3O- 53G 5ZI 9BW AAGCF AALHV ACARI ADTOC AERVB AETNG AFFNX AGQPQ AHSEE ARNYC BBWZM FEDTE HVGLF H~9 J5H JCGBZ M45 NT- NT. Q02 RKQ S3P T37 UNPAY X7L ZGI ZMT ZXP ZY4 |
| ID | FETCH-LOGICAL-c363t-98dbacdef6bdf061b14815d7be89c8cb0df2cef4d4c5a30a8c9085555ff7bf403 |
| IEDL.DBID | UNPAY |
| ISSN | 0031-9155 1361-6560 |
| IngestDate | Sun Sep 07 10:50:35 EDT 2025 Fri Sep 05 11:51:30 EDT 2025 Thu Aug 28 04:41:02 EDT 2025 Wed Oct 01 05:35:49 EDT 2025 Wed Aug 27 01:32:43 EDT 2025 Tue Aug 20 22:16:35 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | echo-guided intervention photoacoustics ultrasound spatial impulse response |
| Language | English |
| License | This article is available under the terms of the IOP-Standard License. 2024 Institute of Physics and Engineering in Medicine. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-98dbacdef6bdf061b14815d7be89c8cb0df2cef4d4c5a30a8c9085555ff7bf403 |
| Notes | PMB-115767.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1361-6560/ad27fe |
| PMID | 38344935 |
| PQID | 2926074786 |
| PQPubID | 23479 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2926074786 crossref_primary_10_1088_1361_6560_ad27fe unpaywall_primary_10_1088_1361_6560_ad27fe iop_journals_10_1088_1361_6560_ad27fe pubmed_primary_38344935 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-21 |
| PublicationDateYYYYMMDD | 2024-03-21 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Physics in medicine & biology |
| PublicationTitleAbbrev | PMB |
| PublicationTitleAlternate | Phys. Med. Biol |
| PublicationYear | 2024 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Takeshima (pmbad27febib39) 2021; 60 Aguirre (pmbad27febib1) 2009; 14 Graham (pmbad27febib13) 2020; 39 Swenson (pmbad27febib38) 2008; 106 Klein (pmbad27febib26) 2007; 105 Zetlaoui (pmbad27febib49) 2020; 39 Edwards (pmbad27febib10) 2018; 44 Roux (pmbad27febib33) 2018; 8 Strakowski (pmbad27febib37) 2016; 27 Wei (pmbad27febib45) 2015; 62 Merella (pmbad27febib30) 2020; 20 Marhofer (pmbad27febib29) 2013; 111 Wu (pmbad27febib46) 2018; 65 Bell (pmbad27febib4) 2018; 8 Fronheiser (pmbad27febib11) 2008; 55 Li (pmbad27febib27) 2013; 53 Xia (pmbad27febib48) 2016; 9900 Jensen (pmbad27febib21) 1992; 39 Sen (pmbad27febib35) 2017; 64 Tanaka (pmbad27febib41) 2019 Li (pmbad27febib28) 2020; 20 Tsui (pmbad27febib44) 2005; 100 Allman (pmbad27febib2) 2019; 2019 Culp (pmbad27febib7) 2000; 11 Treeby (pmbad27febib43) 2010; 15 Deurdulian (pmbad27febib8) 2014; 9 Irisawa (pmbad27febib19) 2017; 10064 Jensen (pmbad27febib22) 1999; 105 Kang (pmbad27febib23) 2015 Diarra (pmbad27febib9) 2013; 60 Xia (pmbad27febib47) 2018 Shi (pmbad27febib36) 2022; 22 Chin (pmbad27febib5) 2008; 33 Ginat (pmbad27febib12) 2010; 5 Tanaka (pmbad27febib40) 2019 Harvey (pmbad27febib15) 2012; 7 Jensen (pmbad27febib20) 1991; 89 Hocking (pmbad27febib16) 2012; 25 Colio (pmbad27febib6) 2016; 27 Holm (pmbad27febib17) 1996; 22 Kawarada (pmbad27febib25) 2010; 52 Guo (pmbad27febib14) 2018; 44 Arif (pmbad27febib3) 2018; 41 Imai (pmbad27febib18) 2020; 59 Roux (pmbad27febib31) 2015 Tanaka (pmbad27febib42) 2020 Roux (pmbad27febib32) 2016; 63 Kawai (pmbad27febib24) 2012; 4 Scholten (pmbad27febib34) 2017; 72 |
| References_xml | – volume: 25 start-page: 603 year: 2012 ident: pmbad27febib16 article-title: Optimizing the safety and practice of ultrasound-guided regional anesthesia: the role of echogenic technology publication-title: Curr. Opin. Anaesthesiol. doi: 10.1097/ACO.0b013e328356b835 – volume: 41 start-page: 145 year: 2018 ident: pmbad27febib3 article-title: Needle tip visibility in 3D ultrasound images publication-title: Cardiovasc. Intervent. Rradiol doi: 10.1007/s00270-017-1798-7 – start-page: p 93232Y–1 year: 2015 ident: pmbad27febib23 article-title: Needle visualization using photoacoustic effect – volume: 4 start-page: 273 year: 2012 ident: pmbad27febib24 article-title: Evaluation of vascular puncture needles with specific modifications for enhanced ultrasound visibility: in vitro study publication-title: World J. Radiol. doi: 10.4329/wjr.v4.i6.273 – volume: 8 start-page: 9108 year: 2018 ident: pmbad27febib33 article-title: Experimental 3D ultrasound imaging with 2D sparse arrays using focused and diverging waves publication-title: Sci. Rep. doi: 10.1038/s41598-018-27490-2 – volume: 60 start-page: 3093 year: 2013 ident: pmbad27febib9 article-title: Design of optimal 2D nongrid sparse arrays for medical ultrasound publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2267742 – volume: 10064 year: 2017 ident: pmbad27febib19 article-title: Needle tip visualization by bevel-point ultrasound generator and prototype photoacoustic imaging system publication-title: Proc. SPIE doi: 10.1117/12.2253806 – volume: 89 start-page: 182 year: 1991 ident: pmbad27febib20 article-title: A model for the propagation and scattering of ultrasound in tissue publication-title: The Journal of the Acoustical Society of America doi: 10.1121/1.400497 – volume: 20 start-page: 5370 year: 2020 ident: pmbad27febib28 article-title: Design of 2D sparse array transducers for anomaly detection in medical phantoms publication-title: Sensors doi: 10.3390/s20185370 – volume: 33 start-page: 532 year: 2008 ident: pmbad27febib5 article-title: Needle visualization in ultrasound-guided regional anesthesia: challenges and solutions publication-title: Reg Anesthesia Pain Med. doi: 10.1097/00115550-200811000-00005 – volume: 44 start-page: 1003 year: 2018 ident: pmbad27febib14 article-title: Ultrasound-guided percutaneous needle biopsy for peripheral pulmonary lesions: diagnostic accuracy and influencing factors publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2018.01.016 – volume: 20 start-page: 42 year: 2020 ident: pmbad27febib30 article-title: Ultrasound-guided upper and lower extremity nerve blocks in children publication-title: BJA Educ. doi: 10.1016/j.bjae.2019.11.003 – volume: 53 start-page: 831 year: 2013 ident: pmbad27febib27 article-title: Effects of vibration excitation methodology and configuration of an acoustic needle on its tip vibration publication-title: Ultrasonics doi: 10.1016/j.ultras.2012.12.002 – volume: 106 start-page: 1015 year: 2008 ident: pmbad27febib38 article-title: A novel approach for assessing catheter position after ultrasound-guided placement of continuous interscalene block publication-title: Anesthesia Analgesia doi: 10.1213/ane.0b013e318161528a – volume: 44 start-page: 33 year: 2018 ident: pmbad27febib10 article-title: Development and implementation of an ultrasound-guided peripheral intravenous catheter program for emergency nurses publication-title: J. Emerg. Nursing doi: 10.1016/j.jen.2017.07.009 – volume: 63 start-page: 2138 year: 2016 ident: pmbad27febib32 article-title: 2D ultrasound sparse arrays multidepth radiation optimization using simulated annealing and spiral-array inspired energy functions publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2016.2602242 – year: 2018 ident: pmbad27febib47 article-title: Three-dimensional ultrasonic needle tip tracking with a fiber-optic ultrasound receiver publication-title: J. Vis. Exp. doi: 10.3791/57207 – volume: 7 start-page: 309 year: 2012 ident: pmbad27febib15 article-title: Ultrasound-guided breast interventions publication-title: Ultrasound Clin. doi: 10.1016/j.cult.2012.03.001 – volume: 65 start-page: 546 year: 2018 ident: pmbad27febib46 article-title: Laser generated leaky acoustic waves for needle visualization publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2018.2799725 – volume: 14 year: 2009 ident: pmbad27febib1 article-title: Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization publication-title: J. Biomed. Opt. doi: 10.1117/1.3233916 – volume: 39 start-page: 876 year: 2020 ident: pmbad27febib49 article-title: Ultrasound-guided scalp nerve blocks for neurosurgery: a narrative review publication-title: Anaesthesia Crit. Care Pain Med. doi: 10.1016/j.accpm.2020.06.019 – volume: 8 year: 2018 ident: pmbad27febib4 article-title: Photoacoustic-based visual servoing of a needle tip publication-title: Sci. Rep. – volume: 105 start-page: 1858 year: 2007 ident: pmbad27febib26 article-title: Piezoelectric vibrating needle and catheter for enhancing ultrasound-guided peripheral nerve blocks publication-title: Anesthesia Analgesia doi: 10.1213/01.ane.0000286814.79988.0a – volume: 22 start-page: 773 year: 1996 ident: pmbad27febib17 article-title: Interventional ultrasound publication-title: Ultrasound Med. Biol. doi: 10.1016/0301-5629(96)00086-5 – volume: 52 start-page: 475 year: 2010 ident: pmbad27febib25 article-title: Practical use of duplex echo-guided recanalization of chronic total occlusion in the iliac artery publication-title: J. Vasc. Surg. doi: 10.1016/j.jvs.2010.03.025 – volume: 111 start-page: 800 year: 2013 ident: pmbad27febib29 article-title: Dislocation rates of perineural catheters: a volunteer study publication-title: Br. J. Anaesthesia doi: 10.1093/bja/aet198 – volume: 9 start-page: 793 year: 2014 ident: pmbad27febib8 article-title: Ultrasound-guided intervention in the abdomen and pelvis: review from A to Z publication-title: Ultrasound Clin. doi: 10.1016/j.cult.2014.07.012 – volume: 39 start-page: 262 year: 1992 ident: pmbad27febib21 article-title: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control doi: 10.1109/58.139123 – volume: 72 start-page: 889 year: 2017 ident: pmbad27febib34 article-title: Improving needle tip identification during ultrasound-guided procedures in anaesthetic practice publication-title: Anaesthesia doi: 10.1111/anae.13921 – volume: 59 year: 2020 ident: pmbad27febib18 article-title: Multi-source fiber-optic ultrasound transmitters for angle-measurement of thin medical devices publication-title: Jpn. J. Appl. Phys. doi: 10.35848/1347-4065/aba328 – start-page: 1 year: 2015 ident: pmbad27febib31 article-title: Spiral array inspired multi-depth cost function for 2D sparse array optimization – volume: 27 start-page: 589 year: 2016 ident: pmbad27febib6 article-title: Ultrasound-guided interventional procedures of the wrist and hand: anatomy, indications, and techniques publication-title: Phys. Med. Rehabil. Clin. North Am. doi: 10.1016/j.pmr.2016.04.003 – volume: 39 start-page: 1015 year: 2020 ident: pmbad27febib13 article-title: In vivo demonstration of photoacoustic image guidance and robotic visual servoing for cardiac catheter-based interventions publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2939568 – volume: 9900 start-page: 353 year: 2016 ident: pmbad27febib48 article-title: 3D ultrasonic needle tracking with a 1.5D transducer array for guidance of fetal interventions publication-title: Med. Image Comput. Comput. Assist. Interv. – start-page: 10878 year: 2019 ident: pmbad27febib41 article-title: In vivo experiments of photoacoustic positing guidewire for ultrasound guided intervention publication-title: SPIE Photon. West – volume: 64 start-page: 1608 year: 2017 ident: pmbad27febib35 article-title: System integration and in vivo testing of a robot for ultrasound guidance and monitoring during radiotherapy publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2612229 – volume: 60 year: 2021 ident: pmbad27febib39 article-title: Position detection of guidewire tip emitting ultrasound by using a Kalman filter publication-title: Jpn. J. Appl. Phys. doi: 10.35848/1347-4065/ac0c37 – volume: 105 start-page: 3266 year: 1999 ident: pmbad27febib22 article-title: A new calculation procedure for spatial impulse responses in ultrasound publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.424654 – volume: 22 start-page: 6417 year: 2022 ident: pmbad27febib36 article-title: Enhanced photoacoustic visualisation of clinical needles by combining interstitial and extracorporeal illumination of elastomeric nanocomposite coatings publication-title: Sensors doi: 10.3390/s22176417 – year: 2019 ident: pmbad27febib40 article-title: Linearized positioning method based on richardson extrapolation for locating ultrasound beacon attached to catheter – volume: 55 start-page: 1355 year: 2008 ident: pmbad27febib11 article-title: Vibrating interventional device detection using real-time 3D color doppler publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2008.798 – year: 2020 ident: pmbad27febib42 article-title: Three dimensional positioning for ultrasound beacons using one dimensional array probes with elevation asymmetry – volume: 100 start-page: 1837 year: 2005 ident: pmbad27febib44 article-title: The electrophysiological effect of dextrose 5% in water on single-shot peripheral nerve stimulation publication-title: Anesthesia Analgesia doi: 10.1213/01.ANE.0000153020.84780.A5 – volume: 27 start-page: 687 year: 2016 ident: pmbad27febib37 article-title: Ultrasound-guided peripheral nerve procedures publication-title: Phys. Med. Rehabil. Clin. North Am. doi: 10.1016/j.pmr.2016.04.006 – volume: 5 start-page: 401 year: 2010 ident: pmbad27febib12 article-title: Ultrasound-guided therapeutic urological interventions publication-title: Ultrasound Clin. doi: 10.1016/j.cult.2010.04.001 – volume: 62 start-page: 319 year: 2015 ident: pmbad27febib45 article-title: Real-time integrated photoacoustic and ultrasound (PAUS) imaging system to guide interventional procedures: ex vivo study publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2014.006728 – volume: 11 start-page: 351 year: 2000 ident: pmbad27febib7 article-title: Relative ultrasonographic echogenicity of standard, dimpled, and polymeric-coated needles publication-title: J. Vasc. Intervent. Radiol.: JVIR doi: 10.1016/S1051-0443(07)61429-8 – volume: 15 year: 2010 ident: pmbad27febib43 article-title: k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields publication-title: J. Biomed. Opt. doi: 10.1117/1.3360308 – volume: 2019 year: 2019 ident: pmbad27febib2 article-title: A deep learning-based approach to identify in vivo catheter tips during photoacoustic-guided cardiac interventions publication-title: Proc. SPIE Photons Plus Ultrasound: Imaging Sens. |
| SSID | ssj0011824 |
| Score | 2.445124 |
| Snippet | Objective . Photoacoustic emitters on the tip of a therapeutic device have been intensively studied for echo-guided intervention purposes. In this study, a... . Photoacoustic emitters on the tip of a therapeutic device have been intensively studied for echo-guided intervention purposes. In this study, a novel method... Objective. Photoacoustic emitters on the tip of a therapeutic device have been intensively studied for echo-guided intervention purposes. In this study, a... |
| SourceID | unpaywall proquest pubmed crossref iop |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 65013 |
| SubjectTerms | Algorithms echo-guided intervention Equipment Design Phantoms, Imaging photoacoustics spatial impulse response Transducers Ultrasonography - methods ultrasound |
| SummonAdditionalLinks | – databaseName: IOP Science Platform dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEB_aiq8PPqrV88UK-sHCXi_Zzd4GP4laiuADtNAPwrLPerRNwl2CnH-9s9ncYaWo-C2ETTKZnd35JfObGYBnVhtdMuGp5jqnHH0clUGXFI0Dl6XwstA9QfaDODjk746Kow14uc6FqZth6x_jYSoUnFQ4EOLkXsZERmPNmD3t8mnwm3CJSQTGMXvv46d1CAGBMx_ikhdddc4PbeKzLoKY1-FqVzV6-V2fnv7idvZvwteVwIltcjLuWjO2P36r5fifb3QLbgxwlLxKQ2_Dhq-24XJqULnchivvh9A7nuy5onZxB9rPCFxbGv2fIzE9ffifSHq_OOR1kjqQ5lvd1rjj9g3DyHE3cz5WRibtrCFmSbI3RM_nekliUxtPIgP_mCwiwxvvNTtrOvTaZJ44vP4uHO6__fL6gA7NG6hlgrW0lM5o63wQxgUEDSaLZWHc1HhZWmnNxIXc-sAdt4VmEy1tGSlzRRHC1AQ-YTuwVdWVvw9ESmO0KHjg3PJYbcYKYXONYK2UHneQEbxYTaVqUo0O1cfWpVRRtSqqViXVjuA5zoIaFuriD-PIuXHNmVGiVEJFSJsx1bgwgqcrg1G4JmOgRVcedaryEr8SY2MCFO1esqS1YCw2NilZMYLdtWn9VeoH_yj1Q7iWI-iKHLk8ewRb7bzzjxE0teZJvzh-AvemEfU priority: 102 providerName: IOP Publishing |
| Title | Split-based elevational localization of photoacoustic guidewire tip by 1D array probe using spatial impulse response |
| URI | https://iopscience.iop.org/article/10.1088/1361-6560/ad27fe https://www.ncbi.nlm.nih.gov/pubmed/38344935 https://www.proquest.com/docview/2926074786 https://doi.org/10.1088/1361-6560/ad27fe |
| UnpaywallVersion | publishedVersion |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1361-6560 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011824 issn: 0031-9155 databaseCode: IOP dateStart: 19560101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6xW0HhwKMUWB6VkeAAkssmcbzOsQKqgkSpBCuVk-VnWdEm0W5WaPn1zCRpxaKKxzUaWY494_nsmfkG4Jkz1hSZDNwIk3KBPo6raAqOyoFmKYPKTZsgeygPpuL9cX7cv3dQLcxa_B4vZ0kmE04EMa-MTycxDGBD5oi6h7AxPTza-9KxLiacaM67EqtOvI9IXjbEmgcazKr6MnB5AzaXZW1W383p6S8OZ_9Wx360aHkKKc_k2-6ysbvux28sjv_yL7fhZo862V6nJnfgSii34GrXh3K1Bdc-9BF2_NimhLrFXWg-IT5tOLk5z6gKvX82ZK3768s3WRVZ_bVqKjxY275g7GQ584EIkFkzq5ldseQNM_O5WTHqXRMYJdqfsAUlcuNYs7N6ic6ZzbtU3bAN0_23n18f8L5HA3eZzBpeKG-N8yFK6yNiA5sQ-4uf2KAKp5wd-5i6EIUXLjfZ2ChXUGZcnsc4sVGMs3swLKsyPACmlLVG5iIK4QSRyjgpXWoQkxUq4EExghfn-6brjopDtyF0pTQtraal1d3SjuA5bqzu7XHxBzm2JlefWS0LLTUh1yTTtY8jeHquHRpNj-Ippgy4pjot8DJI_Qdwavc7tbmYWEb9S4osH8HLCz3666wf_o_wI7ieIsCifLg0eQzDZr4MTxAgNXYHBu8-Hu30FvITyasIYQ |
| linkProvider | Unpaywall |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB7RIgo8cJRrOY0ED0Xy7iZxvM4joqzKVSpBpb4Zn2VFm0S7idDy6xkn3hVFFSDxFkVOMhmPPV8y38wAPDNKqyLjjiqmUsrQx1HhVUHROHBZcidy1RFk9_neIXt7lB_FPqddLkxVx61_iId9oeBehZEQJ0ZJxhMaasaMlE0n3o1q6zfgYlenJGTwfTxYhxEQPLMYmzzvyjO-aAOfdx7MvAqX27JWy-_q5OQX1zO9Dl9WQveMk2_DttFD8-O3eo7_8VY34FqEpeRlP_wmXHDlNlzqG1Uut2HrQwzB48mOM2oWt6D5hAC2ocEPWhLS1ON_RdL5x5jfSSpP6q9VU-HO2zUOI8ftzLpQIZk0s5roJUl2iZrP1ZKE5jaOBCb-MVkEpjfea3Zat-i9ybzn8rrbcDh9_fnVHo1NHKjJeNbQQlitjHWea-sRPOgklIexE-1EYYTRY-tT4zyzzOQqGythikCdy3PvJ9qzcXYHNsuqdPeACKG14jnzjBkWqs4Yzk2qELQVwuFOMoCd1XTKuq_VIbsYuxAyqFcG9cpevQN4jjMh44Jd_GEcOTOuPtWSF5LLAG2TTOIsDeDpymgkrs0QcFGlQ53KtMCvxdCgAEW721vTWrAsNDgpsnwAL9bm9Vep7_-j1E9g62B3Kt-_2X_3AK6kiMMCbS5NHsJmM2_dI8RRjX7crZWfqfgXVg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3raxQxEB_sFV8ffNTX-SKCflBIvd3N5rIfi1qKYBH0oH4KedbD9na520XOv96ZzbZ4Unx8XYaQTWYyv2RmfgPw3BlrqkIGboTJuUAfx1U0FUflQLOUQZWmT5A9lAcz8f6oPBreO6gWZiN-j5ezrJAZJ4KY18bn0xi2YFuWiLpHsD07_Lj3JbEuZpxozlOJVRIfIpIXDbHhgbbmdXMRuLwOV7tFY9bfzcnJLw5n_2ZiP1r1PIWUZ_Jtt2vtrvvxG4vjv_zLLbgxoE62l9TkNlwKix24nPpQrnfgyochwo4f-5RQt7oD7SfEpy0nN-cZVaEPz4asd39D-SarI2u-1m2NB2vfF4wdd3MfiACZtfOG2TXL3jKzXJo1o941gVGi_TFbUSI3jjU_bTp0zmyZUnXDXZjtv_v85oAPPRq4K2TR8kp5a5wPUVofERvYjNhf_NQGVTnl7MTH3IUovHClKSZGuYoy48oyxqmNYlLcg9GiXoQHwJSy1shSRCGcIFIZJ6XLDWKySgU8KMbw8mzfdJOoOHQfQldK09JqWlqdlnYML3Bj9WCPqz_IsQ255tRqWWmpCblmhW58HMOzM-3QaHoUTzGLgGuq8wovg9R_AKd2P6nN-cQK6l9SFeUYXp3r0V9n_fB_hB_BtRwBFuXD5dljGLXLLjxBgNTap4Nt_ASc6gdY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Split-based+elevational+localization+of+photoacoustic+guidewire+tip+by+1D+array+probe+using+spatial+impulse+response&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Tanaka%2C+Tomohiko&rft.au=Imai%2C+Ryo&rft.au=Takeshima%2C+Hirozumi&rft.date=2024-03-21&rft.issn=0031-9155&rft.eissn=1361-6560&rft.volume=69&rft.issue=6&rft.spage=65013&rft_id=info:doi/10.1088%2F1361-6560%2Fad27fe&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6560_ad27fe |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon |