Joint Extraction of Entities and Relations Based on Enhanced Span and Gate Mechanism
Although entity and relation joint extraction can obtain relational triples efficiently and accurately, there are a number of problems; for instance, the information between entity relations could be transferred better, entity extraction based on span is inefficient, and it is difficult to identify...
Saved in:
Published in | Applied sciences Vol. 13; no. 19; p. 10643 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app131910643 |
Cover
Abstract | Although entity and relation joint extraction can obtain relational triples efficiently and accurately, there are a number of problems; for instance, the information between entity relations could be transferred better, entity extraction based on span is inefficient, and it is difficult to identify nested entities. In this paper, a joint entity and relation extraction model based on an Enhanced Span and Gate Mechanism (ESGM) is proposed to solve the above problems. We design a new span device to solve the problem of entity nesting and inefficiency. We use the pointer network method to predict the beginning and end of the span, and combine them through the one-to-many matching principle. A binary classification model is then trained to predict whether the span of the combination is the subject. In the object prediction stage, a gating unit is added to fuse the subject information with the sentence information and strengthen the information transfer between the entity and the relationship. Finally, the relationship is used as the mapping function to predict the tail entity related to the head entity. Our experimental results prove the effectiveness of this model. The precision of the proposed model reached 93.8% on the NYT dataset, which was 0.4% higher than that of the comparison model. Moreover, when the same experiment was conducted in a nested entity scenario, the accuracy of the proposed model was 4.4% higher than that of the comparison model. |
---|---|
AbstractList | Although entity and relation joint extraction can obtain relational triples efficiently and accurately, there are a number of problems; for instance, the information between entity relations could be transferred better, entity extraction based on span is inefficient, and it is difficult to identify nested entities. In this paper, a joint entity and relation extraction model based on an Enhanced Span and Gate Mechanism (ESGM) is proposed to solve the above problems. We design a new span device to solve the problem of entity nesting and inefficiency. We use the pointer network method to predict the beginning and end of the span, and combine them through the one-to-many matching principle. A binary classification model is then trained to predict whether the span of the combination is the subject. In the object prediction stage, a gating unit is added to fuse the subject information with the sentence information and strengthen the information transfer between the entity and the relationship. Finally, the relationship is used as the mapping function to predict the tail entity related to the head entity. Our experimental results prove the effectiveness of this model. The precision of the proposed model reached 93.8% on the NYT dataset, which was 0.4% higher than that of the comparison model. Moreover, when the same experiment was conducted in a nested entity scenario, the accuracy of the proposed model was 4.4% higher than that of the comparison model. |
Audience | Academic |
Author | Chung, Vera Xin, Junfang Zhang, Nan Cai, Qiang |
Author_xml | – sequence: 1 givenname: Nan orcidid: 0000-0003-4904-7857 surname: Zhang fullname: Zhang, Nan – sequence: 2 givenname: Junfang surname: Xin fullname: Xin, Junfang – sequence: 3 givenname: Qiang surname: Cai fullname: Cai, Qiang – sequence: 4 givenname: Vera orcidid: 0000-0002-3158-9650 surname: Chung fullname: Chung, Vera |
BookMark | eNpNkV9PHCEUxUljE6365geYpK-u5c8wMI9qVqvRmFR9JhfmYtnswhQwsd--rNsY4YGbw-GXE843shdTREJOGD0TYqQ_YJ6ZYCOjQy--kANO1bAQPVN7n-Z9clzKirY1MqEZPSBPtynE2i3fagZXQ4pd8t0y1lADlg7i1P3CNWwvSncBBaeuWZbxN0TX5scZ4rvpGip29-iaHsrmiHz1sC54_P88JM9Xy6fLn4u7h-uby_O7hRODqAuNwnKruKfeczZxK3vurBKS4mC5tFwzIbiTjlJvFUWQ1INW1g4jQ2RSHJKbHXdKsDJzDhvIf02CYN6FlF8M5BrcGg02hhKjnfqJ9m502k5couqxUUEq3Vjfd6w5pz-vWKpZpdccW3zDtRr6gWnGmuts53qBBg3Rp-2_tT3hJrhWiA9NP1eKacplv414unvgciolo_-IyajZ9mY-9yb-AVRbirA |
Cites_doi | 10.18653/v1/P16-1105 10.18653/v1/2021.acl-long.277 10.18653/v1/2020.coling-main.138 10.18653/v1/D19-1035 10.18653/v1/P16-1072 10.18653/v1/P16-1123 10.3115/1690219.1690287 10.18653/v1/2021.emnlp-main.17 10.18653/v1/2020.acl-main.519 10.18653/v1/2020.acl-main.136 10.18653/v1/D17-1018 10.18653/v1/2022.acl-long.63 10.1016/j.eswa.2018.07.032 10.3115/v1/P14-1038 10.3115/1596374.1596399 10.1007/978-3-642-15939-8_10 10.18653/v1/P18-1047 10.18653/v1/2021.acl-long.486 10.18653/v1/2021.naacl-main.5 10.1007/s00521-021-05815-z 10.18653/v1/P16-1200 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app131910643 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central - New (Subscription) ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_e00f739bd4d04c9c8bd25e74eea5a578 A771802545 10_3390_app131910643 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c363t-8e3b2b72f0ff21d2b542cb7350e6b25b281332c5c00fb70ea50fa87bb691ee153 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:30:34 EDT 2025 Sun Jun 29 15:50:35 EDT 2025 Tue Jun 10 21:20:04 EDT 2025 Tue Jul 01 04:34:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-8e3b2b72f0ff21d2b542cb7350e6b25b281332c5c00fb70ea50fa87bb691ee153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3158-9650 0000-0003-4904-7857 |
OpenAccessLink | https://doaj.org/article/e00f739bd4d04c9c8bd25e74eea5a578 |
PQID | 2876461811 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e00f739bd4d04c9c8bd25e74eea5a578 proquest_journals_2876461811 gale_infotracacademiconefile_A771802545 crossref_primary_10_3390_app131910643 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Qiao (ref_6) 2022; 34 ref_14 ref_36 ref_13 ref_35 ref_12 ref_34 ref_11 ref_33 ref_10 ref_32 ref_31 ref_30 ref_19 E (ref_2) 2019; 30 ref_18 ref_17 ref_16 ref_38 ref_15 ref_37 Sutskever (ref_21) 2014; 27 ref_25 ref_24 ref_23 ref_22 ref_20 Bekoulis (ref_5) 2018; 114 ref_3 ref_29 ref_28 Zelenko (ref_1) 2003; 3 ref_27 ref_26 ref_9 ref_8 ref_4 ref_7 |
References_xml | – ident: ref_28 – ident: ref_19 doi: 10.18653/v1/P16-1105 – ident: ref_9 – ident: ref_25 doi: 10.18653/v1/2021.acl-long.277 – ident: ref_29 doi: 10.18653/v1/2020.coling-main.138 – ident: ref_30 – ident: ref_32 – ident: ref_37 doi: 10.18653/v1/D19-1035 – ident: ref_18 doi: 10.18653/v1/P16-1072 – ident: ref_34 – volume: 3 start-page: 1082 year: 2003 ident: ref_1 article-title: Kernel Methods for Relation Extraction publication-title: J. Mach. Learn. Res. – ident: ref_17 doi: 10.18653/v1/P16-1123 – ident: ref_23 doi: 10.3115/1690219.1690287 – ident: ref_27 doi: 10.18653/v1/2021.emnlp-main.17 – ident: ref_14 doi: 10.18653/v1/2020.acl-main.519 – ident: ref_16 – ident: ref_7 doi: 10.18653/v1/2020.acl-main.136 – ident: ref_11 doi: 10.18653/v1/D17-1018 – ident: ref_12 doi: 10.18653/v1/2022.acl-long.63 – volume: 114 start-page: 34 year: 2018 ident: ref_5 article-title: Joint entity recognition and relation extraction as a multi-head selection problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.07.032 – ident: ref_4 doi: 10.3115/v1/P14-1038 – ident: ref_8 – ident: ref_31 – ident: ref_3 doi: 10.3115/1596374.1596399 – ident: ref_33 doi: 10.1007/978-3-642-15939-8_10 – ident: ref_10 – volume: 27 start-page: 1227 year: 2014 ident: ref_21 article-title: Sequence to sequence learning with neural networks publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_35 doi: 10.18653/v1/P18-1047 – ident: ref_13 – ident: ref_26 doi: 10.18653/v1/2021.acl-long.486 – ident: ref_38 – ident: ref_15 doi: 10.18653/v1/2021.naacl-main.5 – ident: ref_36 – ident: ref_22 – ident: ref_20 – volume: 34 start-page: 3471 year: 2022 ident: ref_6 article-title: A joint model for entity and relation extraction based on bert publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05815-z – ident: ref_24 doi: 10.18653/v1/P16-1200 – volume: 30 start-page: 1793 year: 2019 ident: ref_2 article-title: Survey of entity relationship extraction based on deep learning publication-title: J. Softw. |
SSID | ssj0000913810 |
Score | 2.2654662 |
Snippet | Although entity and relation joint extraction can obtain relational triples efficiently and accurately, there are a number of problems; for instance, the... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 10643 |
SubjectTerms | Analysis Computational linguistics Deep learning Efficiency gate unit Innovations joint extraction Language processing Methods Natural language interfaces nested entities Neural networks relation overlap Semantics span |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07bxQxELYgNFAgEkAcBOQCBBQr_Fx7K5SgO6JIoSGR0lkePyBFdsPdIvHz8ez6jlBAu-tiNJ63Z74h5HUIreFZ6EYKrxqVW9tYm1TTxU54zyFIj4ni2Zf25EKdXurLWnDb1LbKrU2cDHUcAtbIP5TIvlVt8Uf8482PBrdG4etqXaFxl9zjokgSToqvPu9qLIh5aTmb-91lye7xVZgXoePoiP_yRBNg_7_M8uRrVo_Iwxok0qP5VvfJndQfkAe3oAMPyH5Vyg19V5Gj3z8m56fDVT_S5a9xPc8r0CHTZUVNpb6PdNf7Ro-L-4q0HFn236cuAPq1GIbpEFbU6FnCmeCrzfUTcrFann86aerahCbIVo6NTRIEGJFZzoJHAVqJAEZqlloQGoQteakIOjCWwbDkNcveGoC24ykVC_iU7PVDn54RKoXOIhsQsvMKInS2MwykZ8AT80kvyJstC93NjI7hSlaBrHa3Wb0gx8jf3RnEtJ4-DOtvrqqIS4UeIzuIKjIVumAhCp2MSoVCXwzLgrzF23GoechGXwcICqmIYeWOjEE4uxISLsjh9gJdVcmN-yNAz___-wW5jzvl5469Q7I3rn-mlyXyGOHVJF6_AXgn1vg priority: 102 providerName: ProQuest |
Title | Joint Extraction of Entities and Relations Based on Enhanced Span and Gate Mechanism |
URI | https://www.proquest.com/docview/2876461811 https://doaj.org/article/e00f739bd4d04c9c8bd25e74eea5a578 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BucAB0QJioax8AAGHCMeP2D52UZaqUisErdSb5XFs0UOzqBskfj7jJK2WA-LCNfJh9M07nvkM8CbGxtRZ6EqKoCqVG1tZm1TlOidCqDHKUBrF07Pm-EKdXOrLnae-ykzYRA88AfcxcZ6NdNipjqvoosVO6GRUSkEHMrcSfSmN7TRTYwx2daGumibdJfX15T64JnOrSwr-IweNVP1_C8hjllk_gcdzeciOJrH24V7qD-DRDmngAezP7rhl72fO6A9P4fxkc9UPrP013EybCmyTWTvzpbLQd-xu6o2tKHF1jI60_ffx_p99o5AwHir_0thpKtvAV9vrZ3Cxbs8_HVfzgwlVlI0cKpskCjQi85xF3QnUSkQ0UvPUoNAoLHWkIupImKLhhCDPwRrExtUpUex7Dnv9pk8vgEmhs8gGhXRBYYfOOsNRBo514iHpBby9hdD_mHgxPPUTBWq_C_UCVgXfuzOFzXr8QDr2s479v3S8gHdFO774XIExzKsDJGphr_JHxhQiOyoGF3B4q0A_O-PWU1PYqIZKmfrl_5DmFTwsb85PE32HsDfc_EyvqTIZcAn37frzEh6s2rMvX5ejSf4GMzHi3Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07bxQxELaiUAAFIgHEQQguiIBihZ9rb4GiBO64PC4NFymdsb12SMFuuFsE_Kn8xnj2cYQCurS7Lkbj8Tcz9sw3CL3yPlc0MplxZkUmYq4zrYPIirJg1lLnuYVEcXaST0_F4Zk8W0NXQy8MlFUOmNgCdVl7uCN_lyL7XOTJH9Hdy-8ZTI2C19VhhEZnFkfh98-Usi3fH3xM-7vD2GQ8_zDN-qkCmec5bzIduGNOsUhiZLRkTgrmneKShNwx6ZhOaRvz0hMSnSLBShKtVs7lBQ2BwpSIBPl3BOccuPr15NPqTgc4NjUlXX095wWBV2iajJyC4__L87UDAv7lBlrfNnmIHvRBKd7rrGgDrYVqE92_QVW4iTZ6EFjiNz1T9dtHaH5YX1QNHv9qFl1_BK4jHvcsrdhWJV7V2uH95C5LnJaMq69t1QH-nICoXQQ3eHgWoAf5YvntMTq9FYU-QetVXYWnCHMmI4vKMV5Y4UpX6EIRxy1xNBAb5AjtDCo0lx0bh0lZDKja3FT1CO2DfldrgEO7_VAvzk1_JE1I8iheuFKURPjCa1cyGZQISUKbgGyEXsPuGDjpoEbbNywkUYEzy-wpBfR5KQQdoa1hA00PAUvzx2Cf_f_3S3R3Op8dm-ODk6Pn6B7Ms--qBbfQerP4EV6kqKdx262pYfTltm37GkRIE8k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggGgBsVDAByrgENXPODlUqEuz6oOuKmil3oKf0ANJ2Q0C_iK_Ck_iXcoBbr0mPlgz43nYM9-H0Atrc0UDkxlnWmQi5EVWFF5kpSuZ1tRYrqFQPJnlB-fi6EJerKFfy1kYaKtc-sTeUbvWwh35Tszsc5HHeER3QmqLON2fvrn6mgGDFLy0Luk0dKJZcLs93Fga8jj2P7_Hcm6xe7gfdb_N2LQ6e3uQJcaBzPKcd1nhuWFGsUBCYNQxIwWzRnFJfG6YNKyIJR2z0hISjCJeSxJ0oYzJS-o9BQaJGA7WFcyLjtD6pJqdvl_d-AACZ0HJ0H3PeUngjZrGI0AhLfgrLvb0Af8KEn3km95Dd1PKivcGG9tAa77ZRHeuARluoo3kIhb4VcKxfn0fnR21l02Hqx_dfJiewG3AVcJwxbpxeNWJhycxmDocl1TN574nAX-IbqpfBPd7-MTDhPLl4ssDdH4jIn2IRk3b-EcIcyYDC8owXmphnCmLUhHDNTHUE-3lGG0vRVhfDVgddaxxQNT1dVGP0QTku1oDCNv9h3b-qU4HtvZxP1GPxglHhC1tYRyTXgkfd6ijmxujl6CdGvwAiFGncYa4VUDUqveUAnC9mKCO0dZSgXVyEIv6jzk__v_v5-hWtPP63eHs-Am6DWT3QyvhFhp182_-aUyJOvMs2RpGH2_avH8Dw4Ieow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Extraction+of+Entities+and+Relations+Based+on+Enhanced+Span+and+Gate+Mechanism&rft.jtitle=Applied+sciences&rft.au=Nan+Zhang&rft.au=Junfang+Xin&rft.au=Qiang+Cai&rft.au=Vera+Chung&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=19&rft.spage=10643&rft_id=info:doi/10.3390%2Fapp131910643&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e00f739bd4d04c9c8bd25e74eea5a578 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |