Recognition of human activity using GRU deep learning algorithm
Human activity recognition (HAR) is a challenging issue in several fields, such as medical diagnosis. Recent advances in the accuracy of deep learning have contributed to solving the HAR issues. Thus, it is necessary to implement deep learning algorithms that have high performance and greater accura...
        Saved in:
      
    
          | Published in | Multimedia tools and applications Vol. 82; no. 30; pp. 47733 - 47749 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.12.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1380-7501 1573-7721 1573-7721  | 
| DOI | 10.1007/s11042-023-15571-y | 
Cover
| Abstract | Human activity recognition (HAR) is a challenging issue in several fields, such as medical diagnosis. Recent advances in the accuracy of deep learning have contributed to solving the HAR issues. Thus, it is necessary to implement deep learning algorithms that have high performance and greater accuracy. In this paper, a gated recurrent unit (GRU) algorithm is proposed to classify human activities. This algorithm is applied to the Wireless Sensor Data Mining (WISDM) dataset gathered from many individuals with six classes of various activities – walking, sitting, downstairs, jogging, standing, and upstairs. The proposed algorithm is tested and trained via a hyper-parameter tuning method with TensorFlow framework to achieve high accuracy. Experiments are conducted to evaluate the performance of the GRU algorithm using receiver operating characteristic (ROC) curves and confusion matrices. The results demonstrate that the GRU algorithm provides high performance in the recognition of human activities. The GRU algorithm achieves a testing accuracy of 97.08%. The rate of testing loss for the GRU is 0.221, while the precision, sensitivity, and F1-score for the GRU are 97.11%, 97.09%, and 97.10%, respectively. Experimentally, the area under the ROC curves (AUC
S
) is 100%. | 
    
|---|---|
| AbstractList | Human activity recognition (HAR) is a challenging issue in several fields, such as medical diagnosis. Recent advances in the accuracy of deep learning have contributed to solving the HAR issues. Thus, it is necessary to implement deep learning algorithms that have high performance and greater accuracy. In this paper, a gated recurrent unit (GRU) algorithm is proposed to classify human activities. This algorithm is applied to the Wireless Sensor Data Mining (WISDM) dataset gathered from many individuals with six classes of various activities – walking, sitting, downstairs, jogging, standing, and upstairs. The proposed algorithm is tested and trained via a hyper-parameter tuning method with TensorFlow framework to achieve high accuracy. Experiments are conducted to evaluate the performance of the GRU algorithm using receiver operating characteristic (ROC) curves and confusion matrices. The results demonstrate that the GRU algorithm provides high performance in the recognition of human activities. The GRU algorithm achieves a testing accuracy of 97.08%. The rate of testing loss for the GRU is 0.221, while the precision, sensitivity, and F1-score for the GRU are 97.11%, 97.09%, and 97.10%, respectively. Experimentally, the area under the ROC curves (AUC
S
) is 100%. Human activity recognition (HAR) is a challenging issue in several fields, such as medical diagnosis. Recent advances in the accuracy of deep learning have contributed to solving the HAR issues. Thus, it is necessary to implement deep learning algorithms that have high performance and greater accuracy. In this paper, a gated recurrent unit (GRU) algorithm is proposed to classify human activities. This algorithm is applied to the Wireless Sensor Data Mining (WISDM) dataset gathered from many individuals with six classes of various activities – walking, sitting, downstairs, jogging, standing, and upstairs. The proposed algorithm is tested and trained via a hyper-parameter tuning method with TensorFlow framework to achieve high accuracy. Experiments are conducted to evaluate the performance of the GRU algorithm using receiver operating characteristic (ROC) curves and confusion matrices. The results demonstrate that the GRU algorithm provides high performance in the recognition of human activities. The GRU algorithm achieves a testing accuracy of 97.08%. The rate of testing loss for the GRU is 0.221, while the precision, sensitivity, and F1-score for the GRU are 97.11%, 97.09%, and 97.10%, respectively. Experimentally, the area under the ROC curves (AUCS) is 100%.  | 
    
| Author | Mohsen, Saeed | 
    
| Author_xml | – sequence: 1 givenname: Saeed orcidid: 0000-0003-2863-0074 surname: Mohsen fullname: Mohsen, Saeed email: g17082131@eng.asu.edu.eg organization: Department of Electronics and Communications Engineering, Al-Madinah Higher Institute for Engineering and Technology, Department of Artificial Intelligence Engineering, Faculty of Computer Science and Engineering, King Salman International University (KSIU)  | 
    
| BookMark | eNqNkE9LwzAYh4NMcJt-AU8Fz9X8aZr2JDJ0CoIw3DmkadpldElNUqXf3tYOBA_D0xte8vzyy7MAM2ONAuAawVsEIbvzCMEExxCTGFHKUNyfgTmijMSMYTQbziSDMaMQXYCF93sIUUpxMgf3GyVtbXTQ1kS2inbdQZhIyKA_deijzmtTR-vNNiqVaqNGCWfGjWhq63TYHS7BeSUar66Ocwm2T4_vq-f49W39snp4jSVJSYgzhogUJU5pkdAclkUuWYZZVWZ5gaVKSAIzSMtKSCKJYElSZXnOJCklhKQsGFkCMuV2phX9l2ga3jp9EK7nCPLRAZ8c8MEB_3HA-4G6majW2Y9O-cD3tnNmKMpxllOYppSN2Xi6JZ313qnqf9HZH0jqIEaNwQndnEaPf_HDO6ZW7rfVCeobI2WPVg | 
    
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_109399 crossref_primary_10_1109_ACCESS_2024_3441108 crossref_primary_10_1016_j_engappai_2023_106992 crossref_primary_10_3390_app131910560 crossref_primary_10_1109_ACCESS_2024_3444699 crossref_primary_10_3390_eng4040155 crossref_primary_10_1007_s11042_024_20262_3 crossref_primary_10_1007_s11042_024_20301_z crossref_primary_10_1007_s11042_024_18253_5 crossref_primary_10_1155_2024_1832298 crossref_primary_10_2174_0126662558278156231231063935 crossref_primary_10_3390_w17010059 crossref_primary_10_1007_s11042_024_19328_z crossref_primary_10_1145_3715155  | 
    
| Cites_doi | 10.1109/ACCESS.2021.3125733 10.1145/1964897.1964918 10.1016/j.eswa.2016.04.032 10.1016/j.medengphy.2015.06.009 10.1109/ACCESS.2020.2968529 10.1109/ACCESS.2019.2895334 10.1016/j.inffus.2021.11.006 10.1109/MPRV.2008.40 10.1016/j.engappai.2020.103868 10.1016/j.asoc.2017.09.027 10.1016/j.neunet.2021.10.021 10.1109/ACCESS.2019.2955545 10.1007/s42486-020-00026-2 10.1109/JBHI.2019.2952618 10.1016/j.procs.2020.03.289 10.3390/sym12091570 10.1109/JBHI.2019.2909688 10.1016/j.engappai.2020.103812 10.1016/j.patrec.2018.02.010 10.1109/ACCESS.2020.3017681 10.1109/MNET.2016.7474340 10.1109/ACCESS.2020.2982225 10.1155/2019/6757685 10.3390/s17020273 10.1109/THMS.2015.2489688 10.1007/s11042-020-10486-4 10.1016/j.ins.2021.08.042 10.1016/j.eswa.2019.04.057 10.1145/3177852 10.1109/TNNLS.2016.2582924 10.3115/v1/D14-1179 10.1007/s10796-021-10153-5 10.1162/neco.1997.9.8.1735 10.1109/ICPR.2018.8545435 10.1109/IWCMC.2019.8766500 10.1109/IJCNN48605.2020.9207697 10.1007/978-3-319-26561-2_6 10.1007/s10489-020-01859-1 10.1109/HPCC/SmartCity/DSS.2019.00175 10.1109/AFRICA.2019.8843403 10.1016/j.patrec.2012.12.014 10.1007/978-1-4471-5779-3 10.23919/SPA.2018.8563389 10.1109/BIGCOMP.2014.6741439 10.1109/PERCOMW.2017.7917555 10.1145/2809695.2809718 10.1007/s10489-021-02285-7 10.3390/s150102059 10.1007/978-3-319-68560-1_39 10.3390/s16010115 10.1109/ICPADS47876.2019.00025 10.1007/978-981-16-6128-0_29 10.1109/CVPR.2015.7298594  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U ADTOC UNPAY  | 
    
| DOI | 10.1007/s11042-023-15571-y | 
    
| DatabaseName | SpringerOpen CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library ProQuest Central (Alumni) ProQuest Central ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection (Proquest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | CrossRef ABI/INFORM Global (Corporate)  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1573-7721 | 
    
| EndPage | 47749 | 
    
| ExternalDocumentID | 10.1007/s11042-023-15571-y 10_1007_s11042_023_15571_y  | 
    
| GrantInformation_xml | – fundername: Women's College - Ain Shams University | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c363t-8713cad265b4590db9c7827fd89b2ce4340805dfac3c3a744f8997c3dc003db73 | 
    
| IEDL.DBID | C6C | 
    
| ISSN | 1380-7501 1573-7721  | 
    
| IngestDate | Tue Aug 19 17:07:05 EDT 2025 Fri Jul 25 23:05:18 EDT 2025 Wed Oct 01 04:51:30 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Fri Feb 21 02:40:59 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 30 | 
    
| Keywords | Deep learning Human activity recognition (HAR) Gated recurrent unit (GRU) Artificial intelligence (AI)  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c363t-8713cad265b4590db9c7827fd89b2ce4340805dfac3c3a744f8997c3dc003db73 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-2863-0074 | 
    
| OpenAccessLink | https://doi.org/10.1007/s11042-023-15571-y | 
    
| PQID | 2895066577 | 
    
| PQPubID | 54626 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s11042_023_15571_y proquest_journals_2895066577 crossref_primary_10_1007_s11042_023_15571_y crossref_citationtrail_10_1007_s11042_023_15571_y springer_journals_10_1007_s11042_023_15571_y  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20231200 2023-12-00 20231201  | 
    
| PublicationDateYYYYMMDD | 2023-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2023 text: 20231200  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Dordrecht  | 
    
| PublicationSubtitle | An International Journal | 
    
| PublicationTitle | Multimedia tools and applications | 
    
| PublicationTitleAbbrev | Multimed Tools Appl | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Ali, Zhu, Zakarya (CR4) 2021; 80 Ali, Zhu, Zakarya (CR6) 2022; 145 Cruciani (CR17) 2020; 2 CR38 Hsu, Chang, Chiu (CR24) 2019; 7 CR36 CR35 Igual, Medrano, Plaza (CR27) 2015; 37 CR31 CR30 Agarwal, Alam (CR1) 2020; 167 Ronao, Cho (CR45) 2016; 59 Vinayakumar, Alazab, Soman, Poornachandran, Al-Nemrat, Venkatraman (CR56) 2019; 7 Tao, Leu, Yin (CR53) 2020; 95 Tanberk, Kilimci, Tükel, Uysal, Akyokuş (CR52) 2020; 8 Verma (CR55) 2019; 10 CR2 CR3 CR8 CR9 CR48 Kwapisz, Weiss, Moore (CR32) 2011; 12 CR46 CR44 CR42 CR41 CR40 Wang, Cang, Yu (CR57) 2019; 137 Shakya, Zhang, Zhou (CR47) 2018; 8 Chu, Lai, Liu (CR15) 2019; 2019 Wang, Chen, Hao, Peng, Hu (CR58) 2019; 119 Huang, Lin, Wang, Dai, Xie, Zhou (CR25) 2020; 24 Ignatov (CR26) 2018; 62 Mohsen, Elkaseer, Scholz (CR39) 2021; 9 CR19 Stiefmeier, Roggen, Ogris, Lukowicz, Tröster (CR49) 2008; 7 CR16 CR14 CR13 CR12 Hong, Ramos, Dey (CR23) 2016; 46 CR10 CR54 CR51 Demrozi, Bacchin, Tamburin, Cristani, Pravadelli (CR18) 2020; 24 CR50 Alsheikh, Niyato, Lin, Tan, Han (CR7) 2016; 30 Ali, Zhu, Zakarya (CR5) 2021; 577 Xia, Huang, Wang (CR59) 2020; 8 Lattanzi, Freschi (CR33) 2020; 94 Mekruksavanich, Jitpattanakul, Youplao, Yupapin (CR37) 2020; 12 CR29 Zhao, Yan, Wang, Mao (CR66) 2017; 17 CR28 Qiu, Zhao, Jiang, Wang, Liu, An, Zhao, Miao, Liu, Fortino (CR43) 2022; 80 Lawal, Bano (CR34) 2020; 8 Bulling, Blanke, Schiele (CR11) 2014; 46 CR22 CR21 CR65 CR20 CR64 CR63 CR62 CR61 CR60 Y Hsu (15571_CR24) 2019; 7 15571_CR48 15571_CR46 15571_CR44 15571_CR41 15571_CR42 15571_CR3 S Qiu (15571_CR43) 2022; 80 15571_CR9 A Ali (15571_CR5) 2021; 577 15571_CR8 15571_CR2 SR Shakya (15571_CR47) 2018; 8 15571_CR50 J Huang (15571_CR25) 2020; 24 15571_CR51 15571_CR14 Y Wang (15571_CR57) 2019; 137 15571_CR12 W Tao (15571_CR53) 2020; 95 15571_CR13 R Vinayakumar (15571_CR56) 2019; 7 15571_CR10 15571_CR54 CA Ronao (15571_CR45) 2016; 59 E Lattanzi (15571_CR33) 2020; 94 IA Lawal (15571_CR34) 2020; 8 15571_CR19 15571_CR16 S Tanberk (15571_CR52) 2020; 8 F Demrozi (15571_CR18) 2020; 24 15571_CR61 15571_CR62 15571_CR60 A Ali (15571_CR4) 2021; 80 R Igual (15571_CR27) 2015; 37 MA Alsheikh (15571_CR7) 2016; 30 S Verma (15571_CR55) 2019; 10 F Cruciani (15571_CR17) 2020; 2 15571_CR21 15571_CR65 15571_CR22 15571_CR63 15571_CR20 15571_CR64 T Stiefmeier (15571_CR49) 2008; 7 15571_CR29 15571_CR28 J Hong (15571_CR23) 2016; 46 K Xia (15571_CR59) 2020; 8 S Mohsen (15571_CR39) 2021; 9 JR Kwapisz (15571_CR32) 2011; 12 15571_CR36 P Agarwal (15571_CR1) 2020; 167 A Chu (15571_CR15) 2019; 2019 15571_CR35 15571_CR30 15571_CR31 A Ali (15571_CR6) 2022; 145 15571_CR38 J Wang (15571_CR58) 2019; 119 S Mekruksavanich (15571_CR37) 2020; 12 R Zhao (15571_CR66) 2017; 17 A Bulling (15571_CR11) 2014; 46 15571_CR40 A Ignatov (15571_CR26) 2018; 62  | 
    
| References_xml | – ident: CR22 – volume: 9 start-page: 150508 year: 2021 end-page: 150521 ident: CR39 article-title: Industry 4.0-oriented deep learning models for human activity recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3125733 – volume: 12 start-page: 74 issue: 2 year: 2011 end-page: 82 ident: CR32 article-title: Activity recognition using cell phone accelerometers publication-title: J SIGKDD Explor Newsl doi: 10.1145/1964897.1964918 – volume: 59 start-page: 235 year: 2016 end-page: 244 ident: CR45 article-title: Human activity recognition with smartphone sensors using deep learning neural networks publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.04.032 – volume: 37 start-page: 870 issue: 9 year: 2015 end-page: 878 ident: CR27 article-title: A comparison of public datasets for acceleration-based fall detection publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2015.06.009 – volume: 8 start-page: 19799 year: 2020 end-page: 19809 ident: CR52 article-title: A hybrid deep model using deep learning and dense optical flow approaches for human activity recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968529 – ident: CR16 – ident: CR51 – ident: CR12 – volume: 7 start-page: 41525 year: 2019 end-page: 41550 ident: CR56 article-title: Deep learning approach for intelligent intrusion detection system publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2895334 – volume: 80 start-page: 241 year: 2022 end-page: 265 ident: CR43 article-title: Multi-sensor information fusion based on machine learning for real applications in human activity recognition: state-of-the-art and research challenges publication-title: Inf Fus doi: 10.1016/j.inffus.2021.11.006 – ident: CR35 – volume: 7 start-page: 42 issue: 2 year: 2008 end-page: 50 ident: CR49 article-title: Wearable activity tracking in car manufacturing publication-title: IEEE Pervasive Comput doi: 10.1109/MPRV.2008.40 – ident: CR29 – ident: CR54 – ident: CR61 – ident: CR8 – volume: 95 start-page: 103868 year: 2020 ident: CR53 article-title: Multi-modal recognition of worker activity for human-centered intelligent manufacturing publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103868 – ident: CR42 – volume: 62 start-page: 915 year: 2018 end-page: 922 ident: CR26 article-title: Real-time human activity recognition from accelerometer data using convolutional neural networks publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.09.027 – volume: 145 start-page: 233 year: 2022 end-page: 247 ident: CR6 article-title: Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction publication-title: Neural Netw doi: 10.1016/j.neunet.2021.10.021 – ident: CR21 – ident: CR46 – volume: 10 start-page: 2020 year: 2019 ident: CR55 article-title: Understanding input and output shapes in LSTM-Keras publication-title: Accessed: Mar – ident: CR19 – volume: 7 start-page: 170199 year: 2019 end-page: 170212 ident: CR24 article-title: Wearable sport activity classification based on deep convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2955545 – volume: 2 start-page: 18 issue: 1 year: 2020 end-page: 32 ident: CR17 article-title: Feature learning for human activity recognition using convolutional neural networks publication-title: CCF Trans Pervasive Compu Interact doi: 10.1007/s42486-020-00026-2 – volume: 24 start-page: 2444 issue: 9 year: 2020 end-page: 2451 ident: CR18 article-title: Toward a wearable system for predicting freezing of gait in people affected by parkinson’s disease publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2019.2952618 – ident: CR50 – volume: 167 start-page: 2364 year: 2020 end-page: 2373 ident: CR1 article-title: A lightweight deep learning model for human activity recognition on edge devices publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.03.289 – ident: CR9 – volume: 12 start-page: 1570 issue: 9 year: 2020 ident: CR37 article-title: Enhanced hand-oriented activity recognition based on smartwatch sensor data using LSTMs publication-title: Symmetry doi: 10.3390/sym12091570 – ident: CR60 – ident: CR36 – ident: CR64 – volume: 24 start-page: 292 issue: 1 year: 2020 end-page: 299 ident: CR25 article-title: TSE-CNN: a two-stage end-to-end CNN for human activity recognition publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2019.2909688 – volume: 94 start-page: 103812 year: 2020 ident: CR33 article-title: Evaluation of human standing balance using wearable inertial sensors: a machine learning approach publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103812 – volume: 119 start-page: 3 year: 2019 end-page: 11 ident: CR58 article-title: Deep learning for sensor-based activity recognition: a survey publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2018.02.010 – volume: 8 start-page: 155060 year: 2020 end-page: 155070 ident: CR34 article-title: Deep human activity recognition with localization of wearable sensors publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3017681 – ident: CR14 – ident: CR2 – ident: CR30 – volume: 30 start-page: 22 issue: 3 year: 2016 end-page: 29 ident: CR7 article-title: Mobile big data analytics using deep learning and apache spark publication-title: IEEE Netw doi: 10.1109/MNET.2016.7474340 – volume: 8 start-page: 56855 year: 2020 end-page: 56866 ident: CR59 article-title: LSTM-CNN architecture for human activity recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982225 – ident: CR10 – volume: 8 start-page: 577 issue: 6 year: 2018 end-page: 582 ident: CR47 article-title: Comparative study of machine learning and deep learning architecture for human activity recognition using accelerometer data publication-title: Int J Mach Learn Comput – volume: 2019 start-page: 6757685 year: 2019 ident: CR15 article-title: Industrial control intrusion detection approach based on multiclassification GoogLeNet-LSTM model publication-title: Secur Commun Netw doi: 10.1155/2019/6757685 – volume: 17 start-page: 273 issue: 2 year: 2017 ident: CR66 article-title: Learning to monitor machine health with convolutional bi-directional LSTM networks publication-title: Sens doi: 10.3390/s17020273 – ident: CR40 – ident: CR63 – volume: 46 start-page: 101 issue: 1 year: 2016 end-page: 112 ident: CR23 article-title: Toward personalized activity recognition systems with a semipopulation approach publication-title: IEEE Trans Human-Mach Syst doi: 10.1109/THMS.2015.2489688 – ident: CR44 – ident: CR48 – volume: 80 start-page: 31401 year: 2021 end-page: 31433 ident: CR4 article-title: A data aggregation based approach to exploit dynamic spatio-temporal correlations for citywide crowd flows prediction in fog computing publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10486-4 – ident: CR65 – volume: 577 start-page: 852 year: 2021 end-page: 870 ident: CR5 article-title: Exploiting dynamic spatio-temporal correlations for citywide traffic flow prediction using attention based neural networks publication-title: Inf Sci doi: 10.1016/j.ins.2021.08.042 – volume: 46 start-page: 33 issue: 3 year: 2014 ident: CR11 article-title: A tutorial on human activity recognition using body-worn inertial sensors publication-title: J ACM Comput Surv – ident: CR3 – ident: CR38 – ident: CR31 – ident: CR13 – volume: 137 start-page: 167 year: 2019 end-page: 190 ident: CR57 article-title: A survey on wearable sensor modality centred human activity recognition in healthcare publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.04.057 – ident: CR28 – ident: CR41 – ident: CR62 – ident: CR20 – ident: 15571_CR10 doi: 10.1145/3177852 – volume: 8 start-page: 19799 year: 2020 ident: 15571_CR52 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968529 – volume: 7 start-page: 170199 year: 2019 ident: 15571_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2955545 – volume: 137 start-page: 167 year: 2019 ident: 15571_CR57 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.04.057 – ident: 15571_CR20 doi: 10.1109/TNNLS.2016.2582924 – ident: 15571_CR64 – volume: 2 start-page: 18 issue: 1 year: 2020 ident: 15571_CR17 publication-title: CCF Trans Pervasive Compu Interact doi: 10.1007/s42486-020-00026-2 – ident: 15571_CR14 doi: 10.3115/v1/D14-1179 – volume: 24 start-page: 292 issue: 1 year: 2020 ident: 15571_CR25 publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2019.2909688 – ident: 15571_CR65 doi: 10.1007/s10796-021-10153-5 – ident: 15571_CR22 doi: 10.1162/neco.1997.9.8.1735 – ident: 15571_CR36 – ident: 15571_CR61 doi: 10.1109/ICPR.2018.8545435 – volume: 577 start-page: 852 year: 2021 ident: 15571_CR5 publication-title: Inf Sci doi: 10.1016/j.ins.2021.08.042 – ident: 15571_CR21 – volume: 30 start-page: 22 issue: 3 year: 2016 ident: 15571_CR7 publication-title: IEEE Netw doi: 10.1109/MNET.2016.7474340 – volume: 46 start-page: 33 issue: 3 year: 2014 ident: 15571_CR11 publication-title: J ACM Comput Surv – ident: 15571_CR60 doi: 10.1109/IWCMC.2019.8766500 – volume: 2019 start-page: 6757685 year: 2019 ident: 15571_CR15 publication-title: Secur Commun Netw doi: 10.1155/2019/6757685 – ident: 15571_CR63 – ident: 15571_CR2 doi: 10.1109/IJCNN48605.2020.9207697 – ident: 15571_CR35 – volume: 17 start-page: 273 issue: 2 year: 2017 ident: 15571_CR66 publication-title: Sens doi: 10.3390/s17020273 – ident: 15571_CR44 doi: 10.1007/978-3-319-26561-2_6 – volume: 167 start-page: 2364 year: 2020 ident: 15571_CR1 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.03.289 – ident: 15571_CR29 doi: 10.1007/s10489-020-01859-1 – volume: 8 start-page: 155060 year: 2020 ident: 15571_CR34 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3017681 – ident: 15571_CR13 doi: 10.1109/HPCC/SmartCity/DSS.2019.00175 – ident: 15571_CR42 doi: 10.1109/AFRICA.2019.8843403 – volume: 59 start-page: 235 year: 2016 ident: 15571_CR45 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.04.032 – volume: 62 start-page: 915 year: 2018 ident: 15571_CR26 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.09.027 – volume: 37 start-page: 870 issue: 9 year: 2015 ident: 15571_CR27 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2015.06.009 – ident: 15571_CR12 doi: 10.1016/j.patrec.2012.12.014 – ident: 15571_CR62 doi: 10.1007/978-1-4471-5779-3 – ident: 15571_CR31 doi: 10.23919/SPA.2018.8563389 – volume: 12 start-page: 1570 issue: 9 year: 2020 ident: 15571_CR37 publication-title: Symmetry doi: 10.3390/sym12091570 – volume: 24 start-page: 2444 issue: 9 year: 2020 ident: 15571_CR18 publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2019.2952618 – ident: 15571_CR28 – volume: 46 start-page: 101 issue: 1 year: 2016 ident: 15571_CR23 publication-title: IEEE Trans Human-Mach Syst doi: 10.1109/THMS.2015.2489688 – ident: 15571_CR41 doi: 10.1109/BIGCOMP.2014.6741439 – ident: 15571_CR8 doi: 10.1109/PERCOMW.2017.7917555 – ident: 15571_CR30 – volume: 9 start-page: 150508 year: 2021 ident: 15571_CR39 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3125733 – ident: 15571_CR9 – ident: 15571_CR19 – volume: 80 start-page: 31401 year: 2021 ident: 15571_CR4 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10486-4 – ident: 15571_CR50 doi: 10.1145/2809695.2809718 – volume: 10 start-page: 2020 year: 2019 ident: 15571_CR55 publication-title: Accessed: Mar – volume: 80 start-page: 241 year: 2022 ident: 15571_CR43 publication-title: Inf Fus doi: 10.1016/j.inffus.2021.11.006 – volume: 95 start-page: 103868 year: 2020 ident: 15571_CR53 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103868 – volume: 119 start-page: 3 year: 2019 ident: 15571_CR58 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2018.02.010 – volume: 7 start-page: 41525 year: 2019 ident: 15571_CR56 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2895334 – ident: 15571_CR46 doi: 10.1007/s10489-021-02285-7 – ident: 15571_CR48 doi: 10.3390/s150102059 – volume: 12 start-page: 74 issue: 2 year: 2011 ident: 15571_CR32 publication-title: J SIGKDD Explor Newsl doi: 10.1145/1964897.1964918 – volume: 8 start-page: 577 issue: 6 year: 2018 ident: 15571_CR47 publication-title: Int J Mach Learn Comput – volume: 7 start-page: 42 issue: 2 year: 2008 ident: 15571_CR49 publication-title: IEEE Pervasive Comput doi: 10.1109/MPRV.2008.40 – ident: 15571_CR16 doi: 10.1007/978-3-319-68560-1_39 – ident: 15571_CR40 doi: 10.3390/s16010115 – volume: 145 start-page: 233 year: 2022 ident: 15571_CR6 publication-title: Neural Netw doi: 10.1016/j.neunet.2021.10.021 – ident: 15571_CR3 doi: 10.1109/ICPADS47876.2019.00025 – ident: 15571_CR38 doi: 10.1007/978-981-16-6128-0_29 – volume: 94 start-page: 103812 year: 2020 ident: 15571_CR33 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103812 – ident: 15571_CR51 doi: 10.1109/CVPR.2015.7298594 – ident: 15571_CR54 – volume: 8 start-page: 56855 year: 2020 ident: 15571_CR59 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982225  | 
    
| SSID | ssj0016524 | 
    
| Score | 2.491059 | 
    
| Snippet | Human activity recognition (HAR) is a challenging issue in several fields, such as medical diagnosis. Recent advances in the accuracy of deep learning have... | 
    
| SourceID | unpaywall proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 47733 | 
    
| SubjectTerms | Accuracy Algorithms Computer Communication Networks Computer Science Data mining Data Structures and Information Theory Deep learning Human activity recognition Machine learning Multimedia Information Systems Performance evaluation Special Purpose and Application-Based Systems Track 2: Medical Applications of Multimedia  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BOCgHP1AjiqYHb9LI1nZjB0PUgMREYogk3Jau7fCAA3XE8N_bjm7ghXhe95q8j77Xvo8fwLVpy1OmUk0FkmBKYoojt0WxywPJONUOR5l3yJeB1x_R5zEbl2CQ98KYssr8TMwOajkT5o38Vl8MWJYm8DvzT2xQo0x2NYfQ4BZaQd5lI8Z2oOKayVhlqDx0B6_DIq_gMQtz225h7Ssd20azaqZzTKuK9mFY0_AdvPzrqtbxZ5EyrcLuIpnz5Q-fTje8Uu8Q9m04ie5X8j-CkkpqcJBDNSBruTWobswdPIbOMC8bmiVoFqMMqA-ZFgeDJIFMLfwEPQ1HSCo1RxZYYoL4dKI5kr5_nMCo13177GOLpIAF8UiqjzyHCC5dj0WUBS0ZBUJHBn4s20HkCkUJ1YEjkzEXRBDuUxrra5gviBTa6GXkk1MoJ7NEnQFiUcCU8DmnbUkNAR0fEB7E0m3HHleyDk7OtFDYMeMG7WIargckG0aHmtFhxuhwWYeb4p_5asjG1tWNXBahNbjvcK0edWjm8ll_3katWcjwH5ufb9_8AvbcTINMvUsDyunXQl3qqCWNrqwq_gIGBeYU priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH5BOBgOoqgRg6YHbzJga7uxkyEqEhOJIZLgaenaDo04CI4Y_Ott9wPQGKLx3O4t_bH3vq7v-x7AmablSZ2pJl2BDYIDYvhWkxgWcwVlRAUcqf9D3vXs7oDcDukwB1cZFybOds-uJBNOg1ZpCqPGVASNFfHN1LQSFW8MFQ8d01jUVfMWFGyqEHkeCoPeffsxPmu1moYKiolsqoM1mDRT7szPhr7GpxXoXN6TFmF7Hk7Z4p2Nx2uhqFMCmQ0iyUB5qc8jv84_vuk7_neUu7CTYlXUTjbXHuRkWIZSVgcCpW6hDMU1UcN9uOhnOUmTEE0CFFcBRJo_octUIJ1oP0I3_QESUk5RWrVihNh4NJk9R0-vBzDoXD9cdo20TIPBsY0j5U9NzJmwbOoT6jaF73IFO5xAtFzf4pJgolApFQHjmGPmEBKoM57DseDKowjfwYeQDyehPAJEfZdK7jBGWoJoAwp8YOYGwmoFNpOiAma2OB5PNcx1KY2xt1Jf1nPmqTnz4jnzFhU4Xz4zTRQ8NvauZmvupV_zm6cOpTS-onIqUMuWbdW8yVptuVd-8fLjv3WvQj6azeWJQkWRf5pu-k_qdQOI priority: 102 providerName: Unpaywall  | 
    
| Title | Recognition of human activity using GRU deep learning algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s11042-023-15571-y https://www.proquest.com/docview/2895066577 https://link.springer.com/content/pdf/10.1007/s11042-023-15571-y.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 82 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54edA9eBfnZeTBNw1uTdLLk0zZJopDhgV9KmmSTmF2Qyeyf-9JTTcVEX1poU1P4Zyk30nP5QM4tGV5xmaqmUgzylnGaerVOfVkpIXkCDjG_oe87voXMb-8E3euTY6thfkWvz95wdHco4gsFJEvaNDJPCwiSPlFYNY_n0YMfOEIbMM6RRRsuAKZn2V8BaGZZzkNhlZg6TUfycmbHAw-4U17DVaco0iaH5ZdhzmTb8BqScJA3JrcgMqnjoKbcNorE4KGORlmpKDgI7Z4wXJEEJvl3iedXky0MSPiKCP6RA76w-fH8cPTFsTt1u35BXUcCVQxn43xY9ZgSmrPFykXUV2nkULMDzIdRqmnDGccXUKhM6mYYjLgPMMNVqCYVricdRqwbVjIh7nZASLSSBgVSMlDza0ARH4mo0x7YeZLo6vQKJWWKNdA3PJYDJJZ62Or6AQVnRSKTiZVOJo-M_pon_Hr6P3SFolbSi8J7ghFER8KqnBc2md2-zdpx1Mb_uHlu_-TvgfLXjGjbGbLPiyMn1_NAfon47QG82G7U4PFZuf-qoXns1b3plcrpiseY6-J1-LuTfP-HV1d318 | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADO6KsPsAJLJrYTpoDQuxlq1BFJW7BsZ1yKGmBItSf49sYp04Ll4oL5zh2NDOeJbM8gB3blmdspZqJNKOcpZwmfplTX0ZaSI4Gx9j_kHe1oNrg14_icQy-il4YW1ZZ6MRcUeu2sv_IDzAwEHmaIDzqvFKLGmWzqwWEhnTQCvowHzHmGjtuTO8TQ7j3w6sz5Peu71-cP5xWqUMZoIoFrIvqwGNKaj8QCRdRWSeRQqsZproSJb4ynHF0qoROpWKKyZDzFEOUUDGt8ELoJGS47zhM4roIg7_Jk_PafX2QxwiEg9WtlCnaZs-17fSb9zzbGoM2k-I3hx7t_TaNQ393kKKdgamPrCN7n7LV-mEFL-Zh1rmv5LgvbwswZrJFmCugIYjTFIsw82PO4RIc1YsypXZG2inJgQGJbamwyBXE1t43yWW9QbQxHeKALJpEtprIge7zyzI0_oWmKzCRtTOzCkQkkTAqlJJXNLcboD_CZJRqv5IG0ugSeAXRYuXGmlt0jVY8HMhsCR0joeOc0HGvBHuDdzr9oR4jV28UvIjdBX-Ph-JYgv2CP8PHo3bbH_DwD4evjT58G6aqD3e38e1V7WYdpv1cmmytzQZMdN8-zCZ6TN1ky4klgaf_vgnfWNsi9w | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB7xkGA5LG_RXVh8gNNi0cR20hwQQkB5oxWiErfg2E73UNLuUoT61_bXMZM6LVyqvXBOYksz45lxZr75AHYIlueoU80lVnApcsmzsC55qBOrtMSA4-g_5M1tdN6Slw_qYQr-VVgYaqusfGLpqG3X0D_yfbwYqLJMEO_nvi3i10nzsPeHE4MUVVorOo2hiVy5wSte354PLk5Q17th2Dy9Pz7nnmGAGxGJPrqCQBhtw0hlUiV1myUGI2ac20aShcZJITGhUjbXRhihYylzvJ7ERliDh8FmscB1p2E2pinuhFJvno0qGJHyhLqNOseoHHjAzhC2FxAoBqMlx2geB3zwMSiOM91RcXYB5l-Knh686k7nXfxrLsFXn7iyo6GlLcOUK1ZgsSKFYN5HrMDCuwmHq3B4VzUodQvWzVlJCcgITEGcFYy67tvs7K7FrHM95iks2kx32ijv_u-nNWh9ikTXYaboFm4DmMoS5UystWxYSQtgJiJ0ktuwkUfa2RoEldBS4weaE69GJx2PYiZBpyjotBR0OqjBz9E3veE4j4lvb1a6SP3Rfk7HhliDvUo_48eTVtsb6fA_Nv82efNtmEP7T68vbq--w5ewNCZqstmEmf7fF7eFqVI_-1HaJIPHzz4Eb1FCIJE | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH5BOBgOoqgRg6YHbzJga7uxkyEqEhOJIZLgaenaDo04CI4Y_Ott9wPQGKLx3O4t_bH3vq7v-x7AmablSZ2pJl2BDYIDYvhWkxgWcwVlRAUcqf9D3vXs7oDcDukwB1cZFybOds-uJBNOg1ZpCqPGVASNFfHN1LQSFW8MFQ8d01jUVfMWFGyqEHkeCoPeffsxPmu1moYKiolsqoM1mDRT7szPhr7GpxXoXN6TFmF7Hk7Z4p2Nx2uhqFMCmQ0iyUB5qc8jv84_vuk7_neUu7CTYlXUTjbXHuRkWIZSVgcCpW6hDMU1UcN9uOhnOUmTEE0CFFcBRJo_octUIJ1oP0I3_QESUk5RWrVihNh4NJk9R0-vBzDoXD9cdo20TIPBsY0j5U9NzJmwbOoT6jaF73IFO5xAtFzf4pJgolApFQHjmGPmEBKoM57DseDKowjfwYeQDyehPAJEfZdK7jBGWoJoAwp8YOYGwmoFNpOiAma2OB5PNcx1KY2xt1Jf1nPmqTnz4jnzFhU4Xz4zTRQ8NvauZmvupV_zm6cOpTS-onIqUMuWbdW8yVptuVd-8fLjv3WvQj6azeWJQkWRf5pu-k_qdQOI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+human+activity+using+GRU+deep+learning+algorithm&rft.jtitle=Multimedia+tools+and+applications&rft.au=Mohsen%2C+Saeed&rft.date=2023-12-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=30&rft.spage=47733&rft.epage=47749&rft_id=info:doi/10.1007%2Fs11042-023-15571-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_15571_y | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |