Recognition of human activity using GRU deep learning algorithm

Human activity recognition (HAR) is a challenging issue in several fields, such as medical diagnosis. Recent advances in the accuracy of deep learning have contributed to solving the HAR issues. Thus, it is necessary to implement deep learning algorithms that have high performance and greater accura...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 82; no. 30; pp. 47733 - 47749
Main Author Mohsen, Saeed
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
1573-7721
DOI10.1007/s11042-023-15571-y

Cover

Abstract Human activity recognition (HAR) is a challenging issue in several fields, such as medical diagnosis. Recent advances in the accuracy of deep learning have contributed to solving the HAR issues. Thus, it is necessary to implement deep learning algorithms that have high performance and greater accuracy. In this paper, a gated recurrent unit (GRU) algorithm is proposed to classify human activities. This algorithm is applied to the Wireless Sensor Data Mining (WISDM) dataset gathered from many individuals with six classes of various activities – walking, sitting, downstairs, jogging, standing, and upstairs. The proposed algorithm is tested and trained via a hyper-parameter tuning method with TensorFlow framework to achieve high accuracy. Experiments are conducted to evaluate the performance of the GRU algorithm using receiver operating characteristic (ROC) curves and confusion matrices. The results demonstrate that the GRU algorithm provides high performance in the recognition of human activities. The GRU algorithm achieves a testing accuracy of 97.08%. The rate of testing loss for the GRU is 0.221, while the precision, sensitivity, and F1-score for the GRU are 97.11%, 97.09%, and 97.10%, respectively. Experimentally, the area under the ROC curves (AUC S ) is 100%.
AbstractList Human activity recognition (HAR) is a challenging issue in several fields, such as medical diagnosis. Recent advances in the accuracy of deep learning have contributed to solving the HAR issues. Thus, it is necessary to implement deep learning algorithms that have high performance and greater accuracy. In this paper, a gated recurrent unit (GRU) algorithm is proposed to classify human activities. This algorithm is applied to the Wireless Sensor Data Mining (WISDM) dataset gathered from many individuals with six classes of various activities – walking, sitting, downstairs, jogging, standing, and upstairs. The proposed algorithm is tested and trained via a hyper-parameter tuning method with TensorFlow framework to achieve high accuracy. Experiments are conducted to evaluate the performance of the GRU algorithm using receiver operating characteristic (ROC) curves and confusion matrices. The results demonstrate that the GRU algorithm provides high performance in the recognition of human activities. The GRU algorithm achieves a testing accuracy of 97.08%. The rate of testing loss for the GRU is 0.221, while the precision, sensitivity, and F1-score for the GRU are 97.11%, 97.09%, and 97.10%, respectively. Experimentally, the area under the ROC curves (AUC S ) is 100%.
Human activity recognition (HAR) is a challenging issue in several fields, such as medical diagnosis. Recent advances in the accuracy of deep learning have contributed to solving the HAR issues. Thus, it is necessary to implement deep learning algorithms that have high performance and greater accuracy. In this paper, a gated recurrent unit (GRU) algorithm is proposed to classify human activities. This algorithm is applied to the Wireless Sensor Data Mining (WISDM) dataset gathered from many individuals with six classes of various activities – walking, sitting, downstairs, jogging, standing, and upstairs. The proposed algorithm is tested and trained via a hyper-parameter tuning method with TensorFlow framework to achieve high accuracy. Experiments are conducted to evaluate the performance of the GRU algorithm using receiver operating characteristic (ROC) curves and confusion matrices. The results demonstrate that the GRU algorithm provides high performance in the recognition of human activities. The GRU algorithm achieves a testing accuracy of 97.08%. The rate of testing loss for the GRU is 0.221, while the precision, sensitivity, and F1-score for the GRU are 97.11%, 97.09%, and 97.10%, respectively. Experimentally, the area under the ROC curves (AUCS) is 100%.
Author Mohsen, Saeed
Author_xml – sequence: 1
  givenname: Saeed
  orcidid: 0000-0003-2863-0074
  surname: Mohsen
  fullname: Mohsen, Saeed
  email: g17082131@eng.asu.edu.eg
  organization: Department of Electronics and Communications Engineering, Al-Madinah Higher Institute for Engineering and Technology, Department of Artificial Intelligence Engineering, Faculty of Computer Science and Engineering, King Salman International University (KSIU)
BookMark eNqNkE9LwzAYh4NMcJt-AU8Fz9X8aZr2JDJ0CoIw3DmkadpldElNUqXf3tYOBA_D0xte8vzyy7MAM2ONAuAawVsEIbvzCMEExxCTGFHKUNyfgTmijMSMYTQbziSDMaMQXYCF93sIUUpxMgf3GyVtbXTQ1kS2inbdQZhIyKA_deijzmtTR-vNNiqVaqNGCWfGjWhq63TYHS7BeSUar66Ocwm2T4_vq-f49W39snp4jSVJSYgzhogUJU5pkdAclkUuWYZZVWZ5gaVKSAIzSMtKSCKJYElSZXnOJCklhKQsGFkCMuV2phX9l2ga3jp9EK7nCPLRAZ8c8MEB_3HA-4G6majW2Y9O-cD3tnNmKMpxllOYppSN2Xi6JZ313qnqf9HZH0jqIEaNwQndnEaPf_HDO6ZW7rfVCeobI2WPVg
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109399
crossref_primary_10_1109_ACCESS_2024_3441108
crossref_primary_10_1016_j_engappai_2023_106992
crossref_primary_10_3390_app131910560
crossref_primary_10_1109_ACCESS_2024_3444699
crossref_primary_10_3390_eng4040155
crossref_primary_10_1007_s11042_024_20262_3
crossref_primary_10_1007_s11042_024_20301_z
crossref_primary_10_1007_s11042_024_18253_5
crossref_primary_10_1155_2024_1832298
crossref_primary_10_2174_0126662558278156231231063935
crossref_primary_10_3390_w17010059
crossref_primary_10_1007_s11042_024_19328_z
crossref_primary_10_1145_3715155
Cites_doi 10.1109/ACCESS.2021.3125733
10.1145/1964897.1964918
10.1016/j.eswa.2016.04.032
10.1016/j.medengphy.2015.06.009
10.1109/ACCESS.2020.2968529
10.1109/ACCESS.2019.2895334
10.1016/j.inffus.2021.11.006
10.1109/MPRV.2008.40
10.1016/j.engappai.2020.103868
10.1016/j.asoc.2017.09.027
10.1016/j.neunet.2021.10.021
10.1109/ACCESS.2019.2955545
10.1007/s42486-020-00026-2
10.1109/JBHI.2019.2952618
10.1016/j.procs.2020.03.289
10.3390/sym12091570
10.1109/JBHI.2019.2909688
10.1016/j.engappai.2020.103812
10.1016/j.patrec.2018.02.010
10.1109/ACCESS.2020.3017681
10.1109/MNET.2016.7474340
10.1109/ACCESS.2020.2982225
10.1155/2019/6757685
10.3390/s17020273
10.1109/THMS.2015.2489688
10.1007/s11042-020-10486-4
10.1016/j.ins.2021.08.042
10.1016/j.eswa.2019.04.057
10.1145/3177852
10.1109/TNNLS.2016.2582924
10.3115/v1/D14-1179
10.1007/s10796-021-10153-5
10.1162/neco.1997.9.8.1735
10.1109/ICPR.2018.8545435
10.1109/IWCMC.2019.8766500
10.1109/IJCNN48605.2020.9207697
10.1007/978-3-319-26561-2_6
10.1007/s10489-020-01859-1
10.1109/HPCC/SmartCity/DSS.2019.00175
10.1109/AFRICA.2019.8843403
10.1016/j.patrec.2012.12.014
10.1007/978-1-4471-5779-3
10.23919/SPA.2018.8563389
10.1109/BIGCOMP.2014.6741439
10.1109/PERCOMW.2017.7917555
10.1145/2809695.2809718
10.1007/s10489-021-02285-7
10.3390/s150102059
10.1007/978-3-319-68560-1_39
10.3390/s16010115
10.1109/ICPADS47876.2019.00025
10.1007/978-981-16-6128-0_29
10.1109/CVPR.2015.7298594
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
ADTOC
UNPAY
DOI 10.1007/s11042-023-15571-y
DatabaseName SpringerOpen
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library
ProQuest Central (Alumni)
ProQuest Central
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
CrossRef
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 47749
ExternalDocumentID 10.1007/s11042-023-15571-y
10_1007_s11042_023_15571_y
GrantInformation_xml – fundername: Women's College - Ain Shams University
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c363t-8713cad265b4590db9c7827fd89b2ce4340805dfac3c3a744f8997c3dc003db73
IEDL.DBID C6C
ISSN 1380-7501
1573-7721
IngestDate Tue Aug 19 17:07:05 EDT 2025
Fri Jul 25 23:05:18 EDT 2025
Wed Oct 01 04:51:30 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
Fri Feb 21 02:40:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords Deep learning
Human activity recognition (HAR)
Gated recurrent unit (GRU)
Artificial intelligence (AI)
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-8713cad265b4590db9c7827fd89b2ce4340805dfac3c3a744f8997c3dc003db73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2863-0074
OpenAccessLink https://doi.org/10.1007/s11042-023-15571-y
PQID 2895066577
PQPubID 54626
PageCount 17
ParticipantIDs unpaywall_primary_10_1007_s11042_023_15571_y
proquest_journals_2895066577
crossref_primary_10_1007_s11042_023_15571_y
crossref_citationtrail_10_1007_s11042_023_15571_y
springer_journals_10_1007_s11042_023_15571_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Ali, Zhu, Zakarya (CR4) 2021; 80
Ali, Zhu, Zakarya (CR6) 2022; 145
Cruciani (CR17) 2020; 2
CR38
Hsu, Chang, Chiu (CR24) 2019; 7
CR36
CR35
Igual, Medrano, Plaza (CR27) 2015; 37
CR31
CR30
Agarwal, Alam (CR1) 2020; 167
Ronao, Cho (CR45) 2016; 59
Vinayakumar, Alazab, Soman, Poornachandran, Al-Nemrat, Venkatraman (CR56) 2019; 7
Tao, Leu, Yin (CR53) 2020; 95
Tanberk, Kilimci, Tükel, Uysal, Akyokuş (CR52) 2020; 8
Verma (CR55) 2019; 10
CR2
CR3
CR8
CR9
CR48
Kwapisz, Weiss, Moore (CR32) 2011; 12
CR46
CR44
CR42
CR41
CR40
Wang, Cang, Yu (CR57) 2019; 137
Shakya, Zhang, Zhou (CR47) 2018; 8
Chu, Lai, Liu (CR15) 2019; 2019
Wang, Chen, Hao, Peng, Hu (CR58) 2019; 119
Huang, Lin, Wang, Dai, Xie, Zhou (CR25) 2020; 24
Ignatov (CR26) 2018; 62
Mohsen, Elkaseer, Scholz (CR39) 2021; 9
CR19
Stiefmeier, Roggen, Ogris, Lukowicz, Tröster (CR49) 2008; 7
CR16
CR14
CR13
CR12
Hong, Ramos, Dey (CR23) 2016; 46
CR10
CR54
CR51
Demrozi, Bacchin, Tamburin, Cristani, Pravadelli (CR18) 2020; 24
CR50
Alsheikh, Niyato, Lin, Tan, Han (CR7) 2016; 30
Ali, Zhu, Zakarya (CR5) 2021; 577
Xia, Huang, Wang (CR59) 2020; 8
Lattanzi, Freschi (CR33) 2020; 94
Mekruksavanich, Jitpattanakul, Youplao, Yupapin (CR37) 2020; 12
CR29
Zhao, Yan, Wang, Mao (CR66) 2017; 17
CR28
Qiu, Zhao, Jiang, Wang, Liu, An, Zhao, Miao, Liu, Fortino (CR43) 2022; 80
Lawal, Bano (CR34) 2020; 8
Bulling, Blanke, Schiele (CR11) 2014; 46
CR22
CR21
CR65
CR20
CR64
CR63
CR62
CR61
CR60
Y Hsu (15571_CR24) 2019; 7
15571_CR48
15571_CR46
15571_CR44
15571_CR41
15571_CR42
15571_CR3
S Qiu (15571_CR43) 2022; 80
15571_CR9
A Ali (15571_CR5) 2021; 577
15571_CR8
15571_CR2
SR Shakya (15571_CR47) 2018; 8
15571_CR50
J Huang (15571_CR25) 2020; 24
15571_CR51
15571_CR14
Y Wang (15571_CR57) 2019; 137
15571_CR12
W Tao (15571_CR53) 2020; 95
15571_CR13
R Vinayakumar (15571_CR56) 2019; 7
15571_CR10
15571_CR54
CA Ronao (15571_CR45) 2016; 59
E Lattanzi (15571_CR33) 2020; 94
IA Lawal (15571_CR34) 2020; 8
15571_CR19
15571_CR16
S Tanberk (15571_CR52) 2020; 8
F Demrozi (15571_CR18) 2020; 24
15571_CR61
15571_CR62
15571_CR60
A Ali (15571_CR4) 2021; 80
R Igual (15571_CR27) 2015; 37
MA Alsheikh (15571_CR7) 2016; 30
S Verma (15571_CR55) 2019; 10
F Cruciani (15571_CR17) 2020; 2
15571_CR21
15571_CR65
15571_CR22
15571_CR63
15571_CR20
15571_CR64
T Stiefmeier (15571_CR49) 2008; 7
15571_CR29
15571_CR28
J Hong (15571_CR23) 2016; 46
K Xia (15571_CR59) 2020; 8
S Mohsen (15571_CR39) 2021; 9
JR Kwapisz (15571_CR32) 2011; 12
15571_CR36
P Agarwal (15571_CR1) 2020; 167
A Chu (15571_CR15) 2019; 2019
15571_CR35
15571_CR30
15571_CR31
A Ali (15571_CR6) 2022; 145
15571_CR38
J Wang (15571_CR58) 2019; 119
S Mekruksavanich (15571_CR37) 2020; 12
R Zhao (15571_CR66) 2017; 17
A Bulling (15571_CR11) 2014; 46
15571_CR40
A Ignatov (15571_CR26) 2018; 62
References_xml – ident: CR22
– volume: 9
  start-page: 150508
  year: 2021
  end-page: 150521
  ident: CR39
  article-title: Industry 4.0-oriented deep learning models for human activity recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3125733
– volume: 12
  start-page: 74
  issue: 2
  year: 2011
  end-page: 82
  ident: CR32
  article-title: Activity recognition using cell phone accelerometers
  publication-title: J SIGKDD Explor Newsl
  doi: 10.1145/1964897.1964918
– volume: 59
  start-page: 235
  year: 2016
  end-page: 244
  ident: CR45
  article-title: Human activity recognition with smartphone sensors using deep learning neural networks
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.04.032
– volume: 37
  start-page: 870
  issue: 9
  year: 2015
  end-page: 878
  ident: CR27
  article-title: A comparison of public datasets for acceleration-based fall detection
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2015.06.009
– volume: 8
  start-page: 19799
  year: 2020
  end-page: 19809
  ident: CR52
  article-title: A hybrid deep model using deep learning and dense optical flow approaches for human activity recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968529
– ident: CR16
– ident: CR51
– ident: CR12
– volume: 7
  start-page: 41525
  year: 2019
  end-page: 41550
  ident: CR56
  article-title: Deep learning approach for intelligent intrusion detection system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2895334
– volume: 80
  start-page: 241
  year: 2022
  end-page: 265
  ident: CR43
  article-title: Multi-sensor information fusion based on machine learning for real applications in human activity recognition: state-of-the-art and research challenges
  publication-title: Inf Fus
  doi: 10.1016/j.inffus.2021.11.006
– ident: CR35
– volume: 7
  start-page: 42
  issue: 2
  year: 2008
  end-page: 50
  ident: CR49
  article-title: Wearable activity tracking in car manufacturing
  publication-title: IEEE Pervasive Comput
  doi: 10.1109/MPRV.2008.40
– ident: CR29
– ident: CR54
– ident: CR61
– ident: CR8
– volume: 95
  start-page: 103868
  year: 2020
  ident: CR53
  article-title: Multi-modal recognition of worker activity for human-centered intelligent manufacturing
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103868
– ident: CR42
– volume: 62
  start-page: 915
  year: 2018
  end-page: 922
  ident: CR26
  article-title: Real-time human activity recognition from accelerometer data using convolutional neural networks
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.09.027
– volume: 145
  start-page: 233
  year: 2022
  end-page: 247
  ident: CR6
  article-title: Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2021.10.021
– ident: CR21
– ident: CR46
– volume: 10
  start-page: 2020
  year: 2019
  ident: CR55
  article-title: Understanding input and output shapes in LSTM-Keras
  publication-title: Accessed: Mar
– ident: CR19
– volume: 7
  start-page: 170199
  year: 2019
  end-page: 170212
  ident: CR24
  article-title: Wearable sport activity classification based on deep convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2955545
– volume: 2
  start-page: 18
  issue: 1
  year: 2020
  end-page: 32
  ident: CR17
  article-title: Feature learning for human activity recognition using convolutional neural networks
  publication-title: CCF Trans Pervasive Compu Interact
  doi: 10.1007/s42486-020-00026-2
– volume: 24
  start-page: 2444
  issue: 9
  year: 2020
  end-page: 2451
  ident: CR18
  article-title: Toward a wearable system for predicting freezing of gait in people affected by parkinson’s disease
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2019.2952618
– ident: CR50
– volume: 167
  start-page: 2364
  year: 2020
  end-page: 2373
  ident: CR1
  article-title: A lightweight deep learning model for human activity recognition on edge devices
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.03.289
– ident: CR9
– volume: 12
  start-page: 1570
  issue: 9
  year: 2020
  ident: CR37
  article-title: Enhanced hand-oriented activity recognition based on smartwatch sensor data using LSTMs
  publication-title: Symmetry
  doi: 10.3390/sym12091570
– ident: CR60
– ident: CR36
– ident: CR64
– volume: 24
  start-page: 292
  issue: 1
  year: 2020
  end-page: 299
  ident: CR25
  article-title: TSE-CNN: a two-stage end-to-end CNN for human activity recognition
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2019.2909688
– volume: 94
  start-page: 103812
  year: 2020
  ident: CR33
  article-title: Evaluation of human standing balance using wearable inertial sensors: a machine learning approach
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103812
– volume: 119
  start-page: 3
  year: 2019
  end-page: 11
  ident: CR58
  article-title: Deep learning for sensor-based activity recognition: a survey
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2018.02.010
– volume: 8
  start-page: 155060
  year: 2020
  end-page: 155070
  ident: CR34
  article-title: Deep human activity recognition with localization of wearable sensors
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3017681
– ident: CR14
– ident: CR2
– ident: CR30
– volume: 30
  start-page: 22
  issue: 3
  year: 2016
  end-page: 29
  ident: CR7
  article-title: Mobile big data analytics using deep learning and apache spark
  publication-title: IEEE Netw
  doi: 10.1109/MNET.2016.7474340
– volume: 8
  start-page: 56855
  year: 2020
  end-page: 56866
  ident: CR59
  article-title: LSTM-CNN architecture for human activity recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982225
– ident: CR10
– volume: 8
  start-page: 577
  issue: 6
  year: 2018
  end-page: 582
  ident: CR47
  article-title: Comparative study of machine learning and deep learning architecture for human activity recognition using accelerometer data
  publication-title: Int J Mach Learn Comput
– volume: 2019
  start-page: 6757685
  year: 2019
  ident: CR15
  article-title: Industrial control intrusion detection approach based on multiclassification GoogLeNet-LSTM model
  publication-title: Secur Commun Netw
  doi: 10.1155/2019/6757685
– volume: 17
  start-page: 273
  issue: 2
  year: 2017
  ident: CR66
  article-title: Learning to monitor machine health with convolutional bi-directional LSTM networks
  publication-title: Sens
  doi: 10.3390/s17020273
– ident: CR40
– ident: CR63
– volume: 46
  start-page: 101
  issue: 1
  year: 2016
  end-page: 112
  ident: CR23
  article-title: Toward personalized activity recognition systems with a semipopulation approach
  publication-title: IEEE Trans Human-Mach Syst
  doi: 10.1109/THMS.2015.2489688
– ident: CR44
– ident: CR48
– volume: 80
  start-page: 31401
  year: 2021
  end-page: 31433
  ident: CR4
  article-title: A data aggregation based approach to exploit dynamic spatio-temporal correlations for citywide crowd flows prediction in fog computing
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-10486-4
– ident: CR65
– volume: 577
  start-page: 852
  year: 2021
  end-page: 870
  ident: CR5
  article-title: Exploiting dynamic spatio-temporal correlations for citywide traffic flow prediction using attention based neural networks
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.08.042
– volume: 46
  start-page: 33
  issue: 3
  year: 2014
  ident: CR11
  article-title: A tutorial on human activity recognition using body-worn inertial sensors
  publication-title: J ACM Comput Surv
– ident: CR3
– ident: CR38
– ident: CR31
– ident: CR13
– volume: 137
  start-page: 167
  year: 2019
  end-page: 190
  ident: CR57
  article-title: A survey on wearable sensor modality centred human activity recognition in healthcare
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.04.057
– ident: CR28
– ident: CR41
– ident: CR62
– ident: CR20
– ident: 15571_CR10
  doi: 10.1145/3177852
– volume: 8
  start-page: 19799
  year: 2020
  ident: 15571_CR52
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968529
– volume: 7
  start-page: 170199
  year: 2019
  ident: 15571_CR24
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2955545
– volume: 137
  start-page: 167
  year: 2019
  ident: 15571_CR57
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.04.057
– ident: 15571_CR20
  doi: 10.1109/TNNLS.2016.2582924
– ident: 15571_CR64
– volume: 2
  start-page: 18
  issue: 1
  year: 2020
  ident: 15571_CR17
  publication-title: CCF Trans Pervasive Compu Interact
  doi: 10.1007/s42486-020-00026-2
– ident: 15571_CR14
  doi: 10.3115/v1/D14-1179
– volume: 24
  start-page: 292
  issue: 1
  year: 2020
  ident: 15571_CR25
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2019.2909688
– ident: 15571_CR65
  doi: 10.1007/s10796-021-10153-5
– ident: 15571_CR22
  doi: 10.1162/neco.1997.9.8.1735
– ident: 15571_CR36
– ident: 15571_CR61
  doi: 10.1109/ICPR.2018.8545435
– volume: 577
  start-page: 852
  year: 2021
  ident: 15571_CR5
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.08.042
– ident: 15571_CR21
– volume: 30
  start-page: 22
  issue: 3
  year: 2016
  ident: 15571_CR7
  publication-title: IEEE Netw
  doi: 10.1109/MNET.2016.7474340
– volume: 46
  start-page: 33
  issue: 3
  year: 2014
  ident: 15571_CR11
  publication-title: J ACM Comput Surv
– ident: 15571_CR60
  doi: 10.1109/IWCMC.2019.8766500
– volume: 2019
  start-page: 6757685
  year: 2019
  ident: 15571_CR15
  publication-title: Secur Commun Netw
  doi: 10.1155/2019/6757685
– ident: 15571_CR63
– ident: 15571_CR2
  doi: 10.1109/IJCNN48605.2020.9207697
– ident: 15571_CR35
– volume: 17
  start-page: 273
  issue: 2
  year: 2017
  ident: 15571_CR66
  publication-title: Sens
  doi: 10.3390/s17020273
– ident: 15571_CR44
  doi: 10.1007/978-3-319-26561-2_6
– volume: 167
  start-page: 2364
  year: 2020
  ident: 15571_CR1
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.03.289
– ident: 15571_CR29
  doi: 10.1007/s10489-020-01859-1
– volume: 8
  start-page: 155060
  year: 2020
  ident: 15571_CR34
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3017681
– ident: 15571_CR13
  doi: 10.1109/HPCC/SmartCity/DSS.2019.00175
– ident: 15571_CR42
  doi: 10.1109/AFRICA.2019.8843403
– volume: 59
  start-page: 235
  year: 2016
  ident: 15571_CR45
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.04.032
– volume: 62
  start-page: 915
  year: 2018
  ident: 15571_CR26
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.09.027
– volume: 37
  start-page: 870
  issue: 9
  year: 2015
  ident: 15571_CR27
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2015.06.009
– ident: 15571_CR12
  doi: 10.1016/j.patrec.2012.12.014
– ident: 15571_CR62
  doi: 10.1007/978-1-4471-5779-3
– ident: 15571_CR31
  doi: 10.23919/SPA.2018.8563389
– volume: 12
  start-page: 1570
  issue: 9
  year: 2020
  ident: 15571_CR37
  publication-title: Symmetry
  doi: 10.3390/sym12091570
– volume: 24
  start-page: 2444
  issue: 9
  year: 2020
  ident: 15571_CR18
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2019.2952618
– ident: 15571_CR28
– volume: 46
  start-page: 101
  issue: 1
  year: 2016
  ident: 15571_CR23
  publication-title: IEEE Trans Human-Mach Syst
  doi: 10.1109/THMS.2015.2489688
– ident: 15571_CR41
  doi: 10.1109/BIGCOMP.2014.6741439
– ident: 15571_CR8
  doi: 10.1109/PERCOMW.2017.7917555
– ident: 15571_CR30
– volume: 9
  start-page: 150508
  year: 2021
  ident: 15571_CR39
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3125733
– ident: 15571_CR9
– ident: 15571_CR19
– volume: 80
  start-page: 31401
  year: 2021
  ident: 15571_CR4
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-10486-4
– ident: 15571_CR50
  doi: 10.1145/2809695.2809718
– volume: 10
  start-page: 2020
  year: 2019
  ident: 15571_CR55
  publication-title: Accessed: Mar
– volume: 80
  start-page: 241
  year: 2022
  ident: 15571_CR43
  publication-title: Inf Fus
  doi: 10.1016/j.inffus.2021.11.006
– volume: 95
  start-page: 103868
  year: 2020
  ident: 15571_CR53
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103868
– volume: 119
  start-page: 3
  year: 2019
  ident: 15571_CR58
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2018.02.010
– volume: 7
  start-page: 41525
  year: 2019
  ident: 15571_CR56
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2895334
– ident: 15571_CR46
  doi: 10.1007/s10489-021-02285-7
– ident: 15571_CR48
  doi: 10.3390/s150102059
– volume: 12
  start-page: 74
  issue: 2
  year: 2011
  ident: 15571_CR32
  publication-title: J SIGKDD Explor Newsl
  doi: 10.1145/1964897.1964918
– volume: 8
  start-page: 577
  issue: 6
  year: 2018
  ident: 15571_CR47
  publication-title: Int J Mach Learn Comput
– volume: 7
  start-page: 42
  issue: 2
  year: 2008
  ident: 15571_CR49
  publication-title: IEEE Pervasive Comput
  doi: 10.1109/MPRV.2008.40
– ident: 15571_CR16
  doi: 10.1007/978-3-319-68560-1_39
– ident: 15571_CR40
  doi: 10.3390/s16010115
– volume: 145
  start-page: 233
  year: 2022
  ident: 15571_CR6
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2021.10.021
– ident: 15571_CR3
  doi: 10.1109/ICPADS47876.2019.00025
– ident: 15571_CR38
  doi: 10.1007/978-981-16-6128-0_29
– volume: 94
  start-page: 103812
  year: 2020
  ident: 15571_CR33
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103812
– ident: 15571_CR51
  doi: 10.1109/CVPR.2015.7298594
– ident: 15571_CR54
– volume: 8
  start-page: 56855
  year: 2020
  ident: 15571_CR59
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982225
SSID ssj0016524
Score 2.491059
Snippet Human activity recognition (HAR) is a challenging issue in several fields, such as medical diagnosis. Recent advances in the accuracy of deep learning have...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 47733
SubjectTerms Accuracy
Algorithms
Computer Communication Networks
Computer Science
Data mining
Data Structures and Information Theory
Deep learning
Human activity recognition
Machine learning
Multimedia Information Systems
Performance evaluation
Special Purpose and Application-Based Systems
Track 2: Medical Applications of Multimedia
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BOCgHP1AjiqYHb9LI1nZjB0PUgMREYogk3Jau7fCAA3XE8N_bjm7ghXhe95q8j77Xvo8fwLVpy1OmUk0FkmBKYoojt0WxywPJONUOR5l3yJeB1x_R5zEbl2CQ98KYssr8TMwOajkT5o38Vl8MWJYm8DvzT2xQo0x2NYfQ4BZaQd5lI8Z2oOKayVhlqDx0B6_DIq_gMQtz225h7Ssd20azaqZzTKuK9mFY0_AdvPzrqtbxZ5EyrcLuIpnz5Q-fTje8Uu8Q9m04ie5X8j-CkkpqcJBDNSBruTWobswdPIbOMC8bmiVoFqMMqA-ZFgeDJIFMLfwEPQ1HSCo1RxZYYoL4dKI5kr5_nMCo13177GOLpIAF8UiqjzyHCC5dj0WUBS0ZBUJHBn4s20HkCkUJ1YEjkzEXRBDuUxrra5gviBTa6GXkk1MoJ7NEnQFiUcCU8DmnbUkNAR0fEB7E0m3HHleyDk7OtFDYMeMG7WIargckG0aHmtFhxuhwWYeb4p_5asjG1tWNXBahNbjvcK0edWjm8ll_3katWcjwH5ufb9_8AvbcTINMvUsDyunXQl3qqCWNrqwq_gIGBeYU
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH5BOBgOoqgRg6YHbzJga7uxkyEqEhOJIZLgaenaDo04CI4Y_Ott9wPQGKLx3O4t_bH3vq7v-x7AmablSZ2pJl2BDYIDYvhWkxgWcwVlRAUcqf9D3vXs7oDcDukwB1cZFybOds-uJBNOg1ZpCqPGVASNFfHN1LQSFW8MFQ8d01jUVfMWFGyqEHkeCoPeffsxPmu1moYKiolsqoM1mDRT7szPhr7GpxXoXN6TFmF7Hk7Z4p2Nx2uhqFMCmQ0iyUB5qc8jv84_vuk7_neUu7CTYlXUTjbXHuRkWIZSVgcCpW6hDMU1UcN9uOhnOUmTEE0CFFcBRJo_octUIJ1oP0I3_QESUk5RWrVihNh4NJk9R0-vBzDoXD9cdo20TIPBsY0j5U9NzJmwbOoT6jaF73IFO5xAtFzf4pJgolApFQHjmGPmEBKoM57DseDKowjfwYeQDyehPAJEfZdK7jBGWoJoAwp8YOYGwmoFNpOiAma2OB5PNcx1KY2xt1Jf1nPmqTnz4jnzFhU4Xz4zTRQ8NvauZmvupV_zm6cOpTS-onIqUMuWbdW8yVptuVd-8fLjv3WvQj6azeWJQkWRf5pu-k_qdQOI
  priority: 102
  providerName: Unpaywall
Title Recognition of human activity using GRU deep learning algorithm
URI https://link.springer.com/article/10.1007/s11042-023-15571-y
https://www.proquest.com/docview/2895066577
https://link.springer.com/content/pdf/10.1007/s11042-023-15571-y.pdf
UnpaywallVersion publishedVersion
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54edA9eBfnZeTBNw1uTdLLk0zZJopDhgV9KmmSTmF2Qyeyf-9JTTcVEX1poU1P4Zyk30nP5QM4tGV5xmaqmUgzylnGaerVOfVkpIXkCDjG_oe87voXMb-8E3euTY6thfkWvz95wdHco4gsFJEvaNDJPCwiSPlFYNY_n0YMfOEIbMM6RRRsuAKZn2V8BaGZZzkNhlZg6TUfycmbHAw-4U17DVaco0iaH5ZdhzmTb8BqScJA3JrcgMqnjoKbcNorE4KGORlmpKDgI7Z4wXJEEJvl3iedXky0MSPiKCP6RA76w-fH8cPTFsTt1u35BXUcCVQxn43xY9ZgSmrPFykXUV2nkULMDzIdRqmnDGccXUKhM6mYYjLgPMMNVqCYVricdRqwbVjIh7nZASLSSBgVSMlDza0ARH4mo0x7YeZLo6vQKJWWKNdA3PJYDJJZ62Or6AQVnRSKTiZVOJo-M_pon_Hr6P3SFolbSi8J7ghFER8KqnBc2md2-zdpx1Mb_uHlu_-TvgfLXjGjbGbLPiyMn1_NAfon47QG82G7U4PFZuf-qoXns1b3plcrpiseY6-J1-LuTfP-HV1d318
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADO6KsPsAJLJrYTpoDQuxlq1BFJW7BsZ1yKGmBItSf49sYp04Ll4oL5zh2NDOeJbM8gB3blmdspZqJNKOcpZwmfplTX0ZaSI4Gx9j_kHe1oNrg14_icQy-il4YW1ZZ6MRcUeu2sv_IDzAwEHmaIDzqvFKLGmWzqwWEhnTQCvowHzHmGjtuTO8TQ7j3w6sz5Peu71-cP5xWqUMZoIoFrIvqwGNKaj8QCRdRWSeRQqsZproSJb4ynHF0qoROpWKKyZDzFEOUUDGt8ELoJGS47zhM4roIg7_Jk_PafX2QxwiEg9WtlCnaZs-17fSb9zzbGoM2k-I3hx7t_TaNQ393kKKdgamPrCN7n7LV-mEFL-Zh1rmv5LgvbwswZrJFmCugIYjTFIsw82PO4RIc1YsypXZG2inJgQGJbamwyBXE1t43yWW9QbQxHeKALJpEtprIge7zyzI0_oWmKzCRtTOzCkQkkTAqlJJXNLcboD_CZJRqv5IG0ugSeAXRYuXGmlt0jVY8HMhsCR0joeOc0HGvBHuDdzr9oR4jV28UvIjdBX-Ph-JYgv2CP8PHo3bbH_DwD4evjT58G6aqD3e38e1V7WYdpv1cmmytzQZMdN8-zCZ6TN1ky4klgaf_vgnfWNsi9w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB7xkGA5LG_RXVh8gNNi0cR20hwQQkB5oxWiErfg2E73UNLuUoT61_bXMZM6LVyqvXBOYksz45lxZr75AHYIlueoU80lVnApcsmzsC55qBOrtMSA4-g_5M1tdN6Slw_qYQr-VVgYaqusfGLpqG3X0D_yfbwYqLJMEO_nvi3i10nzsPeHE4MUVVorOo2hiVy5wSte354PLk5Q17th2Dy9Pz7nnmGAGxGJPrqCQBhtw0hlUiV1myUGI2ac20aShcZJITGhUjbXRhihYylzvJ7ERliDh8FmscB1p2E2pinuhFJvno0qGJHyhLqNOseoHHjAzhC2FxAoBqMlx2geB3zwMSiOM91RcXYB5l-Knh686k7nXfxrLsFXn7iyo6GlLcOUK1ZgsSKFYN5HrMDCuwmHq3B4VzUodQvWzVlJCcgITEGcFYy67tvs7K7FrHM95iks2kx32ijv_u-nNWh9ikTXYaboFm4DmMoS5UystWxYSQtgJiJ0ktuwkUfa2RoEldBS4weaE69GJx2PYiZBpyjotBR0OqjBz9E3veE4j4lvb1a6SP3Rfk7HhliDvUo_48eTVtsb6fA_Nv82efNtmEP7T68vbq--w5ewNCZqstmEmf7fF7eFqVI_-1HaJIPHzz4Eb1FCIJE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH5BOBgOoqgRg6YHbzJga7uxkyEqEhOJIZLgaenaDo04CI4Y_Ott9wPQGKLx3O4t_bH3vq7v-x7AmablSZ2pJl2BDYIDYvhWkxgWcwVlRAUcqf9D3vXs7oDcDukwB1cZFybOds-uJBNOg1ZpCqPGVASNFfHN1LQSFW8MFQ8d01jUVfMWFGyqEHkeCoPeffsxPmu1moYKiolsqoM1mDRT7szPhr7GpxXoXN6TFmF7Hk7Z4p2Nx2uhqFMCmQ0iyUB5qc8jv84_vuk7_neUu7CTYlXUTjbXHuRkWIZSVgcCpW6hDMU1UcN9uOhnOUmTEE0CFFcBRJo_octUIJ1oP0I3_QESUk5RWrVihNh4NJk9R0-vBzDoXD9cdo20TIPBsY0j5U9NzJmwbOoT6jaF73IFO5xAtFzf4pJgolApFQHjmGPmEBKoM57DseDKowjfwYeQDyehPAJEfZdK7jBGWoJoAwp8YOYGwmoFNpOiAma2OB5PNcx1KY2xt1Jf1nPmqTnz4jnzFhU4Xz4zTRQ8NvauZmvupV_zm6cOpTS-onIqUMuWbdW8yVptuVd-8fLjv3WvQj6azeWJQkWRf5pu-k_qdQOI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+human+activity+using+GRU+deep+learning+algorithm&rft.jtitle=Multimedia+tools+and+applications&rft.au=Mohsen%2C+Saeed&rft.date=2023-12-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=30&rft.spage=47733&rft.epage=47749&rft_id=info:doi/10.1007%2Fs11042-023-15571-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_15571_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon