An Efficient Coalescent Epoch Model for Bayesian Phylogenetic Inference

We present a two-headed approach called Bayesian Integrated Coalescent Epoch PlotS (BICEPS) for efficient inference of coalescent epoch models. Firstly, we integrate out population size parameters, and secondly, we introduce a set of more powerful Markov chain Monte Carlo (MCMC) proposals for flexin...

Full description

Saved in:
Bibliographic Details
Published inSystematic biology Vol. 71; no. 6; pp. 1549 - 1560
Main Author Bouckaert, Remco R
Format Journal Article
LanguageEnglish
Published England Oxford University Press 12.10.2022
Subjects
Online AccessGet full text
ISSN1063-5157
1076-836X
1076-836X
DOI10.1093/sysbio/syac015

Cover

Abstract We present a two-headed approach called Bayesian Integrated Coalescent Epoch PlotS (BICEPS) for efficient inference of coalescent epoch models. Firstly, we integrate out population size parameters, and secondly, we introduce a set of more powerful Markov chain Monte Carlo (MCMC) proposals for flexing and stretching trees. Even though population sizes are integrated out and not explicitly sampled through MCMC, we are still able to generate samples from the population size posteriors. This allows demographic reconstruction through time and estimating the timing and magnitude of population bottlenecks and full population histories. Altogether, BICEPS can be considered a more muscular version of the popular Bayesian skyline model. We demonstrate its power and correctness by a well-calibrated simulation study. Furthermore, we demonstrate with an application to SARS-CoV-2 genomic data that some analyses that have trouble converging with the traditional Bayesian skyline prior and standard MCMC proposals can do well with the BICEPS approach. BICEPS is available as open-source package for BEAST 2 under GPL license and has a user-friendly graphical user interface.[Bayesian phylogenetics; BEAST 2; BICEPS; coalescent model.]
AbstractList We present a two-headed approach called Bayesian Integrated Coalescent Epoch PlotS (BICEPS) for efficient inference of coalescent epoch models. Firstly, we integrate out population size parameters, and secondly, we introduce a set of more powerful Markov chain Monte Carlo (MCMC) proposals for flexing and stretching trees. Even though population sizes are integrated out and not explicitly sampled through MCMC, we are still able to generate samples from the population size posteriors. This allows demographic reconstruction through time and estimating the timing and magnitude of population bottlenecks and full population histories. Altogether, BICEPS can be considered a more muscular version of the popular Bayesian skyline model. We demonstrate its power and correctness by a well-calibrated simulation study. Furthermore, we demonstrate with an application to SARS-CoV-2 genomic data that some analyses that have trouble converging with the traditional Bayesian skyline prior and standard MCMC proposals can do well with the BICEPS approach. BICEPS is available as open-source package for BEAST 2 under GPL license and has a user-friendly graphical user interface.[Bayesian phylogenetics; BEAST 2; BICEPS; coalescent model.].
We present a two-headed approach called Bayesian Integrated Coalescent Epoch PlotS (BICEPS) for efficient inference of coalescent epoch models. Firstly, we integrate out population size parameters, and secondly, we introduce a set of more powerful Markov chain Monte Carlo (MCMC) proposals for flexing and stretching trees. Even though population sizes are integrated out and not explicitly sampled through MCMC, we are still able to generate samples from the population size posteriors. This allows demographic reconstruction through time and estimating the timing and magnitude of population bottlenecks and full population histories. Altogether, BICEPS can be considered a more muscular version of the popular Bayesian skyline model. We demonstrate its power and correctness by a well-calibrated simulation study. Furthermore, we demonstrate with an application to SARS-CoV-2 genomic data that some analyses that have trouble converging with the traditional Bayesian skyline prior and standard MCMC proposals can do well with the BICEPS approach. BICEPS is available as open-source package for BEAST 2 under GPL license and has a user-friendly graphical user interface.[Bayesian phylogenetics; BEAST 2; BICEPS; coalescent model.].We present a two-headed approach called Bayesian Integrated Coalescent Epoch PlotS (BICEPS) for efficient inference of coalescent epoch models. Firstly, we integrate out population size parameters, and secondly, we introduce a set of more powerful Markov chain Monte Carlo (MCMC) proposals for flexing and stretching trees. Even though population sizes are integrated out and not explicitly sampled through MCMC, we are still able to generate samples from the population size posteriors. This allows demographic reconstruction through time and estimating the timing and magnitude of population bottlenecks and full population histories. Altogether, BICEPS can be considered a more muscular version of the popular Bayesian skyline model. We demonstrate its power and correctness by a well-calibrated simulation study. Furthermore, we demonstrate with an application to SARS-CoV-2 genomic data that some analyses that have trouble converging with the traditional Bayesian skyline prior and standard MCMC proposals can do well with the BICEPS approach. BICEPS is available as open-source package for BEAST 2 under GPL license and has a user-friendly graphical user interface.[Bayesian phylogenetics; BEAST 2; BICEPS; coalescent model.].
Author Bouckaert, Remco R
Author_xml – sequence: 1
  givenname: Remco R
  surname: Bouckaert
  fullname: Bouckaert, Remco R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35212733$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1PGzEQhi0UBCFw7bFaqZdeNtge27t7pFFIkUBwaCVuK8cZFyPHTu1dVfvv2SihB6Sqp5nD887Hc0EmIQYk5BOjc0YbuM5DXrs4Fm0okydkymilyhrU82TfKyglk9U5ucj5lVLGlGRn5BwkZ7wCmJLVTSiW1jrjMHTFImqP2ezb5S6al-IhbtAXNqbimx4wOx2Kp5fBx18YsHOmuAsWEwaDl-TUap_x6lhn5Oft8sfie3n_uLpb3NyXBhR0ZS2UFUwjoNAcVFPVnDKQtbS1sdxKudkYuxaNEg1KZg0XFuXasoqaykiGMCPXh7l92Onhj_a-3SW31WloGW33StqDkvaoZEx8PSR2Kf7uMXft1o0veq8Dxj63XAE0XCgQI_rlA_oa-xTGf1rgQjAQdJQ2I5-PVL_e4ubv_nepIzA_ACbFnBPa_58oPgSM63TnYuiSdv5fsTfF6J3q
CitedBy_id crossref_primary_10_1109_TCBB_2024_3457875
crossref_primary_10_1002_iub_2920
crossref_primary_10_1002_iub_2911
crossref_primary_10_7717_peerj_17276
crossref_primary_10_3390_v16071118
crossref_primary_10_1002_ece3_70107
crossref_primary_10_1038_s41467_022_34186_9
crossref_primary_10_1038_s41467_024_53998_5
crossref_primary_10_1093_nar_gkad1160
crossref_primary_10_1093_ve_vead018
crossref_primary_10_1002_tax_13245
crossref_primary_10_1038_s42003_022_03723_z
crossref_primary_10_1093_sysbio_syae064
crossref_primary_10_3390_biology12020313
crossref_primary_10_1093_ve_vead028
crossref_primary_10_3390_genes15091236
crossref_primary_10_1128_spectrum_02693_23
crossref_primary_10_1007_s10592_023_01561_y
crossref_primary_10_1038_s43856_023_00328_3
Cites_doi 10.1017/CBO9781139095112
10.1093/molbev/msz172
10.3201/eid2709.211097
10.1093/genetics/149.1.429
10.1093/molbev/msn090
10.1371/journal.pone.0069504
10.1093/molbev/msi103
10.1111/j.1558-5646.2008.00414.x
10.1093/oxfordjournals.molbev.a003776
10.1093/molbev/msaa016
10.1038/s10038-020-0781-3
10.1073/pnas.1207965110
10.1093/genetics/155.3.1429
10.1093/ve/veab052
10.1073/pnas.1311790110
10.1073/pnas.0907189107
10.7717/peerj.9460
10.1007/BF01734359
10.1126/science.1101074
10.1038/nature06945
10.1371/journal.pcbi.1006650
10.1186/s12862-020-01609-4
10.1093/sysbio/syz008
10.1214/ss/998929474
10.1016/0304-4149(82)90011-4
10.1093/biomet/82.4.711
10.1371/journal.pcbi.1008322
10.1093/molbev/msx126
10.1007/s00285-016-1034-0
10.1093/molbev/mss265
10.1080/10635150500354670
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of the Society of Systematic Biologists.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Society of Systematic Biologists.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ADTOC
UNPAY
DOI 10.1093/sysbio/syac015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
Ecology
EISSN 1076-836X
EndPage 1560
ExternalDocumentID 10.1093/sysbio/syac015
35212733
10_1093_sysbio_syac015
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.2P
.I3
0R~
123
18M
1TH
29Q
2FS
36B
4.4
48X
5VS
5WD
70D
AAHBH
AAHKG
AAIMJ
AAJKP
AAKGQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAVLN
AAYXX
ABDBF
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABMNT
ABNKS
ABPLY
ABPPZ
ABPQP
ABPTD
ABQLI
ABTLG
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACCCW
ACGEJ
ACGFO
ACGFS
ACGOD
ACIPB
ACNCT
ACPRK
ACSTJ
ACUFI
ACUHS
ACUTJ
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADXPE
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFAZZ
AFFZL
AFGWE
AFIYH
AFKVX
AFOFC
AFYAG
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AJWEG
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAYMD
BCRHZ
BENPR
BEYMZ
BHONS
BQDIO
BSWAC
C45
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EAD
EAP
EAS
EBC
EBD
EBS
EE~
EHN
EMB
EMK
EMOBN
EPL
EPT
EST
ESX
F5P
F9B
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HF~
HW0
HZ~
I-F
IOX
J21
JBS
JLS
JXSIZ
KAQDR
KOP
KSI
KSN
M-Z
N9A
NGC
NLBLG
NOMLY
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OVD
OWPYF
P2P
PAFKI
PEELM
Q1.
Q5Y
Q~Q
RD5
ROX
ROZ
RUSNO
RW1
RWL
RXO
RXW
SV3
TAE
TEORI
TLC
TN5
TUS
WH7
X7H
XSW
YAYTL
YKOAZ
YXANX
~02
~91
ADRIX
AEUPB
AFXEN
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
VQA
ABUFD
K9.
7X8
.-4
53G
7X7
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8G5
AAISJ
AAJQQ
AAUQX
AAWDT
ABBHK
ABIME
ABNGD
ABPIB
ABSMQ
ABSQW
ABUWG
ABXSQ
ABZEO
ACFRR
ACHIC
ACPQN
ACUKT
ACVCV
ACZBC
ADTOC
ADULT
ADXHL
AEKPW
AEUYN
AFKRA
AFSHK
AGKRT
AGMDO
AGQPQ
AGUYK
AHXOZ
AILXY
AJDVS
ANFBD
APJGH
AQDSO
AQVQM
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
AZQEC
BBNVY
BES
BHPHI
BKSAR
BPHCQ
BVXVI
CAG
CBGCD
CCPQU
CUYZI
CXTWN
D1J
DEVKO
DFGAJ
DWQXO
EJD
ELUNK
FEDTE
FYUFA
GNUQQ
GTFYD
GUQSH
HCIFZ
HGD
HMCUK
HQ2
HTVGU
HVGLF
IPSME
JAAYA
JBMMH
JEB
JEFFH
JENOY
JHFFW
JKQEH
JLXEF
JPM
JST
KBUDW
LK8
M1P
M2O
M2P
M2Q
M7P
MBTAY
MVM
NEJ
NU-
NVLIB
O0~
O~Y
PADUT
PB-
PCBAR
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
QBD
S0X
SA0
TCN
UBC
UKHRP
UNPAY
WHG
YXE
ZCG
ZY4
ID FETCH-LOGICAL-c363t-846f41ae3e4a2369782013585f8cf2f55ddcfb49649e51fc24fe5bf170c7c51e3
IEDL.DBID UNPAY
ISSN 1063-5157
1076-836X
IngestDate Sun Oct 26 03:57:29 EDT 2025
Thu Oct 02 05:27:55 EDT 2025
Mon Oct 06 17:50:20 EDT 2025
Wed Feb 19 02:25:27 EST 2025
Wed Oct 01 02:38:08 EDT 2025
Thu Apr 24 22:53:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2022. Published by Oxford University Press on behalf of the Society of Systematic Biologists.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-846f41ae3e4a2369782013585f8cf2f55ddcfb49649e51fc24fe5bf170c7c51e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/sysbio/article-pdf/71/6/1549/48352600/syac015.pdf
PMID 35212733
PQID 3244134073
PQPubID 37498
PageCount 12
ParticipantIDs unpaywall_primary_10_1093_sysbio_syac015
proquest_miscellaneous_2633924634
proquest_journals_3244134073
pubmed_primary_35212733
crossref_primary_10_1093_sysbio_syac015
crossref_citationtrail_10_1093_sysbio_syac015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-12
PublicationDateYYYYMMDD 2022-10-12
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-12
  day: 12
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Systematic biology
PublicationTitleAlternate Syst Biol
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hill (2022122217174507500_B14) 2019; 36
Yang (2022122217174507500_B32) 2013; 110
Parag (2022122217174507500_B23) 2020; 37
Rambaut (2022122217174507500_B27) 2008; 453
Douglas (2022122217174507500_B5) 2021; 27
Thawornwattana (2022122217174507500_B31) 2018; 13
Strimmer (2022122217174507500_B30) 2001; 18
Jones (2022122217174507500_B16) 2017; 74
Bouckaert (2022122217174507500_B3) 2020; 8
Drummond (2022122217174507500_B9) 2005; 22
Pybus (2022122217174507500_B26) 2000; 155
Bouckaert (2022122217174507500_B2) 2019; 15
Ogilvie (2022122217174507500_B22) 2017; 34
Liu (2022122217174507500_B19) 2008; 62
Gill (2022122217174507500_B12) 2013; 30
Miller (2022122217174507500_B20) 2012; 109
Kuhner (2022122217174507500_B18) 1998; 149
Campos (2022122217174507500_B4) 2010; 107
Stadler (2022122217174507500_B29) 2013; 110
Minin (2022122217174507500_B21) 2008; 25
Parag (2022122217174507500_B24) 2019; 68
Douglas (2022122217174507500_B7) 2021; 17
Felsenstein (2022122217174507500_B10) 1981; 17
Zhang (2022122217174507500_B34) 2020; 20
Yule (2022122217174507500_B33) 1924; 213
Shapiro (2022122217174507500_B28) 2004; 306
Green (2022122217174507500_B13) 1995; 82
Drummond (2022122217174507500_B8) 2015
Pedro (2022122217174507500_B25) 2020; 65
Finstermeier (2022122217174507500_B11) 2013; 8
Aldous (2022122217174507500_B1) 2001; 16
Douglas (2022122217174507500_B6) 2021; 7
Holder (2022122217174507500_B15) 2005; 54
Kingman (2022122217174507500_B17) 1982; 13
References_xml – volume-title: Bayesian evolutionary analysis with BEAST.
  year: 2015
  ident: 2022122217174507500_B8
  doi: 10.1017/CBO9781139095112
– volume: 36
  start-page: 2620
  issue: 1
  year: 2019
  ident: 2022122217174507500_B14
  article-title: Bayesian estimation of past population dynamics in BEAST 1.10 using the Skygrid coalescent model
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msz172
– volume: 109
  start-page: E2382
  issue: 1
  year: 2012
  ident: 2022122217174507500_B20
  article-title: Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 27
  start-page: 2361
  issue: 1
  year: 2021
  ident: 2022122217174507500_B5
  article-title: Real-time genomics for tracking severe acute respiratory syndrome coronavirus 2 border incursions after virus elimination, New Zealand
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2709.211097
– volume: 149
  start-page: 429
  issue: 1
  year: 1998
  ident: 2022122217174507500_B18
  article-title: Maximum likelihood estimation of population growth rates based on the coalescent
  publication-title: Genetics
  doi: 10.1093/genetics/149.1.429
– volume: 25
  start-page: 1459
  issue: 1
  year: 2008
  ident: 2022122217174507500_B21
  article-title: Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msn090
– volume: 8
  start-page: e69504
  issue: 1
  year: 2013
  ident: 2022122217174507500_B11
  article-title: A mitogenomic phylogeny of living primates
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0069504
– volume: 13
  start-page: 1037
  issue: 1
  year: 2018
  ident: 2022122217174507500_B31
  article-title: Designing simple and efficient Markov chain Monte Carlo proposal kernels
  publication-title: Bayesian Anal.
– volume: 22
  start-page: 1185
  issue: 1
  year: 2005
  ident: 2022122217174507500_B9
  article-title: Bayesian coalescent inference of past population dynamics from molecular sequences
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msi103
– volume: 62
  start-page: 2080
  issue: 1
  year: 2008
  ident: 2022122217174507500_B19
  article-title: Estimating species trees using multiple-allele DNA sequence data
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2008.00414.x
– volume: 18
  start-page: 2298
  issue: 1
  year: 2001
  ident: 2022122217174507500_B30
  article-title: Exploring the demographic history of DNA sequences using the generalized skyline plot
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a003776
– volume: 37
  start-page: 2414
  issue: 1
  year: 2020
  ident: 2022122217174507500_B23
  article-title: Jointly inferring the dynamics of population size and sampling intensity from molecular sequences
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msaa016
– volume: 65
  start-page: 875
  issue: 1
  year: 2020
  ident: 2022122217174507500_B25
  article-title: Papuan mitochondrial genomes and the settlement of Sahul
  publication-title: J. Hum. Genet.
  doi: 10.1038/s10038-020-0781-3
– volume: 110
  start-page: 228
  issue: 1
  year: 2013
  ident: 2022122217174507500_B29
  article-title: Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV)
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1207965110
– volume: 155
  start-page: 1429
  issue: 1
  year: 2000
  ident: 2022122217174507500_B26
  article-title: An integrated framework for the inference of viral population history from reconstructed genealogies
  publication-title: Genetics
  doi: 10.1093/genetics/155.3.1429
– volume: 7
  start-page: veab052
  year: 2021
  ident: 2022122217174507500_B6
  article-title: Phylodynamics reveals the role of human travel and contact tracing in controlling the first wave of COVID-19 in four island nations
  publication-title: Virus Evol.
  doi: 10.1093/ve/veab052
– volume: 110
  start-page: 19307
  issue: 1
  year: 2013
  ident: 2022122217174507500_B32
  article-title: Searching for efficient Markov chain Monte Carlo proposal kernels
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1311790110
– volume: 107
  start-page: 5675
  issue: 1
  year: 2010
  ident: 2022122217174507500_B4
  article-title: Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0907189107
– volume: 8
  start-page: e9460
  year: 2020
  ident: 2022122217174507500_B3
  article-title: OBAMA: OBAMA for Bayesian amino-acid model averaging
  publication-title: PeerJ
  doi: 10.7717/peerj.9460
– volume: 17
  start-page: 368
  issue: 1
  year: 1981
  ident: 2022122217174507500_B10
  article-title: Evolutionary trees from DNA sequences: a maximum likelihood approach
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF01734359
– volume: 306
  start-page: 1561
  issue: 1
  year: 2004
  ident: 2022122217174507500_B28
  article-title: Rise and fall of the Beringian steppe bison
  publication-title: Science
  doi: 10.1126/science.1101074
– volume: 213
  start-page: 21
  issue: 402-410
  year: 1924
  ident: 2022122217174507500_B33
  article-title: A mathematical theory of evolution, based on the conclusions of Dr. JC Willis
  publication-title: Philos. Trans. R. Soc. Lond. Ser. B
– volume: 453
  start-page: 615
  issue: 1
  year: 2008
  ident: 2022122217174507500_B27
  article-title: The genomic and epidemiological dynamics of human influenza A virus
  publication-title: Nature
  doi: 10.1038/nature06945
– volume: 15
  start-page: e1006650
  issue: 1
  year: 2019
  ident: 2022122217174507500_B2
  article-title: BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006650
– volume: 20
  start-page: 1
  year: 2020
  ident: 2022122217174507500_B34
  article-title: Improving the performance of Bayesian phylogenetic inference under relaxed clock models
  publication-title: BMC Evol. Biol.
  doi: 10.1186/s12862-020-01609-4
– volume: 68
  start-page: 730
  issue: 1
  year: 2019
  ident: 2022122217174507500_B24
  article-title: Robust design for coalescent model inference
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syz008
– volume: 16
  start-page: 23
  issue: 1
  year: 2001
  ident: 2022122217174507500_B1
  article-title: Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today
  publication-title: Stat. Sci.
  doi: 10.1214/ss/998929474
– volume: 13
  start-page: 235
  issue: 1
  year: 1982
  ident: 2022122217174507500_B17
  article-title: The coalescent
  publication-title: Stoch. Process. Appl.
  doi: 10.1016/0304-4149(82)90011-4
– volume: 82
  start-page: 711
  year: 1995
  ident: 2022122217174507500_B13
  article-title: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
  publication-title: Biometrika
  doi: 10.1093/biomet/82.4.711
– volume: 17
  start-page: e1008322
  issue: 1
  year: 2021
  ident: 2022122217174507500_B7
  article-title: Adaptive dating and fast proposals: revisiting the phylogenetic relaxed clock model
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008322
– volume: 34
  start-page: 2101
  issue: 1
  year: 2017
  ident: 2022122217174507500_B22
  article-title: StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msx126
– volume: 74
  start-page: 447
  issue: 1-2
  year: 2017
  ident: 2022122217174507500_B16
  article-title: Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-016-1034-0
– volume: 30
  start-page: 713
  issue: 1
  year: 2013
  ident: 2022122217174507500_B12
  article-title: Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mss265
– volume: 54
  start-page: 961
  issue: 1
  year: 2005
  ident: 2022122217174507500_B15
  article-title: Hastings ratio of the local proposal used in Bayesian phylogenetics
  publication-title: Syst. Biol.
  doi: 10.1080/10635150500354670
SSID ssj0011651
Score 2.5314224
Snippet We present a two-headed approach called Bayesian Integrated Coalescent Epoch PlotS (BICEPS) for efficient inference of coalescent epoch models. Firstly, we...
SourceID unpaywall
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1549
SubjectTerms Algorithms
Bayes Theorem
Bayesian analysis
COVID-19
Humans
Markov Chains
Mathematical models
Models, Genetic
Monte Carlo Method
Phylogenetics
Phylogeny
Population
Population number
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
Software
Title An Efficient Coalescent Epoch Model for Bayesian Phylogenetic Inference
URI https://www.ncbi.nlm.nih.gov/pubmed/35212733
https://www.proquest.com/docview/3244134073
https://www.proquest.com/docview/2633924634
https://academic.oup.com/sysbio/article-pdf/71/6/1549/48352600/syac015.pdf
UnpaywallVersion publishedVersion
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1076-836X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0011651
  issn: 1076-836X
  databaseCode: ABDBF
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB5BKwQcljeUXVZGQoKLm4dfzbFdWhYkVnugUuESOa6tRVslFW2Fwq9n3DjRsgjBgZslj-N35rNm5huAV67IlNbC0UKymHJvKSwyJ2icOTWKtY_V9Bbdj2fydM4_LMQi-D_5WBgdvMKHbUjDpt4UX6sorCNdL12kkkhGnlos4h4_oMpGKW1QsQ2x-ib0pUBc3oP-_Ox8_Hlv7sQhoOJWjQOipCMmFx2DI2v7CB_5VUP9Bjvvwu1dudb1d71aXVFFs3tw2U6i8UC5HO62xdD8uMbv-H9meR8OAmIl46bRA7hhy4dwq8lhWWNpatrSl2pfegTvxiWZ7rkpUKWRk0oH0igyXVfmgvj8ayuCaJlMdG19FCc5v6ixKf53sRPyvg1CfAzz2fTTySkNGRuowV3eUgQzjifaMst1ymTmyfgShi8SNzIudUIsl8YVPJM8syJxJuXOisIlKjbKiMSyJ9Arq9I-A5JoZjITs2UWc86c0qmJjbNcScut4XwAtN2l3AQ6c59VY5U3ZnWWN2uah0UbwOtOft0QefxR8qjd9Dxc6E2OuBPVPb5-2QBedtV4Fb19RZe22m3yVDJEm1wyHNzT5rB0XTEfI60Ytn7TnZ6_jOP5v4sewp3Uh2XsPW2OoLf9trMvECxti2PojydvJ7PjcBt-AmcpFRM
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6VVAg40AIFQgtyJSS4OPvwK3tMq5RSqVUPRApcVl7HVlGj3YgkQsuvZ5z1roCqKofeLHm8fu981sx8A_DeFZnSWjhaSBZT7i2FReYEjTOnhrH2sZreont-IU8n_GwqpsH_ycfC6OAVPmhDGpb1svheRWEd6WLmIpVEMvLUYhH3-AFVNkppg4ptgNUPYFsKxOU92J5cXI6-bsydOARU3KpxQJR0yOS0Y3BkbR_hI39rqBuw8wk8WpcLXf_U8_kfquhkB67bSTQeKNeD9aoYmF__8Dvezyx34WlArGTUNHoGW7Z8Dg-bHJY1lsamLX2rNqUX8GlUkvGGmwJVGjmudCCNIuNFZa6Iz782J4iWyZGurY_iJJdXNTbF_y52Qj63QYh7MDkZfzk-pSFjAzW4yyuKYMbxRFtmuU6ZzDwZX8LwReKGxqVOiNnMuIJnkmdWJM6k3FlRuETFRhmRWPYSemVV2tdAEs1MZmI2y2LOmVM6NbFxlitpuTWc94G2u5SbQGfus2rM88aszvJmTfOwaH340MkvGiKPWyUP2k3Pw4Ve5og7Ud3j65f14bCrxqvo7Su6tNV6maeSIdrkkuHgXjWHpeuK-RhpxbD1x-703DGON_8vug-PUx-WsfG0OYDe6sfavkWwtCrehVvwG8cRE6E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Coalescent+Epoch+Model+for+Bayesian+Phylogenetic+Inference&rft.jtitle=Systematic+biology&rft.au=Bouckaert%2C+Remco+R&rft.date=2022-10-12&rft.pub=Oxford+University+Press&rft.issn=1063-5157&rft.eissn=1076-836X&rft.volume=71&rft.issue=6&rft.spage=1549&rft.epage=1560&rft_id=info:doi/10.1093%2Fsysbio%2Fsyac015&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5157&client=summon