An Efficient Coalescent Epoch Model for Bayesian Phylogenetic Inference
We present a two-headed approach called Bayesian Integrated Coalescent Epoch PlotS (BICEPS) for efficient inference of coalescent epoch models. Firstly, we integrate out population size parameters, and secondly, we introduce a set of more powerful Markov chain Monte Carlo (MCMC) proposals for flexin...
Saved in:
| Published in | Systematic biology Vol. 71; no. 6; pp. 1549 - 1560 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
England
Oxford University Press
12.10.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1063-5157 1076-836X 1076-836X |
| DOI | 10.1093/sysbio/syac015 |
Cover
| Abstract | We present a two-headed approach called Bayesian Integrated Coalescent Epoch PlotS (BICEPS) for efficient inference of coalescent epoch models. Firstly, we integrate out population size parameters, and secondly, we introduce a set of more powerful Markov chain Monte Carlo (MCMC) proposals for flexing and stretching trees. Even though population sizes are integrated out and not explicitly sampled through MCMC, we are still able to generate samples from the population size posteriors. This allows demographic reconstruction through time and estimating the timing and magnitude of population bottlenecks and full population histories. Altogether, BICEPS can be considered a more muscular version of the popular Bayesian skyline model. We demonstrate its power and correctness by a well-calibrated simulation study. Furthermore, we demonstrate with an application to SARS-CoV-2 genomic data that some analyses that have trouble converging with the traditional Bayesian skyline prior and standard MCMC proposals can do well with the BICEPS approach. BICEPS is available as open-source package for BEAST 2 under GPL license and has a user-friendly graphical user interface.[Bayesian phylogenetics; BEAST 2; BICEPS; coalescent model.] |
|---|---|
| AbstractList | We present a two-headed approach called Bayesian Integrated Coalescent Epoch PlotS (BICEPS) for efficient inference of coalescent epoch models. Firstly, we integrate out population size parameters, and secondly, we introduce a set of more powerful Markov chain Monte Carlo (MCMC) proposals for flexing and stretching trees. Even though population sizes are integrated out and not explicitly sampled through MCMC, we are still able to generate samples from the population size posteriors. This allows demographic reconstruction through time and estimating the timing and magnitude of population bottlenecks and full population histories. Altogether, BICEPS can be considered a more muscular version of the popular Bayesian skyline model. We demonstrate its power and correctness by a well-calibrated simulation study. Furthermore, we demonstrate with an application to SARS-CoV-2 genomic data that some analyses that have trouble converging with the traditional Bayesian skyline prior and standard MCMC proposals can do well with the BICEPS approach. BICEPS is available as open-source package for BEAST 2 under GPL license and has a user-friendly graphical user interface.[Bayesian phylogenetics; BEAST 2; BICEPS; coalescent model.]. We present a two-headed approach called Bayesian Integrated Coalescent Epoch PlotS (BICEPS) for efficient inference of coalescent epoch models. Firstly, we integrate out population size parameters, and secondly, we introduce a set of more powerful Markov chain Monte Carlo (MCMC) proposals for flexing and stretching trees. Even though population sizes are integrated out and not explicitly sampled through MCMC, we are still able to generate samples from the population size posteriors. This allows demographic reconstruction through time and estimating the timing and magnitude of population bottlenecks and full population histories. Altogether, BICEPS can be considered a more muscular version of the popular Bayesian skyline model. We demonstrate its power and correctness by a well-calibrated simulation study. Furthermore, we demonstrate with an application to SARS-CoV-2 genomic data that some analyses that have trouble converging with the traditional Bayesian skyline prior and standard MCMC proposals can do well with the BICEPS approach. BICEPS is available as open-source package for BEAST 2 under GPL license and has a user-friendly graphical user interface.[Bayesian phylogenetics; BEAST 2; BICEPS; coalescent model.].We present a two-headed approach called Bayesian Integrated Coalescent Epoch PlotS (BICEPS) for efficient inference of coalescent epoch models. Firstly, we integrate out population size parameters, and secondly, we introduce a set of more powerful Markov chain Monte Carlo (MCMC) proposals for flexing and stretching trees. Even though population sizes are integrated out and not explicitly sampled through MCMC, we are still able to generate samples from the population size posteriors. This allows demographic reconstruction through time and estimating the timing and magnitude of population bottlenecks and full population histories. Altogether, BICEPS can be considered a more muscular version of the popular Bayesian skyline model. We demonstrate its power and correctness by a well-calibrated simulation study. Furthermore, we demonstrate with an application to SARS-CoV-2 genomic data that some analyses that have trouble converging with the traditional Bayesian skyline prior and standard MCMC proposals can do well with the BICEPS approach. BICEPS is available as open-source package for BEAST 2 under GPL license and has a user-friendly graphical user interface.[Bayesian phylogenetics; BEAST 2; BICEPS; coalescent model.]. |
| Author | Bouckaert, Remco R |
| Author_xml | – sequence: 1 givenname: Remco R surname: Bouckaert fullname: Bouckaert, Remco R |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35212733$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkE1PGzEQhi0UBCFw7bFaqZdeNtge27t7pFFIkUBwaCVuK8cZFyPHTu1dVfvv2SihB6Sqp5nD887Hc0EmIQYk5BOjc0YbuM5DXrs4Fm0okydkymilyhrU82TfKyglk9U5ucj5lVLGlGRn5BwkZ7wCmJLVTSiW1jrjMHTFImqP2ezb5S6al-IhbtAXNqbimx4wOx2Kp5fBx18YsHOmuAsWEwaDl-TUap_x6lhn5Oft8sfie3n_uLpb3NyXBhR0ZS2UFUwjoNAcVFPVnDKQtbS1sdxKudkYuxaNEg1KZg0XFuXasoqaykiGMCPXh7l92Onhj_a-3SW31WloGW33StqDkvaoZEx8PSR2Kf7uMXft1o0veq8Dxj63XAE0XCgQI_rlA_oa-xTGf1rgQjAQdJQ2I5-PVL_e4ubv_nepIzA_ACbFnBPa_58oPgSM63TnYuiSdv5fsTfF6J3q |
| CitedBy_id | crossref_primary_10_1109_TCBB_2024_3457875 crossref_primary_10_1002_iub_2920 crossref_primary_10_1002_iub_2911 crossref_primary_10_7717_peerj_17276 crossref_primary_10_3390_v16071118 crossref_primary_10_1002_ece3_70107 crossref_primary_10_1038_s41467_022_34186_9 crossref_primary_10_1038_s41467_024_53998_5 crossref_primary_10_1093_nar_gkad1160 crossref_primary_10_1093_ve_vead018 crossref_primary_10_1002_tax_13245 crossref_primary_10_1038_s42003_022_03723_z crossref_primary_10_1093_sysbio_syae064 crossref_primary_10_3390_biology12020313 crossref_primary_10_1093_ve_vead028 crossref_primary_10_3390_genes15091236 crossref_primary_10_1128_spectrum_02693_23 crossref_primary_10_1007_s10592_023_01561_y crossref_primary_10_1038_s43856_023_00328_3 |
| Cites_doi | 10.1017/CBO9781139095112 10.1093/molbev/msz172 10.3201/eid2709.211097 10.1093/genetics/149.1.429 10.1093/molbev/msn090 10.1371/journal.pone.0069504 10.1093/molbev/msi103 10.1111/j.1558-5646.2008.00414.x 10.1093/oxfordjournals.molbev.a003776 10.1093/molbev/msaa016 10.1038/s10038-020-0781-3 10.1073/pnas.1207965110 10.1093/genetics/155.3.1429 10.1093/ve/veab052 10.1073/pnas.1311790110 10.1073/pnas.0907189107 10.7717/peerj.9460 10.1007/BF01734359 10.1126/science.1101074 10.1038/nature06945 10.1371/journal.pcbi.1006650 10.1186/s12862-020-01609-4 10.1093/sysbio/syz008 10.1214/ss/998929474 10.1016/0304-4149(82)90011-4 10.1093/biomet/82.4.711 10.1371/journal.pcbi.1008322 10.1093/molbev/msx126 10.1007/s00285-016-1034-0 10.1093/molbev/mss265 10.1080/10635150500354670 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of the Society of Systematic Biologists. |
| Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Society of Systematic Biologists. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 ADTOC UNPAY |
| DOI | 10.1093/sysbio/syac015 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Zoology Biology Ecology |
| EISSN | 1076-836X |
| EndPage | 1560 |
| ExternalDocumentID | 10.1093/sysbio/syac015 35212733 10_1093_sysbio_syac015 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .2P .I3 0R~ 123 18M 1TH 29Q 2FS 36B 4.4 48X 5VS 5WD 70D AAHBH AAHKG AAIMJ AAJKP AAKGQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAVAP AAVLN AAYXX ABDBF ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABMNT ABNKS ABPLY ABPPZ ABPQP ABPTD ABQLI ABTLG ABVGC ABWST ABXVV ABXZS ABZBJ ACCCW ACGEJ ACGFO ACGFS ACGOD ACIPB ACNCT ACPRK ACSTJ ACUFI ACUHS ACUTJ ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADXPE ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFAZZ AFFZL AFGWE AFIYH AFKVX AFOFC AFYAG AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AJWEG AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAYMD BCRHZ BENPR BEYMZ BHONS BQDIO BSWAC C45 CDBKE CITATION COF CS3 CZ4 DAKXR DILTD DU5 D~K EAD EAP EAS EBC EBD EBS EE~ EHN EMB EMK EMOBN EPL EPT EST ESX F5P F9B FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HF~ HW0 HZ~ I-F IOX J21 JBS JLS JXSIZ KAQDR KOP KSI KSN M-Z N9A NGC NLBLG NOMLY O9- OAWHX OBOKY ODMLO OJQWA OJZSN OVD OWPYF P2P PAFKI PEELM Q1. Q5Y Q~Q RD5 ROX ROZ RUSNO RW1 RWL RXO RXW SV3 TAE TEORI TLC TN5 TUS WH7 X7H XSW YAYTL YKOAZ YXANX ~02 ~91 ADRIX AEUPB AFXEN ALIPV CGR CUY CVF ECM EIF NPM VQA ABUFD K9. 7X8 .-4 53G 7X7 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8G5 AAISJ AAJQQ AAUQX AAWDT ABBHK ABIME ABNGD ABPIB ABSMQ ABSQW ABUWG ABXSQ ABZEO ACFRR ACHIC ACPQN ACUKT ACVCV ACZBC ADTOC ADULT ADXHL AEKPW AEUYN AFKRA AFSHK AGKRT AGMDO AGQPQ AGUYK AHXOZ AILXY AJDVS ANFBD APJGH AQDSO AQVQM ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN AZQEC BBNVY BES BHPHI BKSAR BPHCQ BVXVI CAG CBGCD CCPQU CUYZI CXTWN D1J DEVKO DFGAJ DWQXO EJD ELUNK FEDTE FYUFA GNUQQ GTFYD GUQSH HCIFZ HGD HMCUK HQ2 HTVGU HVGLF IPSME JAAYA JBMMH JEB JEFFH JENOY JHFFW JKQEH JLXEF JPM JST KBUDW LK8 M1P M2O M2P M2Q M7P MBTAY MVM NEJ NU- NVLIB O0~ O~Y PADUT PB- PCBAR PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO QBD S0X SA0 TCN UBC UKHRP UNPAY WHG YXE ZCG ZY4 |
| ID | FETCH-LOGICAL-c363t-846f41ae3e4a2369782013585f8cf2f55ddcfb49649e51fc24fe5bf170c7c51e3 |
| IEDL.DBID | UNPAY |
| ISSN | 1063-5157 1076-836X |
| IngestDate | Sun Oct 26 03:57:29 EDT 2025 Thu Oct 02 05:27:55 EDT 2025 Mon Oct 06 17:50:20 EDT 2025 Wed Feb 19 02:25:27 EST 2025 Wed Oct 01 02:38:08 EDT 2025 Thu Apr 24 22:53:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2022. Published by Oxford University Press on behalf of the Society of Systematic Biologists. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-846f41ae3e4a2369782013585f8cf2f55ddcfb49649e51fc24fe5bf170c7c51e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/sysbio/article-pdf/71/6/1549/48352600/syac015.pdf |
| PMID | 35212733 |
| PQID | 3244134073 |
| PQPubID | 37498 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1093_sysbio_syac015 proquest_miscellaneous_2633924634 proquest_journals_3244134073 pubmed_primary_35212733 crossref_primary_10_1093_sysbio_syac015 crossref_citationtrail_10_1093_sysbio_syac015 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-12 |
| PublicationDateYYYYMMDD | 2022-10-12 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Systematic biology |
| PublicationTitleAlternate | Syst Biol |
| PublicationYear | 2022 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Hill (2022122217174507500_B14) 2019; 36 Yang (2022122217174507500_B32) 2013; 110 Parag (2022122217174507500_B23) 2020; 37 Rambaut (2022122217174507500_B27) 2008; 453 Douglas (2022122217174507500_B5) 2021; 27 Thawornwattana (2022122217174507500_B31) 2018; 13 Strimmer (2022122217174507500_B30) 2001; 18 Jones (2022122217174507500_B16) 2017; 74 Bouckaert (2022122217174507500_B3) 2020; 8 Drummond (2022122217174507500_B9) 2005; 22 Pybus (2022122217174507500_B26) 2000; 155 Bouckaert (2022122217174507500_B2) 2019; 15 Ogilvie (2022122217174507500_B22) 2017; 34 Liu (2022122217174507500_B19) 2008; 62 Gill (2022122217174507500_B12) 2013; 30 Miller (2022122217174507500_B20) 2012; 109 Kuhner (2022122217174507500_B18) 1998; 149 Campos (2022122217174507500_B4) 2010; 107 Stadler (2022122217174507500_B29) 2013; 110 Minin (2022122217174507500_B21) 2008; 25 Parag (2022122217174507500_B24) 2019; 68 Douglas (2022122217174507500_B7) 2021; 17 Felsenstein (2022122217174507500_B10) 1981; 17 Zhang (2022122217174507500_B34) 2020; 20 Yule (2022122217174507500_B33) 1924; 213 Shapiro (2022122217174507500_B28) 2004; 306 Green (2022122217174507500_B13) 1995; 82 Drummond (2022122217174507500_B8) 2015 Pedro (2022122217174507500_B25) 2020; 65 Finstermeier (2022122217174507500_B11) 2013; 8 Aldous (2022122217174507500_B1) 2001; 16 Douglas (2022122217174507500_B6) 2021; 7 Holder (2022122217174507500_B15) 2005; 54 Kingman (2022122217174507500_B17) 1982; 13 |
| References_xml | – volume-title: Bayesian evolutionary analysis with BEAST. year: 2015 ident: 2022122217174507500_B8 doi: 10.1017/CBO9781139095112 – volume: 36 start-page: 2620 issue: 1 year: 2019 ident: 2022122217174507500_B14 article-title: Bayesian estimation of past population dynamics in BEAST 1.10 using the Skygrid coalescent model publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msz172 – volume: 109 start-page: E2382 issue: 1 year: 2012 ident: 2022122217174507500_B20 article-title: Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change publication-title: Proc. Natl. Acad. Sci. USA – volume: 27 start-page: 2361 issue: 1 year: 2021 ident: 2022122217174507500_B5 article-title: Real-time genomics for tracking severe acute respiratory syndrome coronavirus 2 border incursions after virus elimination, New Zealand publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2709.211097 – volume: 149 start-page: 429 issue: 1 year: 1998 ident: 2022122217174507500_B18 article-title: Maximum likelihood estimation of population growth rates based on the coalescent publication-title: Genetics doi: 10.1093/genetics/149.1.429 – volume: 25 start-page: 1459 issue: 1 year: 2008 ident: 2022122217174507500_B21 article-title: Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msn090 – volume: 8 start-page: e69504 issue: 1 year: 2013 ident: 2022122217174507500_B11 article-title: A mitogenomic phylogeny of living primates publication-title: PLoS One doi: 10.1371/journal.pone.0069504 – volume: 13 start-page: 1037 issue: 1 year: 2018 ident: 2022122217174507500_B31 article-title: Designing simple and efficient Markov chain Monte Carlo proposal kernels publication-title: Bayesian Anal. – volume: 22 start-page: 1185 issue: 1 year: 2005 ident: 2022122217174507500_B9 article-title: Bayesian coalescent inference of past population dynamics from molecular sequences publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msi103 – volume: 62 start-page: 2080 issue: 1 year: 2008 ident: 2022122217174507500_B19 article-title: Estimating species trees using multiple-allele DNA sequence data publication-title: Evolution doi: 10.1111/j.1558-5646.2008.00414.x – volume: 18 start-page: 2298 issue: 1 year: 2001 ident: 2022122217174507500_B30 article-title: Exploring the demographic history of DNA sequences using the generalized skyline plot publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a003776 – volume: 37 start-page: 2414 issue: 1 year: 2020 ident: 2022122217174507500_B23 article-title: Jointly inferring the dynamics of population size and sampling intensity from molecular sequences publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msaa016 – volume: 65 start-page: 875 issue: 1 year: 2020 ident: 2022122217174507500_B25 article-title: Papuan mitochondrial genomes and the settlement of Sahul publication-title: J. Hum. Genet. doi: 10.1038/s10038-020-0781-3 – volume: 110 start-page: 228 issue: 1 year: 2013 ident: 2022122217174507500_B29 article-title: Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV) publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1207965110 – volume: 155 start-page: 1429 issue: 1 year: 2000 ident: 2022122217174507500_B26 article-title: An integrated framework for the inference of viral population history from reconstructed genealogies publication-title: Genetics doi: 10.1093/genetics/155.3.1429 – volume: 7 start-page: veab052 year: 2021 ident: 2022122217174507500_B6 article-title: Phylodynamics reveals the role of human travel and contact tracing in controlling the first wave of COVID-19 in four island nations publication-title: Virus Evol. doi: 10.1093/ve/veab052 – volume: 110 start-page: 19307 issue: 1 year: 2013 ident: 2022122217174507500_B32 article-title: Searching for efficient Markov chain Monte Carlo proposal kernels publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1311790110 – volume: 107 start-page: 5675 issue: 1 year: 2010 ident: 2022122217174507500_B4 article-title: Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0907189107 – volume: 8 start-page: e9460 year: 2020 ident: 2022122217174507500_B3 article-title: OBAMA: OBAMA for Bayesian amino-acid model averaging publication-title: PeerJ doi: 10.7717/peerj.9460 – volume: 17 start-page: 368 issue: 1 year: 1981 ident: 2022122217174507500_B10 article-title: Evolutionary trees from DNA sequences: a maximum likelihood approach publication-title: J. Mol. Evol. doi: 10.1007/BF01734359 – volume: 306 start-page: 1561 issue: 1 year: 2004 ident: 2022122217174507500_B28 article-title: Rise and fall of the Beringian steppe bison publication-title: Science doi: 10.1126/science.1101074 – volume: 213 start-page: 21 issue: 402-410 year: 1924 ident: 2022122217174507500_B33 article-title: A mathematical theory of evolution, based on the conclusions of Dr. JC Willis publication-title: Philos. Trans. R. Soc. Lond. Ser. B – volume: 453 start-page: 615 issue: 1 year: 2008 ident: 2022122217174507500_B27 article-title: The genomic and epidemiological dynamics of human influenza A virus publication-title: Nature doi: 10.1038/nature06945 – volume: 15 start-page: e1006650 issue: 1 year: 2019 ident: 2022122217174507500_B2 article-title: BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006650 – volume: 20 start-page: 1 year: 2020 ident: 2022122217174507500_B34 article-title: Improving the performance of Bayesian phylogenetic inference under relaxed clock models publication-title: BMC Evol. Biol. doi: 10.1186/s12862-020-01609-4 – volume: 68 start-page: 730 issue: 1 year: 2019 ident: 2022122217174507500_B24 article-title: Robust design for coalescent model inference publication-title: Syst. Biol. doi: 10.1093/sysbio/syz008 – volume: 16 start-page: 23 issue: 1 year: 2001 ident: 2022122217174507500_B1 article-title: Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today publication-title: Stat. Sci. doi: 10.1214/ss/998929474 – volume: 13 start-page: 235 issue: 1 year: 1982 ident: 2022122217174507500_B17 article-title: The coalescent publication-title: Stoch. Process. Appl. doi: 10.1016/0304-4149(82)90011-4 – volume: 82 start-page: 711 year: 1995 ident: 2022122217174507500_B13 article-title: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination publication-title: Biometrika doi: 10.1093/biomet/82.4.711 – volume: 17 start-page: e1008322 issue: 1 year: 2021 ident: 2022122217174507500_B7 article-title: Adaptive dating and fast proposals: revisiting the phylogenetic relaxed clock model publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008322 – volume: 34 start-page: 2101 issue: 1 year: 2017 ident: 2022122217174507500_B22 article-title: StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msx126 – volume: 74 start-page: 447 issue: 1-2 year: 2017 ident: 2022122217174507500_B16 article-title: Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent publication-title: J. Math. Biol. doi: 10.1007/s00285-016-1034-0 – volume: 30 start-page: 713 issue: 1 year: 2013 ident: 2022122217174507500_B12 article-title: Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mss265 – volume: 54 start-page: 961 issue: 1 year: 2005 ident: 2022122217174507500_B15 article-title: Hastings ratio of the local proposal used in Bayesian phylogenetics publication-title: Syst. Biol. doi: 10.1080/10635150500354670 |
| SSID | ssj0011651 |
| Score | 2.5314224 |
| Snippet | We present a two-headed approach called Bayesian Integrated Coalescent Epoch PlotS (BICEPS) for efficient inference of coalescent epoch models. Firstly, we... |
| SourceID | unpaywall proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1549 |
| SubjectTerms | Algorithms Bayes Theorem Bayesian analysis COVID-19 Humans Markov Chains Mathematical models Models, Genetic Monte Carlo Method Phylogenetics Phylogeny Population Population number SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 Software |
| Title | An Efficient Coalescent Epoch Model for Bayesian Phylogenetic Inference |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35212733 https://www.proquest.com/docview/3244134073 https://www.proquest.com/docview/2633924634 https://academic.oup.com/sysbio/article-pdf/71/6/1549/48352600/syac015.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 71 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1076-836X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0011651 issn: 1076-836X databaseCode: ABDBF dateStart: 19980301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB5BKwQcljeUXVZGQoKLm4dfzbFdWhYkVnugUuESOa6tRVslFW2Fwq9n3DjRsgjBgZslj-N35rNm5huAV67IlNbC0UKymHJvKSwyJ2icOTWKtY_V9Bbdj2fydM4_LMQi-D_5WBgdvMKHbUjDpt4UX6sorCNdL12kkkhGnlos4h4_oMpGKW1QsQ2x-ib0pUBc3oP-_Ox8_Hlv7sQhoOJWjQOipCMmFx2DI2v7CB_5VUP9Bjvvwu1dudb1d71aXVFFs3tw2U6i8UC5HO62xdD8uMbv-H9meR8OAmIl46bRA7hhy4dwq8lhWWNpatrSl2pfegTvxiWZ7rkpUKWRk0oH0igyXVfmgvj8ayuCaJlMdG19FCc5v6ixKf53sRPyvg1CfAzz2fTTySkNGRuowV3eUgQzjifaMst1ymTmyfgShi8SNzIudUIsl8YVPJM8syJxJuXOisIlKjbKiMSyJ9Arq9I-A5JoZjITs2UWc86c0qmJjbNcScut4XwAtN2l3AQ6c59VY5U3ZnWWN2uah0UbwOtOft0QefxR8qjd9Dxc6E2OuBPVPb5-2QBedtV4Fb19RZe22m3yVDJEm1wyHNzT5rB0XTEfI60Ytn7TnZ6_jOP5v4sewp3Uh2XsPW2OoLf9trMvECxti2PojydvJ7PjcBt-AmcpFRM |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6VVAg40AIFQgtyJSS4OPvwK3tMq5RSqVUPRApcVl7HVlGj3YgkQsuvZ5z1roCqKofeLHm8fu981sx8A_DeFZnSWjhaSBZT7i2FReYEjTOnhrH2sZreont-IU8n_GwqpsH_ycfC6OAVPmhDGpb1svheRWEd6WLmIpVEMvLUYhH3-AFVNkppg4ptgNUPYFsKxOU92J5cXI6-bsydOARU3KpxQJR0yOS0Y3BkbR_hI39rqBuw8wk8WpcLXf_U8_kfquhkB67bSTQeKNeD9aoYmF__8Dvezyx34WlArGTUNHoGW7Z8Dg-bHJY1lsamLX2rNqUX8GlUkvGGmwJVGjmudCCNIuNFZa6Iz782J4iWyZGurY_iJJdXNTbF_y52Qj63QYh7MDkZfzk-pSFjAzW4yyuKYMbxRFtmuU6ZzDwZX8LwReKGxqVOiNnMuIJnkmdWJM6k3FlRuETFRhmRWPYSemVV2tdAEs1MZmI2y2LOmVM6NbFxlitpuTWc94G2u5SbQGfus2rM88aszvJmTfOwaH340MkvGiKPWyUP2k3Pw4Ve5og7Ud3j65f14bCrxqvo7Su6tNV6maeSIdrkkuHgXjWHpeuK-RhpxbD1x-703DGON_8vug-PUx-WsfG0OYDe6sfavkWwtCrehVvwG8cRE6E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Coalescent+Epoch+Model+for+Bayesian+Phylogenetic+Inference&rft.jtitle=Systematic+biology&rft.au=Bouckaert%2C+Remco+R&rft.date=2022-10-12&rft.pub=Oxford+University+Press&rft.issn=1063-5157&rft.eissn=1076-836X&rft.volume=71&rft.issue=6&rft.spage=1549&rft.epage=1560&rft_id=info:doi/10.1093%2Fsysbio%2Fsyac015&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5157&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5157&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5157&client=summon |