An Improved Deep Reinforcement Learning-Based UAV Area Coverage Algorithm for an Unknown Dynamic Environment
With the widespread application of unmanned aerial vehicle technology in search and detection, express delivery and other fields, the requirements for unmanned aerial vehicle dynamic area coverage algorithms has become higher. For an unknown dynamic environment, an improved Dual-Attention Mechanism...
Saved in:
| Published in | Applied sciences Vol. 15; no. 16; p. 8942 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.08.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app15168942 |
Cover
| Abstract | With the widespread application of unmanned aerial vehicle technology in search and detection, express delivery and other fields, the requirements for unmanned aerial vehicle dynamic area coverage algorithms has become higher. For an unknown dynamic environment, an improved Dual-Attention Mechanism Double Deep Q-network area coverage algorithm is proposed in this paper. Firstly, a dual-channel attention mechanism is designed to deal with flight environment information. It can extract and fuse the features of the local obstacle information and full-area coverage information. Then, based on the traditional Double Deep Q-network algorithm, an adaptive exploration decay strategy and a coverage reward function are designed based on the real-time area coverage rate to meet the requirement of a low repeated coverage rate. The proposed algorithm can avoid dynamic obstacles and achieve global coverage under low repeated coverage rate conditions. Finally, with Python 3.12 and PyTorch 2.2.1 environment as the training platform, the simulation results show that, compared with the Soft Actor–Critic algorithm, the Double Deep Q-network algorithm, and the Attention Mechanism Double Deep Q-network algorithm, the proposed algorithm in this paper can complete the area coverage task in a dynamic and complex environment with a lower repeated coverage rate and higher coverage efficiency. |
|---|---|
| AbstractList | With the widespread application of unmanned aerial vehicle technology in search and detection, express delivery and other fields, the requirements for unmanned aerial vehicle dynamic area coverage algorithms has become higher. For an unknown dynamic environment, an improved Dual-Attention Mechanism Double Deep Q-network area coverage algorithm is proposed in this paper. Firstly, a dual-channel attention mechanism is designed to deal with flight environment information. It can extract and fuse the features of the local obstacle information and full-area coverage information. Then, based on the traditional Double Deep Q-network algorithm, an adaptive exploration decay strategy and a coverage reward function are designed based on the real-time area coverage rate to meet the requirement of a low repeated coverage rate. The proposed algorithm can avoid dynamic obstacles and achieve global coverage under low repeated coverage rate conditions. Finally, with Python 3.12 and PyTorch 2.2.1 environment as the training platform, the simulation results show that, compared with the Soft Actor–Critic algorithm, the Double Deep Q-network algorithm, and the Attention Mechanism Double Deep Q-network algorithm, the proposed algorithm in this paper can complete the area coverage task in a dynamic and complex environment with a lower repeated coverage rate and higher coverage efficiency. |
| Audience | Academic |
| Author | Li, Huxin Huang, Jiaoru Chen, Chaobo Liu, Yushuang Zhang, Xiaoyan |
| Author_xml | – sequence: 1 givenname: Jiaoru surname: Huang fullname: Huang, Jiaoru – sequence: 2 givenname: Huxin surname: Li fullname: Li, Huxin – sequence: 3 givenname: Chaobo orcidid: 0000-0002-4250-7876 surname: Chen fullname: Chen, Chaobo – sequence: 4 givenname: Yushuang surname: Liu fullname: Liu, Yushuang – sequence: 5 givenname: Xiaoyan surname: Zhang fullname: Zhang, Xiaoyan |
| BookMark | eNp9kc1u1DAUhS1UJErpihewxBLS-idO7GWYFhhpJCTEsLUc-zpkSOzgZFrN2-MhqOoKe2Hr6pxzrz-_RhchBkDoLSU3nCtya6aJClpJVbIX6JKRuip4SeuLZ_dX6HqeDyQvRbmk5BINTcDbcUrxARy-A5jwN-iDj8nCCGHBOzAp9KErPpo5K_bND9wkMHiTDcl0gJuhi6lffo44m7AJeB9-hfgY8N0pmLG3-D489CmGc9ob9NKbYYbrf-cV2n-6_775Uuy-ft5uml1hecWXolZMOF6X0LaVLZ0sW8mB2NpbAhaUYt44orw3VgmvpHKqrqRXrPZASsE5v0LbNddFc9BT6keTTjqaXv8txNRpk5beDqCtA0dbK1pRkZIwKlkLSkjrfZm7Vz5nfVizjmEyp0czDE-BlOgzeP0MfJa_W-UZ6e8jzIs-xGMK-bWas5IrSXOjrLpZVZ3JM5x5L8nYvB1kZPlbfZ_rjRRcKM6ZyIb3q8GmOM8J_H-H-AMM2qKA |
| Cites_doi | 10.1016/j.jksuci.2023.101889 10.1109/3DV53792.2021.00050 10.1109/TITS.2022.3225721 10.3390/drones3010004 10.1109/LRA.2020.3010730 10.1007/s41095-022-0271-y 10.1016/j.neucom.2021.03.091 10.3390/aerospace9020086 10.1109/TNN.1998.712192 10.3389/fnbot.2023.1269447 10.1111/gean.12121 10.3390/app15031247 10.3390/s23104647 10.32604/csse.2023.031116 10.1109/LARS-SBR.2016.12 10.1109/IROS55552.2023.10342516 10.1109/ACCESS.2021.3128295 10.1109/JSEN.2022.3168840 10.1109/CCET59170.2023.10335145 10.1109/ICARA51699.2021.9376477 10.3390/app15041988 10.1038/s41598-020-79147-8 10.1002/rob.22516 10.1016/j.ast.2015.09.037 10.3390/machines13020162 10.3390/s20113170 10.1109/GNCC42960.2018.9019134 10.1109/ACCESS.2019.2950266 10.1609/aaai.v30i1.10295 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY DOA |
| DOI | 10.3390/app15168942 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_cded1bc5b560402182be958cff4bb66f 10.3390/app15168942 A853593325 10_3390_app15168942 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c363t-7925d374ebb6c4d84b83e0c7fc0ece992fad09ffac95f989d9768f927fe045333 |
| IEDL.DBID | DOA |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:07:22 EDT 2025 Sun Sep 07 11:12:07 EDT 2025 Wed Aug 27 13:26:23 EDT 2025 Mon Oct 20 16:52:33 EDT 2025 Thu Oct 16 04:40:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-7925d374ebb6c4d84b83e0c7fc0ece992fad09ffac95f989d9768f927fe045333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4250-7876 |
| OpenAccessLink | https://doaj.org/article/cded1bc5b560402182be958cff4bb66f |
| PQID | 3243981560 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cded1bc5b560402182be958cff4bb66f unpaywall_primary_10_3390_app15168942 proquest_journals_3243981560 gale_infotracacademiconefile_A853593325 crossref_primary_10_3390_app15168942 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Liu (ref_17) 2024; 36 ref_14 ref_12 ref_11 ref_10 Aydemir (ref_9) 2023; 45 ref_31 ref_30 ref_19 Zhang (ref_32) 2019; 7 Lindqvist (ref_18) 2020; 5 Guo (ref_24) 2021; 42 Feng (ref_16) 2021; 9 Guo (ref_21) 2022; 8 Cao (ref_28) 2022; 22 ref_25 ref_23 Liu (ref_20) 2022; 24 Niu (ref_22) 2021; 452 ref_1 ref_3 ref_2 Tong (ref_13) 2017; 49 ref_29 Hou (ref_8) 2025; 42 ref_27 ref_26 ref_5 ref_4 ref_7 Yao (ref_15) 2015; 47 ref_6 |
| References_xml | – volume: 36 start-page: 101889 year: 2024 ident: ref_17 article-title: Velocity obstacle guided motion planning method in dynamic environments publication-title: J. King Saud Univ.-Comput. Inf. Sci. doi: 10.1016/j.jksuci.2023.101889 – ident: ref_25 doi: 10.1109/3DV53792.2021.00050 – volume: 24 start-page: 13309 year: 2022 ident: ref_20 article-title: A hierarchical reinforcement learning algorithm based on attention mechanism for UAV autonomous navigation publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3225721 – ident: ref_26 doi: 10.3390/drones3010004 – volume: 5 start-page: 6001 year: 2020 ident: ref_18 article-title: Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.3010730 – volume: 8 start-page: 331 year: 2022 ident: ref_21 article-title: Attention mechanisms in computer vision: A survey publication-title: Comput. Vis. Media doi: 10.1007/s41095-022-0271-y – volume: 452 start-page: 48 year: 2021 ident: ref_22 article-title: A review on the attention mechanism of deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.091 – ident: ref_1 – ident: ref_23 – volume: 42 start-page: 87 year: 2021 ident: ref_24 article-title: YOLOv3-A: A traffic sign detection network based on attention mechanism publication-title: J. Commun. – ident: ref_27 doi: 10.3390/aerospace9020086 – ident: ref_3 doi: 10.1109/TNN.1998.712192 – ident: ref_29 doi: 10.3389/fnbot.2023.1269447 – volume: 49 start-page: 125 year: 2017 ident: ref_13 article-title: Regional coverage maximization: Alternative geographical space abstraction and modeling publication-title: Geogr. Anal. doi: 10.1111/gean.12121 – ident: ref_12 doi: 10.3390/app15031247 – ident: ref_6 doi: 10.3390/s23104647 – volume: 45 start-page: 215 year: 2023 ident: ref_9 article-title: Multi-agent dynamic area coverage based on reinforcement learning with connected agents publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2023.031116 – ident: ref_30 doi: 10.1109/LARS-SBR.2016.12 – ident: ref_31 doi: 10.1109/IROS55552.2023.10342516 – volume: 9 start-page: 154679 year: 2021 ident: ref_16 article-title: UAV dynamic path planning based on obstacle position prediction in an unknown environment publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3128295 – volume: 22 start-page: 11098 year: 2022 ident: ref_28 article-title: Concentrated coverage path planning algorithm of UAV formation for aerial photography publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3168840 – ident: ref_10 doi: 10.1109/CCET59170.2023.10335145 – ident: ref_7 doi: 10.1109/ICARA51699.2021.9376477 – ident: ref_11 doi: 10.3390/app15041988 – ident: ref_4 doi: 10.1038/s41598-020-79147-8 – volume: 42 start-page: 2260 year: 2025 ident: ref_8 article-title: A Spiral Coverage Path Planning Algorithm for Nonomnidirectional Robots publication-title: J. Field Robot. doi: 10.1002/rob.22516 – volume: 47 start-page: 269 year: 2015 ident: ref_15 article-title: Real-time path planning of unmanned aerial vehicle for target tracking and obstacle avoidance in complex dynamic environment publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2015.09.037 – ident: ref_19 doi: 10.3390/machines13020162 – ident: ref_14 doi: 10.3390/s20113170 – ident: ref_2 doi: 10.1109/GNCC42960.2018.9019134 – volume: 7 start-page: 158514 year: 2019 ident: ref_32 article-title: A new method of mobile ad hoc network routing based on greed forwarding improvement strategy publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2950266 – ident: ref_5 doi: 10.1609/aaai.v30i1.10295 |
| RelatedPersons | Liu, Timothy |
| RelatedPersons_xml | – fullname: Liu, Timothy |
| SSID | ssj0000913810 |
| Score | 2.328353 |
| Snippet | With the widespread application of unmanned aerial vehicle technology in search and detection, express delivery and other fields, the requirements for unmanned... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 8942 |
| SubjectTerms | Algorithms Altitude area coverage attention mechanism deep reinforcement learning Drone aircraft dynamic obstacle avoidance Efficiency Homeowners Information processing Liu, Timothy path planning Planning Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AA9IFpAGAraQxFwsHD3Ze8BIadNVSERoYqg3qx9pofghNRV1X_PrB9pEFKvlh_rmd157c73ARyJArMeI10qNY8UZjykJqcyLbx1XLjgLY0Nzt-n8nzGv12Kyx2YDr0w8VjlYBNbQ-2WNtbIP6PjZypCm2RfV3_SyBoVd1cHCg3dUyu4Ly3E2CPYpREZawS748n0x8Wm6hJRMIvjrGvUY5jvx31idHqyUJz-45paBP__7fQePL6pV_ruVi8WW47o7Bk87SNIUnYq34cdXx_A3hau4AHs9yv2mnzsYaU_PYdFWZOuhOAdOfV-RS58C5tq2woh6ZFW5-kYHZsjs_IXfsNrchIPeaLVIeVijgJprn4TfIjomszqWJGryWnHak8m901zL2B2Nvl5cp72XAupZZI1aa6ocCzn3hhpuSu4KZjPbB5s5q1XigbtMhWCtkoEVSiHYUwRFM2Dx6CQMfYSRvWy9q-AeGq1xTjAMCm549YoLoUX0iihAybyCRwNYq5WHaRGhalI1Ea1pY0ExlEFm1siDnZ7YbmeV_2yqqzz7thYYXBe8BaN3nglChsCxx-RIYEPUYFVFGez1jiwrukARxpxr6oSoxWhGKMigcNBx1W_jK-r-0mXwPuN3h8a9euHX_MGntBIINyeIDyEUbO-8W8xqmnMu36q_gWJmfgU priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V2wP0ALSAGijIEkXAIdUSPxIf026rCokKIYLKKfJjXCqWdLXNCtFf33GSLUuRgGtkyxN7PPON7fkGYFcWFPVY5VNlRCxhJkJq80ylBTovpA_ospjg_P5EHVfi3ak8XYMXy1yYlft7TuF4vMYln6QKLcjOritJgHsE69XJh_JLLBtHUXhKdjjvM-9u9_jN13SU_H8a3g24s2hm5ucPM52ueJaj-zBZytQ_KPm2t2jtnru6Rdf4D6EfwL0BWbKyV4VNWMNmCzZW-Aa3YHPYyZfs9UA3_eYhTMuG9UcL6NkEccY-Yken6rqTQzYwsJ6l--TwPKvKzzQGGnYQH3-SNWLl9Oxift5-_c6oEzMNq5p4UtewSV_tnh3-SqZ7BNXR4aeD43SowZA6rnib5jqTnucCrVVO-ELYguPY5cGN0aHWWTB-rEMwTsugC-0J3hRBZ3lAAouc88cwai4a3AaGmTOO8IHlSgkvnNVCSZTKamkCBfgJ7C5Xq571VBs1hShxRuuVGU1gP67kTZPIj919oBWoh-1WO4_-rXXSEqATHUu9RS0LF4KgH1EhgVdRD-o4ne3ckGB9MgJJGvmw6pJQjNScZzKBnaWq1MP2vqwJhXIdeXbGCby8UZ-_Sf3kP9s9hbtZrDDcPTHcgVE7X-Azgj2tfT6o_TXMvP7p priority: 102 providerName: Unpaywall |
| Title | An Improved Deep Reinforcement Learning-Based UAV Area Coverage Algorithm for an Unknown Dynamic Environment |
| URI | https://www.proquest.com/docview/3243981560 https://doi.org/10.3390/app15168942 https://doaj.org/article/cded1bc5b560402182be958cff4bb66f |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9RQEB-0PWgPYqtitC7vUFEPwTTvI-8ds-1ui-BSipF6Cu-zFdZ02aaI_73zkrSmFPTiMSEhw8y8-crMbwD2uMSsxwiXCs3iCjMWUlPkIpXeOsZd8DaPA86fF-K4Yp_O-Nlo1VfsCevhgXvGfbTOu31juUHXzDq8ceMVlzYEZowQIVrfTKpRMtXZYLUfoav6gTyKeX38H4zOTUjF8jsuqEPqv2-Pt-DRdbPSv37q5XLkcOZP4ckQKZKyp3AbHvhmB7ZG-IE7sD2czCvyfoCP_vAMlmVD-lKBd-TQ-xU59R08qu0qgWRAVD1Pp-jAHKnKr_gNr8lBbOZE60LK5fnl-nt78YPgS0Q3pGpi5a0hh_32ejL7Mxz3HKr57MvBcTrsVEgtFbRNC5VzRwvmkXmWOcmMpD6zRbCZt16pPGiXqRC0VTwoqRyGKzKovAgegz9K6QvYaC4b_xKIz6226O8NFYI5Zo1ignsujOI6YMKewN4Nm-tVD51RY8oRpVGPpJHANIrg9pGId93dQC2oBy2o_6UFCbyLAqwjO9u1RsL64QKkNOJb1SVGJVxRmvMEdm9kXA_H9arGqJKqiJuTJfD2Vu5_o_rV_6D6NTzO4zrhrp9wFzba9bV_gzFOaybwUM6PJrA5nS1OTiedcuNVtTgpv_0Gh5T_dw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYQHCiHqtBWTaGtD6C2h1UXv7I-oCohQaFAVCFScdv6MU4rhU1IglD-XH9bx5tNSFWJG9fVPrye8XwzY883hOzLDKMeq3yijIgtzERIbJ2pJAPnhfQBHIsFzhdd1emJb9fyeo38WdTCxGOVC5tYGmo_dDFH_gWBn-tIbZJ-Hd0msWtU3F1dtNAwVWsFf1RSjFWFHWcwu8cQbnJ02kJ5HzB20r467iRVl4HEccWnSV0z6XldgLXKCZ8Jm3FIXT24FBxozYLxqQ7BOC2DzrRHAM-CZvUA6A7xmBBFCNgQXGgM_jaa7e73y2WWJ7JuZofpvDCQc53GfWkEWZVpwf6BwrJjwP-4sEU274qRmd2bwWAF-E5ekOeVx0obcxXbJmtQ7JCtFR7DHbJdWYgJ_VTRWH9-SQaNgs5TFuBpC2BEL6GkaXVlRpJWzK79pIlA6mmv8QO_AYYex0OlaOVoY9BHAUx_3VB8iJqC9oqYASxoa1aYm9-Oth-K9F6R3pPM-muyXgwLeEMoMGcc-h2WKyW8cFYLJUEqq6UJYFmN7C-mOR_NKTxyDH2iNPIVadRIM4pgeUvk3S4vDMf9vFrGufPgD62TFvVQlOz3FrTMXAgCf0SFGvkYBZjH6ZyODQ5sXuSAI408W3kDvSOpOWeyRvYWMs4rszHJH5S8Rg6Wcn9s1G8ff80Hstm5ujjPz0-7Z7vkGYvNi8vTi3tkfTq-g3foUU3t-0ptKfn51CvlLww6Ng0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQJ6QLSAMBTYQyvgYNXdl70HhNKmoaVQIURQb2afASl1QpKqyl_j1zFjO2kQUm-9Wn6s572zM98QsiML2PVY5VNlBI4wEzG1OVNpEZwX0sfgGDY4fz5Tx33x8Vyer5E_i14YLKtc2MTaUPuRwxz5Hjh-rhHaJNuLbVnEl27v_fh3ihOk8KR1MU6jEZHTML-C7dv03UkXeL3LWO_o2-Fx2k4YSB1XfJbmmknPcxGsVU74QtiCh8zl0WXBBa1ZND7TMRqnZdSF9uC8i6hZHgOEQhyToWD-7-SI4o5d6r0Py_wO4m0W-1nTEsi5zvBEGtyrKrRg_zjBelbA_x5hg9y7rMZmfmWGwxWX13tIHrSxKu00wrVJ1kK1RTZWEAy3yGZrG6b0TQtg_fYRGXYq2iQrgqfdEMb0a6gBWl2di6QtpusgPQAX6mm_8x2-EQw9xHJSsG-0MxwAuWc_Lyg8RE1F-xXm_iranVfm4pejR9fteY9J_1Zo_oSsV6MqPCU0MGccRByWKyW8cFYLJYNUVksTg2UJ2VmQuRw34B0lbHqQG-UKNxJygCxY3oKI2_WF0WRQtgpcOh_8vnXSggSKGvfeBi0LF6OAH1ExIa-RgSWSczYxsLCmvQFWighbZQfiIqk5ZzIh2wsel63BmJbX4p2Q3SXfb1r1s5tf84rcBf0oP52cnT4n9xlOLa7LFrfJ-mxyGV5AKDWzL2uZpeTHbSvJX5vKM6c |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V2wP0ALSAGijIEkXAIdUSPxIf026rCokKIYLKKfJjXCqWdLXNCtFf33GSLUuRgGtkyxN7PPON7fkGYFcWFPVY5VNlRCxhJkJq80ylBTovpA_ospjg_P5EHVfi3ak8XYMXy1yYlft7TuF4vMYln6QKLcjOritJgHsE69XJh_JLLBtHUXhKdjjvM-9u9_jN13SU_H8a3g24s2hm5ucPM52ueJaj-zBZytQ_KPm2t2jtnru6Rdf4D6EfwL0BWbKyV4VNWMNmCzZW-Aa3YHPYyZfs9UA3_eYhTMuG9UcL6NkEccY-Yken6rqTQzYwsJ6l--TwPKvKzzQGGnYQH3-SNWLl9Oxift5-_c6oEzMNq5p4UtewSV_tnh3-SqZ7BNXR4aeD43SowZA6rnib5jqTnucCrVVO-ELYguPY5cGN0aHWWTB-rEMwTsugC-0J3hRBZ3lAAouc88cwai4a3AaGmTOO8IHlSgkvnNVCSZTKamkCBfgJ7C5Xq571VBs1hShxRuuVGU1gP67kTZPIj919oBWoh-1WO4_-rXXSEqATHUu9RS0LF4KgH1EhgVdRD-o4ne3ckGB9MgJJGvmw6pJQjNScZzKBnaWq1MP2vqwJhXIdeXbGCby8UZ-_Sf3kP9s9hbtZrDDcPTHcgVE7X-Azgj2tfT6o_TXMvP7p |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Deep+Reinforcement+Learning-Based+UAV+Area+Coverage+Algorithm+for+an+Unknown+Dynamic+Environment&rft.jtitle=Applied+sciences&rft.au=Jiaoru+Huang&rft.au=Huxin+Li&rft.au=Chaobo+Chen&rft.au=Yushuang+Liu&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=16&rft.spage=8942&rft_id=info:doi/10.3390%2Fapp15168942&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cded1bc5b560402182be958cff4bb66f |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |