An Improved Deep Reinforcement Learning-Based UAV Area Coverage Algorithm for an Unknown Dynamic Environment

With the widespread application of unmanned aerial vehicle technology in search and detection, express delivery and other fields, the requirements for unmanned aerial vehicle dynamic area coverage algorithms has become higher. For an unknown dynamic environment, an improved Dual-Attention Mechanism...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 15; no. 16; p. 8942
Main Authors Huang, Jiaoru, Li, Huxin, Chen, Chaobo, Liu, Yushuang, Zhang, Xiaoyan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2025
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app15168942

Cover

Abstract With the widespread application of unmanned aerial vehicle technology in search and detection, express delivery and other fields, the requirements for unmanned aerial vehicle dynamic area coverage algorithms has become higher. For an unknown dynamic environment, an improved Dual-Attention Mechanism Double Deep Q-network area coverage algorithm is proposed in this paper. Firstly, a dual-channel attention mechanism is designed to deal with flight environment information. It can extract and fuse the features of the local obstacle information and full-area coverage information. Then, based on the traditional Double Deep Q-network algorithm, an adaptive exploration decay strategy and a coverage reward function are designed based on the real-time area coverage rate to meet the requirement of a low repeated coverage rate. The proposed algorithm can avoid dynamic obstacles and achieve global coverage under low repeated coverage rate conditions. Finally, with Python 3.12 and PyTorch 2.2.1 environment as the training platform, the simulation results show that, compared with the Soft Actor–Critic algorithm, the Double Deep Q-network algorithm, and the Attention Mechanism Double Deep Q-network algorithm, the proposed algorithm in this paper can complete the area coverage task in a dynamic and complex environment with a lower repeated coverage rate and higher coverage efficiency.
AbstractList With the widespread application of unmanned aerial vehicle technology in search and detection, express delivery and other fields, the requirements for unmanned aerial vehicle dynamic area coverage algorithms has become higher. For an unknown dynamic environment, an improved Dual-Attention Mechanism Double Deep Q-network area coverage algorithm is proposed in this paper. Firstly, a dual-channel attention mechanism is designed to deal with flight environment information. It can extract and fuse the features of the local obstacle information and full-area coverage information. Then, based on the traditional Double Deep Q-network algorithm, an adaptive exploration decay strategy and a coverage reward function are designed based on the real-time area coverage rate to meet the requirement of a low repeated coverage rate. The proposed algorithm can avoid dynamic obstacles and achieve global coverage under low repeated coverage rate conditions. Finally, with Python 3.12 and PyTorch 2.2.1 environment as the training platform, the simulation results show that, compared with the Soft Actor–Critic algorithm, the Double Deep Q-network algorithm, and the Attention Mechanism Double Deep Q-network algorithm, the proposed algorithm in this paper can complete the area coverage task in a dynamic and complex environment with a lower repeated coverage rate and higher coverage efficiency.
Audience Academic
Author Li, Huxin
Huang, Jiaoru
Chen, Chaobo
Liu, Yushuang
Zhang, Xiaoyan
Author_xml – sequence: 1
  givenname: Jiaoru
  surname: Huang
  fullname: Huang, Jiaoru
– sequence: 2
  givenname: Huxin
  surname: Li
  fullname: Li, Huxin
– sequence: 3
  givenname: Chaobo
  orcidid: 0000-0002-4250-7876
  surname: Chen
  fullname: Chen, Chaobo
– sequence: 4
  givenname: Yushuang
  surname: Liu
  fullname: Liu, Yushuang
– sequence: 5
  givenname: Xiaoyan
  surname: Zhang
  fullname: Zhang, Xiaoyan
BookMark eNp9kc1u1DAUhS1UJErpihewxBLS-idO7GWYFhhpJCTEsLUc-zpkSOzgZFrN2-MhqOoKe2Hr6pxzrz-_RhchBkDoLSU3nCtya6aJClpJVbIX6JKRuip4SeuLZ_dX6HqeDyQvRbmk5BINTcDbcUrxARy-A5jwN-iDj8nCCGHBOzAp9KErPpo5K_bND9wkMHiTDcl0gJuhi6lffo44m7AJeB9-hfgY8N0pmLG3-D489CmGc9ob9NKbYYbrf-cV2n-6_775Uuy-ft5uml1hecWXolZMOF6X0LaVLZ0sW8mB2NpbAhaUYt44orw3VgmvpHKqrqRXrPZASsE5v0LbNddFc9BT6keTTjqaXv8txNRpk5beDqCtA0dbK1pRkZIwKlkLSkjrfZm7Vz5nfVizjmEyp0czDE-BlOgzeP0MfJa_W-UZ6e8jzIs-xGMK-bWas5IrSXOjrLpZVZ3JM5x5L8nYvB1kZPlbfZ_rjRRcKM6ZyIb3q8GmOM8J_H-H-AMM2qKA
Cites_doi 10.1016/j.jksuci.2023.101889
10.1109/3DV53792.2021.00050
10.1109/TITS.2022.3225721
10.3390/drones3010004
10.1109/LRA.2020.3010730
10.1007/s41095-022-0271-y
10.1016/j.neucom.2021.03.091
10.3390/aerospace9020086
10.1109/TNN.1998.712192
10.3389/fnbot.2023.1269447
10.1111/gean.12121
10.3390/app15031247
10.3390/s23104647
10.32604/csse.2023.031116
10.1109/LARS-SBR.2016.12
10.1109/IROS55552.2023.10342516
10.1109/ACCESS.2021.3128295
10.1109/JSEN.2022.3168840
10.1109/CCET59170.2023.10335145
10.1109/ICARA51699.2021.9376477
10.3390/app15041988
10.1038/s41598-020-79147-8
10.1002/rob.22516
10.1016/j.ast.2015.09.037
10.3390/machines13020162
10.3390/s20113170
10.1109/GNCC42960.2018.9019134
10.1109/ACCESS.2019.2950266
10.1609/aaai.v30i1.10295
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
DOA
DOI 10.3390/app15168942
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_cded1bc5b560402182be958cff4bb66f
10.3390/app15168942
A853593325
10_3390_app15168942
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c363t-7925d374ebb6c4d84b83e0c7fc0ece992fad09ffac95f989d9768f927fe045333
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Tue Oct 14 19:07:22 EDT 2025
Sun Sep 07 11:12:07 EDT 2025
Wed Aug 27 13:26:23 EDT 2025
Mon Oct 20 16:52:33 EDT 2025
Thu Oct 16 04:40:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-7925d374ebb6c4d84b83e0c7fc0ece992fad09ffac95f989d9768f927fe045333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4250-7876
OpenAccessLink https://doaj.org/article/cded1bc5b560402182be958cff4bb66f
PQID 3243981560
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_cded1bc5b560402182be958cff4bb66f
unpaywall_primary_10_3390_app15168942
proquest_journals_3243981560
gale_infotracacademiconefile_A853593325
crossref_primary_10_3390_app15168942
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liu (ref_17) 2024; 36
ref_14
ref_12
ref_11
ref_10
Aydemir (ref_9) 2023; 45
ref_31
ref_30
ref_19
Zhang (ref_32) 2019; 7
Lindqvist (ref_18) 2020; 5
Guo (ref_24) 2021; 42
Feng (ref_16) 2021; 9
Guo (ref_21) 2022; 8
Cao (ref_28) 2022; 22
ref_25
ref_23
Liu (ref_20) 2022; 24
Niu (ref_22) 2021; 452
ref_1
ref_3
ref_2
Tong (ref_13) 2017; 49
ref_29
Hou (ref_8) 2025; 42
ref_27
ref_26
ref_5
ref_4
ref_7
Yao (ref_15) 2015; 47
ref_6
References_xml – volume: 36
  start-page: 101889
  year: 2024
  ident: ref_17
  article-title: Velocity obstacle guided motion planning method in dynamic environments
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2023.101889
– ident: ref_25
  doi: 10.1109/3DV53792.2021.00050
– volume: 24
  start-page: 13309
  year: 2022
  ident: ref_20
  article-title: A hierarchical reinforcement learning algorithm based on attention mechanism for UAV autonomous navigation
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3225721
– ident: ref_26
  doi: 10.3390/drones3010004
– volume: 5
  start-page: 6001
  year: 2020
  ident: ref_18
  article-title: Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.3010730
– volume: 8
  start-page: 331
  year: 2022
  ident: ref_21
  article-title: Attention mechanisms in computer vision: A survey
  publication-title: Comput. Vis. Media
  doi: 10.1007/s41095-022-0271-y
– volume: 452
  start-page: 48
  year: 2021
  ident: ref_22
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– ident: ref_1
– ident: ref_23
– volume: 42
  start-page: 87
  year: 2021
  ident: ref_24
  article-title: YOLOv3-A: A traffic sign detection network based on attention mechanism
  publication-title: J. Commun.
– ident: ref_27
  doi: 10.3390/aerospace9020086
– ident: ref_3
  doi: 10.1109/TNN.1998.712192
– ident: ref_29
  doi: 10.3389/fnbot.2023.1269447
– volume: 49
  start-page: 125
  year: 2017
  ident: ref_13
  article-title: Regional coverage maximization: Alternative geographical space abstraction and modeling
  publication-title: Geogr. Anal.
  doi: 10.1111/gean.12121
– ident: ref_12
  doi: 10.3390/app15031247
– ident: ref_6
  doi: 10.3390/s23104647
– volume: 45
  start-page: 215
  year: 2023
  ident: ref_9
  article-title: Multi-agent dynamic area coverage based on reinforcement learning with connected agents
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2023.031116
– ident: ref_30
  doi: 10.1109/LARS-SBR.2016.12
– ident: ref_31
  doi: 10.1109/IROS55552.2023.10342516
– volume: 9
  start-page: 154679
  year: 2021
  ident: ref_16
  article-title: UAV dynamic path planning based on obstacle position prediction in an unknown environment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3128295
– volume: 22
  start-page: 11098
  year: 2022
  ident: ref_28
  article-title: Concentrated coverage path planning algorithm of UAV formation for aerial photography
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3168840
– ident: ref_10
  doi: 10.1109/CCET59170.2023.10335145
– ident: ref_7
  doi: 10.1109/ICARA51699.2021.9376477
– ident: ref_11
  doi: 10.3390/app15041988
– ident: ref_4
  doi: 10.1038/s41598-020-79147-8
– volume: 42
  start-page: 2260
  year: 2025
  ident: ref_8
  article-title: A Spiral Coverage Path Planning Algorithm for Nonomnidirectional Robots
  publication-title: J. Field Robot.
  doi: 10.1002/rob.22516
– volume: 47
  start-page: 269
  year: 2015
  ident: ref_15
  article-title: Real-time path planning of unmanned aerial vehicle for target tracking and obstacle avoidance in complex dynamic environment
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2015.09.037
– ident: ref_19
  doi: 10.3390/machines13020162
– ident: ref_14
  doi: 10.3390/s20113170
– ident: ref_2
  doi: 10.1109/GNCC42960.2018.9019134
– volume: 7
  start-page: 158514
  year: 2019
  ident: ref_32
  article-title: A new method of mobile ad hoc network routing based on greed forwarding improvement strategy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2950266
– ident: ref_5
  doi: 10.1609/aaai.v30i1.10295
RelatedPersons Liu, Timothy
RelatedPersons_xml – fullname: Liu, Timothy
SSID ssj0000913810
Score 2.328353
Snippet With the widespread application of unmanned aerial vehicle technology in search and detection, express delivery and other fields, the requirements for unmanned...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 8942
SubjectTerms Algorithms
Altitude
area coverage
attention mechanism
deep reinforcement learning
Drone aircraft
dynamic obstacle avoidance
Efficiency
Homeowners
Information processing
Liu, Timothy
path planning
Planning
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AA9IFpAGAraQxFwsHD3Ze8BIadNVSERoYqg3qx9pofghNRV1X_PrB9pEFKvlh_rmd157c73ARyJArMeI10qNY8UZjykJqcyLbx1XLjgLY0Nzt-n8nzGv12Kyx2YDr0w8VjlYBNbQ-2WNtbIP6PjZypCm2RfV3_SyBoVd1cHCg3dUyu4Ly3E2CPYpREZawS748n0x8Wm6hJRMIvjrGvUY5jvx31idHqyUJz-45paBP__7fQePL6pV_ruVi8WW47o7Bk87SNIUnYq34cdXx_A3hau4AHs9yv2mnzsYaU_PYdFWZOuhOAdOfV-RS58C5tq2woh6ZFW5-kYHZsjs_IXfsNrchIPeaLVIeVijgJprn4TfIjomszqWJGryWnHak8m901zL2B2Nvl5cp72XAupZZI1aa6ocCzn3hhpuSu4KZjPbB5s5q1XigbtMhWCtkoEVSiHYUwRFM2Dx6CQMfYSRvWy9q-AeGq1xTjAMCm549YoLoUX0iihAybyCRwNYq5WHaRGhalI1Ea1pY0ExlEFm1siDnZ7YbmeV_2yqqzz7thYYXBe8BaN3nglChsCxx-RIYEPUYFVFGez1jiwrukARxpxr6oSoxWhGKMigcNBx1W_jK-r-0mXwPuN3h8a9euHX_MGntBIINyeIDyEUbO-8W8xqmnMu36q_gWJmfgU
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V2wP0ALSAGijIEkXAIdUSPxIf026rCokKIYLKKfJjXCqWdLXNCtFf33GSLUuRgGtkyxN7PPON7fkGYFcWFPVY5VNlRCxhJkJq80ylBTovpA_ospjg_P5EHVfi3ak8XYMXy1yYlft7TuF4vMYln6QKLcjOritJgHsE69XJh_JLLBtHUXhKdjjvM-9u9_jN13SU_H8a3g24s2hm5ucPM52ueJaj-zBZytQ_KPm2t2jtnru6Rdf4D6EfwL0BWbKyV4VNWMNmCzZW-Aa3YHPYyZfs9UA3_eYhTMuG9UcL6NkEccY-Yken6rqTQzYwsJ6l--TwPKvKzzQGGnYQH3-SNWLl9Oxift5-_c6oEzMNq5p4UtewSV_tnh3-SqZ7BNXR4aeD43SowZA6rnib5jqTnucCrVVO-ELYguPY5cGN0aHWWTB-rEMwTsugC-0J3hRBZ3lAAouc88cwai4a3AaGmTOO8IHlSgkvnNVCSZTKamkCBfgJ7C5Xq571VBs1hShxRuuVGU1gP67kTZPIj919oBWoh-1WO4_-rXXSEqATHUu9RS0LF4KgH1EhgVdRD-o4ne3ckGB9MgJJGvmw6pJQjNScZzKBnaWq1MP2vqwJhXIdeXbGCby8UZ-_Sf3kP9s9hbtZrDDcPTHcgVE7X-Azgj2tfT6o_TXMvP7p
  priority: 102
  providerName: Unpaywall
Title An Improved Deep Reinforcement Learning-Based UAV Area Coverage Algorithm for an Unknown Dynamic Environment
URI https://www.proquest.com/docview/3243981560
https://doi.org/10.3390/app15168942
https://doaj.org/article/cded1bc5b560402182be958cff4bb66f
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9RQEB-0PWgPYqtitC7vUFEPwTTvI-8ds-1ui-BSipF6Cu-zFdZ02aaI_73zkrSmFPTiMSEhw8y8-crMbwD2uMSsxwiXCs3iCjMWUlPkIpXeOsZd8DaPA86fF-K4Yp_O-Nlo1VfsCevhgXvGfbTOu31juUHXzDq8ceMVlzYEZowQIVrfTKpRMtXZYLUfoav6gTyKeX38H4zOTUjF8jsuqEPqv2-Pt-DRdbPSv37q5XLkcOZP4ckQKZKyp3AbHvhmB7ZG-IE7sD2czCvyfoCP_vAMlmVD-lKBd-TQ-xU59R08qu0qgWRAVD1Pp-jAHKnKr_gNr8lBbOZE60LK5fnl-nt78YPgS0Q3pGpi5a0hh_32ejL7Mxz3HKr57MvBcTrsVEgtFbRNC5VzRwvmkXmWOcmMpD6zRbCZt16pPGiXqRC0VTwoqRyGKzKovAgegz9K6QvYaC4b_xKIz6226O8NFYI5Zo1ignsujOI6YMKewN4Nm-tVD51RY8oRpVGPpJHANIrg9pGId93dQC2oBy2o_6UFCbyLAqwjO9u1RsL64QKkNOJb1SVGJVxRmvMEdm9kXA_H9arGqJKqiJuTJfD2Vu5_o_rV_6D6NTzO4zrhrp9wFzba9bV_gzFOaybwUM6PJrA5nS1OTiedcuNVtTgpv_0Gh5T_dw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYQHCiHqtBWTaGtD6C2h1UXv7I-oCohQaFAVCFScdv6MU4rhU1IglD-XH9bx5tNSFWJG9fVPrye8XwzY883hOzLDKMeq3yijIgtzERIbJ2pJAPnhfQBHIsFzhdd1emJb9fyeo38WdTCxGOVC5tYGmo_dDFH_gWBn-tIbZJ-Hd0msWtU3F1dtNAwVWsFf1RSjFWFHWcwu8cQbnJ02kJ5HzB20r467iRVl4HEccWnSV0z6XldgLXKCZ8Jm3FIXT24FBxozYLxqQ7BOC2DzrRHAM-CZvUA6A7xmBBFCNgQXGgM_jaa7e73y2WWJ7JuZofpvDCQc53GfWkEWZVpwf6BwrJjwP-4sEU274qRmd2bwWAF-E5ekOeVx0obcxXbJmtQ7JCtFR7DHbJdWYgJ_VTRWH9-SQaNgs5TFuBpC2BEL6GkaXVlRpJWzK79pIlA6mmv8QO_AYYex0OlaOVoY9BHAUx_3VB8iJqC9oqYASxoa1aYm9-Oth-K9F6R3pPM-muyXgwLeEMoMGcc-h2WKyW8cFYLJUEqq6UJYFmN7C-mOR_NKTxyDH2iNPIVadRIM4pgeUvk3S4vDMf9vFrGufPgD62TFvVQlOz3FrTMXAgCf0SFGvkYBZjH6ZyODQ5sXuSAI408W3kDvSOpOWeyRvYWMs4rszHJH5S8Rg6Wcn9s1G8ff80Hstm5ujjPz0-7Z7vkGYvNi8vTi3tkfTq-g3foUU3t-0ptKfn51CvlLww6Ng0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQJ6QLSAMBTYQyvgYNXdl70HhNKmoaVQIURQb2afASl1QpKqyl_j1zFjO2kQUm-9Wn6s572zM98QsiML2PVY5VNlBI4wEzG1OVNpEZwX0sfgGDY4fz5Tx33x8Vyer5E_i14YLKtc2MTaUPuRwxz5Hjh-rhHaJNuLbVnEl27v_fh3ihOk8KR1MU6jEZHTML-C7dv03UkXeL3LWO_o2-Fx2k4YSB1XfJbmmknPcxGsVU74QtiCh8zl0WXBBa1ZND7TMRqnZdSF9uC8i6hZHgOEQhyToWD-7-SI4o5d6r0Py_wO4m0W-1nTEsi5zvBEGtyrKrRg_zjBelbA_x5hg9y7rMZmfmWGwxWX13tIHrSxKu00wrVJ1kK1RTZWEAy3yGZrG6b0TQtg_fYRGXYq2iQrgqfdEMb0a6gBWl2di6QtpusgPQAX6mm_8x2-EQw9xHJSsG-0MxwAuWc_Lyg8RE1F-xXm_iranVfm4pejR9fteY9J_1Zo_oSsV6MqPCU0MGccRByWKyW8cFYLJYNUVksTg2UJ2VmQuRw34B0lbHqQG-UKNxJygCxY3oKI2_WF0WRQtgpcOh_8vnXSggSKGvfeBi0LF6OAH1ExIa-RgSWSczYxsLCmvQFWighbZQfiIqk5ZzIh2wsel63BmJbX4p2Q3SXfb1r1s5tf84rcBf0oP52cnT4n9xlOLa7LFrfJ-mxyGV5AKDWzL2uZpeTHbSvJX5vKM6c
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V2wP0ALSAGijIEkXAIdUSPxIf026rCokKIYLKKfJjXCqWdLXNCtFf33GSLUuRgGtkyxN7PPON7fkGYFcWFPVY5VNlRCxhJkJq80ylBTovpA_ospjg_P5EHVfi3ak8XYMXy1yYlft7TuF4vMYln6QKLcjOritJgHsE69XJh_JLLBtHUXhKdjjvM-9u9_jN13SU_H8a3g24s2hm5ucPM52ueJaj-zBZytQ_KPm2t2jtnru6Rdf4D6EfwL0BWbKyV4VNWMNmCzZW-Aa3YHPYyZfs9UA3_eYhTMuG9UcL6NkEccY-Yken6rqTQzYwsJ6l--TwPKvKzzQGGnYQH3-SNWLl9Oxift5-_c6oEzMNq5p4UtewSV_tnh3-SqZ7BNXR4aeD43SowZA6rnib5jqTnucCrVVO-ELYguPY5cGN0aHWWTB-rEMwTsugC-0J3hRBZ3lAAouc88cwai4a3AaGmTOO8IHlSgkvnNVCSZTKamkCBfgJ7C5Xq571VBs1hShxRuuVGU1gP67kTZPIj919oBWoh-1WO4_-rXXSEqATHUu9RS0LF4KgH1EhgVdRD-o4ne3ckGB9MgJJGvmw6pJQjNScZzKBnaWq1MP2vqwJhXIdeXbGCby8UZ-_Sf3kP9s9hbtZrDDcPTHcgVE7X-Azgj2tfT6o_TXMvP7p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Deep+Reinforcement+Learning-Based+UAV+Area+Coverage+Algorithm+for+an+Unknown+Dynamic+Environment&rft.jtitle=Applied+sciences&rft.au=Jiaoru+Huang&rft.au=Huxin+Li&rft.au=Chaobo+Chen&rft.au=Yushuang+Liu&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=16&rft.spage=8942&rft_id=info:doi/10.3390%2Fapp15168942&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cded1bc5b560402182be958cff4bb66f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon