Computer-aided diagnosis of atrial fibrillation based on ECG Signals: A review

•Existing AF detection techniques are discussed.•Building blocks of CADx system are described.•Different features explored by researchers are presented.•State-of-art CADx system for AF are highlighted. Arrhythmia is a type of disorder that affects the pattern and rate of the heartbeat. Among the var...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 467; pp. 99 - 114
Main Authors Hagiwara, Yuki, Fujita, Hamido, Oh, Shu Lih, Tan, Jen Hong, Tan, Ru San, Ciaccio, Edward J, Acharya, U Rajendra
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2018
Subjects
Online AccessGet full text
ISSN0020-0255
1872-6291
DOI10.1016/j.ins.2018.07.063

Cover

Abstract •Existing AF detection techniques are discussed.•Building blocks of CADx system are described.•Different features explored by researchers are presented.•State-of-art CADx system for AF are highlighted. Arrhythmia is a type of disorder that affects the pattern and rate of the heartbeat. Among the various arrhythmia conditions, atrial fibrillation (AF) is the most prevalent. AF is associated with a chaotic, and frequently fast, heartbeat. Moreover, AF increases the risk of cardioembolic stroke and other heart-related problems such as heart failure. Thus, it is necessary to screen for AF and receive proper treatment before the condition progresses. To date, electrocardiogram (ECG) feature analysis is the gold standard for the diagnosis of AF. However, because it is time-varying, AF ECG signals are difficult to interpret. The ECG signals are often contaminated with noise. Further, manual interpretation of ECG signals may be subjective, time-consuming, and susceptible to inter-observer variabilities. Various computer-aided diagnosis (CADx) methods have been proposed to remedy these shortcomings. In this paper, different CADx systems developed by researchers are discussed. Also, the potentials of the CADx system are highlighted. [Display omitted]
AbstractList •Existing AF detection techniques are discussed.•Building blocks of CADx system are described.•Different features explored by researchers are presented.•State-of-art CADx system for AF are highlighted. Arrhythmia is a type of disorder that affects the pattern and rate of the heartbeat. Among the various arrhythmia conditions, atrial fibrillation (AF) is the most prevalent. AF is associated with a chaotic, and frequently fast, heartbeat. Moreover, AF increases the risk of cardioembolic stroke and other heart-related problems such as heart failure. Thus, it is necessary to screen for AF and receive proper treatment before the condition progresses. To date, electrocardiogram (ECG) feature analysis is the gold standard for the diagnosis of AF. However, because it is time-varying, AF ECG signals are difficult to interpret. The ECG signals are often contaminated with noise. Further, manual interpretation of ECG signals may be subjective, time-consuming, and susceptible to inter-observer variabilities. Various computer-aided diagnosis (CADx) methods have been proposed to remedy these shortcomings. In this paper, different CADx systems developed by researchers are discussed. Also, the potentials of the CADx system are highlighted. [Display omitted]
Author Hagiwara, Yuki
Oh, Shu Lih
Tan, Jen Hong
Fujita, Hamido
Tan, Ru San
Ciaccio, Edward J
Acharya, U Rajendra
Author_xml – sequence: 1
  givenname: Yuki
  surname: Hagiwara
  fullname: Hagiwara, Yuki
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 2
  givenname: Hamido
  orcidid: 0000-0001-5256-210X
  surname: Fujita
  fullname: Fujita, Hamido
  email: hfujita-799@acm.org
  organization: Iwate Prefectural University, Faculty of Software and Information Science, Iwate, Japan
– sequence: 3
  givenname: Shu Lih
  surname: Oh
  fullname: Oh, Shu Lih
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 4
  givenname: Jen Hong
  surname: Tan
  fullname: Tan, Jen Hong
  organization: National University of Singapore, Institute of System Science, Singapore
– sequence: 5
  givenname: Ru San
  surname: Tan
  fullname: Tan, Ru San
  organization: Department of Cardiology, National Heart Centre Singapore, Singapore
– sequence: 6
  givenname: Edward J
  surname: Ciaccio
  fullname: Ciaccio, Edward J
  organization: Department of Medicine - Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, USA
– sequence: 7
  givenname: U Rajendra
  surname: Acharya
  fullname: Acharya, U Rajendra
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
BookMark eNp9kMFOwzAMhiM0JDbgAbjlBVqctEtbOE3TGEgTHIBzlCXO5Klrp6SAeHsyxonDTrYsf7b-b8JGXd8hYzcCcgFC3W5z6mIuQdQ5VDmo4oyNRV3JTMlGjNgYQEIGcjq9YJMYtwBQVkqN2fO83-0_BgyZIYeOOzKbro8Uee-5GQKZlntaB2pbM1Df8bWJaS01i_mSv9KmM2284zMe8JPw64qd-zTA6796yd4fFm_zx2z1snyaz1aZLVQxZOl10yCaErFupLJeCmikUQjCKWWbcu1ROll6D8oBGJRYFI0XdVlLWReiuGTieNeGPsaAXu8D7Uz41gL0QYje6iREH4RoqHQSkpjqH2Np-A01BEPtSfL-SGKKlGIGHS1hZ9FRQDto19MJ-gd0yHyd
CitedBy_id crossref_primary_10_1007_s10489_019_01461_0
crossref_primary_10_1038_s41598_022_21663_w
crossref_primary_10_1016_j_bspc_2019_101662
crossref_primary_10_1016_j_knosys_2019_105446
crossref_primary_10_1016_j_future_2019_09_012
crossref_primary_10_1016_j_bbe_2021_02_010
crossref_primary_10_1016_j_bspc_2023_105242
crossref_primary_10_1038_s41598_025_87115_3
crossref_primary_10_1080_21681163_2023_2228930
crossref_primary_10_4103_jmss_jmss_4_22
crossref_primary_10_1007_s11042_024_20113_1
crossref_primary_10_1007_s13239_021_00599_8
crossref_primary_10_1016_j_compbiomed_2022_106115
crossref_primary_10_3390_diagnostics13243605
crossref_primary_10_1002_ccr3_9359
crossref_primary_10_1007_s11042_023_15123_4
crossref_primary_10_1016_j_knosys_2019_104923
crossref_primary_10_3390_ijerph17176313
crossref_primary_10_1016_j_artmed_2023_102644
crossref_primary_10_1016_j_artmed_2024_102865
crossref_primary_10_1016_j_compbiomed_2024_107984
crossref_primary_10_1155_2022_9884076
crossref_primary_10_3390_s21248174
crossref_primary_10_1007_s11277_023_10607_w
crossref_primary_10_1016_j_ins_2021_10_049
crossref_primary_10_1016_j_bbe_2024_07_005
crossref_primary_10_1016_j_ins_2024_121868
crossref_primary_10_1016_S2589_7500_21_00256_9
crossref_primary_10_1088_1361_6579_aaf34d
crossref_primary_10_1016_j_bspc_2024_107480
crossref_primary_10_1016_j_knosys_2019_104973
crossref_primary_10_1016_j_neucom_2022_09_079
crossref_primary_10_3390_s22062329
crossref_primary_10_1007_s00034_024_02986_7
crossref_primary_10_1016_j_cmpb_2019_105219
crossref_primary_10_3389_fcvm_2022_894187
crossref_primary_10_2478_jaiscr_2024_0004
crossref_primary_10_3390_e25111562
crossref_primary_10_1016_j_bspc_2024_106703
crossref_primary_10_1016_j_ins_2021_05_035
crossref_primary_10_1016_j_future_2020_10_024
crossref_primary_10_3390_math11183942
crossref_primary_10_1016_j_cvdhj_2023_12_002
crossref_primary_10_1016_j_cmpb_2022_106821
crossref_primary_10_12677_mos_2024_134391
crossref_primary_10_1016_j_knosys_2019_105036
crossref_primary_10_1016_j_bspc_2022_103921
crossref_primary_10_3390_ijerph182111302
crossref_primary_10_1007_s10489_021_02368_5
crossref_primary_10_1142_S0219519421400133
crossref_primary_10_3390_ma15030724
crossref_primary_10_1002_cpe_6789
crossref_primary_10_1088_1361_6579_ac010f
crossref_primary_10_3390_s21217233
crossref_primary_10_1016_j_bspc_2021_102818
crossref_primary_10_3390_diagnostics12040795
crossref_primary_10_1016_j_ins_2019_02_065
crossref_primary_10_1007_s11042_023_15717_y
crossref_primary_10_31083_j_rcm2408215
crossref_primary_10_1016_j_knosys_2019_105128
crossref_primary_10_1016_j_tox_2024_153879
crossref_primary_10_1016_j_ssci_2019_05_013
crossref_primary_10_1016_j_bspc_2022_103663
crossref_primary_10_1016_j_ins_2020_05_051
crossref_primary_10_32604_iasc_2022_019877
crossref_primary_10_1016_j_bspc_2022_104507
crossref_primary_10_1007_s10439_020_02581_2
crossref_primary_10_1016_j_bspc_2023_104628
crossref_primary_10_1007_s11265_020_01531_4
crossref_primary_10_1108_IJPCC_03_2021_0080
crossref_primary_10_1016_j_compbiomed_2022_106390
crossref_primary_10_31083_j_rcm_2020_03_120
crossref_primary_10_3390_app12178839
crossref_primary_10_3390_s24144432
crossref_primary_10_1016_j_inffus_2023_102023
crossref_primary_10_1016_j_bios_2025_117148
crossref_primary_10_1016_j_intimp_2024_113403
crossref_primary_10_1109_JBHI_2019_2919732
crossref_primary_10_3390_info11090436
crossref_primary_10_1016_j_dsm_2022_10_001
crossref_primary_10_1007_s10489_024_05364_7
crossref_primary_10_1016_j_knosys_2020_106589
crossref_primary_10_1063_5_0217416
crossref_primary_10_1016_j_cmpb_2024_108056
crossref_primary_10_1016_j_ins_2021_06_009
crossref_primary_10_1016_j_bspc_2024_106939
crossref_primary_10_1002_clc_23580
crossref_primary_10_1007_s12652_020_02536_4
crossref_primary_10_1007_s11431_022_2080_6
crossref_primary_10_1016_j_bspc_2023_105308
crossref_primary_10_1016_j_compbiomed_2021_104783
crossref_primary_10_1016_j_ins_2023_04_011
crossref_primary_10_1016_j_bspc_2021_103408
crossref_primary_10_1016_j_artmed_2023_102690
crossref_primary_10_1007_s40998_023_00633_6
crossref_primary_10_1007_s11042_020_09938_8
crossref_primary_10_1016_j_cmpb_2019_06_017
crossref_primary_10_1016_j_ins_2025_121889
crossref_primary_10_1016_j_patrec_2020_02_005
crossref_primary_10_3389_fphys_2021_673819
crossref_primary_10_1007_s10489_021_02309_2
crossref_primary_10_1088_1361_6579_aadf48
crossref_primary_10_1088_1742_6596_1500_1_012131
crossref_primary_10_1007_s00521_021_05866_2
crossref_primary_10_1016_j_cmpb_2021_106035
crossref_primary_10_1016_j_knosys_2019_105460
crossref_primary_10_1007_s10916_020_01565_y
crossref_primary_10_1016_j_ins_2019_11_010
crossref_primary_10_32604_cmc_2021_014682
crossref_primary_10_3390_app14146191
crossref_primary_10_1016_j_ins_2020_10_014
crossref_primary_10_1016_j_mayocp_2020_01_038
crossref_primary_10_1016_j_knosys_2023_110323
crossref_primary_10_1016_j_asoc_2022_109552
crossref_primary_10_1155_2022_6348424
crossref_primary_10_1016_j_ins_2019_06_054
crossref_primary_10_3390_diagnostics13142442
crossref_primary_10_1016_j_measurement_2021_109806
crossref_primary_10_1186_s13634_022_00943_7
crossref_primary_10_3390_s21113814
crossref_primary_10_2139_ssrn_4017037
crossref_primary_10_3390_electronics10080976
crossref_primary_10_54287_gujsa_1128006
crossref_primary_10_1016_j_eswa_2020_113911
crossref_primary_10_1016_j_ins_2019_05_089
crossref_primary_10_1016_j_measurement_2019_107363
crossref_primary_10_1016_j_knosys_2020_106122
crossref_primary_10_1016_j_cmpb_2022_107277
crossref_primary_10_1109_ACCESS_2019_2904095
crossref_primary_10_1016_j_cmpb_2021_106284
crossref_primary_10_1016_j_ins_2021_09_046
crossref_primary_10_1016_j_eswa_2023_120019
crossref_primary_10_1109_JBHI_2022_3171918
crossref_primary_10_1016_j_knosys_2019_04_023
crossref_primary_10_1007_s10462_021_09999_7
crossref_primary_10_1016_j_compbiomed_2023_107275
crossref_primary_10_1038_s41598_021_99975_6
crossref_primary_10_3390_ijerph17093093
crossref_primary_10_3389_fcvm_2021_711401
Cites_doi 10.1111/j.1469-1809.1936.tb02137.x
10.1111/j.1467-9868.2011.00771.x
10.1016/j.cmpb.2016.04.009
10.1016/j.jelectrocard.2016.07.033
10.1016/j.bspc.2014.04.001
10.1109/TPAMI.2006.211
10.1016/j.compbiomed.2015.03.005
10.1016/j.gheart.2017.01.015
10.1137/0111030
10.1016/j.compbiomed.2017.01.019
10.1016/j.ins.2017.06.027
10.1016/0167-8655(94)90127-9
10.1016/j.ins.2017.04.012
10.1016/j.cmpb.2013.12.002
10.1088/0967-3334/32/8/010
10.1016/0893-6080(90)90049-Q
10.1080/14786440109462720
10.1016/j.compbiomed.2016.03.015
10.1016/j.knosys.2013.09.016
10.1109/TIT.1979.1056087
10.1016/j.compbiomed.2017.12.023
10.1103/PhysRevLett.88.174102
10.1109/TIT.1967.1053964
10.1007/BF00994018
10.1142/S0219519417400449
10.1142/S0219519412400234
10.1016/0165-1684(91)90079-X
10.1073/pnas.79.8.2554
10.1023/A:1010933404324
10.1209/0295-5075/4/9/004
10.1002/j.1538-7305.1948.tb01338.x
10.1142/S0219519417400437
10.1142/S0219519416400054
10.1016/j.compbiomed.2011.10.012
10.1016/0020-0255(86)90006-X
10.1023/A:1012487302797
10.1016/j.future.2017.08.039
10.1109/79.221324
10.1016/j.cmpb.2016.08.021
10.1109/10.942588
10.1162/neco.1997.9.8.1735
10.3390/e19120677
10.3399/bjgp11X548956
10.1090/qam/10666
10.1109/TITB.2010.2094197
10.1007/s00170-016-9048-8
10.1109/TBME.2013.2264721
10.1016/j.bspc.2013.08.008
10.1109/TBME.2012.2208112
10.1016/j.ijcac.2016.08.001
10.1109/TBME.1985.325532
10.1161/CIRCULATIONAHA.113.005119
10.1016/j.cmpb.2013.08.017
10.3348/kjr.2017.18.4.570
10.1007/s10439-009-9740-z
10.1016/j.compbiomed.2017.12.007
10.1016/j.knosys.2017.06.003
10.1016/0167-2789(93)90009-P
10.1126/science.1127647
10.1161/01.CIR.101.23.e215
10.1016/j.compbiomed.2017.08.022
10.1073/pnas.88.6.2297
10.1016/j.compbiomed.2017.02.008
10.1016/j.compbiomed.2014.02.012
10.1016/j.bbe.2018.03.001
10.1512/iumj.1957.6.56038
10.4250/jcu.2011.19.2.51
10.1145/3065386
10.1007/BF02345439
10.1186/1475-925X-13-18
10.1088/0967-3334/26/5/R01
10.1109/T-C.1974.223784
10.1109/41.538609
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2018.07.063
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 114
ExternalDocumentID 10_1016_j_ins_2018_07_063
S0020025518305917
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c363t-76699eea4ee8926cf21092a6e01d66c94bfe2d24ff06d00ae2e339f1848228313
IEDL.DBID AIKHN
ISSN 0020-0255
IngestDate Thu Apr 24 22:55:27 EDT 2025
Tue Jul 01 04:16:40 EDT 2025
Fri Feb 23 02:45:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Computer-aided diagnosis system
Electrocardiogram signals
Arrhythmia
Atrial fibrillation
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-76699eea4ee8926cf21092a6e01d66c94bfe2d24ff06d00ae2e339f1848228313
ORCID 0000-0001-5256-210X
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_ins_2018_07_063
crossref_citationtrail_10_1016_j_ins_2018_07_063
elsevier_sciencedirect_doi_10_1016_j_ins_2018_07_063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2018
2018-10-00
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lee, Nam, McManus, Chon (bib0058) 2013; 60
Vapnik, Guyon, Hastie (bib0103) 1995; 20
Guyon, Weston, Barnhill, Vapnik (bib0042) 2002; 46
Eckmann, Kamphorst, Ruelle (bib0033) 1987; 4
Annavarapu, Kora (bib0013) 2016; 2
Rodriguez, Kuncheva, Alonso (bib0090) 2006; 28
Renyi (bib0088) 1961
Acharya, Fujita, Oh, Hagiwara, Tan, Adam (bib0005) 2017; 405
Breiman, Friedman, Stone, Olshen (bib0020) 1984
Kira, Rendell (bib0053) 1992
Breiman (bib0019) 2001; 45
Lehmann, Romano (bib0060) 2005
Mandelbrot (bib0065) 1983
R.A. Fisher, “The use of multiple measurements in taxonomic problems”, Ann. Eugen., vol. 7, no. 2, pp. 179–188.
Guyon, Elisseeff (bib0041) 2003; 3
Tibshirani (bib0101) 2011; 73
Zhou, Ding, Ung, Pickwell-MacPherson, Zhang (bib0109) 2014; 13
Richman, Moorman (bib0089) 2000; 278
Levenberg (bib0061) 1944; 2
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0039) 2014
Martis, Acharya, Adeli (bib0067) 2014; 48
Hinton, Salakhutdinov (bib0044) 2006; 313
Devroye, Wagner (bib0030) 1979; 25
Steinbaum (bib0095) 2017
Marwam, Wessel, Meyerfeldt, Schirdewan, Kurths (bib0072) 2002; 66
Prasad, Martis, Acharya, Lim, Suri (bib0086) 2013
Poznanski, Wolf (bib0085) 2016
Islam, Ammour, Alajlan, Aboalsamh (bib0047) 2016; 72
Jutten, Hérault (bib0048) 1991; 24
Kennedy, Finlay, Guldenring, Bond, Moran, McLaughlin (bib0051) 2016; 49
Acharya, Fujita, Adam, Oh, Tan, Sudarshan, Koh (bib0003) 2016
Zhou, Ding, Wu, Zhang (bib0110) 2015; 10
García, Ródenas, Alcaraz, Rieta (bib0036) 2016; 131
Acharya, Fujita, Oh, Hagiwara, Tan, Adam (bib0006) 2017; 415
Dhir, Iqbal, Lee (bib0031) 2007
Chugh, Havmoeller, Narayanan, Singh, Rienstra, Benjamin, Gilum, Kim, McAnulty, Zheng, Forouzanfar, Naghavi, Mensah, Ezzati, Murray (bib0023) 2014; 129
Hochreiter, Schmidhuber (bib0045) 1997; 9
Shannon (bib0093) 1948; 27
Pincus (bib0084) 1991; 88
Yuan, Yan, Zhou, Bai, Wang (bib0107) 2016
Tateno, Glass (bib0100) 2001; 39
Kim, Youn (bib0052) 2011; 19
Lee, Reyes, McManus, Mathaias, Chon (bib0059) 2013; 60
(bib0074) 2017
Spechr, Donald (bib0094) 1990; 3
Kora, Annavarapu, Yadlapalli, Krishna, Somalaraju (bib0054) 2017; 20
Bishop (bib0018) 2006
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (bib0037) 2000; 101
MacQueen (bib0063) 1967
Man, Tang, Kwong (bib0064) 1996; 43
Murphy, Banerjee, Breithardt, Camm, Commerford, Freedman, Gonazalez-Harmosillo, Halperin, Lau, Perel, Xavier, Wood, Jouven, Morillo (bib0077) 2017; 12
Ahmed, Natarajan, Rao (bib0012) 1974; C-23
Pan, Tompkins (bib0082) 1985; 32
Tripathy, Paternina, Arrieta, Pattanaik (bib0102) 2017; 17
Tan, Hagiwara, Pang, Lim, Oh, Adam, Tan, Chen, Acharya (bib0099) 2018; 94
Desai, Martis, Acharya, Nayak, Seshikala, Ranjan (bib0029) 2016; 16
Graves, Mohamed, Hinton (bib0040) 2013
Krizhevsky, Sutskever, Hinton (bib0056) 2017; 60
Hadhoud, Eladawy, Farag (bib0043) 2006
Yao, Zhu, Chen (bib0106) 2017
Pal, Mitra (bib0081) 2012; 42
Marquardt (bib0066) 1963; 11
Rosenstein, Colins, de Luca (bib0091) 1993; 65
Sufi, Khalil (bib0097) 2011; 15
Yuvaraj, Acharya, Hagiwara (bib0108) 2016
Goodfellow, Bengio, Courville (bib0038) 2016
Addison (bib0011) 2005; 26
Martis, Prasad, Chakraborty, Ray (bib0071) 2012; 12
Nason, Silverman (bib0078) 1995
Sadowsky (bib0092) 1994; 15
Martis, Acharya, Adeli, Prasad, Tan, Chua, Too, Yeo, Tong (bib0068) 2014; 13
Martis, Acharya, Prasad, Chua, Lim (bib0069) 2013; 54
Bochner, Chandrasekharan (bib0021) 1949
Lewis, Parker, Weston, Bowes (bib0062) 2011; 61
Wang, Zhu, Thakor, Xu (bib0104) 2001; 48
Xia, Wulan, Wong, Zhang (bib0105) 2018; 93
Duda, Hart, Stork (bib0032) 2001
Acharya, Hagiwara, Koh, Oh, Tan, Adam, Tan (bib0008) 2018
Cover, Hart (bib0025) 1967; 13
Kosko (bib0055) 1986; 40
Pundil, Novovicová, Kittler (bib0087) 1994; 15
Acharya, Faust, Sree, Swapna, Martis, Kadri, Suri (bib0002) 2014; vol. 113
Bandt, Pompe (bib0016) 2002; 88
Chang, Ko, Chang (bib0022) 2010
Pearson (bib0083) 1901; 2
Ciaccio, Biviano, Wan, Peters, Garan (bib0024) 2017; 83
(bib0076) 2016
Fisher (bib0034) 1925
Mohebbi, Ghassemian (bib0075) 2011; 32
Kang, Zhuo, Foo, Lim, Faust, Hagiwara (bib0049) 2017; 17
Acharya, Fujita, Oh, Adam, Tan, Chua (bib0004) 2017; 132
Cui, Chang, Yang, Jiang, Yang, Peng (bib0026) 2017; 19
Acharya, Suri, Spaan, Krishnan (bib0010) 2007
Lee, Jun, Cho, Lee, Kim, Seo, Kim (bib0057) 2017; 18
Sudarshan, Acharya, Oh, Adam, Tan, Chua, Chua, Tan (bib0096) 2017; 83
Acharya, Oh, Hagiwara, Tan, Adam, Gertych, Tan (bib0009) 2017; 89
Bellman (bib0017) 1957; 6
M. Masiti, Y. Masiti, G. Oppenheim, J. Poggi, “Wavelet toolbox for use with Matlab, user's guide, version 3, MathWorks, Inc”, 2004.
Acharya, Fujita, Oh, Raghavendra, Tan, Adam, Gertych, Hagiwara (bib0007) 2018; 79
Tallapragada, Singavarapu, Pradhan (bib0098) 2014; 5
Nikias, Mendel (bib0079) 1993; 10
Hopfield (bib0046) 1982; 79
Ashley, Niebauer (bib0015) 2004
Daqrouq, Alkhateeb, Ajour, Morfeq (bib0027) 2014; 113
Asgari, Mehrnia, Moussavi (bib0014) 2015; 60
Oppenheim, Verghese (bib0080) 2010
Martis, Acharya, Prasad, Chua, Lim, Suri (bib0070) 2013; 8
Kecil, Ciecielag, Zaleski (bib0050) 2017; 89
Abdul-Kadir, Safri, Othman (bib0001) 2016; vol. 136
Dash, Chon, Lu, Raeder (bib0028) 2009; 37
Eckmann (10.1016/j.ins.2018.07.063_bib0033) 1987; 4
Kang (10.1016/j.ins.2018.07.063_bib0049) 2017; 17
Tateno (10.1016/j.ins.2018.07.063_bib0100) 2001; 39
Fisher (10.1016/j.ins.2018.07.063_bib0034) 1925
Jutten (10.1016/j.ins.2018.07.063_bib0048) 1991; 24
Martis (10.1016/j.ins.2018.07.063_bib0067) 2014; 48
Acharya (10.1016/j.ins.2018.07.063_bib0009) 2017; 89
Guyon (10.1016/j.ins.2018.07.063_bib0041) 2003; 3
Annavarapu (10.1016/j.ins.2018.07.063_bib0013) 2016; 2
Ahmed (10.1016/j.ins.2018.07.063_bib0012) 1974; C-23
Martis (10.1016/j.ins.2018.07.063_bib0070) 2013; 8
Nason (10.1016/j.ins.2018.07.063_bib0078) 1995
Guyon (10.1016/j.ins.2018.07.063_bib0042) 2002; 46
Lehmann (10.1016/j.ins.2018.07.063_bib0060) 2005
Abdul-Kadir (10.1016/j.ins.2018.07.063_bib0001) 2016; vol. 136
Shannon (10.1016/j.ins.2018.07.063_bib0093) 1948; 27
Duda (10.1016/j.ins.2018.07.063_bib0032) 2001
Richman (10.1016/j.ins.2018.07.063_bib0089) 2000; 278
Devroye (10.1016/j.ins.2018.07.063_bib0030) 1979; 25
Acharya (10.1016/j.ins.2018.07.063_bib0002) 2014; vol. 113
Tallapragada (10.1016/j.ins.2018.07.063_bib0098) 2014; 5
Lewis (10.1016/j.ins.2018.07.063_bib0062) 2011; 61
Acharya (10.1016/j.ins.2018.07.063_bib0008) 2018
Goodfellow (10.1016/j.ins.2018.07.063_bib0038) 2016
MacQueen (10.1016/j.ins.2018.07.063_bib0063) 1967
Marquardt (10.1016/j.ins.2018.07.063_bib0066) 1963; 11
Yuvaraj (10.1016/j.ins.2018.07.063_bib0108) 2016
10.1016/j.ins.2018.07.063_bib0035
Hadhoud (10.1016/j.ins.2018.07.063_bib0043) 2006
Lee (10.1016/j.ins.2018.07.063_bib0057) 2017; 18
Levenberg (10.1016/j.ins.2018.07.063_bib0061) 1944; 2
Rosenstein (10.1016/j.ins.2018.07.063_bib0091) 1993; 65
Dash (10.1016/j.ins.2018.07.063_bib0028) 2009; 37
Yao (10.1016/j.ins.2018.07.063_bib0106) 2017
Steinbaum (10.1016/j.ins.2018.07.063_bib0095)
Chugh (10.1016/j.ins.2018.07.063_bib0023) 2014; 129
Acharya (10.1016/j.ins.2018.07.063_bib0005) 2017; 405
Acharya (10.1016/j.ins.2018.07.063_bib0010) 2007
Renyi (10.1016/j.ins.2018.07.063_bib0088) 1961
Graves (10.1016/j.ins.2018.07.063_sbref0039) 2013
Acharya (10.1016/j.ins.2018.07.063_bib0004) 2017; 132
Man (10.1016/j.ins.2018.07.063_bib0064) 1996; 43
García (10.1016/j.ins.2018.07.063_bib0036) 2016; 131
Desai (10.1016/j.ins.2018.07.063_bib0029) 2016; 16
Daqrouq (10.1016/j.ins.2018.07.063_bib0027) 2014; 113
Breiman (10.1016/j.ins.2018.07.063_bib0019) 2001; 45
Hopfield (10.1016/j.ins.2018.07.063_bib0046) 1982; 79
Pincus (10.1016/j.ins.2018.07.063_bib0084) 1991; 88
Acharya (10.1016/j.ins.2018.07.063_bib0006) 2017; 415
Martis (10.1016/j.ins.2018.07.063_bib0071) 2012; 12
Prasad (10.1016/j.ins.2018.07.063_bib0086) 2013
Rodriguez (10.1016/j.ins.2018.07.063_bib0090) 2006; 28
Acharya (10.1016/j.ins.2018.07.063_bib0003) 2016
Tripathy (10.1016/j.ins.2018.07.063_bib0102) 2017; 17
Martis (10.1016/j.ins.2018.07.063_bib0068) 2014; 13
Dhir (10.1016/j.ins.2018.07.063_bib0031) 2007
Hochreiter (10.1016/j.ins.2018.07.063_bib0045) 1997; 9
Hinton (10.1016/j.ins.2018.07.063_bib0044) 2006; 313
Krizhevsky (10.1016/j.ins.2018.07.063_bib0056) 2017; 60
Nikias (10.1016/j.ins.2018.07.063_bib0079) 1993; 10
Oppenheim (10.1016/j.ins.2018.07.063_bib0080) 2010
Sadowsky (10.1016/j.ins.2018.07.063_bib0092) 1994; 15
Kira (10.1016/j.ins.2018.07.063_bib0053) 1992
Kennedy (10.1016/j.ins.2018.07.063_bib0051) 2016; 49
Mandelbrot (10.1016/j.ins.2018.07.063_bib0065) 1983
Ciaccio (10.1016/j.ins.2018.07.063_bib0024) 2017; 83
Lee (10.1016/j.ins.2018.07.063_bib0059) 2013; 60
Pearson (10.1016/j.ins.2018.07.063_bib0083) 1901; 2
Acharya (10.1016/j.ins.2018.07.063_bib0007) 2018; 79
Martis (10.1016/j.ins.2018.07.063_bib0069) 2013; 54
Sufi (10.1016/j.ins.2018.07.063_bib0097) 2011; 15
Islam (10.1016/j.ins.2018.07.063_bib0047) 2016; 72
Ashley (10.1016/j.ins.2018.07.063_bib0015) 2004
Kecil (10.1016/j.ins.2018.07.063_bib0050) 2017; 89
Addison (10.1016/j.ins.2018.07.063_bib0011) 2005; 26
Bochner (10.1016/j.ins.2018.07.063_bib0021) 1949
Goldberger (10.1016/j.ins.2018.07.063_bib0037) 2000; 101
10.1016/j.ins.2018.07.063_bib0073
Vapnik (10.1016/j.ins.2018.07.063_bib0103) 1995; 20
Breiman (10.1016/j.ins.2018.07.063_bib0020) 1984
Lee (10.1016/j.ins.2018.07.063_bib0058) 2013; 60
Pan (10.1016/j.ins.2018.07.063_bib0082) 1985; 32
Tan (10.1016/j.ins.2018.07.063_bib0099) 2018; 94
Chang (10.1016/j.ins.2018.07.063_bib0022) 2010
Xia (10.1016/j.ins.2018.07.063_bib0105) 2018; 93
Bellman (10.1016/j.ins.2018.07.063_bib0017) 1957; 6
Kora (10.1016/j.ins.2018.07.063_bib0054) 2017; 20
Sudarshan (10.1016/j.ins.2018.07.063_bib0096) 2017; 83
Zhou (10.1016/j.ins.2018.07.063_bib0110) 2015; 10
Poznanski (10.1016/j.ins.2018.07.063_bib0085) 2016
Goodfellow (10.1016/j.ins.2018.07.063_bib0039) 2014
Pal (10.1016/j.ins.2018.07.063_bib0081) 2012; 42
Spechr (10.1016/j.ins.2018.07.063_bib0094) 1990; 3
Cover (10.1016/j.ins.2018.07.063_bib0025) 1967; 13
Bishop (10.1016/j.ins.2018.07.063_bib0018) 2006
Kosko (10.1016/j.ins.2018.07.063_bib0055) 1986; 40
Mohebbi (10.1016/j.ins.2018.07.063_bib0075) 2011; 32
Kim (10.1016/j.ins.2018.07.063_bib0052) 2011; 19
Murphy (10.1016/j.ins.2018.07.063_bib0077) 2017; 12
Marwam (10.1016/j.ins.2018.07.063_bib0072) 2002; 66
Zhou (10.1016/j.ins.2018.07.063_bib0109) 2014; 13
Wang (10.1016/j.ins.2018.07.063_bib0104) 2001; 48
Yuan (10.1016/j.ins.2018.07.063_bib0107) 2016
Bandt (10.1016/j.ins.2018.07.063_bib0016) 2002; 88
Pundil (10.1016/j.ins.2018.07.063_bib0087) 1994; 15
Tibshirani (10.1016/j.ins.2018.07.063_bib0101) 2011; 73
Asgari (10.1016/j.ins.2018.07.063_bib0014) 2015; 60
Cui (10.1016/j.ins.2018.07.063_bib0026) 2017; 19
References_xml – start-page: 1
  year: 2016
  end-page: 11
  ident: bib0108
  article-title: A novel Parkinson's disease diagnosis index using higher-order spectra features in EEG signals
  publication-title: Neural Comput. Appl.
– year: 2007
  ident: bib0031
  article-title: Efficient feature selection based on information gain criterion for face recognition
  publication-title: Proceedings of the International Conference on Information Acquisition
– volume: C-23
  start-page: 90
  year: 1974
  end-page: 93
  ident: bib0012
  article-title: Discrete cosine transform
  publication-title: IEEE Trans.Comput.
– volume: 6
  start-page: 679
  year: 1957
  end-page: 684
  ident: bib0017
  article-title: A markovian decision process
  publication-title: Indiana Univ. Math. J.
– volume: 15
  start-page: 33
  year: 2011
  end-page: 39
  ident: bib0097
  article-title: Diagnosis of cardiovascular abnormalities from compressed ECG: a datamining-based approach
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0019
  article-title: Random forest
  publication-title: Mach. Learn.
– volume: 61
  start-page: 38
  year: 2011
  end-page: 39
  ident: bib0062
  article-title: Screening for atrial fibrillation: sensitivity and specificity of a new methodology
  publication-title: Br. J. Gen. Pract.
– volume: 13
  start-page: 1
  year: 2014
  end-page: 18
  ident: bib0109
  article-title: Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy
  publication-title: Biomed. Eng. OnLine
– volume: 79
  start-page: 952
  year: 2018
  end-page: 959
  ident: bib0007
  article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network
  publication-title: Future Gener. Comput. Syst.
– reference: M. Masiti, Y. Masiti, G. Oppenheim, J. Poggi, “Wavelet toolbox for use with Matlab, user's guide, version 3, MathWorks, Inc”, 2004.
– volume: 49
  start-page: 871
  year: 2016
  end-page: 876
  ident: bib0051
  article-title: Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification
  publication-title: J. Electrocardiol.
– volume: 26
  start-page: R155
  year: 2005
  end-page: R199
  ident: bib0011
  article-title: Wavelet transforms and the ECG: A review
  publication-title: Physiol. Meas.
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: bib0042
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– volume: 18
  start-page: 570
  year: 2017
  end-page: 584
  ident: bib0057
  article-title: Deep learning in medical imaging: general overview
  publication-title: Korean J. Radiol.
– year: 1984
  ident: bib0020
  article-title: Classification and Regression Trees
– year: 2010
  ident: bib0022
  article-title: Cancellation of high-frequency noise in ECG signals using adaptive filter without external reference
  publication-title: Proceedings of the Third International Conference on Biomedical Engineering and Informatics
– volume: 42
  start-page: 83
  year: 2012
  end-page: 92
  ident: bib0081
  article-title: Empirical mode decomposition based ECG enhancement and QRS detection
  publication-title: Comput. Biol. Med.
– volume: 113
  start-page: 919
  year: 2014
  end-page: 926
  ident: bib0027
  article-title: Neural network and wavelet average framing percentage energy for atrial fibrillation classification
  publication-title: Comput. Methods Progr. Biomed.
– volume: 16
  year: 2016
  ident: bib0029
  article-title: Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers
  publication-title: J. Mech. Med. Biol.
– volume: 4
  start-page: 973
  year: 1987
  ident: bib0033
  article-title: Recurrence plots of dynamical systems
  publication-title: Europhys. Lett.
– volume: 10
  year: 2015
  ident: bib0110
  article-title: A real-time atrial fibrillation detection algorithm based on the instantaneous state of heart rate
  publication-title: PLoS ONE
– volume: 24
  start-page: 1
  year: 1991
  end-page: 10
  ident: bib0048
  article-title: Blind separation of sources, part 1: an adaptive algorithm based on neuromimetic architecture
  publication-title: Signal Process.
– volume: 48
  start-page: 133
  year: 2014
  end-page: 149
  ident: bib0067
  article-title: Current methods in electrocardiogram characterization
  publication-title: Comput. Biol. Med.
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: bib0025
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
– volume: 12
  year: 2012
  ident: bib0071
  article-title: Automated detection of atrial flutter and fibrillation using ECG signals in wavelet framework
  publication-title: J. Mech. Med. Biol.
– volume: 132
  start-page: 62
  year: 2017
  end-page: 71
  ident: bib0004
  article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network
  publication-title: Knowl. Based Syst.
– volume: 10
  start-page: 10
  year: 1993
  end-page: 37
  ident: bib0079
  article-title: Signal processing with higher-order spectra
  publication-title: IEEE Signal Process. Mag.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib0044
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 60
  start-page: 203
  year: 2013
  end-page: 206
  ident: bib0059
  article-title: Atrial fibrillation detection using an iPhone 4S
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2016
  ident: bib0076
– volume: 93
  start-page: 84
  year: 2018
  end-page: 92
  ident: bib0105
  article-title: Detecting atrial fibrillation by deep convolutional neural networks
  publication-title: Comput. Biol. Med.
– year: 2006
  ident: bib0043
  article-title: Computer aided diagnosis of cardiac arrhythmias
  publication-title: Proceedings of the International Conference on Computer Engineering and Systems
– volume: 25
  start-page: 601
  year: 1979
  end-page: 604
  ident: bib0030
  article-title: Distribution-free performances bounds for potential function rules
  publication-title: IEEE Trans. Inf. Theory
– volume: 2
  start-page: 151
  year: 2016
  end-page: 154
  ident: bib0013
  article-title: ECG-based atrial fibrillation detection using different orderings of conjugate symmetric-complex Hadamard transform
  publication-title: Int. J. Cardiovas. Acad.
– volume: 37
  start-page: 1701
  year: 2009
  end-page: 1709
  ident: bib0028
  article-title: Automatic real time detection of atrial fibrillation
  publication-title: Ann. Biomed. Eng.
– year: 2005
  ident: bib0060
  article-title: Testing Statistical Hypotheses
– volume: 54
  start-page: 269
  year: 2013
  end-page: 275
  ident: bib0069
  article-title: Automated detection of atrial fibrillation using Bayesian paradigm
  publication-title: Knowl. Based Syst.
– volume: 15
  start-page: 306
  year: 1994
  end-page: 318
  ident: bib0092
  article-title: The continuous wavelet transform: a tool for signal investigation and understanding
  publication-title: John Hopkins APL Tech Digest
– volume: 39
  start-page: 664
  year: 2001
  end-page: 671
  ident: bib0100
  article-title: Automatic detection of atrial fibrillation using the coefficient of variation and density histogram of RR and ΔRR intervals
  publication-title: Med. Biol. Eng. Comput.
– volume: 60
  start-page: 132
  year: 2015
  end-page: 142
  ident: bib0014
  article-title: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine
  publication-title: Comput. Biol. Med.
– volume: 83
  start-page: 161
  year: 2017
  end-page: 181
  ident: bib0024
  article-title: Development of an automaton model rotational activity during atrial fibrillation
  publication-title: Comput. Biol. Med.
– volume: 66
  year: 2002
  ident: bib0072
  article-title: Recurrence plot based measures of complexity and its application to heart rate variability data
  publication-title: Phys. Rev. E
– year: 1949
  ident: bib0021
  article-title: Fourier Transform
– year: 2016
  ident: bib0085
  article-title: CNN-N-Gram for handwriting word recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2013
  ident: bib0040
  article-title: Speech recognition with deep recurrent neural networks
  publication-title: Proceedings of the Neural and Evolutionary Computing, Computation and Language
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: bib0037
  article-title: PhysioBank, PhysioToolkit, and PhyisoNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
– year: 2010
  ident: bib0080
  article-title: Signals, Systems, and Inference
  publication-title: Signals, Systems, and Inference
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  ident: bib0046
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl Acad. Sci. U S A
– volume: 40
  start-page: 165
  year: 1986
  end-page: 174
  ident: bib0055
  article-title: Fuzzy entropy and conditioning
  publication-title: Inf. Sci.
– volume: 13
  start-page: 295
  year: 2014
  end-page: 305
  ident: bib0068
  article-title: Computer-aided diagnosis of atrial arrhythmia using dimensionality reduction methods on transform domain representation
  publication-title: Biomed. Signal Process. Control
– volume: 89
  start-page: 389
  year: 2017
  end-page: 396
  ident: bib0009
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
– volume: 17
  year: 2017
  ident: bib0049
  article-title: Algorithm for the detection of congestive heart failure index
  publication-title: J. Mech. Med. Biol.
– volume: 15
  start-page: 1119
  year: 1994
  end-page: 1125
  ident: bib0087
  article-title: Floating search methods in feature selection
  publication-title: Pattern Recogni. Lett
– year: 2018
  ident: bib0008
  article-title: Entropies for automated detection of coronary artery disease using ECG signals: a review
  publication-title: Biocybern. Biomed. Eng.
– year: 2001
  ident: bib0032
  article-title: Pattern Classification
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0045
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 20
  start-page: 1084
  year: 2017
  end-page: 1091
  ident: bib0054
  article-title: ECG based atrial fibrillation detection using sequency ordered complex Hadamard transform and hybrid firefly algorithm
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 28
  start-page: 1619
  year: 2006
  end-page: 1630
  ident: bib0090
  article-title: Rotation forest: a new classifier ensemble method
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 94
  start-page: 19
  year: 2018
  end-page: 26
  ident: bib0099
  article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals
  publication-title: Comput. Biol. Med.
– volume: vol. 136
  start-page: 143
  year: 2016
  end-page: 150
  ident: bib0001
  article-title: Dynamic ECG features for atrial fibrillation recognition
  publication-title: Comput. Methods Progr. Biomed.
– volume: 278
  start-page: 2039
  year: 2000
  end-page: 2049
  ident: bib0089
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Phys. Heart Circ. Phys.
– start-page: 57
  year: 2013
  end-page: 60
  ident: bib0086
  article-title: Application of higher-order spectra for accurate delineation of atrial arrhythmia
  publication-title: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– year: 1983
  ident: bib0065
  article-title: Geometry of Nature
– volume: 32
  start-page: 1147
  year: 2011
  end-page: 1162
  ident: bib0075
  article-title: Prediction of paroxysmal atrial fibrillation using recurrence plot-based features of the RR-interval signal
  publication-title: Physiol. Measur.
– volume: 43
  start-page: 519
  year: 1996
  end-page: 534
  ident: bib0064
  article-title: Genetic algorithms: concepts and applications (in engineering design)
  publication-title: IEEE Trans. Ind. Electron.
– volume: 88
  start-page: 2297
  year: 1991
  end-page: 2301
  ident: bib0084
  article-title: Approximate entropy as a measure of system complexity
  publication-title: Proc. Natl. Acad Sci U S A
– volume: 8
  start-page: 888
  year: 2013
  end-page: 900
  ident: bib0070
  article-title: Application of higher order statistics for atrial arrhythmia classification
  publication-title: Biomed. Signal Process. Control
– volume: 12
  start-page: 273
  year: 2017
  end-page: 284
  ident: bib0077
  article-title: The world heart federation roadmap for nonvalvular atrial fibrillation
  publication-title: Global Heart
– start-page: 1159
  year: 2016
  end-page: 1164
  ident: bib0107
  article-title: Automated atrial fibrillation detection based on deep learning network
  publication-title: Proceedings of the IEEE International Conference on Information and Automation
– volume: 3
  start-page: 109
  year: 1990
  end-page: 118
  ident: bib0094
  article-title: Probabilistic neural networks
  publication-title: Neural Netw.
– volume: 88
  year: 2002
  ident: bib0016
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Phy. Rev. Lett.
– volume: 405
  start-page: 81
  year: 2017
  end-page: 90
  ident: bib0005
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inf. Sci.
– volume: 17
  year: 2017
  ident: bib0102
  article-title: Automated detection of atrial fibrillation ECG signals using two stage VMD and atrial fibrillation diagnosis index
  publication-title: J. Mech. Med. Biol.
– year: 2016
  ident: bib0038
  article-title: Deep Learning
– reference: R.A. Fisher, “The use of multiple measurements in taxonomic problems”, Ann. Eugen., vol. 7, no. 2, pp. 179–188.
– volume: 83
  start-page: 48
  year: 2017
  end-page: 58
  ident: bib0096
  article-title: Automated diagnosis of congestive heart failure using dual tree complex wavelet transform and statistical features extracted from 2 s of ECG signals
  publication-title: Comput. Biol. Med.
– start-page: 281
  year: 1995
  end-page: 299
  ident: bib0078
  article-title: The Stationary Wavelet Transform and Some Statistical Applications
  publication-title: The Stationary Wavelet Transform and Some Statistical Applications
– start-page: 281
  year: 1967
  end-page: 297
  ident: bib0063
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability
– volume: 73
  start-page: 273
  year: 2011
  end-page: 282
  ident: bib0101
  article-title: Regression shrinkage and selection via the lasso: a retrospective
  publication-title: J. Royal Stat. Soc.
– year: 1992
  ident: bib0053
  article-title: The feature selection problem: traditional methods and a new algorithm
  publication-title: Proceedings of the Tenth National Conference on Artificial Intelligence
– year: 1925
  ident: bib0034
  article-title: Statistical Methods For Research Workers
– volume: 65
  start-page: 117
  year: 1993
  end-page: 134
  ident: bib0091
  article-title: A practical method for calculating largest Lyapunov exponents from small data sets
  publication-title: Phys. D
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib0041
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 415
  start-page: 190
  year: 2017
  end-page: 198
  ident: bib0006
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inf. Sci.
– year: 2014
  ident: bib0039
  article-title: Generative adversarial nets
  publication-title: Proceedings of the Neural Information Processing Systems
– start-page: 547
  year: 1961
  end-page: 561
  ident: bib0088
  article-title: On measures of entropy and information
  publication-title: Proceedings of the Fourth Berkeley Symposium
– volume: 89
  start-page: 133
  year: 2017
  end-page: 144
  ident: bib0050
  article-title: Damage detection of composite milling process by recurrence plots and quantifications analysis
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: vol. 113
  start-page: 55
  year: 2014
  end-page: 68
  ident: bib0002
  article-title: Linear and nonlinear analysis of normal and CAD-affected heart rate signals
  publication-title: Comput. Methods Progr. Biomed.
– year: 2017
  ident: bib0106
  article-title: Atrial fibrillation detection by multi-scale convolutional neural network
  publication-title: Proceedings of the International Conference on Information Fusion
– year: 2004
  ident: bib0015
  article-title: Cardiology Explained, From Chapter 3: Conquering the ECG
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0103
  article-title: Support vector machines
  publication-title: Mach. Learn.
– volume: 131
  start-page: 157
  year: 2016
  end-page: 168
  ident: bib0036
  article-title: Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation
  publication-title: Comput. Methods Progr. Biomed.
– volume: 32
  start-page: 230
  year: 1985
  end-page: 236
  ident: bib0082
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2017
  ident: bib0074
– volume: 19
  start-page: 51
  year: 2011
  end-page: 61
  ident: bib0052
  article-title: Role of echocardiography in atrial fibrillation
  publication-title: J. Cardiovasc. Ultrasound
– volume: 19
  start-page: 677
  year: 2017
  ident: bib0026
  article-title: Automated detection of paroxysmal atrial fibrillation using an information-based similarity approach
  publication-title: Entropy
– volume: 48
  start-page: 989
  year: 2001
  end-page: 995
  ident: bib0104
  article-title: A short-time multifractal approach for arrhythmia detection based on fuzzy neural network
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2017
  ident: bib0095
  article-title: How atrial fibrillation is diagnosed
– volume: 5
  start-page: 863
  year: 2014
  end-page: 873
  ident: bib0098
  article-title: Understanding the dynamics of heart rate variability in cardiovascular disorders using recurrence quantification analysis and radial basis function neural network
  publication-title: Int. J. Sci. Eng. Res.
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: bib0056
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– volume: 60
  start-page: 2783
  year: 2013
  end-page: 2793
  ident: bib0058
  article-title: Time-varying coherence function for atrial fibrillation detection
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 72
  start-page: 160
  year: 2016
  end-page: 169
  ident: bib0047
  article-title: Rhythm-based heartbeat duration normalization for atrial fibrillation detection
  publication-title: Comput. Biol. Med.
– year: 2006
  ident: bib0018
  article-title: Pattern Recognition and Machine Learning
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  ident: bib0066
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: SIAM J. Appl. Math.
– volume: 27
  start-page: 379
  year: 1948
  end-page: 423
  ident: bib0093
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
– volume: 2
  start-page: 164
  year: 1944
  end-page: 168
  ident: bib0061
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
– volume: 129
  start-page: 837
  year: 2014
  end-page: 847
  ident: bib0023
  article-title: Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study
  publication-title: Circulation
– year: 2016
  ident: bib0003
  article-title: Automated characterization of arrhythmias using nonlinear features from tachycardia ECG beats
  publication-title: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics
– year: 2007
  ident: bib0010
  article-title: Advances in Cardiac Signal Processing
– volume: 2
  start-page: 559
  year: 1901
  end-page: 572
  ident: bib0083
  article-title: On lines and planes of closest fit to systems of points in space
  publication-title: Philos. Mag.
– ident: 10.1016/j.ins.2018.07.063_bib0035
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 73
  start-page: 273
  issue: 3
  year: 2011
  ident: 10.1016/j.ins.2018.07.063_bib0101
  article-title: Regression shrinkage and selection via the lasso: a retrospective
  publication-title: J. Royal Stat. Soc.
  doi: 10.1111/j.1467-9868.2011.00771.x
– year: 2014
  ident: 10.1016/j.ins.2018.07.063_bib0039
  article-title: Generative adversarial nets
– year: 1925
  ident: 10.1016/j.ins.2018.07.063_bib0034
– volume: 131
  start-page: 157
  year: 2016
  ident: 10.1016/j.ins.2018.07.063_bib0036
  article-title: Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2016.04.009
– volume: 49
  start-page: 871
  year: 2016
  ident: 10.1016/j.ins.2018.07.063_bib0051
  article-title: Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2016.07.033
– volume: 13
  start-page: 295
  year: 2014
  ident: 10.1016/j.ins.2018.07.063_bib0068
  article-title: Computer-aided diagnosis of atrial arrhythmia using dimensionality reduction methods on transform domain representation
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.04.001
– volume: 28
  start-page: 1619
  issue: 10
  year: 2006
  ident: 10.1016/j.ins.2018.07.063_bib0090
  article-title: Rotation forest: a new classifier ensemble method
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.211
– volume: 60
  start-page: 132
  year: 2015
  ident: 10.1016/j.ins.2018.07.063_bib0014
  article-title: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.03.005
– volume: 12
  start-page: 273
  issue: 4
  year: 2017
  ident: 10.1016/j.ins.2018.07.063_bib0077
  article-title: The world heart federation roadmap for nonvalvular atrial fibrillation
  publication-title: Global Heart
  doi: 10.1016/j.gheart.2017.01.015
– volume: 11
  start-page: 431
  issue: 2
  year: 1963
  ident: 10.1016/j.ins.2018.07.063_bib0066
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0111030
– year: 2013
  ident: 10.1016/j.ins.2018.07.063_sbref0039
  article-title: Speech recognition with deep recurrent neural networks
– year: 2007
  ident: 10.1016/j.ins.2018.07.063_bib0031
  article-title: Efficient feature selection based on information gain criterion for face recognition
– volume: 5
  start-page: 863
  issue: 4
  year: 2014
  ident: 10.1016/j.ins.2018.07.063_bib0098
  article-title: Understanding the dynamics of heart rate variability in cardiovascular disorders using recurrence quantification analysis and radial basis function neural network
  publication-title: Int. J. Sci. Eng. Res.
– year: 1949
  ident: 10.1016/j.ins.2018.07.063_bib0021
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.ins.2018.07.063_bib0041
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 83
  start-page: 48
  year: 2017
  ident: 10.1016/j.ins.2018.07.063_bib0096
  article-title: Automated diagnosis of congestive heart failure using dual tree complex wavelet transform and statistical features extracted from 2 s of ECG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.01.019
– volume: 415
  start-page: 190
  year: 2017
  ident: 10.1016/j.ins.2018.07.063_bib0006
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.06.027
– volume: 15
  start-page: 1119
  year: 1994
  ident: 10.1016/j.ins.2018.07.063_bib0087
  article-title: Floating search methods in feature selection
  publication-title: Pattern Recogni. Lett
  doi: 10.1016/0167-8655(94)90127-9
– volume: 405
  start-page: 81
  year: 2017
  ident: 10.1016/j.ins.2018.07.063_bib0005
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.04.012
– year: 2010
  ident: 10.1016/j.ins.2018.07.063_bib0022
  article-title: Cancellation of high-frequency noise in ECG signals using adaptive filter without external reference
– volume: 113
  start-page: 919
  year: 2014
  ident: 10.1016/j.ins.2018.07.063_bib0027
  article-title: Neural network and wavelet average framing percentage energy for atrial fibrillation classification
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2013.12.002
– volume: 20
  start-page: 1084
  year: 2017
  ident: 10.1016/j.ins.2018.07.063_bib0054
  article-title: ECG based atrial fibrillation detection using sequency ordered complex Hadamard transform and hybrid firefly algorithm
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 32
  start-page: 1147
  year: 2011
  ident: 10.1016/j.ins.2018.07.063_bib0075
  article-title: Prediction of paroxysmal atrial fibrillation using recurrence plot-based features of the RR-interval signal
  publication-title: Physiol. Measur.
  doi: 10.1088/0967-3334/32/8/010
– start-page: 281
  year: 1967
  ident: 10.1016/j.ins.2018.07.063_bib0063
  article-title: Some methods for classification and analysis of multivariate observations
– volume: 3
  start-page: 109
  issue: 1
  year: 1990
  ident: 10.1016/j.ins.2018.07.063_bib0094
  article-title: Probabilistic neural networks
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(90)90049-Q
– year: 2006
  ident: 10.1016/j.ins.2018.07.063_bib0018
– year: 2016
  ident: 10.1016/j.ins.2018.07.063_bib0003
  article-title: Automated characterization of arrhythmias using nonlinear features from tachycardia ECG beats
– volume: 2
  start-page: 559
  issue: 11
  year: 1901
  ident: 10.1016/j.ins.2018.07.063_bib0083
  article-title: On lines and planes of closest fit to systems of points in space
  publication-title: Philos. Mag.
  doi: 10.1080/14786440109462720
– volume: 66
  issue: 2
  year: 2002
  ident: 10.1016/j.ins.2018.07.063_bib0072
  article-title: Recurrence plot based measures of complexity and its application to heart rate variability data
  publication-title: Phys. Rev. E
– year: 2001
  ident: 10.1016/j.ins.2018.07.063_bib0032
– volume: 72
  start-page: 160
  year: 2016
  ident: 10.1016/j.ins.2018.07.063_bib0047
  article-title: Rhythm-based heartbeat duration normalization for atrial fibrillation detection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.03.015
– volume: 54
  start-page: 269
  year: 2013
  ident: 10.1016/j.ins.2018.07.063_bib0069
  article-title: Automated detection of atrial fibrillation using Bayesian paradigm
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2013.09.016
– year: 2007
  ident: 10.1016/j.ins.2018.07.063_bib0010
– start-page: 1159
  year: 2016
  ident: 10.1016/j.ins.2018.07.063_bib0107
  article-title: Automated atrial fibrillation detection based on deep learning network
– volume: 25
  start-page: 601
  issue: 5
  year: 1979
  ident: 10.1016/j.ins.2018.07.063_bib0030
  article-title: Distribution-free performances bounds for potential function rules
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1979.1056087
– volume: 94
  start-page: 19
  year: 2018
  ident: 10.1016/j.ins.2018.07.063_bib0099
  article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.12.023
– volume: 278
  start-page: 2039
  issue: 6
  year: 2000
  ident: 10.1016/j.ins.2018.07.063_bib0089
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Phys. Heart Circ. Phys.
– year: 1983
  ident: 10.1016/j.ins.2018.07.063_bib0065
– volume: 88
  issue: 17
  year: 2002
  ident: 10.1016/j.ins.2018.07.063_bib0016
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Phy. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.174102
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 10.1016/j.ins.2018.07.063_bib0025
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.ins.2018.07.063_bib0103
  article-title: Support vector machines
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 17
  issue: 7
  year: 2017
  ident: 10.1016/j.ins.2018.07.063_bib0102
  article-title: Automated detection of atrial fibrillation ECG signals using two stage VMD and atrial fibrillation diagnosis index
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519417400449
– volume: 12
  issue: 5
  year: 2012
  ident: 10.1016/j.ins.2018.07.063_bib0071
  article-title: Automated detection of atrial flutter and fibrillation using ECG signals in wavelet framework
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519412400234
– year: 2006
  ident: 10.1016/j.ins.2018.07.063_bib0043
  article-title: Computer aided diagnosis of cardiac arrhythmias
– volume: 24
  start-page: 1
  issue: 1
  year: 1991
  ident: 10.1016/j.ins.2018.07.063_bib0048
  article-title: Blind separation of sources, part 1: an adaptive algorithm based on neuromimetic architecture
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(91)90079-X
– volume: 79
  start-page: 2554
  issue: 8
  year: 1982
  ident: 10.1016/j.ins.2018.07.063_bib0046
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl Acad. Sci. U S A
  doi: 10.1073/pnas.79.8.2554
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.ins.2018.07.063_bib0019
  article-title: Random forest
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 4
  start-page: 973
  issue: 9
  year: 1987
  ident: 10.1016/j.ins.2018.07.063_bib0033
  article-title: Recurrence plots of dynamical systems
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/4/9/004
– volume: 27
  start-page: 379
  issue: 3
  year: 1948
  ident: 10.1016/j.ins.2018.07.063_bib0093
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 17
  issue: 7
  year: 2017
  ident: 10.1016/j.ins.2018.07.063_bib0049
  article-title: Algorithm for the detection of congestive heart failure index
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519417400437
– volume: 16
  issue: 1
  year: 2016
  ident: 10.1016/j.ins.2018.07.063_bib0029
  article-title: Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519416400054
– ident: 10.1016/j.ins.2018.07.063_bib0095
– volume: 42
  start-page: 83
  issue: 1
  year: 2012
  ident: 10.1016/j.ins.2018.07.063_bib0081
  article-title: Empirical mode decomposition based ECG enhancement and QRS detection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2011.10.012
– volume: 40
  start-page: 165
  issue: 2
  year: 1986
  ident: 10.1016/j.ins.2018.07.063_bib0055
  article-title: Fuzzy entropy and conditioning
  publication-title: Inf. Sci.
  doi: 10.1016/0020-0255(86)90006-X
– volume: 46
  start-page: 389
  issue: 1-3
  year: 2002
  ident: 10.1016/j.ins.2018.07.063_bib0042
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: 79
  start-page: 952
  year: 2018
  ident: 10.1016/j.ins.2018.07.063_bib0007
  article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.08.039
– volume: 10
  start-page: 10
  issue: 3
  year: 1993
  ident: 10.1016/j.ins.2018.07.063_bib0079
  article-title: Signal processing with higher-order spectra
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.221324
– year: 2004
  ident: 10.1016/j.ins.2018.07.063_bib0015
– volume: vol. 136
  start-page: 143
  year: 2016
  ident: 10.1016/j.ins.2018.07.063_bib0001
  article-title: Dynamic ECG features for atrial fibrillation recognition
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2016.08.021
– volume: 48
  start-page: 989
  issue: 9
  year: 2001
  ident: 10.1016/j.ins.2018.07.063_bib0104
  article-title: A short-time multifractal approach for arrhythmia detection based on fuzzy neural network
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.942588
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.ins.2018.07.063_bib0045
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 19
  start-page: 677
  year: 2017
  ident: 10.1016/j.ins.2018.07.063_bib0026
  article-title: Automated detection of paroxysmal atrial fibrillation using an information-based similarity approach
  publication-title: Entropy
  doi: 10.3390/e19120677
– year: 1992
  ident: 10.1016/j.ins.2018.07.063_bib0053
  article-title: The feature selection problem: traditional methods and a new algorithm
– volume: 61
  start-page: 38
  issue: 582
  year: 2011
  ident: 10.1016/j.ins.2018.07.063_bib0062
  article-title: Screening for atrial fibrillation: sensitivity and specificity of a new methodology
  publication-title: Br. J. Gen. Pract.
  doi: 10.3399/bjgp11X548956
– start-page: 1
  year: 2016
  ident: 10.1016/j.ins.2018.07.063_bib0108
  article-title: A novel Parkinson's disease diagnosis index using higher-order spectra features in EEG signals
  publication-title: Neural Comput. Appl.
– volume: 2
  start-page: 164
  year: 1944
  ident: 10.1016/j.ins.2018.07.063_bib0061
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/10666
– volume: 15
  start-page: 33
  year: 2011
  ident: 10.1016/j.ins.2018.07.063_bib0097
  article-title: Diagnosis of cardiovascular abnormalities from compressed ECG: a datamining-based approach
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2010.2094197
– volume: 10
  year: 2015
  ident: 10.1016/j.ins.2018.07.063_bib0110
  article-title: A real-time atrial fibrillation detection algorithm based on the instantaneous state of heart rate
  publication-title: PLoS ONE
– year: 1984
  ident: 10.1016/j.ins.2018.07.063_bib0020
– volume: 89
  start-page: 133
  year: 2017
  ident: 10.1016/j.ins.2018.07.063_bib0050
  article-title: Damage detection of composite milling process by recurrence plots and quantifications analysis
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-9048-8
– start-page: 281
  year: 1995
  ident: 10.1016/j.ins.2018.07.063_bib0078
  article-title: The Stationary Wavelet Transform and Some Statistical Applications
– volume: 60
  start-page: 2783
  issue: 10
  year: 2013
  ident: 10.1016/j.ins.2018.07.063_bib0058
  article-title: Time-varying coherence function for atrial fibrillation detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2264721
– volume: 8
  start-page: 888
  year: 2013
  ident: 10.1016/j.ins.2018.07.063_bib0070
  article-title: Application of higher order statistics for atrial arrhythmia classification
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.08.008
– volume: 60
  start-page: 203
  issue: 1
  year: 2013
  ident: 10.1016/j.ins.2018.07.063_bib0059
  article-title: Atrial fibrillation detection using an iPhone 4S
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2208112
– volume: 2
  start-page: 151
  year: 2016
  ident: 10.1016/j.ins.2018.07.063_bib0013
  article-title: ECG-based atrial fibrillation detection using different orderings of conjugate symmetric-complex Hadamard transform
  publication-title: Int. J. Cardiovas. Acad.
  doi: 10.1016/j.ijcac.2016.08.001
– start-page: 547
  year: 1961
  ident: 10.1016/j.ins.2018.07.063_bib0088
  article-title: On measures of entropy and information
– volume: 32
  start-page: 230
  issue: 3
  year: 1985
  ident: 10.1016/j.ins.2018.07.063_bib0082
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1985.325532
– year: 2016
  ident: 10.1016/j.ins.2018.07.063_bib0038
– volume: 129
  start-page: 837
  year: 2014
  ident: 10.1016/j.ins.2018.07.063_bib0023
  article-title: Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.005119
– year: 2016
  ident: 10.1016/j.ins.2018.07.063_bib0085
  article-title: CNN-N-Gram for handwriting word recognition
– volume: vol. 113
  start-page: 55
  year: 2014
  ident: 10.1016/j.ins.2018.07.063_bib0002
  article-title: Linear and nonlinear analysis of normal and CAD-affected heart rate signals
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2013.08.017
– volume: 18
  start-page: 570
  issue: 4
  year: 2017
  ident: 10.1016/j.ins.2018.07.063_bib0057
  article-title: Deep learning in medical imaging: general overview
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2017.18.4.570
– year: 2010
  ident: 10.1016/j.ins.2018.07.063_bib0080
  article-title: Signals, Systems, and Inference
– volume: 37
  start-page: 1701
  issue: 9
  year: 2009
  ident: 10.1016/j.ins.2018.07.063_bib0028
  article-title: Automatic real time detection of atrial fibrillation
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-009-9740-z
– volume: 93
  start-page: 84
  year: 2018
  ident: 10.1016/j.ins.2018.07.063_bib0105
  article-title: Detecting atrial fibrillation by deep convolutional neural networks
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.12.007
– volume: 15
  start-page: 306
  issue: 4
  year: 1994
  ident: 10.1016/j.ins.2018.07.063_bib0092
  article-title: The continuous wavelet transform: a tool for signal investigation and understanding
  publication-title: John Hopkins APL Tech Digest
– ident: 10.1016/j.ins.2018.07.063_bib0073
– volume: 132
  start-page: 62
  year: 2017
  ident: 10.1016/j.ins.2018.07.063_bib0004
  article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.06.003
– volume: 65
  start-page: 117
  year: 1993
  ident: 10.1016/j.ins.2018.07.063_bib0091
  article-title: A practical method for calculating largest Lyapunov exponents from small data sets
  publication-title: Phys. D
  doi: 10.1016/0167-2789(93)90009-P
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.ins.2018.07.063_bib0044
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– year: 2017
  ident: 10.1016/j.ins.2018.07.063_bib0106
  article-title: Atrial fibrillation detection by multi-scale convolutional neural network
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 10.1016/j.ins.2018.07.063_bib0037
  article-title: PhysioBank, PhysioToolkit, and PhyisoNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 89
  start-page: 389
  year: 2017
  ident: 10.1016/j.ins.2018.07.063_bib0009
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.08.022
– volume: 88
  start-page: 2297
  year: 1991
  ident: 10.1016/j.ins.2018.07.063_bib0084
  article-title: Approximate entropy as a measure of system complexity
  publication-title: Proc. Natl. Acad Sci U S A
  doi: 10.1073/pnas.88.6.2297
– volume: 83
  start-page: 161
  year: 2017
  ident: 10.1016/j.ins.2018.07.063_bib0024
  article-title: Development of an automaton model rotational activity during atrial fibrillation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.02.008
– volume: 48
  start-page: 133
  year: 2014
  ident: 10.1016/j.ins.2018.07.063_bib0067
  article-title: Current methods in electrocardiogram characterization
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.02.012
– year: 2018
  ident: 10.1016/j.ins.2018.07.063_bib0008
  article-title: Entropies for automated detection of coronary artery disease using ECG signals: a review
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2018.03.001
– volume: 6
  start-page: 679
  issue: 4
  year: 1957
  ident: 10.1016/j.ins.2018.07.063_bib0017
  article-title: A markovian decision process
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1957.6.56038
– volume: 19
  start-page: 51
  issue: 2
  year: 2011
  ident: 10.1016/j.ins.2018.07.063_bib0052
  article-title: Role of echocardiography in atrial fibrillation
  publication-title: J. Cardiovasc. Ultrasound
  doi: 10.4250/jcu.2011.19.2.51
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.ins.2018.07.063_bib0056
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 39
  start-page: 664
  issue: 6
  year: 2001
  ident: 10.1016/j.ins.2018.07.063_bib0100
  article-title: Automatic detection of atrial fibrillation using the coefficient of variation and density histogram of RR and ΔRR intervals
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02345439
– start-page: 57
  year: 2013
  ident: 10.1016/j.ins.2018.07.063_bib0086
  article-title: Application of higher-order spectra for accurate delineation of atrial arrhythmia
– volume: 13
  start-page: 1
  year: 2014
  ident: 10.1016/j.ins.2018.07.063_bib0109
  article-title: Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy
  publication-title: Biomed. Eng. OnLine
  doi: 10.1186/1475-925X-13-18
– volume: 26
  start-page: R155
  year: 2005
  ident: 10.1016/j.ins.2018.07.063_bib0011
  article-title: Wavelet transforms and the ECG: A review
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/26/5/R01
– volume: C-23
  start-page: 90
  issue: 1
  year: 1974
  ident: 10.1016/j.ins.2018.07.063_bib0012
  article-title: Discrete cosine transform
  publication-title: IEEE Trans.Comput.
  doi: 10.1109/T-C.1974.223784
– year: 2005
  ident: 10.1016/j.ins.2018.07.063_bib0060
– volume: 43
  start-page: 519
  issue: 5
  year: 1996
  ident: 10.1016/j.ins.2018.07.063_bib0064
  article-title: Genetic algorithms: concepts and applications (in engineering design)
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/41.538609
SSID ssj0004766
Score 2.593566
Snippet •Existing AF detection techniques are discussed.•Building blocks of CADx system are described.•Different features explored by researchers are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 99
SubjectTerms Arrhythmia
Atrial fibrillation
Computer-aided diagnosis system
Electrocardiogram signals
Machine learning
Title Computer-aided diagnosis of atrial fibrillation based on ECG Signals: A review
URI https://dx.doi.org/10.1016/j.ins.2018.07.063
Volume 467
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7sx0UPolNx6kYO4kGoa9M0TbyNsTkVd9HBbiVtEqmMbei8-rebtKlOUA_e2tAH7cvrywv5vu8BnNEUqzDimccYCT3CpMmDmY49FUSKCq0FLkhh9xM6npLbWTSrwaDiwlhYpcv9ZU4vsrUb6Tlv9lZ5bjm-uKiITVCaGiGI69DEIadRA5r9m7vx5IseGZdHlnanZA2qw80C5pUvrGh3wAoJTxr-vDxtLDmjXdhxtSLql6-zBzW1aMH2hoJgCzqOd4DOkSMWWUcj98fuw6Tq2uBZKUiJZImsy1_RUiNRtOxA2qL-5yUmDtlVTSJzMRxco4f8ycorX6E-KikuBzAdDR8HY8-1UPCykIZrz3w550oJohTjmGba7PA4FlT5gaQ04yTVCktMtPap9H2hzMyFXJttH7O6OEF4CI3FcqGOAKU4i1WUMumbmsWkpVRLLLRigU7NOBFt8CvPJZnTF7dtLuZJBSR7ToyzE-vsxI8T4-w2XHyarEpxjb8eJtV0JN8iJDHJ_3ez4_-ZncCWvSthe6fQWL-8qY4pP9ZpF-qX70HXBdkHsL3Ypg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV2xTsMwED2VMgADggKiQMEDYkAKJI7jOGxV1VKg7UIrdbOS2EZBVVpBWfl27MSBIgEDW-T4pOR8vjvL794BnNMESz-IUocx4juECe0HUxU60gskjZWKcVEUNhzR_oTcT4NpDTpVLYyBVVrfX_r0wlvbkWurzetFlpkaX1xkxNoodY7ghWuwTgI_NAT6V-9fOA8SlheW5pxkpldXmwXIK8sNZbfHCgJP6v8cnFYCTm8Htm2miNrlx-xCTeYN2FrhD2xAy1YdoAtky4qMmpHdr3swqno2OIYIUiBR4uqyVzRXKC4adiBlMP-zEhGHTEwTSD90O7foMXsy5Mo3qI3KApd9mPS6407fsQ0UnNSn_tLRfx5FUsZEShZhmip9votwTKXrCUrTiCRKYoGJUi4VrhtLvW5-pPShjxlWHM8_gHo-z-UhoASnoQwSJlydsWinlCiBYyWZpxI9TuImuJXmeGrZxU2TixmvYGTPXCubG2VzN-Ra2U24_BRZlNQaf00m1XLwb_bBtev_Xezof2JnsNEfDwd8cDd6OIZN86YE8J1AffnyJls6EVkmp4WhfQB98dlw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+diagnosis+of+atrial+fibrillation+based+on+ECG+Signals%3A+A+review&rft.jtitle=Information+sciences&rft.au=Hagiwara%2C+Yuki&rft.au=Fujita%2C+Hamido&rft.au=Oh%2C+Shu+Lih&rft.au=Tan%2C+Jen+Hong&rft.date=2018-10-01&rft.issn=0020-0255&rft.volume=467&rft.spage=99&rft.epage=114&rft_id=info:doi/10.1016%2Fj.ins.2018.07.063&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2018_07_063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon