Computer-aided diagnosis of atrial fibrillation based on ECG Signals: A review
•Existing AF detection techniques are discussed.•Building blocks of CADx system are described.•Different features explored by researchers are presented.•State-of-art CADx system for AF are highlighted. Arrhythmia is a type of disorder that affects the pattern and rate of the heartbeat. Among the var...
Saved in:
Published in | Information sciences Vol. 467; pp. 99 - 114 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0020-0255 1872-6291 |
DOI | 10.1016/j.ins.2018.07.063 |
Cover
Abstract | •Existing AF detection techniques are discussed.•Building blocks of CADx system are described.•Different features explored by researchers are presented.•State-of-art CADx system for AF are highlighted.
Arrhythmia is a type of disorder that affects the pattern and rate of the heartbeat. Among the various arrhythmia conditions, atrial fibrillation (AF) is the most prevalent. AF is associated with a chaotic, and frequently fast, heartbeat. Moreover, AF increases the risk of cardioembolic stroke and other heart-related problems such as heart failure. Thus, it is necessary to screen for AF and receive proper treatment before the condition progresses. To date, electrocardiogram (ECG) feature analysis is the gold standard for the diagnosis of AF. However, because it is time-varying, AF ECG signals are difficult to interpret. The ECG signals are often contaminated with noise. Further, manual interpretation of ECG signals may be subjective, time-consuming, and susceptible to inter-observer variabilities. Various computer-aided diagnosis (CADx) methods have been proposed to remedy these shortcomings. In this paper, different CADx systems developed by researchers are discussed. Also, the potentials of the CADx system are highlighted.
[Display omitted] |
---|---|
AbstractList | •Existing AF detection techniques are discussed.•Building blocks of CADx system are described.•Different features explored by researchers are presented.•State-of-art CADx system for AF are highlighted.
Arrhythmia is a type of disorder that affects the pattern and rate of the heartbeat. Among the various arrhythmia conditions, atrial fibrillation (AF) is the most prevalent. AF is associated with a chaotic, and frequently fast, heartbeat. Moreover, AF increases the risk of cardioembolic stroke and other heart-related problems such as heart failure. Thus, it is necessary to screen for AF and receive proper treatment before the condition progresses. To date, electrocardiogram (ECG) feature analysis is the gold standard for the diagnosis of AF. However, because it is time-varying, AF ECG signals are difficult to interpret. The ECG signals are often contaminated with noise. Further, manual interpretation of ECG signals may be subjective, time-consuming, and susceptible to inter-observer variabilities. Various computer-aided diagnosis (CADx) methods have been proposed to remedy these shortcomings. In this paper, different CADx systems developed by researchers are discussed. Also, the potentials of the CADx system are highlighted.
[Display omitted] |
Author | Hagiwara, Yuki Oh, Shu Lih Tan, Jen Hong Fujita, Hamido Tan, Ru San Ciaccio, Edward J Acharya, U Rajendra |
Author_xml | – sequence: 1 givenname: Yuki surname: Hagiwara fullname: Hagiwara, Yuki organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 2 givenname: Hamido orcidid: 0000-0001-5256-210X surname: Fujita fullname: Fujita, Hamido email: hfujita-799@acm.org organization: Iwate Prefectural University, Faculty of Software and Information Science, Iwate, Japan – sequence: 3 givenname: Shu Lih surname: Oh fullname: Oh, Shu Lih organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 4 givenname: Jen Hong surname: Tan fullname: Tan, Jen Hong organization: National University of Singapore, Institute of System Science, Singapore – sequence: 5 givenname: Ru San surname: Tan fullname: Tan, Ru San organization: Department of Cardiology, National Heart Centre Singapore, Singapore – sequence: 6 givenname: Edward J surname: Ciaccio fullname: Ciaccio, Edward J organization: Department of Medicine - Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, USA – sequence: 7 givenname: U Rajendra surname: Acharya fullname: Acharya, U Rajendra organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore |
BookMark | eNp9kMFOwzAMhiM0JDbgAbjlBVqctEtbOE3TGEgTHIBzlCXO5Klrp6SAeHsyxonDTrYsf7b-b8JGXd8hYzcCcgFC3W5z6mIuQdQ5VDmo4oyNRV3JTMlGjNgYQEIGcjq9YJMYtwBQVkqN2fO83-0_BgyZIYeOOzKbro8Uee-5GQKZlntaB2pbM1Df8bWJaS01i_mSv9KmM2284zMe8JPw64qd-zTA6796yd4fFm_zx2z1snyaz1aZLVQxZOl10yCaErFupLJeCmikUQjCKWWbcu1ROll6D8oBGJRYFI0XdVlLWReiuGTieNeGPsaAXu8D7Uz41gL0QYje6iREH4RoqHQSkpjqH2Np-A01BEPtSfL-SGKKlGIGHS1hZ9FRQDto19MJ-gd0yHyd |
CitedBy_id | crossref_primary_10_1007_s10489_019_01461_0 crossref_primary_10_1038_s41598_022_21663_w crossref_primary_10_1016_j_bspc_2019_101662 crossref_primary_10_1016_j_knosys_2019_105446 crossref_primary_10_1016_j_future_2019_09_012 crossref_primary_10_1016_j_bbe_2021_02_010 crossref_primary_10_1016_j_bspc_2023_105242 crossref_primary_10_1038_s41598_025_87115_3 crossref_primary_10_1080_21681163_2023_2228930 crossref_primary_10_4103_jmss_jmss_4_22 crossref_primary_10_1007_s11042_024_20113_1 crossref_primary_10_1007_s13239_021_00599_8 crossref_primary_10_1016_j_compbiomed_2022_106115 crossref_primary_10_3390_diagnostics13243605 crossref_primary_10_1002_ccr3_9359 crossref_primary_10_1007_s11042_023_15123_4 crossref_primary_10_1016_j_knosys_2019_104923 crossref_primary_10_3390_ijerph17176313 crossref_primary_10_1016_j_artmed_2023_102644 crossref_primary_10_1016_j_artmed_2024_102865 crossref_primary_10_1016_j_compbiomed_2024_107984 crossref_primary_10_1155_2022_9884076 crossref_primary_10_3390_s21248174 crossref_primary_10_1007_s11277_023_10607_w crossref_primary_10_1016_j_ins_2021_10_049 crossref_primary_10_1016_j_bbe_2024_07_005 crossref_primary_10_1016_j_ins_2024_121868 crossref_primary_10_1016_S2589_7500_21_00256_9 crossref_primary_10_1088_1361_6579_aaf34d crossref_primary_10_1016_j_bspc_2024_107480 crossref_primary_10_1016_j_knosys_2019_104973 crossref_primary_10_1016_j_neucom_2022_09_079 crossref_primary_10_3390_s22062329 crossref_primary_10_1007_s00034_024_02986_7 crossref_primary_10_1016_j_cmpb_2019_105219 crossref_primary_10_3389_fcvm_2022_894187 crossref_primary_10_2478_jaiscr_2024_0004 crossref_primary_10_3390_e25111562 crossref_primary_10_1016_j_bspc_2024_106703 crossref_primary_10_1016_j_ins_2021_05_035 crossref_primary_10_1016_j_future_2020_10_024 crossref_primary_10_3390_math11183942 crossref_primary_10_1016_j_cvdhj_2023_12_002 crossref_primary_10_1016_j_cmpb_2022_106821 crossref_primary_10_12677_mos_2024_134391 crossref_primary_10_1016_j_knosys_2019_105036 crossref_primary_10_1016_j_bspc_2022_103921 crossref_primary_10_3390_ijerph182111302 crossref_primary_10_1007_s10489_021_02368_5 crossref_primary_10_1142_S0219519421400133 crossref_primary_10_3390_ma15030724 crossref_primary_10_1002_cpe_6789 crossref_primary_10_1088_1361_6579_ac010f crossref_primary_10_3390_s21217233 crossref_primary_10_1016_j_bspc_2021_102818 crossref_primary_10_3390_diagnostics12040795 crossref_primary_10_1016_j_ins_2019_02_065 crossref_primary_10_1007_s11042_023_15717_y crossref_primary_10_31083_j_rcm2408215 crossref_primary_10_1016_j_knosys_2019_105128 crossref_primary_10_1016_j_tox_2024_153879 crossref_primary_10_1016_j_ssci_2019_05_013 crossref_primary_10_1016_j_bspc_2022_103663 crossref_primary_10_1016_j_ins_2020_05_051 crossref_primary_10_32604_iasc_2022_019877 crossref_primary_10_1016_j_bspc_2022_104507 crossref_primary_10_1007_s10439_020_02581_2 crossref_primary_10_1016_j_bspc_2023_104628 crossref_primary_10_1007_s11265_020_01531_4 crossref_primary_10_1108_IJPCC_03_2021_0080 crossref_primary_10_1016_j_compbiomed_2022_106390 crossref_primary_10_31083_j_rcm_2020_03_120 crossref_primary_10_3390_app12178839 crossref_primary_10_3390_s24144432 crossref_primary_10_1016_j_inffus_2023_102023 crossref_primary_10_1016_j_bios_2025_117148 crossref_primary_10_1016_j_intimp_2024_113403 crossref_primary_10_1109_JBHI_2019_2919732 crossref_primary_10_3390_info11090436 crossref_primary_10_1016_j_dsm_2022_10_001 crossref_primary_10_1007_s10489_024_05364_7 crossref_primary_10_1016_j_knosys_2020_106589 crossref_primary_10_1063_5_0217416 crossref_primary_10_1016_j_cmpb_2024_108056 crossref_primary_10_1016_j_ins_2021_06_009 crossref_primary_10_1016_j_bspc_2024_106939 crossref_primary_10_1002_clc_23580 crossref_primary_10_1007_s12652_020_02536_4 crossref_primary_10_1007_s11431_022_2080_6 crossref_primary_10_1016_j_bspc_2023_105308 crossref_primary_10_1016_j_compbiomed_2021_104783 crossref_primary_10_1016_j_ins_2023_04_011 crossref_primary_10_1016_j_bspc_2021_103408 crossref_primary_10_1016_j_artmed_2023_102690 crossref_primary_10_1007_s40998_023_00633_6 crossref_primary_10_1007_s11042_020_09938_8 crossref_primary_10_1016_j_cmpb_2019_06_017 crossref_primary_10_1016_j_ins_2025_121889 crossref_primary_10_1016_j_patrec_2020_02_005 crossref_primary_10_3389_fphys_2021_673819 crossref_primary_10_1007_s10489_021_02309_2 crossref_primary_10_1088_1361_6579_aadf48 crossref_primary_10_1088_1742_6596_1500_1_012131 crossref_primary_10_1007_s00521_021_05866_2 crossref_primary_10_1016_j_cmpb_2021_106035 crossref_primary_10_1016_j_knosys_2019_105460 crossref_primary_10_1007_s10916_020_01565_y crossref_primary_10_1016_j_ins_2019_11_010 crossref_primary_10_32604_cmc_2021_014682 crossref_primary_10_3390_app14146191 crossref_primary_10_1016_j_ins_2020_10_014 crossref_primary_10_1016_j_mayocp_2020_01_038 crossref_primary_10_1016_j_knosys_2023_110323 crossref_primary_10_1016_j_asoc_2022_109552 crossref_primary_10_1155_2022_6348424 crossref_primary_10_1016_j_ins_2019_06_054 crossref_primary_10_3390_diagnostics13142442 crossref_primary_10_1016_j_measurement_2021_109806 crossref_primary_10_1186_s13634_022_00943_7 crossref_primary_10_3390_s21113814 crossref_primary_10_2139_ssrn_4017037 crossref_primary_10_3390_electronics10080976 crossref_primary_10_54287_gujsa_1128006 crossref_primary_10_1016_j_eswa_2020_113911 crossref_primary_10_1016_j_ins_2019_05_089 crossref_primary_10_1016_j_measurement_2019_107363 crossref_primary_10_1016_j_knosys_2020_106122 crossref_primary_10_1016_j_cmpb_2022_107277 crossref_primary_10_1109_ACCESS_2019_2904095 crossref_primary_10_1016_j_cmpb_2021_106284 crossref_primary_10_1016_j_ins_2021_09_046 crossref_primary_10_1016_j_eswa_2023_120019 crossref_primary_10_1109_JBHI_2022_3171918 crossref_primary_10_1016_j_knosys_2019_04_023 crossref_primary_10_1007_s10462_021_09999_7 crossref_primary_10_1016_j_compbiomed_2023_107275 crossref_primary_10_1038_s41598_021_99975_6 crossref_primary_10_3390_ijerph17093093 crossref_primary_10_3389_fcvm_2021_711401 |
Cites_doi | 10.1111/j.1469-1809.1936.tb02137.x 10.1111/j.1467-9868.2011.00771.x 10.1016/j.cmpb.2016.04.009 10.1016/j.jelectrocard.2016.07.033 10.1016/j.bspc.2014.04.001 10.1109/TPAMI.2006.211 10.1016/j.compbiomed.2015.03.005 10.1016/j.gheart.2017.01.015 10.1137/0111030 10.1016/j.compbiomed.2017.01.019 10.1016/j.ins.2017.06.027 10.1016/0167-8655(94)90127-9 10.1016/j.ins.2017.04.012 10.1016/j.cmpb.2013.12.002 10.1088/0967-3334/32/8/010 10.1016/0893-6080(90)90049-Q 10.1080/14786440109462720 10.1016/j.compbiomed.2016.03.015 10.1016/j.knosys.2013.09.016 10.1109/TIT.1979.1056087 10.1016/j.compbiomed.2017.12.023 10.1103/PhysRevLett.88.174102 10.1109/TIT.1967.1053964 10.1007/BF00994018 10.1142/S0219519417400449 10.1142/S0219519412400234 10.1016/0165-1684(91)90079-X 10.1073/pnas.79.8.2554 10.1023/A:1010933404324 10.1209/0295-5075/4/9/004 10.1002/j.1538-7305.1948.tb01338.x 10.1142/S0219519417400437 10.1142/S0219519416400054 10.1016/j.compbiomed.2011.10.012 10.1016/0020-0255(86)90006-X 10.1023/A:1012487302797 10.1016/j.future.2017.08.039 10.1109/79.221324 10.1016/j.cmpb.2016.08.021 10.1109/10.942588 10.1162/neco.1997.9.8.1735 10.3390/e19120677 10.3399/bjgp11X548956 10.1090/qam/10666 10.1109/TITB.2010.2094197 10.1007/s00170-016-9048-8 10.1109/TBME.2013.2264721 10.1016/j.bspc.2013.08.008 10.1109/TBME.2012.2208112 10.1016/j.ijcac.2016.08.001 10.1109/TBME.1985.325532 10.1161/CIRCULATIONAHA.113.005119 10.1016/j.cmpb.2013.08.017 10.3348/kjr.2017.18.4.570 10.1007/s10439-009-9740-z 10.1016/j.compbiomed.2017.12.007 10.1016/j.knosys.2017.06.003 10.1016/0167-2789(93)90009-P 10.1126/science.1127647 10.1161/01.CIR.101.23.e215 10.1016/j.compbiomed.2017.08.022 10.1073/pnas.88.6.2297 10.1016/j.compbiomed.2017.02.008 10.1016/j.compbiomed.2014.02.012 10.1016/j.bbe.2018.03.001 10.1512/iumj.1957.6.56038 10.4250/jcu.2011.19.2.51 10.1145/3065386 10.1007/BF02345439 10.1186/1475-925X-13-18 10.1088/0967-3334/26/5/R01 10.1109/T-C.1974.223784 10.1109/41.538609 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. |
Copyright_xml | – notice: 2018 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ins.2018.07.063 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science |
EISSN | 1872-6291 |
EndPage | 114 |
ExternalDocumentID | 10_1016_j_ins_2018_07_063 S0020025518305917 |
GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c363t-76699eea4ee8926cf21092a6e01d66c94bfe2d24ff06d00ae2e339f1848228313 |
IEDL.DBID | AIKHN |
ISSN | 0020-0255 |
IngestDate | Thu Apr 24 22:55:27 EDT 2025 Tue Jul 01 04:16:40 EDT 2025 Fri Feb 23 02:45:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Computer-aided diagnosis system Electrocardiogram signals Arrhythmia Atrial fibrillation Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-76699eea4ee8926cf21092a6e01d66c94bfe2d24ff06d00ae2e339f1848228313 |
ORCID | 0000-0001-5256-210X |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1016_j_ins_2018_07_063 crossref_citationtrail_10_1016_j_ins_2018_07_063 elsevier_sciencedirect_doi_10_1016_j_ins_2018_07_063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2018 2018-10-00 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
PublicationDecade | 2010 |
PublicationTitle | Information sciences |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Lee, Nam, McManus, Chon (bib0058) 2013; 60 Vapnik, Guyon, Hastie (bib0103) 1995; 20 Guyon, Weston, Barnhill, Vapnik (bib0042) 2002; 46 Eckmann, Kamphorst, Ruelle (bib0033) 1987; 4 Annavarapu, Kora (bib0013) 2016; 2 Rodriguez, Kuncheva, Alonso (bib0090) 2006; 28 Renyi (bib0088) 1961 Acharya, Fujita, Oh, Hagiwara, Tan, Adam (bib0005) 2017; 405 Breiman, Friedman, Stone, Olshen (bib0020) 1984 Kira, Rendell (bib0053) 1992 Breiman (bib0019) 2001; 45 Lehmann, Romano (bib0060) 2005 Mandelbrot (bib0065) 1983 R.A. Fisher, “The use of multiple measurements in taxonomic problems”, Ann. Eugen., vol. 7, no. 2, pp. 179–188. Guyon, Elisseeff (bib0041) 2003; 3 Tibshirani (bib0101) 2011; 73 Zhou, Ding, Ung, Pickwell-MacPherson, Zhang (bib0109) 2014; 13 Richman, Moorman (bib0089) 2000; 278 Levenberg (bib0061) 1944; 2 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0039) 2014 Martis, Acharya, Adeli (bib0067) 2014; 48 Hinton, Salakhutdinov (bib0044) 2006; 313 Devroye, Wagner (bib0030) 1979; 25 Steinbaum (bib0095) 2017 Marwam, Wessel, Meyerfeldt, Schirdewan, Kurths (bib0072) 2002; 66 Prasad, Martis, Acharya, Lim, Suri (bib0086) 2013 Poznanski, Wolf (bib0085) 2016 Islam, Ammour, Alajlan, Aboalsamh (bib0047) 2016; 72 Jutten, Hérault (bib0048) 1991; 24 Kennedy, Finlay, Guldenring, Bond, Moran, McLaughlin (bib0051) 2016; 49 Acharya, Fujita, Adam, Oh, Tan, Sudarshan, Koh (bib0003) 2016 Zhou, Ding, Wu, Zhang (bib0110) 2015; 10 García, Ródenas, Alcaraz, Rieta (bib0036) 2016; 131 Acharya, Fujita, Oh, Hagiwara, Tan, Adam (bib0006) 2017; 415 Dhir, Iqbal, Lee (bib0031) 2007 Chugh, Havmoeller, Narayanan, Singh, Rienstra, Benjamin, Gilum, Kim, McAnulty, Zheng, Forouzanfar, Naghavi, Mensah, Ezzati, Murray (bib0023) 2014; 129 Hochreiter, Schmidhuber (bib0045) 1997; 9 Shannon (bib0093) 1948; 27 Pincus (bib0084) 1991; 88 Yuan, Yan, Zhou, Bai, Wang (bib0107) 2016 Tateno, Glass (bib0100) 2001; 39 Kim, Youn (bib0052) 2011; 19 Lee, Reyes, McManus, Mathaias, Chon (bib0059) 2013; 60 (bib0074) 2017 Spechr, Donald (bib0094) 1990; 3 Kora, Annavarapu, Yadlapalli, Krishna, Somalaraju (bib0054) 2017; 20 Bishop (bib0018) 2006 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (bib0037) 2000; 101 MacQueen (bib0063) 1967 Man, Tang, Kwong (bib0064) 1996; 43 Murphy, Banerjee, Breithardt, Camm, Commerford, Freedman, Gonazalez-Harmosillo, Halperin, Lau, Perel, Xavier, Wood, Jouven, Morillo (bib0077) 2017; 12 Ahmed, Natarajan, Rao (bib0012) 1974; C-23 Pan, Tompkins (bib0082) 1985; 32 Tripathy, Paternina, Arrieta, Pattanaik (bib0102) 2017; 17 Tan, Hagiwara, Pang, Lim, Oh, Adam, Tan, Chen, Acharya (bib0099) 2018; 94 Desai, Martis, Acharya, Nayak, Seshikala, Ranjan (bib0029) 2016; 16 Graves, Mohamed, Hinton (bib0040) 2013 Krizhevsky, Sutskever, Hinton (bib0056) 2017; 60 Hadhoud, Eladawy, Farag (bib0043) 2006 Yao, Zhu, Chen (bib0106) 2017 Pal, Mitra (bib0081) 2012; 42 Marquardt (bib0066) 1963; 11 Rosenstein, Colins, de Luca (bib0091) 1993; 65 Sufi, Khalil (bib0097) 2011; 15 Yuvaraj, Acharya, Hagiwara (bib0108) 2016 Goodfellow, Bengio, Courville (bib0038) 2016 Addison (bib0011) 2005; 26 Martis, Prasad, Chakraborty, Ray (bib0071) 2012; 12 Nason, Silverman (bib0078) 1995 Sadowsky (bib0092) 1994; 15 Martis, Acharya, Adeli, Prasad, Tan, Chua, Too, Yeo, Tong (bib0068) 2014; 13 Martis, Acharya, Prasad, Chua, Lim (bib0069) 2013; 54 Bochner, Chandrasekharan (bib0021) 1949 Lewis, Parker, Weston, Bowes (bib0062) 2011; 61 Wang, Zhu, Thakor, Xu (bib0104) 2001; 48 Xia, Wulan, Wong, Zhang (bib0105) 2018; 93 Duda, Hart, Stork (bib0032) 2001 Acharya, Hagiwara, Koh, Oh, Tan, Adam, Tan (bib0008) 2018 Cover, Hart (bib0025) 1967; 13 Kosko (bib0055) 1986; 40 Pundil, Novovicová, Kittler (bib0087) 1994; 15 Acharya, Faust, Sree, Swapna, Martis, Kadri, Suri (bib0002) 2014; vol. 113 Bandt, Pompe (bib0016) 2002; 88 Chang, Ko, Chang (bib0022) 2010 Pearson (bib0083) 1901; 2 Ciaccio, Biviano, Wan, Peters, Garan (bib0024) 2017; 83 (bib0076) 2016 Fisher (bib0034) 1925 Mohebbi, Ghassemian (bib0075) 2011; 32 Kang, Zhuo, Foo, Lim, Faust, Hagiwara (bib0049) 2017; 17 Acharya, Fujita, Oh, Adam, Tan, Chua (bib0004) 2017; 132 Cui, Chang, Yang, Jiang, Yang, Peng (bib0026) 2017; 19 Acharya, Suri, Spaan, Krishnan (bib0010) 2007 Lee, Jun, Cho, Lee, Kim, Seo, Kim (bib0057) 2017; 18 Sudarshan, Acharya, Oh, Adam, Tan, Chua, Chua, Tan (bib0096) 2017; 83 Acharya, Oh, Hagiwara, Tan, Adam, Gertych, Tan (bib0009) 2017; 89 Bellman (bib0017) 1957; 6 M. Masiti, Y. Masiti, G. Oppenheim, J. Poggi, “Wavelet toolbox for use with Matlab, user's guide, version 3, MathWorks, Inc”, 2004. Acharya, Fujita, Oh, Raghavendra, Tan, Adam, Gertych, Hagiwara (bib0007) 2018; 79 Tallapragada, Singavarapu, Pradhan (bib0098) 2014; 5 Nikias, Mendel (bib0079) 1993; 10 Hopfield (bib0046) 1982; 79 Ashley, Niebauer (bib0015) 2004 Daqrouq, Alkhateeb, Ajour, Morfeq (bib0027) 2014; 113 Asgari, Mehrnia, Moussavi (bib0014) 2015; 60 Oppenheim, Verghese (bib0080) 2010 Martis, Acharya, Prasad, Chua, Lim, Suri (bib0070) 2013; 8 Kecil, Ciecielag, Zaleski (bib0050) 2017; 89 Abdul-Kadir, Safri, Othman (bib0001) 2016; vol. 136 Dash, Chon, Lu, Raeder (bib0028) 2009; 37 Eckmann (10.1016/j.ins.2018.07.063_bib0033) 1987; 4 Kang (10.1016/j.ins.2018.07.063_bib0049) 2017; 17 Tateno (10.1016/j.ins.2018.07.063_bib0100) 2001; 39 Fisher (10.1016/j.ins.2018.07.063_bib0034) 1925 Jutten (10.1016/j.ins.2018.07.063_bib0048) 1991; 24 Martis (10.1016/j.ins.2018.07.063_bib0067) 2014; 48 Acharya (10.1016/j.ins.2018.07.063_bib0009) 2017; 89 Guyon (10.1016/j.ins.2018.07.063_bib0041) 2003; 3 Annavarapu (10.1016/j.ins.2018.07.063_bib0013) 2016; 2 Ahmed (10.1016/j.ins.2018.07.063_bib0012) 1974; C-23 Martis (10.1016/j.ins.2018.07.063_bib0070) 2013; 8 Nason (10.1016/j.ins.2018.07.063_bib0078) 1995 Guyon (10.1016/j.ins.2018.07.063_bib0042) 2002; 46 Lehmann (10.1016/j.ins.2018.07.063_bib0060) 2005 Abdul-Kadir (10.1016/j.ins.2018.07.063_bib0001) 2016; vol. 136 Shannon (10.1016/j.ins.2018.07.063_bib0093) 1948; 27 Duda (10.1016/j.ins.2018.07.063_bib0032) 2001 Richman (10.1016/j.ins.2018.07.063_bib0089) 2000; 278 Devroye (10.1016/j.ins.2018.07.063_bib0030) 1979; 25 Acharya (10.1016/j.ins.2018.07.063_bib0002) 2014; vol. 113 Tallapragada (10.1016/j.ins.2018.07.063_bib0098) 2014; 5 Lewis (10.1016/j.ins.2018.07.063_bib0062) 2011; 61 Acharya (10.1016/j.ins.2018.07.063_bib0008) 2018 Goodfellow (10.1016/j.ins.2018.07.063_bib0038) 2016 MacQueen (10.1016/j.ins.2018.07.063_bib0063) 1967 Marquardt (10.1016/j.ins.2018.07.063_bib0066) 1963; 11 Yuvaraj (10.1016/j.ins.2018.07.063_bib0108) 2016 10.1016/j.ins.2018.07.063_bib0035 Hadhoud (10.1016/j.ins.2018.07.063_bib0043) 2006 Lee (10.1016/j.ins.2018.07.063_bib0057) 2017; 18 Levenberg (10.1016/j.ins.2018.07.063_bib0061) 1944; 2 Rosenstein (10.1016/j.ins.2018.07.063_bib0091) 1993; 65 Dash (10.1016/j.ins.2018.07.063_bib0028) 2009; 37 Yao (10.1016/j.ins.2018.07.063_bib0106) 2017 Steinbaum (10.1016/j.ins.2018.07.063_bib0095) Chugh (10.1016/j.ins.2018.07.063_bib0023) 2014; 129 Acharya (10.1016/j.ins.2018.07.063_bib0005) 2017; 405 Acharya (10.1016/j.ins.2018.07.063_bib0010) 2007 Renyi (10.1016/j.ins.2018.07.063_bib0088) 1961 Graves (10.1016/j.ins.2018.07.063_sbref0039) 2013 Acharya (10.1016/j.ins.2018.07.063_bib0004) 2017; 132 Man (10.1016/j.ins.2018.07.063_bib0064) 1996; 43 García (10.1016/j.ins.2018.07.063_bib0036) 2016; 131 Desai (10.1016/j.ins.2018.07.063_bib0029) 2016; 16 Daqrouq (10.1016/j.ins.2018.07.063_bib0027) 2014; 113 Breiman (10.1016/j.ins.2018.07.063_bib0019) 2001; 45 Hopfield (10.1016/j.ins.2018.07.063_bib0046) 1982; 79 Pincus (10.1016/j.ins.2018.07.063_bib0084) 1991; 88 Acharya (10.1016/j.ins.2018.07.063_bib0006) 2017; 415 Martis (10.1016/j.ins.2018.07.063_bib0071) 2012; 12 Prasad (10.1016/j.ins.2018.07.063_bib0086) 2013 Rodriguez (10.1016/j.ins.2018.07.063_bib0090) 2006; 28 Acharya (10.1016/j.ins.2018.07.063_bib0003) 2016 Tripathy (10.1016/j.ins.2018.07.063_bib0102) 2017; 17 Martis (10.1016/j.ins.2018.07.063_bib0068) 2014; 13 Dhir (10.1016/j.ins.2018.07.063_bib0031) 2007 Hochreiter (10.1016/j.ins.2018.07.063_bib0045) 1997; 9 Hinton (10.1016/j.ins.2018.07.063_bib0044) 2006; 313 Krizhevsky (10.1016/j.ins.2018.07.063_bib0056) 2017; 60 Nikias (10.1016/j.ins.2018.07.063_bib0079) 1993; 10 Oppenheim (10.1016/j.ins.2018.07.063_bib0080) 2010 Sadowsky (10.1016/j.ins.2018.07.063_bib0092) 1994; 15 Kira (10.1016/j.ins.2018.07.063_bib0053) 1992 Kennedy (10.1016/j.ins.2018.07.063_bib0051) 2016; 49 Mandelbrot (10.1016/j.ins.2018.07.063_bib0065) 1983 Ciaccio (10.1016/j.ins.2018.07.063_bib0024) 2017; 83 Lee (10.1016/j.ins.2018.07.063_bib0059) 2013; 60 Pearson (10.1016/j.ins.2018.07.063_bib0083) 1901; 2 Acharya (10.1016/j.ins.2018.07.063_bib0007) 2018; 79 Martis (10.1016/j.ins.2018.07.063_bib0069) 2013; 54 Sufi (10.1016/j.ins.2018.07.063_bib0097) 2011; 15 Islam (10.1016/j.ins.2018.07.063_bib0047) 2016; 72 Ashley (10.1016/j.ins.2018.07.063_bib0015) 2004 Kecil (10.1016/j.ins.2018.07.063_bib0050) 2017; 89 Addison (10.1016/j.ins.2018.07.063_bib0011) 2005; 26 Bochner (10.1016/j.ins.2018.07.063_bib0021) 1949 Goldberger (10.1016/j.ins.2018.07.063_bib0037) 2000; 101 10.1016/j.ins.2018.07.063_bib0073 Vapnik (10.1016/j.ins.2018.07.063_bib0103) 1995; 20 Breiman (10.1016/j.ins.2018.07.063_bib0020) 1984 Lee (10.1016/j.ins.2018.07.063_bib0058) 2013; 60 Pan (10.1016/j.ins.2018.07.063_bib0082) 1985; 32 Tan (10.1016/j.ins.2018.07.063_bib0099) 2018; 94 Chang (10.1016/j.ins.2018.07.063_bib0022) 2010 Xia (10.1016/j.ins.2018.07.063_bib0105) 2018; 93 Bellman (10.1016/j.ins.2018.07.063_bib0017) 1957; 6 Kora (10.1016/j.ins.2018.07.063_bib0054) 2017; 20 Sudarshan (10.1016/j.ins.2018.07.063_bib0096) 2017; 83 Zhou (10.1016/j.ins.2018.07.063_bib0110) 2015; 10 Poznanski (10.1016/j.ins.2018.07.063_bib0085) 2016 Goodfellow (10.1016/j.ins.2018.07.063_bib0039) 2014 Pal (10.1016/j.ins.2018.07.063_bib0081) 2012; 42 Spechr (10.1016/j.ins.2018.07.063_bib0094) 1990; 3 Cover (10.1016/j.ins.2018.07.063_bib0025) 1967; 13 Bishop (10.1016/j.ins.2018.07.063_bib0018) 2006 Kosko (10.1016/j.ins.2018.07.063_bib0055) 1986; 40 Mohebbi (10.1016/j.ins.2018.07.063_bib0075) 2011; 32 Kim (10.1016/j.ins.2018.07.063_bib0052) 2011; 19 Murphy (10.1016/j.ins.2018.07.063_bib0077) 2017; 12 Marwam (10.1016/j.ins.2018.07.063_bib0072) 2002; 66 Zhou (10.1016/j.ins.2018.07.063_bib0109) 2014; 13 Wang (10.1016/j.ins.2018.07.063_bib0104) 2001; 48 Yuan (10.1016/j.ins.2018.07.063_bib0107) 2016 Bandt (10.1016/j.ins.2018.07.063_bib0016) 2002; 88 Pundil (10.1016/j.ins.2018.07.063_bib0087) 1994; 15 Tibshirani (10.1016/j.ins.2018.07.063_bib0101) 2011; 73 Asgari (10.1016/j.ins.2018.07.063_bib0014) 2015; 60 Cui (10.1016/j.ins.2018.07.063_bib0026) 2017; 19 |
References_xml | – start-page: 1 year: 2016 end-page: 11 ident: bib0108 article-title: A novel Parkinson's disease diagnosis index using higher-order spectra features in EEG signals publication-title: Neural Comput. Appl. – year: 2007 ident: bib0031 article-title: Efficient feature selection based on information gain criterion for face recognition publication-title: Proceedings of the International Conference on Information Acquisition – volume: C-23 start-page: 90 year: 1974 end-page: 93 ident: bib0012 article-title: Discrete cosine transform publication-title: IEEE Trans.Comput. – volume: 6 start-page: 679 year: 1957 end-page: 684 ident: bib0017 article-title: A markovian decision process publication-title: Indiana Univ. Math. J. – volume: 15 start-page: 33 year: 2011 end-page: 39 ident: bib0097 article-title: Diagnosis of cardiovascular abnormalities from compressed ECG: a datamining-based approach publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0019 article-title: Random forest publication-title: Mach. Learn. – volume: 61 start-page: 38 year: 2011 end-page: 39 ident: bib0062 article-title: Screening for atrial fibrillation: sensitivity and specificity of a new methodology publication-title: Br. J. Gen. Pract. – volume: 13 start-page: 1 year: 2014 end-page: 18 ident: bib0109 article-title: Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy publication-title: Biomed. Eng. OnLine – volume: 79 start-page: 952 year: 2018 end-page: 959 ident: bib0007 article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network publication-title: Future Gener. Comput. Syst. – reference: M. Masiti, Y. Masiti, G. Oppenheim, J. Poggi, “Wavelet toolbox for use with Matlab, user's guide, version 3, MathWorks, Inc”, 2004. – volume: 49 start-page: 871 year: 2016 end-page: 876 ident: bib0051 article-title: Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification publication-title: J. Electrocardiol. – volume: 26 start-page: R155 year: 2005 end-page: R199 ident: bib0011 article-title: Wavelet transforms and the ECG: A review publication-title: Physiol. Meas. – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: bib0042 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. – volume: 18 start-page: 570 year: 2017 end-page: 584 ident: bib0057 article-title: Deep learning in medical imaging: general overview publication-title: Korean J. Radiol. – year: 1984 ident: bib0020 article-title: Classification and Regression Trees – year: 2010 ident: bib0022 article-title: Cancellation of high-frequency noise in ECG signals using adaptive filter without external reference publication-title: Proceedings of the Third International Conference on Biomedical Engineering and Informatics – volume: 42 start-page: 83 year: 2012 end-page: 92 ident: bib0081 article-title: Empirical mode decomposition based ECG enhancement and QRS detection publication-title: Comput. Biol. Med. – volume: 113 start-page: 919 year: 2014 end-page: 926 ident: bib0027 article-title: Neural network and wavelet average framing percentage energy for atrial fibrillation classification publication-title: Comput. Methods Progr. Biomed. – volume: 16 year: 2016 ident: bib0029 article-title: Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers publication-title: J. Mech. Med. Biol. – volume: 4 start-page: 973 year: 1987 ident: bib0033 article-title: Recurrence plots of dynamical systems publication-title: Europhys. Lett. – volume: 10 year: 2015 ident: bib0110 article-title: A real-time atrial fibrillation detection algorithm based on the instantaneous state of heart rate publication-title: PLoS ONE – volume: 24 start-page: 1 year: 1991 end-page: 10 ident: bib0048 article-title: Blind separation of sources, part 1: an adaptive algorithm based on neuromimetic architecture publication-title: Signal Process. – volume: 48 start-page: 133 year: 2014 end-page: 149 ident: bib0067 article-title: Current methods in electrocardiogram characterization publication-title: Comput. Biol. Med. – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: bib0025 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory – volume: 12 year: 2012 ident: bib0071 article-title: Automated detection of atrial flutter and fibrillation using ECG signals in wavelet framework publication-title: J. Mech. Med. Biol. – volume: 132 start-page: 62 year: 2017 end-page: 71 ident: bib0004 article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network publication-title: Knowl. Based Syst. – volume: 10 start-page: 10 year: 1993 end-page: 37 ident: bib0079 article-title: Signal processing with higher-order spectra publication-title: IEEE Signal Process. Mag. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: bib0044 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 60 start-page: 203 year: 2013 end-page: 206 ident: bib0059 article-title: Atrial fibrillation detection using an iPhone 4S publication-title: IEEE Trans. Biomed. Eng. – year: 2016 ident: bib0076 – volume: 93 start-page: 84 year: 2018 end-page: 92 ident: bib0105 article-title: Detecting atrial fibrillation by deep convolutional neural networks publication-title: Comput. Biol. Med. – year: 2006 ident: bib0043 article-title: Computer aided diagnosis of cardiac arrhythmias publication-title: Proceedings of the International Conference on Computer Engineering and Systems – volume: 25 start-page: 601 year: 1979 end-page: 604 ident: bib0030 article-title: Distribution-free performances bounds for potential function rules publication-title: IEEE Trans. Inf. Theory – volume: 2 start-page: 151 year: 2016 end-page: 154 ident: bib0013 article-title: ECG-based atrial fibrillation detection using different orderings of conjugate symmetric-complex Hadamard transform publication-title: Int. J. Cardiovas. Acad. – volume: 37 start-page: 1701 year: 2009 end-page: 1709 ident: bib0028 article-title: Automatic real time detection of atrial fibrillation publication-title: Ann. Biomed. Eng. – year: 2005 ident: bib0060 article-title: Testing Statistical Hypotheses – volume: 54 start-page: 269 year: 2013 end-page: 275 ident: bib0069 article-title: Automated detection of atrial fibrillation using Bayesian paradigm publication-title: Knowl. Based Syst. – volume: 15 start-page: 306 year: 1994 end-page: 318 ident: bib0092 article-title: The continuous wavelet transform: a tool for signal investigation and understanding publication-title: John Hopkins APL Tech Digest – volume: 39 start-page: 664 year: 2001 end-page: 671 ident: bib0100 article-title: Automatic detection of atrial fibrillation using the coefficient of variation and density histogram of RR and ΔRR intervals publication-title: Med. Biol. Eng. Comput. – volume: 60 start-page: 132 year: 2015 end-page: 142 ident: bib0014 article-title: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine publication-title: Comput. Biol. Med. – volume: 83 start-page: 161 year: 2017 end-page: 181 ident: bib0024 article-title: Development of an automaton model rotational activity during atrial fibrillation publication-title: Comput. Biol. Med. – volume: 66 year: 2002 ident: bib0072 article-title: Recurrence plot based measures of complexity and its application to heart rate variability data publication-title: Phys. Rev. E – year: 1949 ident: bib0021 article-title: Fourier Transform – year: 2016 ident: bib0085 article-title: CNN-N-Gram for handwriting word recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2013 ident: bib0040 article-title: Speech recognition with deep recurrent neural networks publication-title: Proceedings of the Neural and Evolutionary Computing, Computation and Language – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: bib0037 article-title: PhysioBank, PhysioToolkit, and PhyisoNet: Components of a new research resource for complex physiologic signals publication-title: Circulation – year: 2010 ident: bib0080 article-title: Signals, Systems, and Inference publication-title: Signals, Systems, and Inference – volume: 79 start-page: 2554 year: 1982 end-page: 2558 ident: bib0046 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl Acad. Sci. U S A – volume: 40 start-page: 165 year: 1986 end-page: 174 ident: bib0055 article-title: Fuzzy entropy and conditioning publication-title: Inf. Sci. – volume: 13 start-page: 295 year: 2014 end-page: 305 ident: bib0068 article-title: Computer-aided diagnosis of atrial arrhythmia using dimensionality reduction methods on transform domain representation publication-title: Biomed. Signal Process. Control – volume: 89 start-page: 389 year: 2017 end-page: 396 ident: bib0009 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput. Biol. Med. – volume: 17 year: 2017 ident: bib0049 article-title: Algorithm for the detection of congestive heart failure index publication-title: J. Mech. Med. Biol. – volume: 15 start-page: 1119 year: 1994 end-page: 1125 ident: bib0087 article-title: Floating search methods in feature selection publication-title: Pattern Recogni. Lett – year: 2018 ident: bib0008 article-title: Entropies for automated detection of coronary artery disease using ECG signals: a review publication-title: Biocybern. Biomed. Eng. – year: 2001 ident: bib0032 article-title: Pattern Classification – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib0045 article-title: Long short-term memory publication-title: Neural Comput. – volume: 20 start-page: 1084 year: 2017 end-page: 1091 ident: bib0054 article-title: ECG based atrial fibrillation detection using sequency ordered complex Hadamard transform and hybrid firefly algorithm publication-title: Eng. Sci. Technol. Int. J. – volume: 28 start-page: 1619 year: 2006 end-page: 1630 ident: bib0090 article-title: Rotation forest: a new classifier ensemble method publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 94 start-page: 19 year: 2018 end-page: 26 ident: bib0099 article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals publication-title: Comput. Biol. Med. – volume: vol. 136 start-page: 143 year: 2016 end-page: 150 ident: bib0001 article-title: Dynamic ECG features for atrial fibrillation recognition publication-title: Comput. Methods Progr. Biomed. – volume: 278 start-page: 2039 year: 2000 end-page: 2049 ident: bib0089 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: Am. J. Phys. Heart Circ. Phys. – start-page: 57 year: 2013 end-page: 60 ident: bib0086 article-title: Application of higher-order spectra for accurate delineation of atrial arrhythmia publication-title: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – year: 1983 ident: bib0065 article-title: Geometry of Nature – volume: 32 start-page: 1147 year: 2011 end-page: 1162 ident: bib0075 article-title: Prediction of paroxysmal atrial fibrillation using recurrence plot-based features of the RR-interval signal publication-title: Physiol. Measur. – volume: 43 start-page: 519 year: 1996 end-page: 534 ident: bib0064 article-title: Genetic algorithms: concepts and applications (in engineering design) publication-title: IEEE Trans. Ind. Electron. – volume: 88 start-page: 2297 year: 1991 end-page: 2301 ident: bib0084 article-title: Approximate entropy as a measure of system complexity publication-title: Proc. Natl. Acad Sci U S A – volume: 8 start-page: 888 year: 2013 end-page: 900 ident: bib0070 article-title: Application of higher order statistics for atrial arrhythmia classification publication-title: Biomed. Signal Process. Control – volume: 12 start-page: 273 year: 2017 end-page: 284 ident: bib0077 article-title: The world heart federation roadmap for nonvalvular atrial fibrillation publication-title: Global Heart – start-page: 1159 year: 2016 end-page: 1164 ident: bib0107 article-title: Automated atrial fibrillation detection based on deep learning network publication-title: Proceedings of the IEEE International Conference on Information and Automation – volume: 3 start-page: 109 year: 1990 end-page: 118 ident: bib0094 article-title: Probabilistic neural networks publication-title: Neural Netw. – volume: 88 year: 2002 ident: bib0016 article-title: Permutation entropy: a natural complexity measure for time series publication-title: Phy. Rev. Lett. – volume: 405 start-page: 81 year: 2017 end-page: 90 ident: bib0005 article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network publication-title: Inf. Sci. – volume: 17 year: 2017 ident: bib0102 article-title: Automated detection of atrial fibrillation ECG signals using two stage VMD and atrial fibrillation diagnosis index publication-title: J. Mech. Med. Biol. – year: 2016 ident: bib0038 article-title: Deep Learning – reference: R.A. Fisher, “The use of multiple measurements in taxonomic problems”, Ann. Eugen., vol. 7, no. 2, pp. 179–188. – volume: 83 start-page: 48 year: 2017 end-page: 58 ident: bib0096 article-title: Automated diagnosis of congestive heart failure using dual tree complex wavelet transform and statistical features extracted from 2 s of ECG signals publication-title: Comput. Biol. Med. – start-page: 281 year: 1995 end-page: 299 ident: bib0078 article-title: The Stationary Wavelet Transform and Some Statistical Applications publication-title: The Stationary Wavelet Transform and Some Statistical Applications – start-page: 281 year: 1967 end-page: 297 ident: bib0063 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability – volume: 73 start-page: 273 year: 2011 end-page: 282 ident: bib0101 article-title: Regression shrinkage and selection via the lasso: a retrospective publication-title: J. Royal Stat. Soc. – year: 1992 ident: bib0053 article-title: The feature selection problem: traditional methods and a new algorithm publication-title: Proceedings of the Tenth National Conference on Artificial Intelligence – year: 1925 ident: bib0034 article-title: Statistical Methods For Research Workers – volume: 65 start-page: 117 year: 1993 end-page: 134 ident: bib0091 article-title: A practical method for calculating largest Lyapunov exponents from small data sets publication-title: Phys. D – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib0041 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 415 start-page: 190 year: 2017 end-page: 198 ident: bib0006 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inf. Sci. – year: 2014 ident: bib0039 article-title: Generative adversarial nets publication-title: Proceedings of the Neural Information Processing Systems – start-page: 547 year: 1961 end-page: 561 ident: bib0088 article-title: On measures of entropy and information publication-title: Proceedings of the Fourth Berkeley Symposium – volume: 89 start-page: 133 year: 2017 end-page: 144 ident: bib0050 article-title: Damage detection of composite milling process by recurrence plots and quantifications analysis publication-title: Int. J. Adv. Manuf. Technol. – volume: vol. 113 start-page: 55 year: 2014 end-page: 68 ident: bib0002 article-title: Linear and nonlinear analysis of normal and CAD-affected heart rate signals publication-title: Comput. Methods Progr. Biomed. – year: 2017 ident: bib0106 article-title: Atrial fibrillation detection by multi-scale convolutional neural network publication-title: Proceedings of the International Conference on Information Fusion – year: 2004 ident: bib0015 article-title: Cardiology Explained, From Chapter 3: Conquering the ECG – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0103 article-title: Support vector machines publication-title: Mach. Learn. – volume: 131 start-page: 157 year: 2016 end-page: 168 ident: bib0036 article-title: Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation publication-title: Comput. Methods Progr. Biomed. – volume: 32 start-page: 230 year: 1985 end-page: 236 ident: bib0082 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans. Biomed. Eng. – year: 2017 ident: bib0074 – volume: 19 start-page: 51 year: 2011 end-page: 61 ident: bib0052 article-title: Role of echocardiography in atrial fibrillation publication-title: J. Cardiovasc. Ultrasound – volume: 19 start-page: 677 year: 2017 ident: bib0026 article-title: Automated detection of paroxysmal atrial fibrillation using an information-based similarity approach publication-title: Entropy – volume: 48 start-page: 989 year: 2001 end-page: 995 ident: bib0104 article-title: A short-time multifractal approach for arrhythmia detection based on fuzzy neural network publication-title: IEEE Trans. Biomed. Eng. – year: 2017 ident: bib0095 article-title: How atrial fibrillation is diagnosed – volume: 5 start-page: 863 year: 2014 end-page: 873 ident: bib0098 article-title: Understanding the dynamics of heart rate variability in cardiovascular disorders using recurrence quantification analysis and radial basis function neural network publication-title: Int. J. Sci. Eng. Res. – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: bib0056 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM – volume: 60 start-page: 2783 year: 2013 end-page: 2793 ident: bib0058 article-title: Time-varying coherence function for atrial fibrillation detection publication-title: IEEE Trans. Biomed. Eng. – volume: 72 start-page: 160 year: 2016 end-page: 169 ident: bib0047 article-title: Rhythm-based heartbeat duration normalization for atrial fibrillation detection publication-title: Comput. Biol. Med. – year: 2006 ident: bib0018 article-title: Pattern Recognition and Machine Learning – volume: 11 start-page: 431 year: 1963 end-page: 441 ident: bib0066 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: SIAM J. Appl. Math. – volume: 27 start-page: 379 year: 1948 end-page: 423 ident: bib0093 article-title: A mathematical theory of communication publication-title: Bell Syst. Tech. J. – volume: 2 start-page: 164 year: 1944 end-page: 168 ident: bib0061 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Q. Appl. Math. – volume: 129 start-page: 837 year: 2014 end-page: 847 ident: bib0023 article-title: Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study publication-title: Circulation – year: 2016 ident: bib0003 article-title: Automated characterization of arrhythmias using nonlinear features from tachycardia ECG beats publication-title: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics – year: 2007 ident: bib0010 article-title: Advances in Cardiac Signal Processing – volume: 2 start-page: 559 year: 1901 end-page: 572 ident: bib0083 article-title: On lines and planes of closest fit to systems of points in space publication-title: Philos. Mag. – ident: 10.1016/j.ins.2018.07.063_bib0035 doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 73 start-page: 273 issue: 3 year: 2011 ident: 10.1016/j.ins.2018.07.063_bib0101 article-title: Regression shrinkage and selection via the lasso: a retrospective publication-title: J. Royal Stat. Soc. doi: 10.1111/j.1467-9868.2011.00771.x – year: 2014 ident: 10.1016/j.ins.2018.07.063_bib0039 article-title: Generative adversarial nets – year: 1925 ident: 10.1016/j.ins.2018.07.063_bib0034 – volume: 131 start-page: 157 year: 2016 ident: 10.1016/j.ins.2018.07.063_bib0036 article-title: Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2016.04.009 – volume: 49 start-page: 871 year: 2016 ident: 10.1016/j.ins.2018.07.063_bib0051 article-title: Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2016.07.033 – volume: 13 start-page: 295 year: 2014 ident: 10.1016/j.ins.2018.07.063_bib0068 article-title: Computer-aided diagnosis of atrial arrhythmia using dimensionality reduction methods on transform domain representation publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.04.001 – volume: 28 start-page: 1619 issue: 10 year: 2006 ident: 10.1016/j.ins.2018.07.063_bib0090 article-title: Rotation forest: a new classifier ensemble method publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.211 – volume: 60 start-page: 132 year: 2015 ident: 10.1016/j.ins.2018.07.063_bib0014 article-title: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.03.005 – volume: 12 start-page: 273 issue: 4 year: 2017 ident: 10.1016/j.ins.2018.07.063_bib0077 article-title: The world heart federation roadmap for nonvalvular atrial fibrillation publication-title: Global Heart doi: 10.1016/j.gheart.2017.01.015 – volume: 11 start-page: 431 issue: 2 year: 1963 ident: 10.1016/j.ins.2018.07.063_bib0066 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: SIAM J. Appl. Math. doi: 10.1137/0111030 – year: 2013 ident: 10.1016/j.ins.2018.07.063_sbref0039 article-title: Speech recognition with deep recurrent neural networks – year: 2007 ident: 10.1016/j.ins.2018.07.063_bib0031 article-title: Efficient feature selection based on information gain criterion for face recognition – volume: 5 start-page: 863 issue: 4 year: 2014 ident: 10.1016/j.ins.2018.07.063_bib0098 article-title: Understanding the dynamics of heart rate variability in cardiovascular disorders using recurrence quantification analysis and radial basis function neural network publication-title: Int. J. Sci. Eng. Res. – year: 1949 ident: 10.1016/j.ins.2018.07.063_bib0021 – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.ins.2018.07.063_bib0041 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 83 start-page: 48 year: 2017 ident: 10.1016/j.ins.2018.07.063_bib0096 article-title: Automated diagnosis of congestive heart failure using dual tree complex wavelet transform and statistical features extracted from 2 s of ECG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.01.019 – volume: 415 start-page: 190 year: 2017 ident: 10.1016/j.ins.2018.07.063_bib0006 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.06.027 – volume: 15 start-page: 1119 year: 1994 ident: 10.1016/j.ins.2018.07.063_bib0087 article-title: Floating search methods in feature selection publication-title: Pattern Recogni. Lett doi: 10.1016/0167-8655(94)90127-9 – volume: 405 start-page: 81 year: 2017 ident: 10.1016/j.ins.2018.07.063_bib0005 article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.04.012 – year: 2010 ident: 10.1016/j.ins.2018.07.063_bib0022 article-title: Cancellation of high-frequency noise in ECG signals using adaptive filter without external reference – volume: 113 start-page: 919 year: 2014 ident: 10.1016/j.ins.2018.07.063_bib0027 article-title: Neural network and wavelet average framing percentage energy for atrial fibrillation classification publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2013.12.002 – volume: 20 start-page: 1084 year: 2017 ident: 10.1016/j.ins.2018.07.063_bib0054 article-title: ECG based atrial fibrillation detection using sequency ordered complex Hadamard transform and hybrid firefly algorithm publication-title: Eng. Sci. Technol. Int. J. – volume: 32 start-page: 1147 year: 2011 ident: 10.1016/j.ins.2018.07.063_bib0075 article-title: Prediction of paroxysmal atrial fibrillation using recurrence plot-based features of the RR-interval signal publication-title: Physiol. Measur. doi: 10.1088/0967-3334/32/8/010 – start-page: 281 year: 1967 ident: 10.1016/j.ins.2018.07.063_bib0063 article-title: Some methods for classification and analysis of multivariate observations – volume: 3 start-page: 109 issue: 1 year: 1990 ident: 10.1016/j.ins.2018.07.063_bib0094 article-title: Probabilistic neural networks publication-title: Neural Netw. doi: 10.1016/0893-6080(90)90049-Q – year: 2006 ident: 10.1016/j.ins.2018.07.063_bib0018 – year: 2016 ident: 10.1016/j.ins.2018.07.063_bib0003 article-title: Automated characterization of arrhythmias using nonlinear features from tachycardia ECG beats – volume: 2 start-page: 559 issue: 11 year: 1901 ident: 10.1016/j.ins.2018.07.063_bib0083 article-title: On lines and planes of closest fit to systems of points in space publication-title: Philos. Mag. doi: 10.1080/14786440109462720 – volume: 66 issue: 2 year: 2002 ident: 10.1016/j.ins.2018.07.063_bib0072 article-title: Recurrence plot based measures of complexity and its application to heart rate variability data publication-title: Phys. Rev. E – year: 2001 ident: 10.1016/j.ins.2018.07.063_bib0032 – volume: 72 start-page: 160 year: 2016 ident: 10.1016/j.ins.2018.07.063_bib0047 article-title: Rhythm-based heartbeat duration normalization for atrial fibrillation detection publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.03.015 – volume: 54 start-page: 269 year: 2013 ident: 10.1016/j.ins.2018.07.063_bib0069 article-title: Automated detection of atrial fibrillation using Bayesian paradigm publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2013.09.016 – year: 2007 ident: 10.1016/j.ins.2018.07.063_bib0010 – start-page: 1159 year: 2016 ident: 10.1016/j.ins.2018.07.063_bib0107 article-title: Automated atrial fibrillation detection based on deep learning network – volume: 25 start-page: 601 issue: 5 year: 1979 ident: 10.1016/j.ins.2018.07.063_bib0030 article-title: Distribution-free performances bounds for potential function rules publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1979.1056087 – volume: 94 start-page: 19 year: 2018 ident: 10.1016/j.ins.2018.07.063_bib0099 article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.12.023 – volume: 278 start-page: 2039 issue: 6 year: 2000 ident: 10.1016/j.ins.2018.07.063_bib0089 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: Am. J. Phys. Heart Circ. Phys. – year: 1983 ident: 10.1016/j.ins.2018.07.063_bib0065 – volume: 88 issue: 17 year: 2002 ident: 10.1016/j.ins.2018.07.063_bib0016 article-title: Permutation entropy: a natural complexity measure for time series publication-title: Phy. Rev. Lett. doi: 10.1103/PhysRevLett.88.174102 – volume: 13 start-page: 21 issue: 1 year: 1967 ident: 10.1016/j.ins.2018.07.063_bib0025 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.ins.2018.07.063_bib0103 article-title: Support vector machines publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 17 issue: 7 year: 2017 ident: 10.1016/j.ins.2018.07.063_bib0102 article-title: Automated detection of atrial fibrillation ECG signals using two stage VMD and atrial fibrillation diagnosis index publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519417400449 – volume: 12 issue: 5 year: 2012 ident: 10.1016/j.ins.2018.07.063_bib0071 article-title: Automated detection of atrial flutter and fibrillation using ECG signals in wavelet framework publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519412400234 – year: 2006 ident: 10.1016/j.ins.2018.07.063_bib0043 article-title: Computer aided diagnosis of cardiac arrhythmias – volume: 24 start-page: 1 issue: 1 year: 1991 ident: 10.1016/j.ins.2018.07.063_bib0048 article-title: Blind separation of sources, part 1: an adaptive algorithm based on neuromimetic architecture publication-title: Signal Process. doi: 10.1016/0165-1684(91)90079-X – volume: 79 start-page: 2554 issue: 8 year: 1982 ident: 10.1016/j.ins.2018.07.063_bib0046 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl Acad. Sci. U S A doi: 10.1073/pnas.79.8.2554 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.ins.2018.07.063_bib0019 article-title: Random forest publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 4 start-page: 973 issue: 9 year: 1987 ident: 10.1016/j.ins.2018.07.063_bib0033 article-title: Recurrence plots of dynamical systems publication-title: Europhys. Lett. doi: 10.1209/0295-5075/4/9/004 – volume: 27 start-page: 379 issue: 3 year: 1948 ident: 10.1016/j.ins.2018.07.063_bib0093 article-title: A mathematical theory of communication publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb01338.x – volume: 17 issue: 7 year: 2017 ident: 10.1016/j.ins.2018.07.063_bib0049 article-title: Algorithm for the detection of congestive heart failure index publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519417400437 – volume: 16 issue: 1 year: 2016 ident: 10.1016/j.ins.2018.07.063_bib0029 article-title: Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519416400054 – ident: 10.1016/j.ins.2018.07.063_bib0095 – volume: 42 start-page: 83 issue: 1 year: 2012 ident: 10.1016/j.ins.2018.07.063_bib0081 article-title: Empirical mode decomposition based ECG enhancement and QRS detection publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2011.10.012 – volume: 40 start-page: 165 issue: 2 year: 1986 ident: 10.1016/j.ins.2018.07.063_bib0055 article-title: Fuzzy entropy and conditioning publication-title: Inf. Sci. doi: 10.1016/0020-0255(86)90006-X – volume: 46 start-page: 389 issue: 1-3 year: 2002 ident: 10.1016/j.ins.2018.07.063_bib0042 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – volume: 79 start-page: 952 year: 2018 ident: 10.1016/j.ins.2018.07.063_bib0007 article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.08.039 – volume: 10 start-page: 10 issue: 3 year: 1993 ident: 10.1016/j.ins.2018.07.063_bib0079 article-title: Signal processing with higher-order spectra publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.221324 – year: 2004 ident: 10.1016/j.ins.2018.07.063_bib0015 – volume: vol. 136 start-page: 143 year: 2016 ident: 10.1016/j.ins.2018.07.063_bib0001 article-title: Dynamic ECG features for atrial fibrillation recognition publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2016.08.021 – volume: 48 start-page: 989 issue: 9 year: 2001 ident: 10.1016/j.ins.2018.07.063_bib0104 article-title: A short-time multifractal approach for arrhythmia detection based on fuzzy neural network publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.942588 – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.ins.2018.07.063_bib0045 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 19 start-page: 677 year: 2017 ident: 10.1016/j.ins.2018.07.063_bib0026 article-title: Automated detection of paroxysmal atrial fibrillation using an information-based similarity approach publication-title: Entropy doi: 10.3390/e19120677 – year: 1992 ident: 10.1016/j.ins.2018.07.063_bib0053 article-title: The feature selection problem: traditional methods and a new algorithm – volume: 61 start-page: 38 issue: 582 year: 2011 ident: 10.1016/j.ins.2018.07.063_bib0062 article-title: Screening for atrial fibrillation: sensitivity and specificity of a new methodology publication-title: Br. J. Gen. Pract. doi: 10.3399/bjgp11X548956 – start-page: 1 year: 2016 ident: 10.1016/j.ins.2018.07.063_bib0108 article-title: A novel Parkinson's disease diagnosis index using higher-order spectra features in EEG signals publication-title: Neural Comput. Appl. – volume: 2 start-page: 164 year: 1944 ident: 10.1016/j.ins.2018.07.063_bib0061 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Q. Appl. Math. doi: 10.1090/qam/10666 – volume: 15 start-page: 33 year: 2011 ident: 10.1016/j.ins.2018.07.063_bib0097 article-title: Diagnosis of cardiovascular abnormalities from compressed ECG: a datamining-based approach publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2010.2094197 – volume: 10 year: 2015 ident: 10.1016/j.ins.2018.07.063_bib0110 article-title: A real-time atrial fibrillation detection algorithm based on the instantaneous state of heart rate publication-title: PLoS ONE – year: 1984 ident: 10.1016/j.ins.2018.07.063_bib0020 – volume: 89 start-page: 133 year: 2017 ident: 10.1016/j.ins.2018.07.063_bib0050 article-title: Damage detection of composite milling process by recurrence plots and quantifications analysis publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-016-9048-8 – start-page: 281 year: 1995 ident: 10.1016/j.ins.2018.07.063_bib0078 article-title: The Stationary Wavelet Transform and Some Statistical Applications – volume: 60 start-page: 2783 issue: 10 year: 2013 ident: 10.1016/j.ins.2018.07.063_bib0058 article-title: Time-varying coherence function for atrial fibrillation detection publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2264721 – volume: 8 start-page: 888 year: 2013 ident: 10.1016/j.ins.2018.07.063_bib0070 article-title: Application of higher order statistics for atrial arrhythmia classification publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.08.008 – volume: 60 start-page: 203 issue: 1 year: 2013 ident: 10.1016/j.ins.2018.07.063_bib0059 article-title: Atrial fibrillation detection using an iPhone 4S publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2208112 – volume: 2 start-page: 151 year: 2016 ident: 10.1016/j.ins.2018.07.063_bib0013 article-title: ECG-based atrial fibrillation detection using different orderings of conjugate symmetric-complex Hadamard transform publication-title: Int. J. Cardiovas. Acad. doi: 10.1016/j.ijcac.2016.08.001 – start-page: 547 year: 1961 ident: 10.1016/j.ins.2018.07.063_bib0088 article-title: On measures of entropy and information – volume: 32 start-page: 230 issue: 3 year: 1985 ident: 10.1016/j.ins.2018.07.063_bib0082 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1985.325532 – year: 2016 ident: 10.1016/j.ins.2018.07.063_bib0038 – volume: 129 start-page: 837 year: 2014 ident: 10.1016/j.ins.2018.07.063_bib0023 article-title: Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.113.005119 – year: 2016 ident: 10.1016/j.ins.2018.07.063_bib0085 article-title: CNN-N-Gram for handwriting word recognition – volume: vol. 113 start-page: 55 year: 2014 ident: 10.1016/j.ins.2018.07.063_bib0002 article-title: Linear and nonlinear analysis of normal and CAD-affected heart rate signals publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2013.08.017 – volume: 18 start-page: 570 issue: 4 year: 2017 ident: 10.1016/j.ins.2018.07.063_bib0057 article-title: Deep learning in medical imaging: general overview publication-title: Korean J. Radiol. doi: 10.3348/kjr.2017.18.4.570 – year: 2010 ident: 10.1016/j.ins.2018.07.063_bib0080 article-title: Signals, Systems, and Inference – volume: 37 start-page: 1701 issue: 9 year: 2009 ident: 10.1016/j.ins.2018.07.063_bib0028 article-title: Automatic real time detection of atrial fibrillation publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-009-9740-z – volume: 93 start-page: 84 year: 2018 ident: 10.1016/j.ins.2018.07.063_bib0105 article-title: Detecting atrial fibrillation by deep convolutional neural networks publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.12.007 – volume: 15 start-page: 306 issue: 4 year: 1994 ident: 10.1016/j.ins.2018.07.063_bib0092 article-title: The continuous wavelet transform: a tool for signal investigation and understanding publication-title: John Hopkins APL Tech Digest – ident: 10.1016/j.ins.2018.07.063_bib0073 – volume: 132 start-page: 62 year: 2017 ident: 10.1016/j.ins.2018.07.063_bib0004 article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.06.003 – volume: 65 start-page: 117 year: 1993 ident: 10.1016/j.ins.2018.07.063_bib0091 article-title: A practical method for calculating largest Lyapunov exponents from small data sets publication-title: Phys. D doi: 10.1016/0167-2789(93)90009-P – volume: 313 start-page: 504 year: 2006 ident: 10.1016/j.ins.2018.07.063_bib0044 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – year: 2017 ident: 10.1016/j.ins.2018.07.063_bib0106 article-title: Atrial fibrillation detection by multi-scale convolutional neural network – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.ins.2018.07.063_bib0037 article-title: PhysioBank, PhysioToolkit, and PhyisoNet: Components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 89 start-page: 389 year: 2017 ident: 10.1016/j.ins.2018.07.063_bib0009 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.08.022 – volume: 88 start-page: 2297 year: 1991 ident: 10.1016/j.ins.2018.07.063_bib0084 article-title: Approximate entropy as a measure of system complexity publication-title: Proc. Natl. Acad Sci U S A doi: 10.1073/pnas.88.6.2297 – volume: 83 start-page: 161 year: 2017 ident: 10.1016/j.ins.2018.07.063_bib0024 article-title: Development of an automaton model rotational activity during atrial fibrillation publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.02.008 – volume: 48 start-page: 133 year: 2014 ident: 10.1016/j.ins.2018.07.063_bib0067 article-title: Current methods in electrocardiogram characterization publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2014.02.012 – year: 2018 ident: 10.1016/j.ins.2018.07.063_bib0008 article-title: Entropies for automated detection of coronary artery disease using ECG signals: a review publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2018.03.001 – volume: 6 start-page: 679 issue: 4 year: 1957 ident: 10.1016/j.ins.2018.07.063_bib0017 article-title: A markovian decision process publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.1957.6.56038 – volume: 19 start-page: 51 issue: 2 year: 2011 ident: 10.1016/j.ins.2018.07.063_bib0052 article-title: Role of echocardiography in atrial fibrillation publication-title: J. Cardiovasc. Ultrasound doi: 10.4250/jcu.2011.19.2.51 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 10.1016/j.ins.2018.07.063_bib0056 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 39 start-page: 664 issue: 6 year: 2001 ident: 10.1016/j.ins.2018.07.063_bib0100 article-title: Automatic detection of atrial fibrillation using the coefficient of variation and density histogram of RR and ΔRR intervals publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02345439 – start-page: 57 year: 2013 ident: 10.1016/j.ins.2018.07.063_bib0086 article-title: Application of higher-order spectra for accurate delineation of atrial arrhythmia – volume: 13 start-page: 1 year: 2014 ident: 10.1016/j.ins.2018.07.063_bib0109 article-title: Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy publication-title: Biomed. Eng. OnLine doi: 10.1186/1475-925X-13-18 – volume: 26 start-page: R155 year: 2005 ident: 10.1016/j.ins.2018.07.063_bib0011 article-title: Wavelet transforms and the ECG: A review publication-title: Physiol. Meas. doi: 10.1088/0967-3334/26/5/R01 – volume: C-23 start-page: 90 issue: 1 year: 1974 ident: 10.1016/j.ins.2018.07.063_bib0012 article-title: Discrete cosine transform publication-title: IEEE Trans.Comput. doi: 10.1109/T-C.1974.223784 – year: 2005 ident: 10.1016/j.ins.2018.07.063_bib0060 – volume: 43 start-page: 519 issue: 5 year: 1996 ident: 10.1016/j.ins.2018.07.063_bib0064 article-title: Genetic algorithms: concepts and applications (in engineering design) publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/41.538609 |
SSID | ssj0004766 |
Score | 2.593566 |
Snippet | •Existing AF detection techniques are discussed.•Building blocks of CADx system are described.•Different features explored by researchers are... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 99 |
SubjectTerms | Arrhythmia Atrial fibrillation Computer-aided diagnosis system Electrocardiogram signals Machine learning |
Title | Computer-aided diagnosis of atrial fibrillation based on ECG Signals: A review |
URI | https://dx.doi.org/10.1016/j.ins.2018.07.063 |
Volume | 467 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7sx0UPolNx6kYO4kGoa9M0TbyNsTkVd9HBbiVtEqmMbei8-rebtKlOUA_e2tAH7cvrywv5vu8BnNEUqzDimccYCT3CpMmDmY49FUSKCq0FLkhh9xM6npLbWTSrwaDiwlhYpcv9ZU4vsrUb6Tlv9lZ5bjm-uKiITVCaGiGI69DEIadRA5r9m7vx5IseGZdHlnanZA2qw80C5pUvrGh3wAoJTxr-vDxtLDmjXdhxtSLql6-zBzW1aMH2hoJgCzqOd4DOkSMWWUcj98fuw6Tq2uBZKUiJZImsy1_RUiNRtOxA2qL-5yUmDtlVTSJzMRxco4f8ycorX6E-KikuBzAdDR8HY8-1UPCykIZrz3w550oJohTjmGba7PA4FlT5gaQ04yTVCktMtPap9H2hzMyFXJttH7O6OEF4CI3FcqGOAKU4i1WUMumbmsWkpVRLLLRigU7NOBFt8CvPJZnTF7dtLuZJBSR7ToyzE-vsxI8T4-w2XHyarEpxjb8eJtV0JN8iJDHJ_3ez4_-ZncCWvSthe6fQWL-8qY4pP9ZpF-qX70HXBdkHsL3Ypg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV2xTsMwED2VMgADggKiQMEDYkAKJI7jOGxV1VKg7UIrdbOS2EZBVVpBWfl27MSBIgEDW-T4pOR8vjvL794BnNMESz-IUocx4juECe0HUxU60gskjZWKcVEUNhzR_oTcT4NpDTpVLYyBVVrfX_r0wlvbkWurzetFlpkaX1xkxNoodY7ghWuwTgI_NAT6V-9fOA8SlheW5pxkpldXmwXIK8sNZbfHCgJP6v8cnFYCTm8Htm2miNrlx-xCTeYN2FrhD2xAy1YdoAtky4qMmpHdr3swqno2OIYIUiBR4uqyVzRXKC4adiBlMP-zEhGHTEwTSD90O7foMXsy5Mo3qI3KApd9mPS6407fsQ0UnNSn_tLRfx5FUsZEShZhmip9votwTKXrCUrTiCRKYoGJUi4VrhtLvW5-pPShjxlWHM8_gHo-z-UhoASnoQwSJlydsWinlCiBYyWZpxI9TuImuJXmeGrZxU2TixmvYGTPXCubG2VzN-Ra2U24_BRZlNQaf00m1XLwb_bBtev_Xezof2JnsNEfDwd8cDd6OIZN86YE8J1AffnyJls6EVkmp4WhfQB98dlw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+diagnosis+of+atrial+fibrillation+based+on+ECG+Signals%3A+A+review&rft.jtitle=Information+sciences&rft.au=Hagiwara%2C+Yuki&rft.au=Fujita%2C+Hamido&rft.au=Oh%2C+Shu+Lih&rft.au=Tan%2C+Jen+Hong&rft.date=2018-10-01&rft.issn=0020-0255&rft.volume=467&rft.spage=99&rft.epage=114&rft_id=info:doi/10.1016%2Fj.ins.2018.07.063&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2018_07_063 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |