A method for assisting the accident consequence prediction and cause investigation in petrochemical industries based on natural language processing technology

Risk analysis for production processes in the petrochemical industry is an important procedure for consequence prediction and investigation of accidents. The analyzer must grasp the correlations between the possible causes and consequences. From the potential cause and effect found in risk analysis...

Full description

Saved in:
Bibliographic Details
Published inJournal of loss prevention in the process industries Vol. 83; p. 105028
Main Authors Wang, Feng, Gu, Wunan, Bai, Yan, Bian, Jing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2023
Subjects
Online AccessGet full text
ISSN0950-4230
DOI10.1016/j.jlp.2023.105028

Cover

Abstract Risk analysis for production processes in the petrochemical industry is an important procedure for consequence prediction and investigation of accidents. The analyzer must grasp the correlations between the possible causes and consequences. From the potential cause and effect found in risk analysis reports, complete clarification should be obtained. Therefore, this study presents a method for assisting accident consequence prediction and investigation in the petrochemical industry based on risk analysis reports using natural language processing technology. First, a hazard and operability (HAZOP) historical data table is established by filling over 7200 HAZOP analysis data points. Both the causes and consequences in the table are classified into 20 categories each using the Latent Dirichlet Allocation (LDA) models. The LDA clustering results are assigned classification for the cause and consequence topics to the cause and consequences of the HAZOP analysis data. Based on part-of-speech (POS) tagging, all the words in each cause and consequence record are divided into subject and action words. Next, the word combinations of subject and action words with a higher occurrence are considered the key phrases for describing and representing the corresponding cause and consequence topic classifications. The Apriori algorithm is used to determine the frequent item sets, acquire the association rules, and calculate the association degree to obtain the sort order; it can highlight general trends in relational cause and consequence topics. According to the results, the most likely cause of the consequence and the most likely consequence that the cause may lead to are identified. Finally, a visual interface is developed to present the data for the consequence prediction and cause investigation of accidents. The results reveal that the quantity and quality of historic data are important factors that may influence the results. This method can contribute to predicting the accident evolution trend of an abnormal situation, taking preventive measures in advance, improving the accuracy of early warning, and supporting emergency response measures. •Proposing a method for assisting the accident consequence prediction and cause investigation in petrochemical industries based on natural language processing.•Using the LDA model and POS tagging to explore the potential topic information of causes and consequences in HAZOP analysis data.•Based on HAZOP historical data query and the Apriori algorithm to determine the association relationship of causes and consequences.
AbstractList Risk analysis for production processes in the petrochemical industry is an important procedure for consequence prediction and investigation of accidents. The analyzer must grasp the correlations between the possible causes and consequences. From the potential cause and effect found in risk analysis reports, complete clarification should be obtained. Therefore, this study presents a method for assisting accident consequence prediction and investigation in the petrochemical industry based on risk analysis reports using natural language processing technology. First, a hazard and operability (HAZOP) historical data table is established by filling over 7200 HAZOP analysis data points. Both the causes and consequences in the table are classified into 20 categories each using the Latent Dirichlet Allocation (LDA) models. The LDA clustering results are assigned classification for the cause and consequence topics to the cause and consequences of the HAZOP analysis data. Based on part-of-speech (POS) tagging, all the words in each cause and consequence record are divided into subject and action words. Next, the word combinations of subject and action words with a higher occurrence are considered the key phrases for describing and representing the corresponding cause and consequence topic classifications. The Apriori algorithm is used to determine the frequent item sets, acquire the association rules, and calculate the association degree to obtain the sort order; it can highlight general trends in relational cause and consequence topics. According to the results, the most likely cause of the consequence and the most likely consequence that the cause may lead to are identified. Finally, a visual interface is developed to present the data for the consequence prediction and cause investigation of accidents. The results reveal that the quantity and quality of historic data are important factors that may influence the results. This method can contribute to predicting the accident evolution trend of an abnormal situation, taking preventive measures in advance, improving the accuracy of early warning, and supporting emergency response measures. •Proposing a method for assisting the accident consequence prediction and cause investigation in petrochemical industries based on natural language processing.•Using the LDA model and POS tagging to explore the potential topic information of causes and consequences in HAZOP analysis data.•Based on HAZOP historical data query and the Apriori algorithm to determine the association relationship of causes and consequences.
ArticleNumber 105028
Author Gu, Wunan
Bai, Yan
Bian, Jing
Wang, Feng
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0002-3549-4819
  surname: Wang
  fullname: Wang, Feng
  email: wangfeng991@163.com
– sequence: 2
  givenname: Wunan
  surname: Gu
  fullname: Gu, Wunan
– sequence: 3
  givenname: Yan
  surname: Bai
  fullname: Bai, Yan
– sequence: 4
  givenname: Jing
  surname: Bian
  fullname: Bian, Jing
BookMark eNp9kEtuwyAQhlmkUpO0B-iOCzjFxk91FUV9SZG6adeIDmOHyAEXcKVcpmctTrrqIrNBM_D9I74FmRlrkJC7lK1Slpb3-9W-H1YZy3jsC5bVMzJnTcGSPOPsmiy83zOWVqyu5uRnTQ8YdlbR1joqvdc-aNPRsEMqAbRCEyhY4_FrRANIB4dKQ9DWUGkUBTl6pNp8Y-Q6eZprQwcMzsIODxpkHwdq9MFp9PRTelQ0PjIyjC7e9dJ0o-ymYAsY90_LEXbG9rY73pCrVvYeb__OJfl4enzfvCTbt-fXzXqbAC95SKqiZaVSVc2RSZ43TVkVsTivU1mrumxVWWKe1xVXvIUmbapcFbwGVG1W5LLlS5Kec8FZ7x22YnD6IN1RpExMUsVeRKlikirOUiNT_WNAh5OB4KTuL5IPZxLjl741OuFBT3aVdghBKKsv0L_lYZpE
CitedBy_id crossref_primary_10_1016_j_psep_2025_106980
crossref_primary_10_1080_17457300_2023_2239240
crossref_primary_10_1371_journal_pone_0296910
crossref_primary_10_1016_j_psep_2024_02_078
crossref_primary_10_1016_j_psep_2024_02_022
crossref_primary_10_1016_j_compchemeng_2024_108677
crossref_primary_10_1016_j_jlp_2024_105310
crossref_primary_10_1080_13669877_2024_2387334
crossref_primary_10_3390_pr12112373
Cites_doi 10.1016/j.compchemeng.2022.107786
10.1016/j.psep.2021.12.025
10.1016/j.psep.2018.12.008
10.1016/j.ins.2018.10.006
10.1016/j.psep.2022.11.074
10.1016/j.jlp.2022.104747
10.1016/j.jlp.2006.03.004
10.1016/j.psep.2012.07.003
10.1016/j.procs.2019.12.103
10.1016/j.jlp.2021.104479
10.1016/j.jclepro.2022.130780
10.1016/j.psep.2021.09.001
10.1016/j.jlp.2020.104321
10.1016/j.csl.2017.12.004
10.1016/j.aei.2020.101152
10.1016/j.jlp.2022.104911
10.1016/j.dss.2017.11.001
10.1016/j.jlp.2021.104578
10.1016/j.eng.2019.12.014
10.1016/j.gltp.2022.03.015
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jlp.2023.105028
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jlp_2023_105028
S095042302300058X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX7
M41
MO0
MS~
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
WUQ
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c363t-75f06dd783e0a34996755553381a8d86fd66e44873d3fc91974d538cedf254af3
IEDL.DBID .~1
ISSN 0950-4230
IngestDate Thu Apr 24 23:06:17 EDT 2025
Sat Oct 25 05:12:01 EDT 2025
Fri Feb 23 02:38:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords LDA
Association analysis
Data mining
HAZOP
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-75f06dd783e0a34996755553381a8d86fd66e44873d3fc91974d538cedf254af3
ORCID 0000-0002-3549-4819
ParticipantIDs crossref_primary_10_1016_j_jlp_2023_105028
crossref_citationtrail_10_1016_j_jlp_2023_105028
elsevier_sciencedirect_doi_10_1016_j_jlp_2023_105028
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Journal of loss prevention in the process industries
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Niu, Fan, Gao (bib16) 2019; 15
Sarıalioğlu, Uğurlu, Aydın, Vardar, Wang (bib18) 2022; 247
Zhou, Yang, Zheng (bib28) 2018; 37
Li, Zhang, Gao (bib10) 2021; 40
Nivolianitou, Konstandinidou, Kiranoudis, Markatos (bib17) 2006; 19
John, Shaiba (bib5) 2019; 163
Kamil, Khan, Halim, Amyotte, Ahmed (bib6) 2023; 107
Suzuki, Izato, Miyake (bib20) 2021; 71
Wu, Xu, Na, Zhang (bib25) 2012; 63
Zhou, Duan, Liu, Shum (bib29) 2019; 6
Feng, Dai, Ji, Zhou, Dang (bib3) 2021; 155
Wang, Gu (bib23) 2022; 80
Wang, Xu (bib24) 2018; 105
Zhong, Pan, Love, Sun, Tao (bib27) 2020; 46
Aziz, Ahmed, Khan (bib1) 2019; 123
Xu, Liu, Shu, Bai, Motalifu, He, Wu, Zhou, Li (bib26) 2022; 76
Nguyen, Safder, Kim, Heo, Yoo (bib15) 2022; 339
Macêdo, Moura, Aichele, Lins (bib11) 2022; 158
Tyler (bib22) 2012; 90
Geeganage, Xu, Li (bib4) 2021; 216
Bach, Linh, Phuong (bib2) 2018; 50
Kim, Seo, Cho, Kang (bib8) 2018; 477
Macêdo, Moura, Ramos, Lins, Zio (bib12) 2022; 77
Tamascelli, Paltrinieri, Cozzani (bib21) 2022; 162
Kho, Pahlavani, Bigdeli (bib7) 2021; 23
Kumar, Ritu, Hemanth, Reddy, Apil, Doren (bib9) 2022; 3
Mirhashemi, Mirzaei (bib14) 2020; vol. 12
Single, Schmidt, Denecke (bib19) 2020; 68
Meng, M Song, Zhao, Liu (bib13) 2021; 72
Niu (10.1016/j.jlp.2023.105028_bib16) 2019; 15
Sarıalioğlu (10.1016/j.jlp.2023.105028_bib18) 2022; 247
Tyler (10.1016/j.jlp.2023.105028_bib22) 2012; 90
Wu (10.1016/j.jlp.2023.105028_bib25) 2012; 63
Kim (10.1016/j.jlp.2023.105028_bib8) 2018; 477
Bach (10.1016/j.jlp.2023.105028_bib2) 2018; 50
Kamil (10.1016/j.jlp.2023.105028_bib6) 2023; 107
Macêdo (10.1016/j.jlp.2023.105028_bib12) 2022; 77
Wang (10.1016/j.jlp.2023.105028_bib23) 2022; 80
Meng (10.1016/j.jlp.2023.105028_bib13) 2021; 72
Zhong (10.1016/j.jlp.2023.105028_bib27) 2020; 46
Zhou (10.1016/j.jlp.2023.105028_bib29) 2019; 6
Mirhashemi (10.1016/j.jlp.2023.105028_bib14) 2020; vol. 12
Nguyen (10.1016/j.jlp.2023.105028_bib15) 2022; 339
Aziz (10.1016/j.jlp.2023.105028_bib1) 2019; 123
Geeganage (10.1016/j.jlp.2023.105028_bib4) 2021; 216
Nivolianitou (10.1016/j.jlp.2023.105028_bib17) 2006; 19
Zhou (10.1016/j.jlp.2023.105028_bib28) 2018; 37
Wang (10.1016/j.jlp.2023.105028_bib24) 2018; 105
Single (10.1016/j.jlp.2023.105028_bib19) 2020; 68
Macêdo (10.1016/j.jlp.2023.105028_bib11) 2022; 158
Tamascelli (10.1016/j.jlp.2023.105028_bib21) 2022; 162
Kumar (10.1016/j.jlp.2023.105028_bib9) 2022; 3
Kho (10.1016/j.jlp.2023.105028_bib7) 2021; 23
Suzuki (10.1016/j.jlp.2023.105028_bib20) 2021; 71
Feng (10.1016/j.jlp.2023.105028_bib3) 2021; 155
John (10.1016/j.jlp.2023.105028_bib5) 2019; 163
Xu (10.1016/j.jlp.2023.105028_bib26) 2022; 76
Li (10.1016/j.jlp.2023.105028_bib10) 2021; 40
References_xml – volume: 63
  start-page: 1484
  year: 2012
  end-page: 1491
  ident: bib25
  article-title: Standardized information for process hazard analysis based on ontology
  publication-title: CIESC J.
– volume: 19
  start-page: 630
  year: 2006
  end-page: 638
  ident: bib17
  article-title: Development of a database for accidents and incidents in the Greek petrochemical industry
  publication-title: J. Loss Prev. Process. Ind.
– volume: 6
  start-page: 275
  year: 2019
  end-page: 290
  ident: bib29
  article-title: Progress in neural NLP: modeling, learning, and reasoning
  publication-title: Engineering
– volume: 158
  start-page: 382
  year: 2022
  end-page: 399
  ident: bib11
  article-title: Identification of risk features using text mining and BERT-based models: application to an oil refinery
  publication-title: J. Process Saf. Environ. Prot.
– volume: vol. 12
  year: 2020
  ident: bib14
  publication-title: Extracting Association Rules from Changes in Aquifer Drawdown in Irrigation Areas of Qazvin Plain
– volume: 107
  start-page: 339
  year: 2023
  end-page: 355
  ident: bib6
  article-title: A methodical approach for knowledge-based fire and explosion accident likelihood analysis
  publication-title: Process Saf. Environ. Protect.
– volume: 3
  start-page: 298
  year: 2022
  end-page: 304
  ident: bib9
  article-title: Prediction of research trends using LDA based topic modeling
  publication-title: Global Transitions Proceedings
– volume: 105
  start-page: 87
  year: 2018
  end-page: 95
  ident: bib24
  article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud
  publication-title: Decis. Support Syst.
– volume: 68
  year: 2020
  ident: bib19
  article-title: Ontology-based computer aid for the automation of HAZOP studies
  publication-title: J. Loss Prev. Process. Ind.
– volume: 216
  year: 2021
  ident: bib4
  article-title: Semantic-based topic representation using frequent semantic patterns
  publication-title: Knowl-Based Syst.
– volume: 90
  start-page: 419
  year: 2012
  end-page: 423
  ident: bib22
  article-title: HAZOP study training from the 1970s to today
  publication-title: Process Saf. Environ. Protect.
– volume: 46
  year: 2020
  ident: bib27
  article-title: Hazard analysis: a deep learning and text mining framework for accident prevention
  publication-title: Adv. Eng. Inf.
– volume: 155
  start-page: 41
  year: 2021
  end-page: 48
  ident: bib3
  article-title: Application of natural language processing in HAZOP reports
  publication-title: Process Saf. Environ. Protect.
– volume: 40
  start-page: 4666
  year: 2021
  end-page: 4677
  ident: bib10
  article-title: Construction method of HAZOP knowledge graph
  publication-title: Chem. Ind. Eng. Prog.
– volume: 23
  year: 2021
  ident: bib7
  article-title: Classification and association rule mining of road collisions for analyzing the fatal severity, a case study
  publication-title: J. Transport Health
– volume: 72
  year: 2021
  ident: bib13
  article-title: Alarm management optimization in chemical installations based on adapted HAZOP reports
  publication-title: J. Loss Prev. Process. Ind.
– volume: 123
  start-page: 87
  year: 2019
  end-page: 98
  ident: bib1
  article-title: An ontology-based methodology for hazard identification and causation analysis
  publication-title: Process Saf. Environ. Protect.
– volume: 339
  year: 2022
  ident: bib15
  article-title: An adaptive safety-risk mitigation plan at process-level for sustainable production in chemical industries: an integrated fuzzy-HAZOP-best-worst approach
  publication-title: J. Clean. Prod.
– volume: 15
  start-page: 165
  year: 2019
  end-page: 170
  ident: bib16
  article-title: Topic extraction on causes of chemical production accidents based on data mining
  publication-title: Journal of Safety Science and Technology
– volume: 80
  year: 2022
  ident: bib23
  article-title: Intelligent HAZOP analysis method based on data mining
  publication-title: J. Loss Prev. Process. Ind.
– volume: 162
  year: 2022
  ident: bib21
  article-title: Learning from major accidents: a machine learning approach
  publication-title: Comput. Chem. Eng.
– volume: 247
  year: 2022
  ident: bib18
  article-title: A hybrid model for marine accident analysis based on Bayesian Network (BN) and Association Rule Mining (ARM)
  publication-title: Ocean Eng.
– volume: 477
  start-page: 15
  year: 2018
  end-page: 29
  ident: bib8
  article-title: Multi-co-training for document classification using various document representations: TF–IDF, LDA, and Doc2Vec
  publication-title: Inf. Sci.
– volume: 163
  start-page: 218
  year: 2019
  end-page: 227
  ident: bib5
  article-title: Apriori-based algorithm for dubai road accident analysis
  publication-title: Procedia Comput. Sci.
– volume: 77
  year: 2022
  ident: bib12
  article-title: Machine learning-based models to prioritize scenarios in a Quantitative Risk Analysis: an application to an actual atmospheric distillation unit
  publication-title: J. Loss Prev. Process. Ind.
– volume: 71
  year: 2021
  ident: bib20
  article-title: Identification of accident scenarios caused by internal factors using HAZOP to assess an organic hydride hydrogen refueling station involving methylcyclohexane
  publication-title: J. Loss Prev. Process. Ind.
– volume: 76
  year: 2022
  ident: bib26
  article-title: Cause analysis of hot work accidents based on text mining and deep learning
  publication-title: J. Loss Prev. Process. Ind.
– volume: 37
  start-page: 815
  year: 2018
  end-page: 821
  ident: bib28
  article-title: Research progress of intelligent HAZOP analysis system
  publication-title: Chem. Ind. Eng. Prog.
– volume: 50
  start-page: 1
  year: 2018
  end-page: 15
  ident: bib2
  article-title: An empirical study on POS tagging for Vietnamese social media text
  publication-title: Comput. Speech Lang
– volume: 162
  year: 2022
  ident: 10.1016/j.jlp.2023.105028_bib21
  article-title: Learning from major accidents: a machine learning approach
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107786
– volume: 158
  start-page: 382
  year: 2022
  ident: 10.1016/j.jlp.2023.105028_bib11
  article-title: Identification of risk features using text mining and BERT-based models: application to an oil refinery
  publication-title: J. Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2021.12.025
– volume: 40
  start-page: 4666
  issue: 8
  year: 2021
  ident: 10.1016/j.jlp.2023.105028_bib10
  article-title: Construction method of HAZOP knowledge graph
  publication-title: Chem. Ind. Eng. Prog.
– volume: 247
  year: 2022
  ident: 10.1016/j.jlp.2023.105028_bib18
  article-title: A hybrid model for marine accident analysis based on Bayesian Network (BN) and Association Rule Mining (ARM)
  publication-title: Ocean Eng.
– volume: 37
  start-page: 815
  issue: 3
  year: 2018
  ident: 10.1016/j.jlp.2023.105028_bib28
  article-title: Research progress of intelligent HAZOP analysis system
  publication-title: Chem. Ind. Eng. Prog.
– volume: 123
  start-page: 87
  year: 2019
  ident: 10.1016/j.jlp.2023.105028_bib1
  article-title: An ontology-based methodology for hazard identification and causation analysis
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2018.12.008
– volume: 477
  start-page: 15
  year: 2018
  ident: 10.1016/j.jlp.2023.105028_bib8
  article-title: Multi-co-training for document classification using various document representations: TF–IDF, LDA, and Doc2Vec
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.10.006
– volume: 107
  start-page: 339
  year: 2023
  ident: 10.1016/j.jlp.2023.105028_bib6
  article-title: A methodical approach for knowledge-based fire and explosion accident likelihood analysis
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2022.11.074
– volume: 76
  year: 2022
  ident: 10.1016/j.jlp.2023.105028_bib26
  article-title: Cause analysis of hot work accidents based on text mining and deep learning
  publication-title: J. Loss Prev. Process. Ind.
  doi: 10.1016/j.jlp.2022.104747
– volume: 19
  start-page: 630
  year: 2006
  ident: 10.1016/j.jlp.2023.105028_bib17
  article-title: Development of a database for accidents and incidents in the Greek petrochemical industry
  publication-title: J. Loss Prev. Process. Ind.
  doi: 10.1016/j.jlp.2006.03.004
– volume: 90
  start-page: 419
  issue: 5
  year: 2012
  ident: 10.1016/j.jlp.2023.105028_bib22
  article-title: HAZOP study training from the 1970s to today
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2012.07.003
– volume: 163
  start-page: 218
  issue: C
  year: 2019
  ident: 10.1016/j.jlp.2023.105028_bib5
  article-title: Apriori-based algorithm for dubai road accident analysis
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.12.103
– volume: 71
  year: 2021
  ident: 10.1016/j.jlp.2023.105028_bib20
  article-title: Identification of accident scenarios caused by internal factors using HAZOP to assess an organic hydride hydrogen refueling station involving methylcyclohexane
  publication-title: J. Loss Prev. Process. Ind.
  doi: 10.1016/j.jlp.2021.104479
– volume: 216
  year: 2021
  ident: 10.1016/j.jlp.2023.105028_bib4
  article-title: Semantic-based topic representation using frequent semantic patterns
  publication-title: Knowl-Based Syst.
– volume: 339
  year: 2022
  ident: 10.1016/j.jlp.2023.105028_bib15
  article-title: An adaptive safety-risk mitigation plan at process-level for sustainable production in chemical industries: an integrated fuzzy-HAZOP-best-worst approach
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.130780
– volume: 155
  start-page: 41
  year: 2021
  ident: 10.1016/j.jlp.2023.105028_bib3
  article-title: Application of natural language processing in HAZOP reports
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2021.09.001
– volume: 77
  year: 2022
  ident: 10.1016/j.jlp.2023.105028_bib12
  article-title: Machine learning-based models to prioritize scenarios in a Quantitative Risk Analysis: an application to an actual atmospheric distillation unit
  publication-title: J. Loss Prev. Process. Ind.
– volume: 15
  start-page: 165
  issue: 10
  year: 2019
  ident: 10.1016/j.jlp.2023.105028_bib16
  article-title: Topic extraction on causes of chemical production accidents based on data mining
  publication-title: Journal of Safety Science and Technology
– volume: 68
  year: 2020
  ident: 10.1016/j.jlp.2023.105028_bib19
  article-title: Ontology-based computer aid for the automation of HAZOP studies
  publication-title: J. Loss Prev. Process. Ind.
  doi: 10.1016/j.jlp.2020.104321
– volume: vol. 12
  year: 2020
  ident: 10.1016/j.jlp.2023.105028_bib14
– volume: 23
  year: 2021
  ident: 10.1016/j.jlp.2023.105028_bib7
  article-title: Classification and association rule mining of road collisions for analyzing the fatal severity, a case study
  publication-title: J. Transport Health
– volume: 63
  start-page: 1484
  issue: 5
  year: 2012
  ident: 10.1016/j.jlp.2023.105028_bib25
  article-title: Standardized information for process hazard analysis based on ontology
  publication-title: CIESC J.
– volume: 50
  start-page: 1
  year: 2018
  ident: 10.1016/j.jlp.2023.105028_bib2
  article-title: An empirical study on POS tagging for Vietnamese social media text
  publication-title: Comput. Speech Lang
  doi: 10.1016/j.csl.2017.12.004
– volume: 46
  year: 2020
  ident: 10.1016/j.jlp.2023.105028_bib27
  article-title: Hazard analysis: a deep learning and text mining framework for accident prevention
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2020.101152
– volume: 80
  year: 2022
  ident: 10.1016/j.jlp.2023.105028_bib23
  article-title: Intelligent HAZOP analysis method based on data mining
  publication-title: J. Loss Prev. Process. Ind.
  doi: 10.1016/j.jlp.2022.104911
– volume: 105
  start-page: 87
  year: 2018
  ident: 10.1016/j.jlp.2023.105028_bib24
  article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2017.11.001
– volume: 72
  year: 2021
  ident: 10.1016/j.jlp.2023.105028_bib13
  article-title: Alarm management optimization in chemical installations based on adapted HAZOP reports
  publication-title: J. Loss Prev. Process. Ind.
  doi: 10.1016/j.jlp.2021.104578
– volume: 6
  start-page: 275
  issue: 3
  year: 2019
  ident: 10.1016/j.jlp.2023.105028_bib29
  article-title: Progress in neural NLP: modeling, learning, and reasoning
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.12.014
– volume: 3
  start-page: 298
  issue: 1
  year: 2022
  ident: 10.1016/j.jlp.2023.105028_bib9
  article-title: Prediction of research trends using LDA based topic modeling
  publication-title: Global Transitions Proceedings
  doi: 10.1016/j.gltp.2022.03.015
SSID ssj0017087
Score 2.4160526
Snippet Risk analysis for production processes in the petrochemical industry is an important procedure for consequence prediction and investigation of accidents. The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105028
SubjectTerms Association analysis
Data mining
HAZOP
LDA
Title A method for assisting the accident consequence prediction and cause investigation in petrochemical industries based on natural language processing technology
URI https://dx.doi.org/10.1016/j.jlp.2023.105028
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0950-4230
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017087
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  issn: 0950-4230
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017087
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0950-4230
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017087
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0950-4230
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017087
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0950-4230
  databaseCode: AKRWK
  dateStart: 19880101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017087
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5VB6YkEKTOk3csaqoCoguUKlb5PiBUlUhatOVn8Jv5c5O2iIBA9ninJXI5_i-s-_uI-Smww3oUqQe76XCC8GEeCKWHS_tiS6XSgOow0Th53E0moSP0-60QQZ1LgyGVVZrv1vT7WpdtbSr0WwXWdZ-AXCAQR0IopEcb4oZ7GGMLAZ3H-swjyD2LUkeCnsoXZ9s2hiv2RxLVnYYst36SMj-k23asjfDQ3JQAUXad99yRBo6Pyb7W-UDT8hnnzoCaArIkwIKxv81f6OA6aiQEulCSyo34dK0WOCxDKqCilxRKVZLTbNNpQ1oz3IKONryaNlCAtDguD30kqLFUxSEbDVQeFZvdtLCpRvYl6_36k_JZHj_Ohh5Fd-CJ1nESi_uGj9SKuZM-4KBKwTOBFzgxAaCKx4ZFUUa3LmYKWZkLwBXRMF6CZoy4GYKw87ITv6e63NCTciFxAyDNJChSUOegpKE5F0_NdJo1SR-PdKJrIqRIyfGPKmjzmYJKCdB5SROOU1yu-5SuEocfwmHtfqSb9MpAUvxe7eL_3W7JHt456J4r8hOuVjpa8AqZdqyk7FFdvsPT6PxF8uI7LM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD-rB-Iz47MGTSWXfW46EaFCBi5Bw23T7MBCybmC5-lP8rc7sAzBRD-6xnWY3nW7nm3ZmPkJuHW5AlyJmvBUL5oEJYSKUDotbwudSaQB1mCjcHwTdkfc89sc10qlyYTCsstz7iz09363LlmY5m810Mmm-AjjAoA4E0UiON94i257vhOiB3X-s4jzs0MpZ8lCaoXh1tZkHeU1nWLPScZHu1kJG9p-M04bBeTwg-yVSpO3iYw5JTSdHZG-jfuAx-WzTggGaAvSkAIPxh03eKIA6KqREvtCMynW8NE3neC-DuqAiUVSK5ULTybrUBrRPEgpAOifSyisJQENB7qEXFE2eoiCUlwOFvuq0k6ZFvkH-8tVh_QkZPT4MO11WEi4w6QZuxkLfWIFSIXe1JVzwhcCbgAe8WFtwxQOjgkCDPxe6yjWyZYMvomDDBFUZ8DOFcU9JPXlP9BmhxuNCYopBbEvPxB6PQUtCct-KjTRaNYhVzXQky2rkSIoxi6qws2kEyolQOVGhnAa5Ww1Ji1Icfwl7lfqib-spAlPx-7Dz_w27ITvdYb8X9Z4GLxdkF3uKkN5LUs_mS30FwCWLr_OF-QVN7e5I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+assisting+the+accident+consequence+prediction+and+cause+investigation+in+petrochemical+industries+based+on+natural+language+processing+technology&rft.jtitle=Journal+of+loss+prevention+in+the+process+industries&rft.au=Wang%2C+Feng&rft.au=Gu%2C+Wunan&rft.au=Bai%2C+Yan&rft.au=Bian%2C+Jing&rft.date=2023-07-01&rft.issn=0950-4230&rft.volume=83&rft.spage=105028&rft_id=info:doi/10.1016%2Fj.jlp.2023.105028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jlp_2023_105028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-4230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-4230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-4230&client=summon