A method for assisting the accident consequence prediction and cause investigation in petrochemical industries based on natural language processing technology
Risk analysis for production processes in the petrochemical industry is an important procedure for consequence prediction and investigation of accidents. The analyzer must grasp the correlations between the possible causes and consequences. From the potential cause and effect found in risk analysis...
        Saved in:
      
    
          | Published in | Journal of loss prevention in the process industries Vol. 83; p. 105028 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.07.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0950-4230 | 
| DOI | 10.1016/j.jlp.2023.105028 | 
Cover
| Abstract | Risk analysis for production processes in the petrochemical industry is an important procedure for consequence prediction and investigation of accidents. The analyzer must grasp the correlations between the possible causes and consequences. From the potential cause and effect found in risk analysis reports, complete clarification should be obtained. Therefore, this study presents a method for assisting accident consequence prediction and investigation in the petrochemical industry based on risk analysis reports using natural language processing technology. First, a hazard and operability (HAZOP) historical data table is established by filling over 7200 HAZOP analysis data points. Both the causes and consequences in the table are classified into 20 categories each using the Latent Dirichlet Allocation (LDA) models. The LDA clustering results are assigned classification for the cause and consequence topics to the cause and consequences of the HAZOP analysis data. Based on part-of-speech (POS) tagging, all the words in each cause and consequence record are divided into subject and action words. Next, the word combinations of subject and action words with a higher occurrence are considered the key phrases for describing and representing the corresponding cause and consequence topic classifications. The Apriori algorithm is used to determine the frequent item sets, acquire the association rules, and calculate the association degree to obtain the sort order; it can highlight general trends in relational cause and consequence topics. According to the results, the most likely cause of the consequence and the most likely consequence that the cause may lead to are identified. Finally, a visual interface is developed to present the data for the consequence prediction and cause investigation of accidents. The results reveal that the quantity and quality of historic data are important factors that may influence the results. This method can contribute to predicting the accident evolution trend of an abnormal situation, taking preventive measures in advance, improving the accuracy of early warning, and supporting emergency response measures.
•Proposing a method for assisting the accident consequence prediction and cause investigation in petrochemical industries based on natural language processing.•Using the LDA model and POS tagging to explore the potential topic information of causes and consequences in HAZOP analysis data.•Based on HAZOP historical data query and the Apriori algorithm to determine the association relationship of causes and consequences. | 
    
|---|---|
| AbstractList | Risk analysis for production processes in the petrochemical industry is an important procedure for consequence prediction and investigation of accidents. The analyzer must grasp the correlations between the possible causes and consequences. From the potential cause and effect found in risk analysis reports, complete clarification should be obtained. Therefore, this study presents a method for assisting accident consequence prediction and investigation in the petrochemical industry based on risk analysis reports using natural language processing technology. First, a hazard and operability (HAZOP) historical data table is established by filling over 7200 HAZOP analysis data points. Both the causes and consequences in the table are classified into 20 categories each using the Latent Dirichlet Allocation (LDA) models. The LDA clustering results are assigned classification for the cause and consequence topics to the cause and consequences of the HAZOP analysis data. Based on part-of-speech (POS) tagging, all the words in each cause and consequence record are divided into subject and action words. Next, the word combinations of subject and action words with a higher occurrence are considered the key phrases for describing and representing the corresponding cause and consequence topic classifications. The Apriori algorithm is used to determine the frequent item sets, acquire the association rules, and calculate the association degree to obtain the sort order; it can highlight general trends in relational cause and consequence topics. According to the results, the most likely cause of the consequence and the most likely consequence that the cause may lead to are identified. Finally, a visual interface is developed to present the data for the consequence prediction and cause investigation of accidents. The results reveal that the quantity and quality of historic data are important factors that may influence the results. This method can contribute to predicting the accident evolution trend of an abnormal situation, taking preventive measures in advance, improving the accuracy of early warning, and supporting emergency response measures.
•Proposing a method for assisting the accident consequence prediction and cause investigation in petrochemical industries based on natural language processing.•Using the LDA model and POS tagging to explore the potential topic information of causes and consequences in HAZOP analysis data.•Based on HAZOP historical data query and the Apriori algorithm to determine the association relationship of causes and consequences. | 
    
| ArticleNumber | 105028 | 
    
| Author | Gu, Wunan Bai, Yan Bian, Jing Wang, Feng  | 
    
| Author_xml | – sequence: 1 givenname: Feng orcidid: 0000-0002-3549-4819 surname: Wang fullname: Wang, Feng email: wangfeng991@163.com – sequence: 2 givenname: Wunan surname: Gu fullname: Gu, Wunan – sequence: 3 givenname: Yan surname: Bai fullname: Bai, Yan – sequence: 4 givenname: Jing surname: Bian fullname: Bian, Jing  | 
    
| BookMark | eNp9kEtuwyAQhlmkUpO0B-iOCzjFxk91FUV9SZG6adeIDmOHyAEXcKVcpmctTrrqIrNBM_D9I74FmRlrkJC7lK1Slpb3-9W-H1YZy3jsC5bVMzJnTcGSPOPsmiy83zOWVqyu5uRnTQ8YdlbR1joqvdc-aNPRsEMqAbRCEyhY4_FrRANIB4dKQ9DWUGkUBTl6pNp8Y-Q6eZprQwcMzsIODxpkHwdq9MFp9PRTelQ0PjIyjC7e9dJ0o-ymYAsY90_LEXbG9rY73pCrVvYeb__OJfl4enzfvCTbt-fXzXqbAC95SKqiZaVSVc2RSZ43TVkVsTivU1mrumxVWWKe1xVXvIUmbapcFbwGVG1W5LLlS5Kec8FZ7x22YnD6IN1RpExMUsVeRKlikirOUiNT_WNAh5OB4KTuL5IPZxLjl741OuFBT3aVdghBKKsv0L_lYZpE | 
    
| CitedBy_id | crossref_primary_10_1016_j_psep_2025_106980 crossref_primary_10_1080_17457300_2023_2239240 crossref_primary_10_1371_journal_pone_0296910 crossref_primary_10_1016_j_psep_2024_02_078 crossref_primary_10_1016_j_psep_2024_02_022 crossref_primary_10_1016_j_compchemeng_2024_108677 crossref_primary_10_1016_j_jlp_2024_105310 crossref_primary_10_1080_13669877_2024_2387334 crossref_primary_10_3390_pr12112373  | 
    
| Cites_doi | 10.1016/j.compchemeng.2022.107786 10.1016/j.psep.2021.12.025 10.1016/j.psep.2018.12.008 10.1016/j.ins.2018.10.006 10.1016/j.psep.2022.11.074 10.1016/j.jlp.2022.104747 10.1016/j.jlp.2006.03.004 10.1016/j.psep.2012.07.003 10.1016/j.procs.2019.12.103 10.1016/j.jlp.2021.104479 10.1016/j.jclepro.2022.130780 10.1016/j.psep.2021.09.001 10.1016/j.jlp.2020.104321 10.1016/j.csl.2017.12.004 10.1016/j.aei.2020.101152 10.1016/j.jlp.2022.104911 10.1016/j.dss.2017.11.001 10.1016/j.jlp.2021.104578 10.1016/j.eng.2019.12.014 10.1016/j.gltp.2022.03.015  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2023 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.jlp.2023.105028 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| ExternalDocumentID | 10_1016_j_jlp_2023_105028 S095042302300058X  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W JJJVA KOM LX7 M41 MO0 MS~ N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SCE SDF SDG SES SEW SPC SPCBC SSG SST SSZ T5K WUQ ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c363t-75f06dd783e0a34996755553381a8d86fd66e44873d3fc91974d538cedf254af3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0950-4230 | 
    
| IngestDate | Thu Apr 24 23:06:17 EDT 2025 Sat Oct 25 05:12:01 EDT 2025 Fri Feb 23 02:38:30 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | LDA Association analysis Data mining HAZOP  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c363t-75f06dd783e0a34996755553381a8d86fd66e44873d3fc91974d538cedf254af3 | 
    
| ORCID | 0000-0002-3549-4819 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_jlp_2023_105028 crossref_citationtrail_10_1016_j_jlp_2023_105028 elsevier_sciencedirect_doi_10_1016_j_jlp_2023_105028  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | July 2023 2023-07-00  | 
    
| PublicationDateYYYYMMDD | 2023-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2023 text: July 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Journal of loss prevention in the process industries | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Niu, Fan, Gao (bib16) 2019; 15 Sarıalioğlu, Uğurlu, Aydın, Vardar, Wang (bib18) 2022; 247 Zhou, Yang, Zheng (bib28) 2018; 37 Li, Zhang, Gao (bib10) 2021; 40 Nivolianitou, Konstandinidou, Kiranoudis, Markatos (bib17) 2006; 19 John, Shaiba (bib5) 2019; 163 Kamil, Khan, Halim, Amyotte, Ahmed (bib6) 2023; 107 Suzuki, Izato, Miyake (bib20) 2021; 71 Wu, Xu, Na, Zhang (bib25) 2012; 63 Zhou, Duan, Liu, Shum (bib29) 2019; 6 Feng, Dai, Ji, Zhou, Dang (bib3) 2021; 155 Wang, Gu (bib23) 2022; 80 Wang, Xu (bib24) 2018; 105 Zhong, Pan, Love, Sun, Tao (bib27) 2020; 46 Aziz, Ahmed, Khan (bib1) 2019; 123 Xu, Liu, Shu, Bai, Motalifu, He, Wu, Zhou, Li (bib26) 2022; 76 Nguyen, Safder, Kim, Heo, Yoo (bib15) 2022; 339 Macêdo, Moura, Aichele, Lins (bib11) 2022; 158 Tyler (bib22) 2012; 90 Geeganage, Xu, Li (bib4) 2021; 216 Bach, Linh, Phuong (bib2) 2018; 50 Kim, Seo, Cho, Kang (bib8) 2018; 477 Macêdo, Moura, Ramos, Lins, Zio (bib12) 2022; 77 Tamascelli, Paltrinieri, Cozzani (bib21) 2022; 162 Kho, Pahlavani, Bigdeli (bib7) 2021; 23 Kumar, Ritu, Hemanth, Reddy, Apil, Doren (bib9) 2022; 3 Mirhashemi, Mirzaei (bib14) 2020; vol. 12 Single, Schmidt, Denecke (bib19) 2020; 68 Meng, M Song, Zhao, Liu (bib13) 2021; 72 Niu (10.1016/j.jlp.2023.105028_bib16) 2019; 15 Sarıalioğlu (10.1016/j.jlp.2023.105028_bib18) 2022; 247 Tyler (10.1016/j.jlp.2023.105028_bib22) 2012; 90 Wu (10.1016/j.jlp.2023.105028_bib25) 2012; 63 Kim (10.1016/j.jlp.2023.105028_bib8) 2018; 477 Bach (10.1016/j.jlp.2023.105028_bib2) 2018; 50 Kamil (10.1016/j.jlp.2023.105028_bib6) 2023; 107 Macêdo (10.1016/j.jlp.2023.105028_bib12) 2022; 77 Wang (10.1016/j.jlp.2023.105028_bib23) 2022; 80 Meng (10.1016/j.jlp.2023.105028_bib13) 2021; 72 Zhong (10.1016/j.jlp.2023.105028_bib27) 2020; 46 Zhou (10.1016/j.jlp.2023.105028_bib29) 2019; 6 Mirhashemi (10.1016/j.jlp.2023.105028_bib14) 2020; vol. 12 Nguyen (10.1016/j.jlp.2023.105028_bib15) 2022; 339 Aziz (10.1016/j.jlp.2023.105028_bib1) 2019; 123 Geeganage (10.1016/j.jlp.2023.105028_bib4) 2021; 216 Nivolianitou (10.1016/j.jlp.2023.105028_bib17) 2006; 19 Zhou (10.1016/j.jlp.2023.105028_bib28) 2018; 37 Wang (10.1016/j.jlp.2023.105028_bib24) 2018; 105 Single (10.1016/j.jlp.2023.105028_bib19) 2020; 68 Macêdo (10.1016/j.jlp.2023.105028_bib11) 2022; 158 Tamascelli (10.1016/j.jlp.2023.105028_bib21) 2022; 162 Kumar (10.1016/j.jlp.2023.105028_bib9) 2022; 3 Kho (10.1016/j.jlp.2023.105028_bib7) 2021; 23 Suzuki (10.1016/j.jlp.2023.105028_bib20) 2021; 71 Feng (10.1016/j.jlp.2023.105028_bib3) 2021; 155 John (10.1016/j.jlp.2023.105028_bib5) 2019; 163 Xu (10.1016/j.jlp.2023.105028_bib26) 2022; 76 Li (10.1016/j.jlp.2023.105028_bib10) 2021; 40  | 
    
| References_xml | – volume: 63 start-page: 1484 year: 2012 end-page: 1491 ident: bib25 article-title: Standardized information for process hazard analysis based on ontology publication-title: CIESC J. – volume: 19 start-page: 630 year: 2006 end-page: 638 ident: bib17 article-title: Development of a database for accidents and incidents in the Greek petrochemical industry publication-title: J. Loss Prev. Process. Ind. – volume: 6 start-page: 275 year: 2019 end-page: 290 ident: bib29 article-title: Progress in neural NLP: modeling, learning, and reasoning publication-title: Engineering – volume: 158 start-page: 382 year: 2022 end-page: 399 ident: bib11 article-title: Identification of risk features using text mining and BERT-based models: application to an oil refinery publication-title: J. Process Saf. Environ. Prot. – volume: vol. 12 year: 2020 ident: bib14 publication-title: Extracting Association Rules from Changes in Aquifer Drawdown in Irrigation Areas of Qazvin Plain – volume: 107 start-page: 339 year: 2023 end-page: 355 ident: bib6 article-title: A methodical approach for knowledge-based fire and explosion accident likelihood analysis publication-title: Process Saf. Environ. Protect. – volume: 3 start-page: 298 year: 2022 end-page: 304 ident: bib9 article-title: Prediction of research trends using LDA based topic modeling publication-title: Global Transitions Proceedings – volume: 105 start-page: 87 year: 2018 end-page: 95 ident: bib24 article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud publication-title: Decis. Support Syst. – volume: 68 year: 2020 ident: bib19 article-title: Ontology-based computer aid for the automation of HAZOP studies publication-title: J. Loss Prev. Process. Ind. – volume: 216 year: 2021 ident: bib4 article-title: Semantic-based topic representation using frequent semantic patterns publication-title: Knowl-Based Syst. – volume: 90 start-page: 419 year: 2012 end-page: 423 ident: bib22 article-title: HAZOP study training from the 1970s to today publication-title: Process Saf. Environ. Protect. – volume: 46 year: 2020 ident: bib27 article-title: Hazard analysis: a deep learning and text mining framework for accident prevention publication-title: Adv. Eng. Inf. – volume: 155 start-page: 41 year: 2021 end-page: 48 ident: bib3 article-title: Application of natural language processing in HAZOP reports publication-title: Process Saf. Environ. Protect. – volume: 40 start-page: 4666 year: 2021 end-page: 4677 ident: bib10 article-title: Construction method of HAZOP knowledge graph publication-title: Chem. Ind. Eng. Prog. – volume: 23 year: 2021 ident: bib7 article-title: Classification and association rule mining of road collisions for analyzing the fatal severity, a case study publication-title: J. Transport Health – volume: 72 year: 2021 ident: bib13 article-title: Alarm management optimization in chemical installations based on adapted HAZOP reports publication-title: J. Loss Prev. Process. Ind. – volume: 123 start-page: 87 year: 2019 end-page: 98 ident: bib1 article-title: An ontology-based methodology for hazard identification and causation analysis publication-title: Process Saf. Environ. Protect. – volume: 339 year: 2022 ident: bib15 article-title: An adaptive safety-risk mitigation plan at process-level for sustainable production in chemical industries: an integrated fuzzy-HAZOP-best-worst approach publication-title: J. Clean. Prod. – volume: 15 start-page: 165 year: 2019 end-page: 170 ident: bib16 article-title: Topic extraction on causes of chemical production accidents based on data mining publication-title: Journal of Safety Science and Technology – volume: 80 year: 2022 ident: bib23 article-title: Intelligent HAZOP analysis method based on data mining publication-title: J. Loss Prev. Process. Ind. – volume: 162 year: 2022 ident: bib21 article-title: Learning from major accidents: a machine learning approach publication-title: Comput. Chem. Eng. – volume: 247 year: 2022 ident: bib18 article-title: A hybrid model for marine accident analysis based on Bayesian Network (BN) and Association Rule Mining (ARM) publication-title: Ocean Eng. – volume: 477 start-page: 15 year: 2018 end-page: 29 ident: bib8 article-title: Multi-co-training for document classification using various document representations: TF–IDF, LDA, and Doc2Vec publication-title: Inf. Sci. – volume: 163 start-page: 218 year: 2019 end-page: 227 ident: bib5 article-title: Apriori-based algorithm for dubai road accident analysis publication-title: Procedia Comput. Sci. – volume: 77 year: 2022 ident: bib12 article-title: Machine learning-based models to prioritize scenarios in a Quantitative Risk Analysis: an application to an actual atmospheric distillation unit publication-title: J. Loss Prev. Process. Ind. – volume: 71 year: 2021 ident: bib20 article-title: Identification of accident scenarios caused by internal factors using HAZOP to assess an organic hydride hydrogen refueling station involving methylcyclohexane publication-title: J. Loss Prev. Process. Ind. – volume: 76 year: 2022 ident: bib26 article-title: Cause analysis of hot work accidents based on text mining and deep learning publication-title: J. Loss Prev. Process. Ind. – volume: 37 start-page: 815 year: 2018 end-page: 821 ident: bib28 article-title: Research progress of intelligent HAZOP analysis system publication-title: Chem. Ind. Eng. Prog. – volume: 50 start-page: 1 year: 2018 end-page: 15 ident: bib2 article-title: An empirical study on POS tagging for Vietnamese social media text publication-title: Comput. Speech Lang – volume: 162 year: 2022 ident: 10.1016/j.jlp.2023.105028_bib21 article-title: Learning from major accidents: a machine learning approach publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107786 – volume: 158 start-page: 382 year: 2022 ident: 10.1016/j.jlp.2023.105028_bib11 article-title: Identification of risk features using text mining and BERT-based models: application to an oil refinery publication-title: J. Process Saf. Environ. Prot. doi: 10.1016/j.psep.2021.12.025 – volume: 40 start-page: 4666 issue: 8 year: 2021 ident: 10.1016/j.jlp.2023.105028_bib10 article-title: Construction method of HAZOP knowledge graph publication-title: Chem. Ind. Eng. Prog. – volume: 247 year: 2022 ident: 10.1016/j.jlp.2023.105028_bib18 article-title: A hybrid model for marine accident analysis based on Bayesian Network (BN) and Association Rule Mining (ARM) publication-title: Ocean Eng. – volume: 37 start-page: 815 issue: 3 year: 2018 ident: 10.1016/j.jlp.2023.105028_bib28 article-title: Research progress of intelligent HAZOP analysis system publication-title: Chem. Ind. Eng. Prog. – volume: 123 start-page: 87 year: 2019 ident: 10.1016/j.jlp.2023.105028_bib1 article-title: An ontology-based methodology for hazard identification and causation analysis publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2018.12.008 – volume: 477 start-page: 15 year: 2018 ident: 10.1016/j.jlp.2023.105028_bib8 article-title: Multi-co-training for document classification using various document representations: TF–IDF, LDA, and Doc2Vec publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.10.006 – volume: 107 start-page: 339 year: 2023 ident: 10.1016/j.jlp.2023.105028_bib6 article-title: A methodical approach for knowledge-based fire and explosion accident likelihood analysis publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2022.11.074 – volume: 76 year: 2022 ident: 10.1016/j.jlp.2023.105028_bib26 article-title: Cause analysis of hot work accidents based on text mining and deep learning publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2022.104747 – volume: 19 start-page: 630 year: 2006 ident: 10.1016/j.jlp.2023.105028_bib17 article-title: Development of a database for accidents and incidents in the Greek petrochemical industry publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2006.03.004 – volume: 90 start-page: 419 issue: 5 year: 2012 ident: 10.1016/j.jlp.2023.105028_bib22 article-title: HAZOP study training from the 1970s to today publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2012.07.003 – volume: 163 start-page: 218 issue: C year: 2019 ident: 10.1016/j.jlp.2023.105028_bib5 article-title: Apriori-based algorithm for dubai road accident analysis publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.12.103 – volume: 71 year: 2021 ident: 10.1016/j.jlp.2023.105028_bib20 article-title: Identification of accident scenarios caused by internal factors using HAZOP to assess an organic hydride hydrogen refueling station involving methylcyclohexane publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2021.104479 – volume: 216 year: 2021 ident: 10.1016/j.jlp.2023.105028_bib4 article-title: Semantic-based topic representation using frequent semantic patterns publication-title: Knowl-Based Syst. – volume: 339 year: 2022 ident: 10.1016/j.jlp.2023.105028_bib15 article-title: An adaptive safety-risk mitigation plan at process-level for sustainable production in chemical industries: an integrated fuzzy-HAZOP-best-worst approach publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.130780 – volume: 155 start-page: 41 year: 2021 ident: 10.1016/j.jlp.2023.105028_bib3 article-title: Application of natural language processing in HAZOP reports publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2021.09.001 – volume: 77 year: 2022 ident: 10.1016/j.jlp.2023.105028_bib12 article-title: Machine learning-based models to prioritize scenarios in a Quantitative Risk Analysis: an application to an actual atmospheric distillation unit publication-title: J. Loss Prev. Process. Ind. – volume: 15 start-page: 165 issue: 10 year: 2019 ident: 10.1016/j.jlp.2023.105028_bib16 article-title: Topic extraction on causes of chemical production accidents based on data mining publication-title: Journal of Safety Science and Technology – volume: 68 year: 2020 ident: 10.1016/j.jlp.2023.105028_bib19 article-title: Ontology-based computer aid for the automation of HAZOP studies publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2020.104321 – volume: vol. 12 year: 2020 ident: 10.1016/j.jlp.2023.105028_bib14 – volume: 23 year: 2021 ident: 10.1016/j.jlp.2023.105028_bib7 article-title: Classification and association rule mining of road collisions for analyzing the fatal severity, a case study publication-title: J. Transport Health – volume: 63 start-page: 1484 issue: 5 year: 2012 ident: 10.1016/j.jlp.2023.105028_bib25 article-title: Standardized information for process hazard analysis based on ontology publication-title: CIESC J. – volume: 50 start-page: 1 year: 2018 ident: 10.1016/j.jlp.2023.105028_bib2 article-title: An empirical study on POS tagging for Vietnamese social media text publication-title: Comput. Speech Lang doi: 10.1016/j.csl.2017.12.004 – volume: 46 year: 2020 ident: 10.1016/j.jlp.2023.105028_bib27 article-title: Hazard analysis: a deep learning and text mining framework for accident prevention publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2020.101152 – volume: 80 year: 2022 ident: 10.1016/j.jlp.2023.105028_bib23 article-title: Intelligent HAZOP analysis method based on data mining publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2022.104911 – volume: 105 start-page: 87 year: 2018 ident: 10.1016/j.jlp.2023.105028_bib24 article-title: Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2017.11.001 – volume: 72 year: 2021 ident: 10.1016/j.jlp.2023.105028_bib13 article-title: Alarm management optimization in chemical installations based on adapted HAZOP reports publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2021.104578 – volume: 6 start-page: 275 issue: 3 year: 2019 ident: 10.1016/j.jlp.2023.105028_bib29 article-title: Progress in neural NLP: modeling, learning, and reasoning publication-title: Engineering doi: 10.1016/j.eng.2019.12.014 – volume: 3 start-page: 298 issue: 1 year: 2022 ident: 10.1016/j.jlp.2023.105028_bib9 article-title: Prediction of research trends using LDA based topic modeling publication-title: Global Transitions Proceedings doi: 10.1016/j.gltp.2022.03.015  | 
    
| SSID | ssj0017087 | 
    
| Score | 2.4160526 | 
    
| Snippet | Risk analysis for production processes in the petrochemical industry is an important procedure for consequence prediction and investigation of accidents. The... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 105028 | 
    
| SubjectTerms | Association analysis Data mining HAZOP LDA  | 
    
| Title | A method for assisting the accident consequence prediction and cause investigation in petrochemical industries based on natural language processing technology | 
    
| URI | https://dx.doi.org/10.1016/j.jlp.2023.105028 | 
    
| Volume | 83 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0950-4230 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017087 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection issn: 0950-4230 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017087 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0950-4230 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017087 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0950-4230 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017087 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0950-4230 databaseCode: AKRWK dateStart: 19880101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017087 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5VB6YkEKTOk3csaqoCoguUKlb5PiBUlUhatOVn8Jv5c5O2iIBA9ninJXI5_i-s-_uI-Smww3oUqQe76XCC8GEeCKWHS_tiS6XSgOow0Th53E0moSP0-60QQZ1LgyGVVZrv1vT7WpdtbSr0WwXWdZ-AXCAQR0IopEcb4oZ7GGMLAZ3H-swjyD2LUkeCnsoXZ9s2hiv2RxLVnYYst36SMj-k23asjfDQ3JQAUXad99yRBo6Pyb7W-UDT8hnnzoCaArIkwIKxv81f6OA6aiQEulCSyo34dK0WOCxDKqCilxRKVZLTbNNpQ1oz3IKONryaNlCAtDguD30kqLFUxSEbDVQeFZvdtLCpRvYl6_36k_JZHj_Ohh5Fd-CJ1nESi_uGj9SKuZM-4KBKwTOBFzgxAaCKx4ZFUUa3LmYKWZkLwBXRMF6CZoy4GYKw87ITv6e63NCTciFxAyDNJChSUOegpKE5F0_NdJo1SR-PdKJrIqRIyfGPKmjzmYJKCdB5SROOU1yu-5SuEocfwmHtfqSb9MpAUvxe7eL_3W7JHt456J4r8hOuVjpa8AqZdqyk7FFdvsPT6PxF8uI7LM | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD-rB-Iz47MGTSWXfW46EaFCBi5Bw23T7MBCybmC5-lP8rc7sAzBRD-6xnWY3nW7nm3ZmPkJuHW5AlyJmvBUL5oEJYSKUDotbwudSaQB1mCjcHwTdkfc89sc10qlyYTCsstz7iz09363LlmY5m810Mmm-AjjAoA4E0UiON94i257vhOiB3X-s4jzs0MpZ8lCaoXh1tZkHeU1nWLPScZHu1kJG9p-M04bBeTwg-yVSpO3iYw5JTSdHZG-jfuAx-WzTggGaAvSkAIPxh03eKIA6KqREvtCMynW8NE3neC-DuqAiUVSK5ULTybrUBrRPEgpAOifSyisJQENB7qEXFE2eoiCUlwOFvuq0k6ZFvkH-8tVh_QkZPT4MO11WEi4w6QZuxkLfWIFSIXe1JVzwhcCbgAe8WFtwxQOjgkCDPxe6yjWyZYMvomDDBFUZ8DOFcU9JPXlP9BmhxuNCYopBbEvPxB6PQUtCct-KjTRaNYhVzXQky2rkSIoxi6qws2kEyolQOVGhnAa5Ww1Ji1Icfwl7lfqib-spAlPx-7Dz_w27ITvdYb8X9Z4GLxdkF3uKkN5LUs_mS30FwCWLr_OF-QVN7e5I | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+assisting+the+accident+consequence+prediction+and+cause+investigation+in+petrochemical+industries+based+on+natural+language+processing+technology&rft.jtitle=Journal+of+loss+prevention+in+the+process+industries&rft.au=Wang%2C+Feng&rft.au=Gu%2C+Wunan&rft.au=Bai%2C+Yan&rft.au=Bian%2C+Jing&rft.date=2023-07-01&rft.issn=0950-4230&rft.volume=83&rft.spage=105028&rft_id=info:doi/10.1016%2Fj.jlp.2023.105028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jlp_2023_105028 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-4230&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-4230&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-4230&client=summon |