An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems
Multi-modal multi-objective optimization problem (MMOPs) has attracted more and more attention in evolutionary computing recently. It is not easy to solve these problems using the existing evolutionary algorithms. The non-dominated solution sorting genetic algorithm (NSGA-II) has poor PS distributio...
        Saved in:
      
    
          | Published in | Information sciences Vol. 585; pp. 441 - 453 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Inc
    
        01.03.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0020-0255 1872-6291  | 
| DOI | 10.1016/j.ins.2021.11.052 | 
Cover
| Abstract | Multi-modal multi-objective optimization problem (MMOPs) has attracted more and more attention in evolutionary computing recently. It is not easy to solve these problems using the existing evolutionary algorithms. The non-dominated solution sorting genetic algorithm (NSGA-II) has poor PS distribution and convergence. In this paper, an enhanced fast NSGA-II based on a special congestion strategy and adaptive crossover strategy, namely ASDNSGA-II is proposed. In the ASDNSGA-II, the strategy with a special congestion degree is used to improve the selection strategy. Then a new adaptive crossover strategy is designed by evaluating the advantages and disadvantages of the SBX crossover strategy with the ability to solve high dimensions and the BLX-α with the ability of Pareto solution to produce offspring solutions. These can ensure the generation of offspring solutions around individuals with large crowding degrees and balance the convergence and diversity of decision space and object space. It can improve PS distribution and convergence and maintain PF precision. Eight functions of MMF1-MMF8 from the CEC2020 are selected to prove the effectiveness of the ASDNSGA-II. By comparing several latest multi-modal multi-objective evolutionary algorithms, the results show that the ASDNSGA-II can effectively find the global Pareto solution set and improve the distribution and convergence of PS. | 
    
|---|---|
| AbstractList | Multi-modal multi-objective optimization problem (MMOPs) has attracted more and more attention in evolutionary computing recently. It is not easy to solve these problems using the existing evolutionary algorithms. The non-dominated solution sorting genetic algorithm (NSGA-II) has poor PS distribution and convergence. In this paper, an enhanced fast NSGA-II based on a special congestion strategy and adaptive crossover strategy, namely ASDNSGA-II is proposed. In the ASDNSGA-II, the strategy with a special congestion degree is used to improve the selection strategy. Then a new adaptive crossover strategy is designed by evaluating the advantages and disadvantages of the SBX crossover strategy with the ability to solve high dimensions and the BLX-α with the ability of Pareto solution to produce offspring solutions. These can ensure the generation of offspring solutions around individuals with large crowding degrees and balance the convergence and diversity of decision space and object space. It can improve PS distribution and convergence and maintain PF precision. Eight functions of MMF1-MMF8 from the CEC2020 are selected to prove the effectiveness of the ASDNSGA-II. By comparing several latest multi-modal multi-objective evolutionary algorithms, the results show that the ASDNSGA-II can effectively find the global Pareto solution set and improve the distribution and convergence of PS. | 
    
| Author | Zhao, Huimin Deng, Wu Zhou, Xiangbing Zhang, Xiaoxiao Zhou, Yongquan Liu, Yi Chen, Huiling  | 
    
| Author_xml | – sequence: 1 givenname: Wu surname: Deng fullname: Deng, Wu email: dw7689@163.com organization: School of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China – sequence: 2 givenname: Xiaoxiao surname: Zhang fullname: Zhang, Xiaoxiao email: zhangxiaoxiao6056@163.com organization: School of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China – sequence: 3 givenname: Yongquan surname: Zhou fullname: Zhou, Yongquan email: yongquanzhou@126.com organization: College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China – sequence: 4 givenname: Yi surname: Liu fullname: Liu, Yi email: liuyi@camic.cn organization: Research Center of Big Data and Information Management, Civil Aviation Management Institute of China, Beijing 100102, China – sequence: 5 givenname: Xiangbing surname: Zhou fullname: Zhou, Xiangbing email: zhouxb@uestc.edu.cn organization: School of Information and Engineering, Sichuan Tourism University, Chendu 610100, China – sequence: 6 givenname: Huiling surname: Chen fullname: Chen, Huiling email: huiling.jlu@gamil.com organization: Computer Science, Wenzhou University, Wenzhou, Zhejiang 325035, China – sequence: 7 givenname: Huimin surname: Zhao fullname: Zhao, Huimin email: hm_zhao1977@126.com organization: School of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China  | 
    
| BookMark | eNp9kMtqwzAQRUVJoUnaD-jOP2B3JFmyS1ch9AWBbtpthaxHomBLQVIC_fvapKsusprLwLlwzwLNfPAGoXsMFQbMH_aV86kiQHCFcQWMXKE5bhtScvKIZ2gOQKAEwtgNWqS0B4C64XyOvle-MH4nvTK6sDLlYiwudRicl3l8pdAfswt-DDE7vy22xpvsVCH7bYgu74bChlgMxz67MnR7o7I7meIQQ9ebId2iayv7ZO7-7hJ9vTx_rt_Kzcfr-3q1KRXlNJfcMkprRbu2BWhabS1va922DCjjtqEWW8k6opRqOwMN14Rgw0wNTHOptKVLhM-9KoaUorHiEN0g44_AICZBYi9GQWISJDAWo6CRaf4xymU5jc1Ruv4i-XQmzTjp5EwUSTkzKXRxFCB0cBfoX-iehKE | 
    
| CitedBy_id | crossref_primary_10_1016_j_energy_2024_132597 crossref_primary_10_1155_2022_8364988 crossref_primary_10_1002_acs_3645 crossref_primary_10_1016_j_ins_2024_120915 crossref_primary_10_1049_tje2_12189 crossref_primary_10_1016_j_matdes_2022_110645 crossref_primary_10_1016_j_ecolind_2023_109882 crossref_primary_10_3390_machines11020167 crossref_primary_10_1109_TASE_2023_3293931 crossref_primary_10_2478_pomr_2024_0052 crossref_primary_10_1016_j_knosys_2022_108330 crossref_primary_10_1155_2022_5213270 crossref_primary_10_3390_electronics11071080 crossref_primary_10_1016_j_ins_2023_03_080 crossref_primary_10_1016_j_asoc_2023_110680 crossref_primary_10_1049_qtc2_12113 crossref_primary_10_3390_app14156625 crossref_primary_10_3390_app112311480 crossref_primary_10_3390_app12094676 crossref_primary_10_1177_21582440231166593 crossref_primary_10_1093_jcde_qwac075 crossref_primary_10_1007_s42235_022_00292_z crossref_primary_10_3390_app12094314 crossref_primary_10_3390_su16051810 crossref_primary_10_1155_2022_8011003 crossref_primary_10_3390_app12063139 crossref_primary_10_3390_app122312179 crossref_primary_10_1016_j_ijhydene_2024_05_167 crossref_primary_10_1142_S0219622023500128 crossref_primary_10_1016_j_ijleo_2021_168513 crossref_primary_10_1080_10255842_2023_2289344 crossref_primary_10_3390_drones6090226 crossref_primary_10_3389_fninf_2022_1063048 crossref_primary_10_1016_j_solener_2022_06_046 crossref_primary_10_1016_j_tra_2024_104353 crossref_primary_10_1016_j_compbiomed_2022_106227 crossref_primary_10_1016_j_neucom_2022_06_075 crossref_primary_10_3390_math11194200 crossref_primary_10_1016_j_iot_2024_101198 crossref_primary_10_21595_jve_2022_22410 crossref_primary_10_1016_j_engappai_2023_107110 crossref_primary_10_3390_sym14020331 crossref_primary_10_2139_ssrn_4172705 crossref_primary_10_23919_cje_2022_00_075 crossref_primary_10_1093_jcde_qwac050 crossref_primary_10_1061_JAEEEZ_ASENG_5155 crossref_primary_10_1002_adc2_125 crossref_primary_10_1016_j_oceaneng_2023_116655 crossref_primary_10_1371_journal_pone_0310218 crossref_primary_10_1007_s42235_022_00304_y crossref_primary_10_1016_j_prime_2025_100946 crossref_primary_10_1007_s42235_022_00228_7 crossref_primary_10_1016_j_engappai_2022_105530 crossref_primary_10_1155_2022_3617140 crossref_primary_10_1109_TCSS_2022_3204052 crossref_primary_10_1002_cpe_7240 crossref_primary_10_1155_2022_7647121 crossref_primary_10_3934_math_2024587 crossref_primary_10_1016_j_energy_2024_130839 crossref_primary_10_3389_fnhum_2024_1400077 crossref_primary_10_3390_su152316367 crossref_primary_10_1016_j_asoc_2024_112679 crossref_primary_10_3390_app12094334 crossref_primary_10_1007_s11227_024_06498_8 crossref_primary_10_32604_cmes_2023_026098 crossref_primary_10_1016_j_engappai_2022_105522 crossref_primary_10_3389_fninf_2022_1078685 crossref_primary_10_1109_MITS_2022_3174238 crossref_primary_10_1016_j_asoc_2023_110585 crossref_primary_10_1016_j_jksuci_2024_101916 crossref_primary_10_1002_er_8011 crossref_primary_10_1016_j_jare_2023_01_014 crossref_primary_10_1038_s41598_024_71636_4 crossref_primary_10_1155_2022_3755574 crossref_primary_10_1016_j_engappai_2022_105512 crossref_primary_10_1049_sfw2_12140 crossref_primary_10_1007_s40815_022_01354_4 crossref_primary_10_1109_ACCESS_2023_3329583 crossref_primary_10_1109_OJIES_2022_3172899 crossref_primary_10_1371_journal_pone_0270536 crossref_primary_10_1016_j_engappai_2022_105516 crossref_primary_10_1109_ACCESS_2025_3546617 crossref_primary_10_1016_j_compbiomed_2023_107769 crossref_primary_10_3390_app142210178 crossref_primary_10_1007_s10479_023_05796_3 crossref_primary_10_1109_JSEN_2022_3166899 crossref_primary_10_1093_jcde_qwad006 crossref_primary_10_1093_jcde_qwac038 crossref_primary_10_1080_17455030_2022_2094028 crossref_primary_10_1093_jcde_qwad002 crossref_primary_10_1109_LSENS_2022_3167121 crossref_primary_10_1080_17455030_2023_2226249 crossref_primary_10_2174_0115734137276125231201113602 crossref_primary_10_1016_j_buildenv_2025_112681 crossref_primary_10_1088_1361_665X_ad38a3 crossref_primary_10_1007_s00500_022_07575_x crossref_primary_10_1093_bib_bbaf007 crossref_primary_10_32604_cmes_2023_024247 crossref_primary_10_1016_j_compbiomed_2022_105618 crossref_primary_10_1016_j_future_2024_04_008 crossref_primary_10_1038_s41598_024_68964_w crossref_primary_10_1177_09596518241278387 crossref_primary_10_3390_rs15163932 crossref_primary_10_1016_j_procs_2023_11_019 crossref_primary_10_1080_13682199_2023_2255335 crossref_primary_10_1007_s00170_023_12051_3 crossref_primary_10_1038_s41598_024_62904_4 crossref_primary_10_1016_j_eswa_2022_118734 crossref_primary_10_1155_2022_2108334 crossref_primary_10_1016_j_pacfin_2024_102406 crossref_primary_10_3390_biomimetics8020174 crossref_primary_10_1109_TMECH_2023_3347631 crossref_primary_10_1007_s42235_022_00262_5 crossref_primary_10_3390_machines12110802 crossref_primary_10_1039_D2GC04574E crossref_primary_10_1139_cjce_2024_0180 crossref_primary_10_1016_j_scs_2024_105978 crossref_primary_10_1080_00207543_2022_2122619 crossref_primary_10_3390_electronics12091961 crossref_primary_10_1080_26895293_2022_2079732 crossref_primary_10_2516_stet_2024025 crossref_primary_10_1016_j_bspc_2022_104373 crossref_primary_10_1016_j_knosys_2022_109687 crossref_primary_10_1007_s10479_024_05992_9 crossref_primary_10_1109_TCSII_2023_3255419 crossref_primary_10_1109_TNSE_2023_3324143 crossref_primary_10_1109_JSEN_2022_3179165 crossref_primary_10_1007_s11071_023_08411_z crossref_primary_10_1016_j_ymssp_2024_112166 crossref_primary_10_3390_app12094776 crossref_primary_10_1155_2022_2314788 crossref_primary_10_3390_electronics11050775 crossref_primary_10_1007_s44196_022_00133_1 crossref_primary_10_1371_journal_pone_0268007 crossref_primary_10_1016_j_asoc_2024_112071 crossref_primary_10_1016_j_asoc_2022_109419 crossref_primary_10_1088_1361_6501_ac543a crossref_primary_10_1016_j_jenvman_2024_120417 crossref_primary_10_1080_10589759_2022_2118747 crossref_primary_10_1155_2023_7476736 crossref_primary_10_1177_09544100231219945 crossref_primary_10_1016_j_bspc_2022_104139 crossref_primary_10_3390_met13020379 crossref_primary_10_3390_en16176107 crossref_primary_10_1016_j_displa_2024_102740 crossref_primary_10_1080_24705314_2023_2170124 crossref_primary_10_1007_s11269_024_03848_2 crossref_primary_10_1109_TIM_2022_3159005 crossref_primary_10_1371_journal_pone_0266734 crossref_primary_10_1016_j_eswa_2025_126675 crossref_primary_10_1049_cim2_12047 crossref_primary_10_1016_j_ins_2024_120832 crossref_primary_10_1080_0952813X_2023_2165719 crossref_primary_10_1002_spy2_490 crossref_primary_10_1080_08982112_2023_2208664 crossref_primary_10_2478_jaiscr_2023_0011 crossref_primary_10_3390_e24070890 crossref_primary_10_3390_sym16111474 crossref_primary_10_1049_cim2_12064 crossref_primary_10_1080_00207543_2023_2267693 crossref_primary_10_1109_ACCESS_2023_3323201 crossref_primary_10_1049_cit2_12108 crossref_primary_10_1155_2022_1535957 crossref_primary_10_1007_s11465_022_0689_z crossref_primary_10_1016_j_cie_2023_109848 crossref_primary_10_1155_2022_4925416 crossref_primary_10_1093_jcde_qwac119 crossref_primary_10_1155_js_8869808 crossref_primary_10_1016_j_isatra_2022_05_033 crossref_primary_10_1093_jcde_qwac112 crossref_primary_10_1093_jcde_qwac111 crossref_primary_10_1016_j_ins_2024_121858 crossref_primary_10_1080_00207543_2023_2267680 crossref_primary_10_1007_s12351_025_00899_0 crossref_primary_10_1155_2022_4825018 crossref_primary_10_1007_s00500_022_07553_3 crossref_primary_10_1016_j_enconman_2022_116246 crossref_primary_10_3389_fninf_2022_1041799 crossref_primary_10_3390_electronics11101558 crossref_primary_10_1016_j_compbiomed_2022_105536 crossref_primary_10_1007_s11227_023_05529_0 crossref_primary_10_1109_JPHOT_2022_3201109 crossref_primary_10_1007_s10489_023_05261_5 crossref_primary_10_1515_phys_2022_0197 crossref_primary_10_1016_j_renene_2025_122407 crossref_primary_10_1155_2022_9097868 crossref_primary_10_3390_app12115500 crossref_primary_10_3390_app13074643 crossref_primary_10_1080_03610926_2022_2155787 crossref_primary_10_2166_aqua_2022_047 crossref_primary_10_35784_iapgos_5775 crossref_primary_10_1002_qre_3350 crossref_primary_10_1016_j_engappai_2023_107197 crossref_primary_10_1080_0952813X_2023_2217831 crossref_primary_10_1007_s13272_023_00657_y crossref_primary_10_1155_2022_3035700 crossref_primary_10_3390_app12073565 crossref_primary_10_1016_j_engappai_2022_105139 crossref_primary_10_1016_j_ins_2023_03_101 crossref_primary_10_1080_15623599_2022_2056409 crossref_primary_10_1155_2022_7091553 crossref_primary_10_1007_s40430_024_04715_2 crossref_primary_10_1108_ILT_04_2022_0151 crossref_primary_10_3390_app14114603 crossref_primary_10_1016_j_aej_2025_01_130 crossref_primary_10_3390_s23218787 crossref_primary_10_1007_s40815_022_01353_5 crossref_primary_10_1155_2022_2411458 crossref_primary_10_1016_j_ins_2023_01_095 crossref_primary_10_1016_j_ins_2024_120186 crossref_primary_10_1016_j_knosys_2022_109360 crossref_primary_10_1016_j_dsm_2024_11_001 crossref_primary_10_1016_j_eswa_2023_121413 crossref_primary_10_1007_s00521_023_08950_x crossref_primary_10_1016_j_compbiomed_2022_105563 crossref_primary_10_1155_2022_1604169 crossref_primary_10_3390_molecules28196881 crossref_primary_10_1016_j_swevo_2024_101574 crossref_primary_10_23919_JSEE_2024_000095 crossref_primary_10_1016_j_eswa_2022_119041 crossref_primary_10_1080_21642583_2024_2347887 crossref_primary_10_1016_j_ins_2022_08_115 crossref_primary_10_1007_s10462_022_10370_7 crossref_primary_10_1016_j_rineng_2024_102916 crossref_primary_10_1016_j_jocs_2022_101871 crossref_primary_10_3390_app12115604 crossref_primary_10_1016_j_eswa_2022_118753 crossref_primary_10_3390_biomedicines10082052 crossref_primary_10_1007_s11063_022_10821_w crossref_primary_10_21595_jve_2022_22479 crossref_primary_10_54569_aair_1145616 crossref_primary_10_1016_j_ins_2022_06_083 crossref_primary_10_3389_fninf_2022_956423 crossref_primary_10_1007_s12555_022_0158_9 crossref_primary_10_1142_S0218001424520190 crossref_primary_10_2174_1574893617666220920102401 crossref_primary_10_1016_j_knosys_2022_109983 crossref_primary_10_1016_j_bspc_2022_104511 crossref_primary_10_1016_j_aei_2023_102315 crossref_primary_10_2478_amns_2025_0488 crossref_primary_10_3390_drones6120393 crossref_primary_10_1007_s10462_023_10526_z crossref_primary_10_1109_TASE_2023_3312173 crossref_primary_10_3390_app12094232 crossref_primary_10_1016_j_compbiomed_2023_106950 crossref_primary_10_1002_ese3_1329 crossref_primary_10_3389_fenrg_2022_1061408 crossref_primary_10_26599_BDMA_2022_9020008 crossref_primary_10_1080_10402004_2022_2131665 crossref_primary_10_1016_j_susoc_2023_08_004 crossref_primary_10_1080_03772063_2022_2150694 crossref_primary_10_1007_s10586_024_04426_2 crossref_primary_10_1021_acs_jcim_4c00031 crossref_primary_10_1016_j_oceaneng_2023_115433 crossref_primary_10_1515_ijeeps_2022_0121 crossref_primary_10_3390_biomimetics8030322 crossref_primary_10_1109_OJCOMS_2023_3327211 crossref_primary_10_3390_electronics11244224 crossref_primary_10_1155_2022_6187912 crossref_primary_10_1080_15376494_2023_2172234 crossref_primary_10_1016_j_measurement_2022_110974 crossref_primary_10_1155_2022_4975288 crossref_primary_10_59782_aai_v1i3_318 crossref_primary_10_1109_TNNLS_2022_3213536 crossref_primary_10_1016_j_heliyon_2024_e29830 crossref_primary_10_1016_j_chaos_2022_113092 crossref_primary_10_1371_journal_pone_0315545 crossref_primary_10_1109_TMM_2022_3233308 crossref_primary_10_1080_0952813X_2022_2115144 crossref_primary_10_1155_2022_9985131 crossref_primary_10_1002_adc2_200 crossref_primary_10_3390_drones8060247 crossref_primary_10_1016_j_eswa_2022_119095 crossref_primary_10_1109_JSEN_2022_3193943 crossref_primary_10_1016_j_bspc_2023_105147 crossref_primary_10_1016_j_measurement_2022_110884 crossref_primary_10_1016_j_engappai_2023_107356 crossref_primary_10_3934_era_2023092 crossref_primary_10_1016_j_isatra_2024_12_048 crossref_primary_10_1016_j_knosys_2022_109048 crossref_primary_10_1109_TVT_2024_3417714 crossref_primary_10_3934_mbe_2023884 crossref_primary_10_1016_j_rineng_2025_104234 crossref_primary_10_1016_j_neucom_2023_126467 crossref_primary_10_3390_electronics11010029 crossref_primary_10_1016_j_eswa_2025_127232 crossref_primary_10_1109_ACCESS_2022_3227431 crossref_primary_10_3390_app12094258 crossref_primary_10_3390_app15052519 crossref_primary_10_1016_j_jmapro_2022_10_057 crossref_primary_10_1186_s43088_024_00525_6 crossref_primary_10_3390_app12126240 crossref_primary_10_1007_s42235_022_00295_w crossref_primary_10_1108_EC_07_2022_0448 crossref_primary_10_1016_j_knosys_2022_108503 crossref_primary_10_1093_jcde_qwac085 crossref_primary_10_1016_j_arcontrol_2022_09_002 crossref_primary_10_1016_j_infrared_2025_105788 crossref_primary_10_1080_19427867_2022_2091710 crossref_primary_10_1093_jcde_qwac081 crossref_primary_10_23919_JSEE_2024_000036 crossref_primary_10_1111_exsy_13802 crossref_primary_10_1016_j_psj_2025_104771 crossref_primary_10_1155_2022_8791968 crossref_primary_10_1002_cpe_7396 crossref_primary_10_1016_j_compbiomed_2022_105910 crossref_primary_10_1155_2022_2850111 crossref_primary_10_1007_s42979_022_01533_y crossref_primary_10_1016_j_compbiomed_2022_105356 crossref_primary_10_21595_jve_2023_23356 crossref_primary_10_3390_app12052545 crossref_primary_10_1109_JSEN_2022_3166804 crossref_primary_10_1007_s11235_023_01040_2  | 
    
| Cites_doi | 10.1109/ACCESS.2019.2894726 10.1109/TASE.2015.2487881 10.1109/CEC48606.2020.9185886 10.1109/CEC.2016.7744093 10.1109/TEVC.2007.894202 10.1007/s00500-020-05527-x 10.1109/ACCESS.2020.2997302 10.1016/j.asoc.2019.105884 10.1109/CEC.2019.8790338 10.1109/TEVC.2021.3064508 10.1007/978-3-319-93815-8_52 10.1109/4235.996017 10.1016/j.knosys.2021.107080 10.1016/j.asoc.2021.108032 10.1145/1814256.1814259 10.1109/TEVC.2009.2021467 10.1109/TCSS.2021.3061439 10.1016/j.eswa.2020.114122 10.1109/CEC48606.2020.9185549 10.1109/TEVC.2017.2754271 10.1109/CEC.2011.5949936 10.1109/TEVC.2019.2909744 10.1016/j.ins.2020.11.008 10.1109/ACCESS.2018.2890461 10.1109/TEVC.2017.2744328 10.1117/1.JEI.30.1.013008 10.1016/j.compchemeng.2020.107086 10.1016/j.knosys.2020.106642 10.1016/j.cma.2021.114029 10.1016/j.ins.2016.12.003 10.1007/s10489-018-1263-6 10.1109/ACCESS.2018.2829262 10.1051/ro/2020110 10.1016/j.ins.2020.09.075 10.1109/CEC.2019.8790286  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier Inc. | 
    
| Copyright_xml | – notice: 2021 Elsevier Inc. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.ins.2021.11.052 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Library & Information Science  | 
    
| EISSN | 1872-6291 | 
    
| EndPage | 453 | 
    
| ExternalDocumentID | 10_1016_j_ins_2021_11_052 S0020025521011749  | 
    
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c363t-6f5334c3b880078dff684d8850356f73f1fa5b2ccc8be076d221e5e405d6acdf3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0020-0255 | 
    
| IngestDate | Wed Oct 01 05:19:09 EDT 2025 Thu Apr 24 22:53:07 EDT 2025 Fri Feb 23 02:41:30 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Multi-modal multi-objective Pareto solutions Special crowding distance Adaptive crossover Non-dominated solutions sorting genetic algorithm  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c363t-6f5334c3b880078dff684d8850356f73f1fa5b2ccc8be076d221e5e405d6acdf3 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_ins_2021_11_052 crossref_citationtrail_10_1016_j_ins_2021_11_052 elsevier_sciencedirect_doi_10_1016_j_ins_2021_11_052  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | March 2022 2022-03-00  | 
    
| PublicationDateYYYYMMDD | 2022-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Information sciences | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Inc | 
    
| Publisher_xml | – name: Elsevier Inc | 
    
| References | Kumar, Guria (b0055) 2017; 382–383 Cheng, Li, Li, Yao (b0020) 2018; 22 J. J. Liang, C. T. Yue and B. Y. Qu, “Multimodal multi-objective optimization: A preliminary study,” 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2545-2461, Nov. 2016. Wang, Sun, Zhang (b0035) 2021; 551 Wang, Yang, Guo, Zhu, Zhu (b0150) 2019 J. Togelius, M. Preuss and G. N. Yannakakis, “Towards multiobjective procedural map generation,” Proceedings of the 2010 workshop on procedural content generation in games, no. 3, pp. 1-8, Jun. 2010. Deng, Shang, Cai (b0010) 2021; 224 Deb, Pratap, Agarwal, Meyarivan (b0090) 2002; 6 Tu, Chen, Liu (b0205) 2021; 212 Trivedi, Srinivasan, Sanyal, Ghosh (b0060) 2017; 21 Zhao, Liu, Yu (b0210) 2021; 167 T. Sonoda and M. Nakata, “MOEA/D-S3: MOEA/D using SVM-based Surrogates adjusted to subproblems for many objective optimization,” 2020 IEEE Congress on Evolutionary Computation (CEC),pp. 1-8, Jul. 2020. Li, Shi, Zhang (b0025) 2021; 30 Zhou, Zhang, Jin (b0190) 2009; 13 Deng, Xu, Zhao (b0030) 2020 Zhang, Shen, Yen, Xu, He (b0175) 2021 Devaurs, Siméon, Cortés (b0100) 2016; 13 Tanabe, Ishibuchi (b0070) 2020; 24 Zhang, Zhou, Jin (b0195) 2008; 12 Deng, Shang, Cai, Zhao (b0065) 2021; 25 Han, Zhu, Zhou, Cai (b0120) 2021; 8 Zhong, Zhou, Deng (b0005) 2021; 385 Li, Qian, Deng, Zhang, Lu, Wang (b0045) 2021; 113 Yue, Qu, Liang (b0140) 2018; 22 Han, Wang, Zhang, Xie, Xing (b0075) 2018; 6 Zang, Zhang, Wang, Jiang, Liu, Sun (b0085) 2019; 7 R.Z. Shi, W. Lin, Q. Z. lin, Z. X. Zhu and J. Y. Chen, “Multimodal multi-objective optimization using a density-based one-by-one update strategy,” 2019 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 295-301, Aug. 2019. Metiaf, Wu, Aljeroudi (b0080) 2019; 7 Wang, Ma, Tan, Wu, Wang, Gong, Xiong (b0155) 2020; 546 Li, Li, J.F.Q (b0095) 2018; 33 G. Sharma, V. Sharma, K. R. Pardasani and M. Alshehri, “Soft set based intelligent assistive model for multiobjective and multimodal transportation problem,” IEEE Access, vol. 8, pp. 102646-102656, May. 2020. Zhao, Liu, Zhang, Liu (b0180) 2019; 49 Peng, Ishibuchi (b0015) 2018; 448–449 B. Y. Qu, G. S. Li, Q. Q. Guo, L. Yan, X. Z. Chai and Z. Q. Guo, “A niching multi-objective harmony search algorithm for multimodal multi-objective problems,” 2019 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 1267-1274, Jun. 2019. F. Kudo, T. Yoshikawa and T. Furuhashi, “A study on analysis of design variables in Pareto solutions for conceptual design optimization problem of hybrid rocket engine,” IEEE Congress of Evolutionary Computation (CEC). IEEE, pp. 2558-2562, Jul. 2011. W. Deng, J.J. Xu, X.Z. Gao and H. M. Zhao. “An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 1-10, Nov. 2020. Chen, Zhang, Luo (b0040) 2020; 86 J. Liang Q.Q. Guo C.T. Yue B.Y. Qu A self-organizing multi-objective particle swarm optimization algorithm for multi-modal multi-objective problems vol. 10941 2018 Springer, Cham Jun. Larraín, Pradenas, Pulkkinen, Santander (b0200) 2020; 143 Peng, Yong, Luo (b0105) 2021; 55 C. T. Yue, J. J. Liang, P. N. Suganthan, B. Y. Qu, K. J. Yu and S. Liu, “MMOGA for Solving multimodal multiobjective optimization problems with local pareto sets,” 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 1-8, Jul. 2020. Eshelman, Schaffer (b0185) 2014; 2 Zhong (10.1016/j.ins.2021.11.052_b0005) 2021; 385 Deng (10.1016/j.ins.2021.11.052_b0010) 2021; 224 Zang (10.1016/j.ins.2021.11.052_b0085) 2019; 7 Deng (10.1016/j.ins.2021.11.052_b0030) 2020 Zhang (10.1016/j.ins.2021.11.052_b0195) 2008; 12 Larraín (10.1016/j.ins.2021.11.052_b0200) 2020; 143 10.1016/j.ins.2021.11.052_b0160 Zhao (10.1016/j.ins.2021.11.052_b0180) 2019; 49 Han (10.1016/j.ins.2021.11.052_b0120) 2021; 8 Han (10.1016/j.ins.2021.11.052_b0075) 2018; 6 Wang (10.1016/j.ins.2021.11.052_b0150) 2019 10.1016/j.ins.2021.11.052_b0125 Cheng (10.1016/j.ins.2021.11.052_b0020) 2018; 22 Yue (10.1016/j.ins.2021.11.052_b0140) 2018; 22 10.1016/j.ins.2021.11.052_b0145 10.1016/j.ins.2021.11.052_b0165 Tu (10.1016/j.ins.2021.11.052_b0205) 2021; 212 Zhang (10.1016/j.ins.2021.11.052_b0175) 2021 Devaurs (10.1016/j.ins.2021.11.052_b0100) 2016; 13 Li (10.1016/j.ins.2021.11.052_b0025) 2021; 30 Metiaf (10.1016/j.ins.2021.11.052_b0080) 2019; 7 Deb (10.1016/j.ins.2021.11.052_b0090) 2002; 6 Wang (10.1016/j.ins.2021.11.052_b0035) 2021; 551 10.1016/j.ins.2021.11.052_b0050 Li (10.1016/j.ins.2021.11.052_b0095) 2018; 33 10.1016/j.ins.2021.11.052_b0170 Li (10.1016/j.ins.2021.11.052_b0045) 2021; 113 Peng (10.1016/j.ins.2021.11.052_b0105) 2021; 55 Zhou (10.1016/j.ins.2021.11.052_b0190) 2009; 13 Wang (10.1016/j.ins.2021.11.052_b0155) 2020; 546 10.1016/j.ins.2021.11.052_b0135 Deng (10.1016/j.ins.2021.11.052_b0065) 2021; 25 Kumar (10.1016/j.ins.2021.11.052_b0055) 2017; 382–383 10.1016/j.ins.2021.11.052_b0110 10.1016/j.ins.2021.11.052_b0130 Zhao (10.1016/j.ins.2021.11.052_b0210) 2021; 167 Peng (10.1016/j.ins.2021.11.052_b0015) 2018; 448–449 Trivedi (10.1016/j.ins.2021.11.052_b0060) 2017; 21 Tanabe (10.1016/j.ins.2021.11.052_b0070) 2020; 24 Eshelman (10.1016/j.ins.2021.11.052_b0185) 2014; 2 Chen (10.1016/j.ins.2021.11.052_b0040) 2020; 86 10.1016/j.ins.2021.11.052_b0115  | 
    
| References_xml | – volume: 113 year: 2021 ident: b0045 article-title: Forecasting crude oil prices based on variational mode decomposition and random sparse Bayesian learning publication-title: Appl. Soft Comput. – reference: T. Sonoda and M. Nakata, “MOEA/D-S3: MOEA/D using SVM-based Surrogates adjusted to subproblems for many objective optimization,” 2020 IEEE Congress on Evolutionary Computation (CEC),pp. 1-8, Jul. 2020. – volume: 86 year: 2020 ident: b0040 article-title: An enhanced bacterial foraging optimization and its application for training kernel extreme learning machine publication-title: Appl. Soft Comput. – volume: 22 start-page: 692 year: 2018 end-page: 706 ident: b0020 article-title: Evolutionary multi-objective optimization-based multimodal optimization: fitness landscape approximation and peak detection publication-title: IEEE Trans. Evol. Comput. – reference: G. Sharma, V. Sharma, K. R. Pardasani and M. Alshehri, “Soft set based intelligent assistive model for multiobjective and multimodal transportation problem,” IEEE Access, vol. 8, pp. 102646-102656, May. 2020. – reference: J. J. Liang, C. T. Yue and B. Y. Qu, “Multimodal multi-objective optimization: A preliminary study,” 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2545-2461, Nov. 2016. – reference: J. Liang Q.Q. Guo C.T. Yue B.Y. Qu A self-organizing multi-objective particle swarm optimization algorithm for multi-modal multi-objective problems vol. 10941 2018 Springer, Cham Jun. – volume: 49 start-page: 569 year: 2019 end-page: 580 ident: b0180 article-title: An improved adaptive NSGA-II with multi-population algorithm publication-title: Applied Intelligence – reference: F. Kudo, T. Yoshikawa and T. Furuhashi, “A study on analysis of design variables in Pareto solutions for conceptual design optimization problem of hybrid rocket engine,” IEEE Congress of Evolutionary Computation (CEC). IEEE, pp. 2558-2562, Jul. 2011. – volume: 6 start-page: 22920 year: 2018 end-page: 22929 ident: b0075 article-title: A multi-objective genetic algorithm based on fitting and interpolation publication-title: IEEE Access – volume: 25 start-page: 5277 year: 2021 end-page: 5298 ident: b0065 article-title: An improved differential evolution algorithm and its application in optimization problem publication-title: Soft. Comput. – reference: J. Togelius, M. Preuss and G. N. Yannakakis, “Towards multiobjective procedural map generation,” Proceedings of the 2010 workshop on procedural content generation in games, no. 3, pp. 1-8, Jun. 2010. – year: 2021 ident: b0175 article-title: Two-stage double niched evolution strategy for multimodal multi-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 212 year: 2021 ident: b0205 article-title: Evolutionary biogeography-based whale optimization methods with communication structure: Towards measuring the balance publication-title: Knowl. Based Syst – volume: 13 start-page: 415 year: 2016 end-page: 424 ident: b0100 article-title: Optimal path planning in complex cost spaces with sampling-based algorithms publication-title: IEEE Trans. Autom. Sci. Eng. – reference: C. T. Yue, J. J. Liang, P. N. Suganthan, B. Y. Qu, K. J. Yu and S. Liu, “MMOGA for Solving multimodal multiobjective optimization problems with local pareto sets,” 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 1-8, Jul. 2020. – volume: 13 start-page: 1167 year: 2009 end-page: 1187 ident: b0190 article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm publication-title: IEEE Trans. Evol. Comput. – volume: 7 start-page: 18821 year: 2019 end-page: 18839 ident: b0085 article-title: A novel double-strand DNA genetic algorithm for multi-objective optimization publication-title: IEEE Access – volume: 143 year: 2020 ident: b0200 article-title: Multiobjective optimization of a continuous kraft pulp digester using SPEA2 publication-title: Comput. Chem. Eng. – volume: 382–383 start-page: 15 year: 2017 end-page: 37 ident: b0055 article-title: The elitist non-dominated sorting genetic algorithm with inheritance (i-NSGA-II) and its jumping gene adaptations for multi-objective optimization publication-title: Inf. Sci. – volume: 33 start-page: 60 year: 2018 end-page: 66 ident: b0095 article-title: A local search strategy based on density for NSGA2 algorithm publication-title: Control and Decision – volume: 167 year: 2021 ident: b0210 article-title: Ant colony optimization with horizontal and vertical crossover search: Fundamental visions for multi-threshold image segmentation publication-title: Expert Syst. Appl. – volume: 30 year: 2021 ident: b0025 article-title: Color image encryption based on joint permutation and diffusion publication-title: J. Electron. Imaging – volume: 551 start-page: 23 year: 2021 end-page: 38 ident: b0035 article-title: Non-dominated sorting on performance indicators for evolutionary many-objective optimization publication-title: Inf. Sci. – volume: 546 start-page: 1148 year: 2020 end-page: 1165 ident: b0155 article-title: Preference-inspired coevolutionary algorithm with active diversity strategy for multi-objective multi-modal optimization publication-title: Inf. Sci. – start-page: 271 year: 2019 end-page: 278 ident: b0150 article-title: A novel multi-objective competitive swarm optimization algorithm for multi-modal multi objective problems publication-title: 2019 IEEE Congress on Evolutionary Computation (CEC) – volume: 6 year: 2002 ident: b0090 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 55 start-page: 3035 year: 2021 end-page: 3050 ident: b0105 article-title: The route problem of multimodal transportation with timetable under uncertainty: multi-objective robust optimization model and heuristic approach publication-title: RAIRO-Oper. Res. – volume: 2 start-page: 187 year: 2014 end-page: 202 ident: b0185 article-title: Real-coded genetic algorithms and interval-schemata publication-title: Found. Genet. Algorith. – volume: 22 start-page: 805 year: 2018 end-page: 817 ident: b0140 article-title: A multi-objective particle swarm optimizer using ring topology for solving multi-modal multi-objective problems publication-title: IEEE Trans. Evol. Comput. – volume: 21 start-page: 440 year: 2017 end-page: 462 ident: b0060 article-title: A survey of multi-objective evolutionary algorithms based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 8 start-page: 856 year: 2021 end-page: 869 ident: b0120 article-title: Information-utilization-method-assisted multimodal multiobjective optimization and application to credit card fraud detection publication-title: IEEE Trans. Comput. Social Syst. – volume: 24 start-page: 193 year: 2020 end-page: 200 ident: b0070 article-title: A review of evolutionary multimodal multi-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 224 year: 2021 ident: b0010 article-title: Quantum differential evolution with cooperative coevolution framework and hybrid mutation strategy for large scale optimization publication-title: Knowl.-Based Syst. – reference: B. Y. Qu, G. S. Li, Q. Q. Guo, L. Yan, X. Z. Chai and Z. Q. Guo, “A niching multi-objective harmony search algorithm for multimodal multi-objective problems,” 2019 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 1267-1274, Jun. 2019. – volume: 385 year: 2021 ident: b0005 article-title: MOMPA: Multi-objective marine predator algorithm publication-title: Comput. Methods Appl. Mech. Eng. – year: 2020 ident: b0030 article-title: A novel gate resource allocation method using improved PSO-based QEA publication-title: IEEE Trans. Intell. Transp. Syst. – reference: R.Z. Shi, W. Lin, Q. Z. lin, Z. X. Zhu and J. Y. Chen, “Multimodal multi-objective optimization using a density-based one-by-one update strategy,” 2019 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 295-301, Aug. 2019. – volume: 448–449 start-page: 112 year: 2018 end-page: 133 ident: b0015 article-title: New automatic fuzzy relational clustering algorithms using multi-objective NSGA-II publication-title: Inf. Sci. – volume: 12 start-page: 41 year: 2008 end-page: 63 ident: b0195 article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm publication-title: IEEE Trans. Evol. Comput. – reference: W. Deng, J.J. Xu, X.Z. Gao and H. M. Zhao. “An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 1-10, Nov. 2020. – volume: 7 start-page: 10196 year: 2019 end-page: 10207 ident: b0080 article-title: Searching with direction awareness: multi-objective genetic algorithm based on angle quantization and crowding distance MOGA-AQCD publication-title: IEEE Access – volume: 7 start-page: 18821 year: 2019 ident: 10.1016/j.ins.2021.11.052_b0085 article-title: A novel double-strand DNA genetic algorithm for multi-objective optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2894726 – start-page: 271 year: 2019 ident: 10.1016/j.ins.2021.11.052_b0150 article-title: A novel multi-objective competitive swarm optimization algorithm for multi-modal multi objective problems – volume: 2 start-page: 187 year: 2014 ident: 10.1016/j.ins.2021.11.052_b0185 article-title: Real-coded genetic algorithms and interval-schemata publication-title: Found. Genet. Algorith. – volume: 13 start-page: 415 issue: 2 year: 2016 ident: 10.1016/j.ins.2021.11.052_b0100 article-title: Optimal path planning in complex cost spaces with sampling-based algorithms publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2015.2487881 – ident: 10.1016/j.ins.2021.11.052_b0165 doi: 10.1109/CEC48606.2020.9185886 – ident: 10.1016/j.ins.2021.11.052_b0135 doi: 10.1109/CEC.2016.7744093 – volume: 12 start-page: 41 issue: 1 year: 2008 ident: 10.1016/j.ins.2021.11.052_b0195 article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.894202 – volume: 21 start-page: 440 issue: 3 year: 2017 ident: 10.1016/j.ins.2021.11.052_b0060 article-title: A survey of multi-objective evolutionary algorithms based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 25 start-page: 5277 issue: 7 year: 2021 ident: 10.1016/j.ins.2021.11.052_b0065 article-title: An improved differential evolution algorithm and its application in optimization problem publication-title: Soft. Comput. doi: 10.1007/s00500-020-05527-x – ident: 10.1016/j.ins.2021.11.052_b0115 doi: 10.1109/ACCESS.2020.2997302 – volume: 86 year: 2020 ident: 10.1016/j.ins.2021.11.052_b0040 article-title: An enhanced bacterial foraging optimization and its application for training kernel extreme learning machine publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105884 – year: 2020 ident: 10.1016/j.ins.2021.11.052_b0030 article-title: A novel gate resource allocation method using improved PSO-based QEA publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 448–449 start-page: 112 year: 2018 ident: 10.1016/j.ins.2021.11.052_b0015 article-title: New automatic fuzzy relational clustering algorithms using multi-objective NSGA-II publication-title: Inf. Sci. – ident: 10.1016/j.ins.2021.11.052_b0170 doi: 10.1109/CEC.2019.8790338 – year: 2021 ident: 10.1016/j.ins.2021.11.052_b0175 article-title: Two-stage double niched evolution strategy for multimodal multi-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2021.3064508 – ident: 10.1016/j.ins.2021.11.052_b0145 doi: 10.1007/978-3-319-93815-8_52 – volume: 6 issue: 2 year: 2002 ident: 10.1016/j.ins.2021.11.052_b0090 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 224 year: 2021 ident: 10.1016/j.ins.2021.11.052_b0010 article-title: Quantum differential evolution with cooperative coevolution framework and hybrid mutation strategy for large scale optimization publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107080 – volume: 113 year: 2021 ident: 10.1016/j.ins.2021.11.052_b0045 article-title: Forecasting crude oil prices based on variational mode decomposition and random sparse Bayesian learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108032 – ident: 10.1016/j.ins.2021.11.052_b0125 doi: 10.1145/1814256.1814259 – volume: 13 start-page: 1167 issue: 5 year: 2009 ident: 10.1016/j.ins.2021.11.052_b0190 article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2021467 – volume: 8 start-page: 856 issue: 4 year: 2021 ident: 10.1016/j.ins.2021.11.052_b0120 article-title: Information-utilization-method-assisted multimodal multiobjective optimization and application to credit card fraud detection publication-title: IEEE Trans. Comput. Social Syst. doi: 10.1109/TCSS.2021.3061439 – ident: 10.1016/j.ins.2021.11.052_b0050 – volume: 167 year: 2021 ident: 10.1016/j.ins.2021.11.052_b0210 article-title: Ant colony optimization with horizontal and vertical crossover search: Fundamental visions for multi-threshold image segmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114122 – ident: 10.1016/j.ins.2021.11.052_b0130 doi: 10.1109/CEC48606.2020.9185549 – volume: 22 start-page: 805 issue: 55 year: 2018 ident: 10.1016/j.ins.2021.11.052_b0140 article-title: A multi-objective particle swarm optimizer using ring topology for solving multi-modal multi-objective problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2754271 – ident: 10.1016/j.ins.2021.11.052_b0110 doi: 10.1109/CEC.2011.5949936 – volume: 24 start-page: 193 issue: 1 year: 2020 ident: 10.1016/j.ins.2021.11.052_b0070 article-title: A review of evolutionary multimodal multi-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2909744 – volume: 551 start-page: 23 year: 2021 ident: 10.1016/j.ins.2021.11.052_b0035 article-title: Non-dominated sorting on performance indicators for evolutionary many-objective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.11.008 – volume: 7 start-page: 10196 year: 2019 ident: 10.1016/j.ins.2021.11.052_b0080 article-title: Searching with direction awareness: multi-objective genetic algorithm based on angle quantization and crowding distance MOGA-AQCD publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890461 – volume: 22 start-page: 692 issue: 5 year: 2018 ident: 10.1016/j.ins.2021.11.052_b0020 article-title: Evolutionary multi-objective optimization-based multimodal optimization: fitness landscape approximation and peak detection publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2744328 – volume: 30 year: 2021 ident: 10.1016/j.ins.2021.11.052_b0025 article-title: Color image encryption based on joint permutation and diffusion publication-title: J. Electron. Imaging doi: 10.1117/1.JEI.30.1.013008 – volume: 143 year: 2020 ident: 10.1016/j.ins.2021.11.052_b0200 article-title: Multiobjective optimization of a continuous kraft pulp digester using SPEA2 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.107086 – volume: 212 year: 2021 ident: 10.1016/j.ins.2021.11.052_b0205 article-title: Evolutionary biogeography-based whale optimization methods with communication structure: Towards measuring the balance publication-title: Knowl. Based Syst doi: 10.1016/j.knosys.2020.106642 – volume: 385 year: 2021 ident: 10.1016/j.ins.2021.11.052_b0005 article-title: MOMPA: Multi-objective marine predator algorithm publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114029 – volume: 382–383 start-page: 15 year: 2017 ident: 10.1016/j.ins.2021.11.052_b0055 article-title: The elitist non-dominated sorting genetic algorithm with inheritance (i-NSGA-II) and its jumping gene adaptations for multi-objective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.12.003 – volume: 49 start-page: 569 issue: 2 year: 2019 ident: 10.1016/j.ins.2021.11.052_b0180 article-title: An improved adaptive NSGA-II with multi-population algorithm publication-title: Applied Intelligence doi: 10.1007/s10489-018-1263-6 – volume: 6 start-page: 22920 year: 2018 ident: 10.1016/j.ins.2021.11.052_b0075 article-title: A multi-objective genetic algorithm based on fitting and interpolation publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2829262 – volume: 33 start-page: 60 issue: 1 year: 2018 ident: 10.1016/j.ins.2021.11.052_b0095 article-title: A local search strategy based on density for NSGA2 algorithm publication-title: Control and Decision – volume: 55 start-page: 3035 year: 2021 ident: 10.1016/j.ins.2021.11.052_b0105 article-title: The route problem of multimodal transportation with timetable under uncertainty: multi-objective robust optimization model and heuristic approach publication-title: RAIRO-Oper. Res. doi: 10.1051/ro/2020110 – volume: 546 start-page: 1148 year: 2020 ident: 10.1016/j.ins.2021.11.052_b0155 article-title: Preference-inspired coevolutionary algorithm with active diversity strategy for multi-objective multi-modal optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.09.075 – ident: 10.1016/j.ins.2021.11.052_b0160 doi: 10.1109/CEC.2019.8790286  | 
    
| SSID | ssj0004766 | 
    
| Score | 2.7148292 | 
    
| Snippet | Multi-modal multi-objective optimization problem (MMOPs) has attracted more and more attention in evolutionary computing recently. It is not easy to solve... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 441 | 
    
| SubjectTerms | Adaptive crossover Multi-modal multi-objective Non-dominated solutions sorting genetic algorithm Pareto solutions Special crowding distance  | 
    
| Title | An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems | 
    
| URI | https://dx.doi.org/10.1016/j.ins.2021.11.052 | 
    
| Volume | 585 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AKRWK dateStart: 19681201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IXvRgFDWiQnowHkwK29r94EiIBDVykoSTS9ttMIKDwLz6t_ve1ikm6sHbsrRN8_r6-r30-14JubZh_weCa2bbWjIBAIMpXwvWcyKBSkdRFqt-GnujiXiYutMaGVRaGKRVmthfxvQiWps_XWPN7jpNUePrFIgYkhYbcDWK-AQMDT7def-ieQi_vK_ENAlbVzebBccrzbBit2N3sJCn6_x8Nu2cN8MjcmiAIu2XczkmtThrkIOd8oEN0jKiA3pDjaoIrUzNdj0hL_2Mxtm8uOOnidzmFHJ9Fq2Q_QJAk1ZuBx9YS2BGwZlQ00jlcrbapPn8lcKotOAcspValLGRmjdotqdkMrx7HoyYeU-Bae7xnHkJ6m41V7BnARlESeIFIgoC1-Kul_g8sRPpKkdrHajY8r3IcezYjQHSRZ7UUcLPSB3mGZ8T2rNcCTm5K4OAC0AESiolLB1rjlJY6TWJVVky1KbYOL55sQwrVtkiBOOHaHxIQkIwfpPcfnZZl5U2_mosquUJv7lLCCfB790u_tftkuw7qHooqGdXpJ5v3uIWYJFctQtna5O9_v3jaPwBss3eQQ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgAD4inK0wNiQDIkfiTpiBCoQGECiYnIdhIoKi2iYeW3c5c4PCRgYIsiX2Rdzufv5Ps-A-yGuP4TJR0PQ2e4QoDBbewU74pMEdNR1WLVl1dR70ad3-rbFhw3XBhqq_S5v87pVbb2bw69Nw-fBwPi-IoKEWPREiKu7k7BtNIipgrs4O2zz0PF9YEl1Uk0vDnarJq8BiOS7BbhASl5avHz5vRlwzldgHmPFNlRPZlFaOWjJZj7oh-4BFuedcD2mKcVkZuZX6_LcHc0YvnooTrkZ4WZlAyLfZ6Nqf0FkSZr4g4fSEzgnmE0EamRmeH9-GVQPjwx_Cqrmg752D7WyZH5S2gmK3BzenJ93OP-QgXuZCRLHhVEvHXS4qJFaJAVRZSoLEl0IHVUxLIIC6OtcM4lNg_iKBMizHWOmC6LjMsKuQptnGe-BqwbaINFuTZJIhVCAmusVYHLnSQurIk6EDSeTJ1XG6dLL4Zp01b2mKLzU3I-ViEpOr8D-x8mz7XUxl-DVfN70m_xkuJW8LvZ-v_MdmCmd33ZT_tnVxcbMCuIAlH1oW1Cu3x5zbcQmJR2uwq8d_NT39Y | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+enhanced+fast+non-dominated+solution+sorting+genetic+algorithm+for+multi-objective+problems&rft.jtitle=Information+sciences&rft.au=Deng%2C+Wu&rft.au=Zhang%2C+Xiaoxiao&rft.au=Zhou%2C+Yongquan&rft.au=Liu%2C+Yi&rft.date=2022-03-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=585&rft.spage=441&rft.epage=453&rft_id=info:doi/10.1016%2Fj.ins.2021.11.052&rft.externalDocID=S0020025521011749 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |