An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems

Multi-modal multi-objective optimization problem (MMOPs) has attracted more and more attention in evolutionary computing recently. It is not easy to solve these problems using the existing evolutionary algorithms. The non-dominated solution sorting genetic algorithm (NSGA-II) has poor PS distributio...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 585; pp. 441 - 453
Main Authors Deng, Wu, Zhang, Xiaoxiao, Zhou, Yongquan, Liu, Yi, Zhou, Xiangbing, Chen, Huiling, Zhao, Huimin
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.03.2022
Subjects
Online AccessGet full text
ISSN0020-0255
1872-6291
DOI10.1016/j.ins.2021.11.052

Cover

Abstract Multi-modal multi-objective optimization problem (MMOPs) has attracted more and more attention in evolutionary computing recently. It is not easy to solve these problems using the existing evolutionary algorithms. The non-dominated solution sorting genetic algorithm (NSGA-II) has poor PS distribution and convergence. In this paper, an enhanced fast NSGA-II based on a special congestion strategy and adaptive crossover strategy, namely ASDNSGA-II is proposed. In the ASDNSGA-II, the strategy with a special congestion degree is used to improve the selection strategy. Then a new adaptive crossover strategy is designed by evaluating the advantages and disadvantages of the SBX crossover strategy with the ability to solve high dimensions and the BLX-α with the ability of Pareto solution to produce offspring solutions. These can ensure the generation of offspring solutions around individuals with large crowding degrees and balance the convergence and diversity of decision space and object space. It can improve PS distribution and convergence and maintain PF precision. Eight functions of MMF1-MMF8 from the CEC2020 are selected to prove the effectiveness of the ASDNSGA-II. By comparing several latest multi-modal multi-objective evolutionary algorithms, the results show that the ASDNSGA-II can effectively find the global Pareto solution set and improve the distribution and convergence of PS.
AbstractList Multi-modal multi-objective optimization problem (MMOPs) has attracted more and more attention in evolutionary computing recently. It is not easy to solve these problems using the existing evolutionary algorithms. The non-dominated solution sorting genetic algorithm (NSGA-II) has poor PS distribution and convergence. In this paper, an enhanced fast NSGA-II based on a special congestion strategy and adaptive crossover strategy, namely ASDNSGA-II is proposed. In the ASDNSGA-II, the strategy with a special congestion degree is used to improve the selection strategy. Then a new adaptive crossover strategy is designed by evaluating the advantages and disadvantages of the SBX crossover strategy with the ability to solve high dimensions and the BLX-α with the ability of Pareto solution to produce offspring solutions. These can ensure the generation of offspring solutions around individuals with large crowding degrees and balance the convergence and diversity of decision space and object space. It can improve PS distribution and convergence and maintain PF precision. Eight functions of MMF1-MMF8 from the CEC2020 are selected to prove the effectiveness of the ASDNSGA-II. By comparing several latest multi-modal multi-objective evolutionary algorithms, the results show that the ASDNSGA-II can effectively find the global Pareto solution set and improve the distribution and convergence of PS.
Author Zhao, Huimin
Deng, Wu
Zhou, Xiangbing
Zhang, Xiaoxiao
Zhou, Yongquan
Liu, Yi
Chen, Huiling
Author_xml – sequence: 1
  givenname: Wu
  surname: Deng
  fullname: Deng, Wu
  email: dw7689@163.com
  organization: School of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
– sequence: 2
  givenname: Xiaoxiao
  surname: Zhang
  fullname: Zhang, Xiaoxiao
  email: zhangxiaoxiao6056@163.com
  organization: School of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
– sequence: 3
  givenname: Yongquan
  surname: Zhou
  fullname: Zhou, Yongquan
  email: yongquanzhou@126.com
  organization: College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China
– sequence: 4
  givenname: Yi
  surname: Liu
  fullname: Liu, Yi
  email: liuyi@camic.cn
  organization: Research Center of Big Data and Information Management, Civil Aviation Management Institute of China, Beijing 100102, China
– sequence: 5
  givenname: Xiangbing
  surname: Zhou
  fullname: Zhou, Xiangbing
  email: zhouxb@uestc.edu.cn
  organization: School of Information and Engineering, Sichuan Tourism University, Chendu 610100, China
– sequence: 6
  givenname: Huiling
  surname: Chen
  fullname: Chen, Huiling
  email: huiling.jlu@gamil.com
  organization: Computer Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
– sequence: 7
  givenname: Huimin
  surname: Zhao
  fullname: Zhao, Huimin
  email: hm_zhao1977@126.com
  organization: School of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
BookMark eNp9kMtqwzAQRUVJoUnaD-jOP2B3JFmyS1ch9AWBbtpthaxHomBLQVIC_fvapKsusprLwLlwzwLNfPAGoXsMFQbMH_aV86kiQHCFcQWMXKE5bhtScvKIZ2gOQKAEwtgNWqS0B4C64XyOvle-MH4nvTK6sDLlYiwudRicl3l8pdAfswt-DDE7vy22xpvsVCH7bYgu74bChlgMxz67MnR7o7I7meIQQ9ebId2iayv7ZO7-7hJ9vTx_rt_Kzcfr-3q1KRXlNJfcMkprRbu2BWhabS1va922DCjjtqEWW8k6opRqOwMN14Rgw0wNTHOptKVLhM-9KoaUorHiEN0g44_AICZBYi9GQWISJDAWo6CRaf4xymU5jc1Ruv4i-XQmzTjp5EwUSTkzKXRxFCB0cBfoX-iehKE
CitedBy_id crossref_primary_10_1016_j_energy_2024_132597
crossref_primary_10_1155_2022_8364988
crossref_primary_10_1002_acs_3645
crossref_primary_10_1016_j_ins_2024_120915
crossref_primary_10_1049_tje2_12189
crossref_primary_10_1016_j_matdes_2022_110645
crossref_primary_10_1016_j_ecolind_2023_109882
crossref_primary_10_3390_machines11020167
crossref_primary_10_1109_TASE_2023_3293931
crossref_primary_10_2478_pomr_2024_0052
crossref_primary_10_1016_j_knosys_2022_108330
crossref_primary_10_1155_2022_5213270
crossref_primary_10_3390_electronics11071080
crossref_primary_10_1016_j_ins_2023_03_080
crossref_primary_10_1016_j_asoc_2023_110680
crossref_primary_10_1049_qtc2_12113
crossref_primary_10_3390_app14156625
crossref_primary_10_3390_app112311480
crossref_primary_10_3390_app12094676
crossref_primary_10_1177_21582440231166593
crossref_primary_10_1093_jcde_qwac075
crossref_primary_10_1007_s42235_022_00292_z
crossref_primary_10_3390_app12094314
crossref_primary_10_3390_su16051810
crossref_primary_10_1155_2022_8011003
crossref_primary_10_3390_app12063139
crossref_primary_10_3390_app122312179
crossref_primary_10_1016_j_ijhydene_2024_05_167
crossref_primary_10_1142_S0219622023500128
crossref_primary_10_1016_j_ijleo_2021_168513
crossref_primary_10_1080_10255842_2023_2289344
crossref_primary_10_3390_drones6090226
crossref_primary_10_3389_fninf_2022_1063048
crossref_primary_10_1016_j_solener_2022_06_046
crossref_primary_10_1016_j_tra_2024_104353
crossref_primary_10_1016_j_compbiomed_2022_106227
crossref_primary_10_1016_j_neucom_2022_06_075
crossref_primary_10_3390_math11194200
crossref_primary_10_1016_j_iot_2024_101198
crossref_primary_10_21595_jve_2022_22410
crossref_primary_10_1016_j_engappai_2023_107110
crossref_primary_10_3390_sym14020331
crossref_primary_10_2139_ssrn_4172705
crossref_primary_10_23919_cje_2022_00_075
crossref_primary_10_1093_jcde_qwac050
crossref_primary_10_1061_JAEEEZ_ASENG_5155
crossref_primary_10_1002_adc2_125
crossref_primary_10_1016_j_oceaneng_2023_116655
crossref_primary_10_1371_journal_pone_0310218
crossref_primary_10_1007_s42235_022_00304_y
crossref_primary_10_1016_j_prime_2025_100946
crossref_primary_10_1007_s42235_022_00228_7
crossref_primary_10_1016_j_engappai_2022_105530
crossref_primary_10_1155_2022_3617140
crossref_primary_10_1109_TCSS_2022_3204052
crossref_primary_10_1002_cpe_7240
crossref_primary_10_1155_2022_7647121
crossref_primary_10_3934_math_2024587
crossref_primary_10_1016_j_energy_2024_130839
crossref_primary_10_3389_fnhum_2024_1400077
crossref_primary_10_3390_su152316367
crossref_primary_10_1016_j_asoc_2024_112679
crossref_primary_10_3390_app12094334
crossref_primary_10_1007_s11227_024_06498_8
crossref_primary_10_32604_cmes_2023_026098
crossref_primary_10_1016_j_engappai_2022_105522
crossref_primary_10_3389_fninf_2022_1078685
crossref_primary_10_1109_MITS_2022_3174238
crossref_primary_10_1016_j_asoc_2023_110585
crossref_primary_10_1016_j_jksuci_2024_101916
crossref_primary_10_1002_er_8011
crossref_primary_10_1016_j_jare_2023_01_014
crossref_primary_10_1038_s41598_024_71636_4
crossref_primary_10_1155_2022_3755574
crossref_primary_10_1016_j_engappai_2022_105512
crossref_primary_10_1049_sfw2_12140
crossref_primary_10_1007_s40815_022_01354_4
crossref_primary_10_1109_ACCESS_2023_3329583
crossref_primary_10_1109_OJIES_2022_3172899
crossref_primary_10_1371_journal_pone_0270536
crossref_primary_10_1016_j_engappai_2022_105516
crossref_primary_10_1109_ACCESS_2025_3546617
crossref_primary_10_1016_j_compbiomed_2023_107769
crossref_primary_10_3390_app142210178
crossref_primary_10_1007_s10479_023_05796_3
crossref_primary_10_1109_JSEN_2022_3166899
crossref_primary_10_1093_jcde_qwad006
crossref_primary_10_1093_jcde_qwac038
crossref_primary_10_1080_17455030_2022_2094028
crossref_primary_10_1093_jcde_qwad002
crossref_primary_10_1109_LSENS_2022_3167121
crossref_primary_10_1080_17455030_2023_2226249
crossref_primary_10_2174_0115734137276125231201113602
crossref_primary_10_1016_j_buildenv_2025_112681
crossref_primary_10_1088_1361_665X_ad38a3
crossref_primary_10_1007_s00500_022_07575_x
crossref_primary_10_1093_bib_bbaf007
crossref_primary_10_32604_cmes_2023_024247
crossref_primary_10_1016_j_compbiomed_2022_105618
crossref_primary_10_1016_j_future_2024_04_008
crossref_primary_10_1038_s41598_024_68964_w
crossref_primary_10_1177_09596518241278387
crossref_primary_10_3390_rs15163932
crossref_primary_10_1016_j_procs_2023_11_019
crossref_primary_10_1080_13682199_2023_2255335
crossref_primary_10_1007_s00170_023_12051_3
crossref_primary_10_1038_s41598_024_62904_4
crossref_primary_10_1016_j_eswa_2022_118734
crossref_primary_10_1155_2022_2108334
crossref_primary_10_1016_j_pacfin_2024_102406
crossref_primary_10_3390_biomimetics8020174
crossref_primary_10_1109_TMECH_2023_3347631
crossref_primary_10_1007_s42235_022_00262_5
crossref_primary_10_3390_machines12110802
crossref_primary_10_1039_D2GC04574E
crossref_primary_10_1139_cjce_2024_0180
crossref_primary_10_1016_j_scs_2024_105978
crossref_primary_10_1080_00207543_2022_2122619
crossref_primary_10_3390_electronics12091961
crossref_primary_10_1080_26895293_2022_2079732
crossref_primary_10_2516_stet_2024025
crossref_primary_10_1016_j_bspc_2022_104373
crossref_primary_10_1016_j_knosys_2022_109687
crossref_primary_10_1007_s10479_024_05992_9
crossref_primary_10_1109_TCSII_2023_3255419
crossref_primary_10_1109_TNSE_2023_3324143
crossref_primary_10_1109_JSEN_2022_3179165
crossref_primary_10_1007_s11071_023_08411_z
crossref_primary_10_1016_j_ymssp_2024_112166
crossref_primary_10_3390_app12094776
crossref_primary_10_1155_2022_2314788
crossref_primary_10_3390_electronics11050775
crossref_primary_10_1007_s44196_022_00133_1
crossref_primary_10_1371_journal_pone_0268007
crossref_primary_10_1016_j_asoc_2024_112071
crossref_primary_10_1016_j_asoc_2022_109419
crossref_primary_10_1088_1361_6501_ac543a
crossref_primary_10_1016_j_jenvman_2024_120417
crossref_primary_10_1080_10589759_2022_2118747
crossref_primary_10_1155_2023_7476736
crossref_primary_10_1177_09544100231219945
crossref_primary_10_1016_j_bspc_2022_104139
crossref_primary_10_3390_met13020379
crossref_primary_10_3390_en16176107
crossref_primary_10_1016_j_displa_2024_102740
crossref_primary_10_1080_24705314_2023_2170124
crossref_primary_10_1007_s11269_024_03848_2
crossref_primary_10_1109_TIM_2022_3159005
crossref_primary_10_1371_journal_pone_0266734
crossref_primary_10_1016_j_eswa_2025_126675
crossref_primary_10_1049_cim2_12047
crossref_primary_10_1016_j_ins_2024_120832
crossref_primary_10_1080_0952813X_2023_2165719
crossref_primary_10_1002_spy2_490
crossref_primary_10_1080_08982112_2023_2208664
crossref_primary_10_2478_jaiscr_2023_0011
crossref_primary_10_3390_e24070890
crossref_primary_10_3390_sym16111474
crossref_primary_10_1049_cim2_12064
crossref_primary_10_1080_00207543_2023_2267693
crossref_primary_10_1109_ACCESS_2023_3323201
crossref_primary_10_1049_cit2_12108
crossref_primary_10_1155_2022_1535957
crossref_primary_10_1007_s11465_022_0689_z
crossref_primary_10_1016_j_cie_2023_109848
crossref_primary_10_1155_2022_4925416
crossref_primary_10_1093_jcde_qwac119
crossref_primary_10_1155_js_8869808
crossref_primary_10_1016_j_isatra_2022_05_033
crossref_primary_10_1093_jcde_qwac112
crossref_primary_10_1093_jcde_qwac111
crossref_primary_10_1016_j_ins_2024_121858
crossref_primary_10_1080_00207543_2023_2267680
crossref_primary_10_1007_s12351_025_00899_0
crossref_primary_10_1155_2022_4825018
crossref_primary_10_1007_s00500_022_07553_3
crossref_primary_10_1016_j_enconman_2022_116246
crossref_primary_10_3389_fninf_2022_1041799
crossref_primary_10_3390_electronics11101558
crossref_primary_10_1016_j_compbiomed_2022_105536
crossref_primary_10_1007_s11227_023_05529_0
crossref_primary_10_1109_JPHOT_2022_3201109
crossref_primary_10_1007_s10489_023_05261_5
crossref_primary_10_1515_phys_2022_0197
crossref_primary_10_1016_j_renene_2025_122407
crossref_primary_10_1155_2022_9097868
crossref_primary_10_3390_app12115500
crossref_primary_10_3390_app13074643
crossref_primary_10_1080_03610926_2022_2155787
crossref_primary_10_2166_aqua_2022_047
crossref_primary_10_35784_iapgos_5775
crossref_primary_10_1002_qre_3350
crossref_primary_10_1016_j_engappai_2023_107197
crossref_primary_10_1080_0952813X_2023_2217831
crossref_primary_10_1007_s13272_023_00657_y
crossref_primary_10_1155_2022_3035700
crossref_primary_10_3390_app12073565
crossref_primary_10_1016_j_engappai_2022_105139
crossref_primary_10_1016_j_ins_2023_03_101
crossref_primary_10_1080_15623599_2022_2056409
crossref_primary_10_1155_2022_7091553
crossref_primary_10_1007_s40430_024_04715_2
crossref_primary_10_1108_ILT_04_2022_0151
crossref_primary_10_3390_app14114603
crossref_primary_10_1016_j_aej_2025_01_130
crossref_primary_10_3390_s23218787
crossref_primary_10_1007_s40815_022_01353_5
crossref_primary_10_1155_2022_2411458
crossref_primary_10_1016_j_ins_2023_01_095
crossref_primary_10_1016_j_ins_2024_120186
crossref_primary_10_1016_j_knosys_2022_109360
crossref_primary_10_1016_j_dsm_2024_11_001
crossref_primary_10_1016_j_eswa_2023_121413
crossref_primary_10_1007_s00521_023_08950_x
crossref_primary_10_1016_j_compbiomed_2022_105563
crossref_primary_10_1155_2022_1604169
crossref_primary_10_3390_molecules28196881
crossref_primary_10_1016_j_swevo_2024_101574
crossref_primary_10_23919_JSEE_2024_000095
crossref_primary_10_1016_j_eswa_2022_119041
crossref_primary_10_1080_21642583_2024_2347887
crossref_primary_10_1016_j_ins_2022_08_115
crossref_primary_10_1007_s10462_022_10370_7
crossref_primary_10_1016_j_rineng_2024_102916
crossref_primary_10_1016_j_jocs_2022_101871
crossref_primary_10_3390_app12115604
crossref_primary_10_1016_j_eswa_2022_118753
crossref_primary_10_3390_biomedicines10082052
crossref_primary_10_1007_s11063_022_10821_w
crossref_primary_10_21595_jve_2022_22479
crossref_primary_10_54569_aair_1145616
crossref_primary_10_1016_j_ins_2022_06_083
crossref_primary_10_3389_fninf_2022_956423
crossref_primary_10_1007_s12555_022_0158_9
crossref_primary_10_1142_S0218001424520190
crossref_primary_10_2174_1574893617666220920102401
crossref_primary_10_1016_j_knosys_2022_109983
crossref_primary_10_1016_j_bspc_2022_104511
crossref_primary_10_1016_j_aei_2023_102315
crossref_primary_10_2478_amns_2025_0488
crossref_primary_10_3390_drones6120393
crossref_primary_10_1007_s10462_023_10526_z
crossref_primary_10_1109_TASE_2023_3312173
crossref_primary_10_3390_app12094232
crossref_primary_10_1016_j_compbiomed_2023_106950
crossref_primary_10_1002_ese3_1329
crossref_primary_10_3389_fenrg_2022_1061408
crossref_primary_10_26599_BDMA_2022_9020008
crossref_primary_10_1080_10402004_2022_2131665
crossref_primary_10_1016_j_susoc_2023_08_004
crossref_primary_10_1080_03772063_2022_2150694
crossref_primary_10_1007_s10586_024_04426_2
crossref_primary_10_1021_acs_jcim_4c00031
crossref_primary_10_1016_j_oceaneng_2023_115433
crossref_primary_10_1515_ijeeps_2022_0121
crossref_primary_10_3390_biomimetics8030322
crossref_primary_10_1109_OJCOMS_2023_3327211
crossref_primary_10_3390_electronics11244224
crossref_primary_10_1155_2022_6187912
crossref_primary_10_1080_15376494_2023_2172234
crossref_primary_10_1016_j_measurement_2022_110974
crossref_primary_10_1155_2022_4975288
crossref_primary_10_59782_aai_v1i3_318
crossref_primary_10_1109_TNNLS_2022_3213536
crossref_primary_10_1016_j_heliyon_2024_e29830
crossref_primary_10_1016_j_chaos_2022_113092
crossref_primary_10_1371_journal_pone_0315545
crossref_primary_10_1109_TMM_2022_3233308
crossref_primary_10_1080_0952813X_2022_2115144
crossref_primary_10_1155_2022_9985131
crossref_primary_10_1002_adc2_200
crossref_primary_10_3390_drones8060247
crossref_primary_10_1016_j_eswa_2022_119095
crossref_primary_10_1109_JSEN_2022_3193943
crossref_primary_10_1016_j_bspc_2023_105147
crossref_primary_10_1016_j_measurement_2022_110884
crossref_primary_10_1016_j_engappai_2023_107356
crossref_primary_10_3934_era_2023092
crossref_primary_10_1016_j_isatra_2024_12_048
crossref_primary_10_1016_j_knosys_2022_109048
crossref_primary_10_1109_TVT_2024_3417714
crossref_primary_10_3934_mbe_2023884
crossref_primary_10_1016_j_rineng_2025_104234
crossref_primary_10_1016_j_neucom_2023_126467
crossref_primary_10_3390_electronics11010029
crossref_primary_10_1016_j_eswa_2025_127232
crossref_primary_10_1109_ACCESS_2022_3227431
crossref_primary_10_3390_app12094258
crossref_primary_10_3390_app15052519
crossref_primary_10_1016_j_jmapro_2022_10_057
crossref_primary_10_1186_s43088_024_00525_6
crossref_primary_10_3390_app12126240
crossref_primary_10_1007_s42235_022_00295_w
crossref_primary_10_1108_EC_07_2022_0448
crossref_primary_10_1016_j_knosys_2022_108503
crossref_primary_10_1093_jcde_qwac085
crossref_primary_10_1016_j_arcontrol_2022_09_002
crossref_primary_10_1016_j_infrared_2025_105788
crossref_primary_10_1080_19427867_2022_2091710
crossref_primary_10_1093_jcde_qwac081
crossref_primary_10_23919_JSEE_2024_000036
crossref_primary_10_1111_exsy_13802
crossref_primary_10_1016_j_psj_2025_104771
crossref_primary_10_1155_2022_8791968
crossref_primary_10_1002_cpe_7396
crossref_primary_10_1016_j_compbiomed_2022_105910
crossref_primary_10_1155_2022_2850111
crossref_primary_10_1007_s42979_022_01533_y
crossref_primary_10_1016_j_compbiomed_2022_105356
crossref_primary_10_21595_jve_2023_23356
crossref_primary_10_3390_app12052545
crossref_primary_10_1109_JSEN_2022_3166804
crossref_primary_10_1007_s11235_023_01040_2
Cites_doi 10.1109/ACCESS.2019.2894726
10.1109/TASE.2015.2487881
10.1109/CEC48606.2020.9185886
10.1109/CEC.2016.7744093
10.1109/TEVC.2007.894202
10.1007/s00500-020-05527-x
10.1109/ACCESS.2020.2997302
10.1016/j.asoc.2019.105884
10.1109/CEC.2019.8790338
10.1109/TEVC.2021.3064508
10.1007/978-3-319-93815-8_52
10.1109/4235.996017
10.1016/j.knosys.2021.107080
10.1016/j.asoc.2021.108032
10.1145/1814256.1814259
10.1109/TEVC.2009.2021467
10.1109/TCSS.2021.3061439
10.1016/j.eswa.2020.114122
10.1109/CEC48606.2020.9185549
10.1109/TEVC.2017.2754271
10.1109/CEC.2011.5949936
10.1109/TEVC.2019.2909744
10.1016/j.ins.2020.11.008
10.1109/ACCESS.2018.2890461
10.1109/TEVC.2017.2744328
10.1117/1.JEI.30.1.013008
10.1016/j.compchemeng.2020.107086
10.1016/j.knosys.2020.106642
10.1016/j.cma.2021.114029
10.1016/j.ins.2016.12.003
10.1007/s10489-018-1263-6
10.1109/ACCESS.2018.2829262
10.1051/ro/2020110
10.1016/j.ins.2020.09.075
10.1109/CEC.2019.8790286
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2021.11.052
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 453
ExternalDocumentID 10_1016_j_ins_2021_11_052
S0020025521011749
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c363t-6f5334c3b880078dff684d8850356f73f1fa5b2ccc8be076d221e5e405d6acdf3
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Wed Oct 01 05:19:09 EDT 2025
Thu Apr 24 22:53:07 EDT 2025
Fri Feb 23 02:41:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-modal multi-objective
Pareto solutions
Special crowding distance
Adaptive crossover
Non-dominated solutions sorting genetic algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-6f5334c3b880078dff684d8850356f73f1fa5b2ccc8be076d221e5e405d6acdf3
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_ins_2021_11_052
crossref_citationtrail_10_1016_j_ins_2021_11_052
elsevier_sciencedirect_doi_10_1016_j_ins_2021_11_052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kumar, Guria (b0055) 2017; 382–383
Cheng, Li, Li, Yao (b0020) 2018; 22
J. J. Liang, C. T. Yue and B. Y. Qu, “Multimodal multi-objective optimization: A preliminary study,” 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2545-2461, Nov. 2016.
Wang, Sun, Zhang (b0035) 2021; 551
Wang, Yang, Guo, Zhu, Zhu (b0150) 2019
J. Togelius, M. Preuss and G. N. Yannakakis, “Towards multiobjective procedural map generation,” Proceedings of the 2010 workshop on procedural content generation in games, no. 3, pp. 1-8, Jun. 2010.
Deng, Shang, Cai (b0010) 2021; 224
Deb, Pratap, Agarwal, Meyarivan (b0090) 2002; 6
Tu, Chen, Liu (b0205) 2021; 212
Trivedi, Srinivasan, Sanyal, Ghosh (b0060) 2017; 21
Zhao, Liu, Yu (b0210) 2021; 167
T. Sonoda and M. Nakata, “MOEA/D-S3: MOEA/D using SVM-based Surrogates adjusted to subproblems for many objective optimization,” 2020 IEEE Congress on Evolutionary Computation (CEC),pp. 1-8, Jul. 2020.
Li, Shi, Zhang (b0025) 2021; 30
Zhou, Zhang, Jin (b0190) 2009; 13
Deng, Xu, Zhao (b0030) 2020
Zhang, Shen, Yen, Xu, He (b0175) 2021
Devaurs, Siméon, Cortés (b0100) 2016; 13
Tanabe, Ishibuchi (b0070) 2020; 24
Zhang, Zhou, Jin (b0195) 2008; 12
Deng, Shang, Cai, Zhao (b0065) 2021; 25
Han, Zhu, Zhou, Cai (b0120) 2021; 8
Zhong, Zhou, Deng (b0005) 2021; 385
Li, Qian, Deng, Zhang, Lu, Wang (b0045) 2021; 113
Yue, Qu, Liang (b0140) 2018; 22
Han, Wang, Zhang, Xie, Xing (b0075) 2018; 6
Zang, Zhang, Wang, Jiang, Liu, Sun (b0085) 2019; 7
R.Z. Shi, W. Lin, Q. Z. lin, Z. X. Zhu and J. Y. Chen, “Multimodal multi-objective optimization using a density-based one-by-one update strategy,” 2019 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 295-301, Aug. 2019.
Metiaf, Wu, Aljeroudi (b0080) 2019; 7
Wang, Ma, Tan, Wu, Wang, Gong, Xiong (b0155) 2020; 546
Li, Li, J.F.Q (b0095) 2018; 33
G. Sharma, V. Sharma, K. R. Pardasani and M. Alshehri, “Soft set based intelligent assistive model for multiobjective and multimodal transportation problem,” IEEE Access, vol. 8, pp. 102646-102656, May. 2020.
Zhao, Liu, Zhang, Liu (b0180) 2019; 49
Peng, Ishibuchi (b0015) 2018; 448–449
B. Y. Qu, G. S. Li, Q. Q. Guo, L. Yan, X. Z. Chai and Z. Q. Guo, “A niching multi-objective harmony search algorithm for multimodal multi-objective problems,” 2019 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 1267-1274, Jun. 2019.
F. Kudo, T. Yoshikawa and T. Furuhashi, “A study on analysis of design variables in Pareto solutions for conceptual design optimization problem of hybrid rocket engine,” IEEE Congress of Evolutionary Computation (CEC). IEEE, pp. 2558-2562, Jul. 2011.
W. Deng, J.J. Xu, X.Z. Gao and H. M. Zhao. “An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 1-10, Nov. 2020.
Chen, Zhang, Luo (b0040) 2020; 86
J. Liang Q.Q. Guo C.T. Yue B.Y. Qu A self-organizing multi-objective particle swarm optimization algorithm for multi-modal multi-objective problems vol. 10941 2018 Springer, Cham Jun.
Larraín, Pradenas, Pulkkinen, Santander (b0200) 2020; 143
Peng, Yong, Luo (b0105) 2021; 55
C. T. Yue, J. J. Liang, P. N. Suganthan, B. Y. Qu, K. J. Yu and S. Liu, “MMOGA for Solving multimodal multiobjective optimization problems with local pareto sets,” 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 1-8, Jul. 2020.
Eshelman, Schaffer (b0185) 2014; 2
Zhong (10.1016/j.ins.2021.11.052_b0005) 2021; 385
Deng (10.1016/j.ins.2021.11.052_b0010) 2021; 224
Zang (10.1016/j.ins.2021.11.052_b0085) 2019; 7
Deng (10.1016/j.ins.2021.11.052_b0030) 2020
Zhang (10.1016/j.ins.2021.11.052_b0195) 2008; 12
Larraín (10.1016/j.ins.2021.11.052_b0200) 2020; 143
10.1016/j.ins.2021.11.052_b0160
Zhao (10.1016/j.ins.2021.11.052_b0180) 2019; 49
Han (10.1016/j.ins.2021.11.052_b0120) 2021; 8
Han (10.1016/j.ins.2021.11.052_b0075) 2018; 6
Wang (10.1016/j.ins.2021.11.052_b0150) 2019
10.1016/j.ins.2021.11.052_b0125
Cheng (10.1016/j.ins.2021.11.052_b0020) 2018; 22
Yue (10.1016/j.ins.2021.11.052_b0140) 2018; 22
10.1016/j.ins.2021.11.052_b0145
10.1016/j.ins.2021.11.052_b0165
Tu (10.1016/j.ins.2021.11.052_b0205) 2021; 212
Zhang (10.1016/j.ins.2021.11.052_b0175) 2021
Devaurs (10.1016/j.ins.2021.11.052_b0100) 2016; 13
Li (10.1016/j.ins.2021.11.052_b0025) 2021; 30
Metiaf (10.1016/j.ins.2021.11.052_b0080) 2019; 7
Deb (10.1016/j.ins.2021.11.052_b0090) 2002; 6
Wang (10.1016/j.ins.2021.11.052_b0035) 2021; 551
10.1016/j.ins.2021.11.052_b0050
Li (10.1016/j.ins.2021.11.052_b0095) 2018; 33
10.1016/j.ins.2021.11.052_b0170
Li (10.1016/j.ins.2021.11.052_b0045) 2021; 113
Peng (10.1016/j.ins.2021.11.052_b0105) 2021; 55
Zhou (10.1016/j.ins.2021.11.052_b0190) 2009; 13
Wang (10.1016/j.ins.2021.11.052_b0155) 2020; 546
10.1016/j.ins.2021.11.052_b0135
Deng (10.1016/j.ins.2021.11.052_b0065) 2021; 25
Kumar (10.1016/j.ins.2021.11.052_b0055) 2017; 382–383
10.1016/j.ins.2021.11.052_b0110
10.1016/j.ins.2021.11.052_b0130
Zhao (10.1016/j.ins.2021.11.052_b0210) 2021; 167
Peng (10.1016/j.ins.2021.11.052_b0015) 2018; 448–449
Trivedi (10.1016/j.ins.2021.11.052_b0060) 2017; 21
Tanabe (10.1016/j.ins.2021.11.052_b0070) 2020; 24
Eshelman (10.1016/j.ins.2021.11.052_b0185) 2014; 2
Chen (10.1016/j.ins.2021.11.052_b0040) 2020; 86
10.1016/j.ins.2021.11.052_b0115
References_xml – volume: 113
  year: 2021
  ident: b0045
  article-title: Forecasting crude oil prices based on variational mode decomposition and random sparse Bayesian learning
  publication-title: Appl. Soft Comput.
– reference: T. Sonoda and M. Nakata, “MOEA/D-S3: MOEA/D using SVM-based Surrogates adjusted to subproblems for many objective optimization,” 2020 IEEE Congress on Evolutionary Computation (CEC),pp. 1-8, Jul. 2020.
– volume: 86
  year: 2020
  ident: b0040
  article-title: An enhanced bacterial foraging optimization and its application for training kernel extreme learning machine
  publication-title: Appl. Soft Comput.
– volume: 22
  start-page: 692
  year: 2018
  end-page: 706
  ident: b0020
  article-title: Evolutionary multi-objective optimization-based multimodal optimization: fitness landscape approximation and peak detection
  publication-title: IEEE Trans. Evol. Comput.
– reference: G. Sharma, V. Sharma, K. R. Pardasani and M. Alshehri, “Soft set based intelligent assistive model for multiobjective and multimodal transportation problem,” IEEE Access, vol. 8, pp. 102646-102656, May. 2020.
– reference: J. J. Liang, C. T. Yue and B. Y. Qu, “Multimodal multi-objective optimization: A preliminary study,” 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2545-2461, Nov. 2016.
– reference: J. Liang Q.Q. Guo C.T. Yue B.Y. Qu A self-organizing multi-objective particle swarm optimization algorithm for multi-modal multi-objective problems vol. 10941 2018 Springer, Cham Jun.
– volume: 49
  start-page: 569
  year: 2019
  end-page: 580
  ident: b0180
  article-title: An improved adaptive NSGA-II with multi-population algorithm
  publication-title: Applied Intelligence
– reference: F. Kudo, T. Yoshikawa and T. Furuhashi, “A study on analysis of design variables in Pareto solutions for conceptual design optimization problem of hybrid rocket engine,” IEEE Congress of Evolutionary Computation (CEC). IEEE, pp. 2558-2562, Jul. 2011.
– volume: 6
  start-page: 22920
  year: 2018
  end-page: 22929
  ident: b0075
  article-title: A multi-objective genetic algorithm based on fitting and interpolation
  publication-title: IEEE Access
– volume: 25
  start-page: 5277
  year: 2021
  end-page: 5298
  ident: b0065
  article-title: An improved differential evolution algorithm and its application in optimization problem
  publication-title: Soft. Comput.
– reference: J. Togelius, M. Preuss and G. N. Yannakakis, “Towards multiobjective procedural map generation,” Proceedings of the 2010 workshop on procedural content generation in games, no. 3, pp. 1-8, Jun. 2010.
– year: 2021
  ident: b0175
  article-title: Two-stage double niched evolution strategy for multimodal multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 212
  year: 2021
  ident: b0205
  article-title: Evolutionary biogeography-based whale optimization methods with communication structure: Towards measuring the balance
  publication-title: Knowl. Based Syst
– volume: 13
  start-page: 415
  year: 2016
  end-page: 424
  ident: b0100
  article-title: Optimal path planning in complex cost spaces with sampling-based algorithms
  publication-title: IEEE Trans. Autom. Sci. Eng.
– reference: C. T. Yue, J. J. Liang, P. N. Suganthan, B. Y. Qu, K. J. Yu and S. Liu, “MMOGA for Solving multimodal multiobjective optimization problems with local pareto sets,” 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 1-8, Jul. 2020.
– volume: 13
  start-page: 1167
  year: 2009
  end-page: 1187
  ident: b0190
  article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm
  publication-title: IEEE Trans. Evol. Comput.
– volume: 7
  start-page: 18821
  year: 2019
  end-page: 18839
  ident: b0085
  article-title: A novel double-strand DNA genetic algorithm for multi-objective optimization
  publication-title: IEEE Access
– volume: 143
  year: 2020
  ident: b0200
  article-title: Multiobjective optimization of a continuous kraft pulp digester using SPEA2
  publication-title: Comput. Chem. Eng.
– volume: 382–383
  start-page: 15
  year: 2017
  end-page: 37
  ident: b0055
  article-title: The elitist non-dominated sorting genetic algorithm with inheritance (i-NSGA-II) and its jumping gene adaptations for multi-objective optimization
  publication-title: Inf. Sci.
– volume: 33
  start-page: 60
  year: 2018
  end-page: 66
  ident: b0095
  article-title: A local search strategy based on density for NSGA2 algorithm
  publication-title: Control and Decision
– volume: 167
  year: 2021
  ident: b0210
  article-title: Ant colony optimization with horizontal and vertical crossover search: Fundamental visions for multi-threshold image segmentation
  publication-title: Expert Syst. Appl.
– volume: 30
  year: 2021
  ident: b0025
  article-title: Color image encryption based on joint permutation and diffusion
  publication-title: J. Electron. Imaging
– volume: 551
  start-page: 23
  year: 2021
  end-page: 38
  ident: b0035
  article-title: Non-dominated sorting on performance indicators for evolutionary many-objective optimization
  publication-title: Inf. Sci.
– volume: 546
  start-page: 1148
  year: 2020
  end-page: 1165
  ident: b0155
  article-title: Preference-inspired coevolutionary algorithm with active diversity strategy for multi-objective multi-modal optimization
  publication-title: Inf. Sci.
– start-page: 271
  year: 2019
  end-page: 278
  ident: b0150
  article-title: A novel multi-objective competitive swarm optimization algorithm for multi-modal multi objective problems
  publication-title: 2019 IEEE Congress on Evolutionary Computation (CEC)
– volume: 6
  year: 2002
  ident: b0090
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 55
  start-page: 3035
  year: 2021
  end-page: 3050
  ident: b0105
  article-title: The route problem of multimodal transportation with timetable under uncertainty: multi-objective robust optimization model and heuristic approach
  publication-title: RAIRO-Oper. Res.
– volume: 2
  start-page: 187
  year: 2014
  end-page: 202
  ident: b0185
  article-title: Real-coded genetic algorithms and interval-schemata
  publication-title: Found. Genet. Algorith.
– volume: 22
  start-page: 805
  year: 2018
  end-page: 817
  ident: b0140
  article-title: A multi-objective particle swarm optimizer using ring topology for solving multi-modal multi-objective problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 21
  start-page: 440
  year: 2017
  end-page: 462
  ident: b0060
  article-title: A survey of multi-objective evolutionary algorithms based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 856
  year: 2021
  end-page: 869
  ident: b0120
  article-title: Information-utilization-method-assisted multimodal multiobjective optimization and application to credit card fraud detection
  publication-title: IEEE Trans. Comput. Social Syst.
– volume: 24
  start-page: 193
  year: 2020
  end-page: 200
  ident: b0070
  article-title: A review of evolutionary multimodal multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 224
  year: 2021
  ident: b0010
  article-title: Quantum differential evolution with cooperative coevolution framework and hybrid mutation strategy for large scale optimization
  publication-title: Knowl.-Based Syst.
– reference: B. Y. Qu, G. S. Li, Q. Q. Guo, L. Yan, X. Z. Chai and Z. Q. Guo, “A niching multi-objective harmony search algorithm for multimodal multi-objective problems,” 2019 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 1267-1274, Jun. 2019.
– volume: 385
  year: 2021
  ident: b0005
  article-title: MOMPA: Multi-objective marine predator algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2020
  ident: b0030
  article-title: A novel gate resource allocation method using improved PSO-based QEA
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: R.Z. Shi, W. Lin, Q. Z. lin, Z. X. Zhu and J. Y. Chen, “Multimodal multi-objective optimization using a density-based one-by-one update strategy,” 2019 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 295-301, Aug. 2019.
– volume: 448–449
  start-page: 112
  year: 2018
  end-page: 133
  ident: b0015
  article-title: New automatic fuzzy relational clustering algorithms using multi-objective NSGA-II
  publication-title: Inf. Sci.
– volume: 12
  start-page: 41
  year: 2008
  end-page: 63
  ident: b0195
  article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm
  publication-title: IEEE Trans. Evol. Comput.
– reference: W. Deng, J.J. Xu, X.Z. Gao and H. M. Zhao. “An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 1-10, Nov. 2020.
– volume: 7
  start-page: 10196
  year: 2019
  end-page: 10207
  ident: b0080
  article-title: Searching with direction awareness: multi-objective genetic algorithm based on angle quantization and crowding distance MOGA-AQCD
  publication-title: IEEE Access
– volume: 7
  start-page: 18821
  year: 2019
  ident: 10.1016/j.ins.2021.11.052_b0085
  article-title: A novel double-strand DNA genetic algorithm for multi-objective optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2894726
– start-page: 271
  year: 2019
  ident: 10.1016/j.ins.2021.11.052_b0150
  article-title: A novel multi-objective competitive swarm optimization algorithm for multi-modal multi objective problems
– volume: 2
  start-page: 187
  year: 2014
  ident: 10.1016/j.ins.2021.11.052_b0185
  article-title: Real-coded genetic algorithms and interval-schemata
  publication-title: Found. Genet. Algorith.
– volume: 13
  start-page: 415
  issue: 2
  year: 2016
  ident: 10.1016/j.ins.2021.11.052_b0100
  article-title: Optimal path planning in complex cost spaces with sampling-based algorithms
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2015.2487881
– ident: 10.1016/j.ins.2021.11.052_b0165
  doi: 10.1109/CEC48606.2020.9185886
– ident: 10.1016/j.ins.2021.11.052_b0135
  doi: 10.1109/CEC.2016.7744093
– volume: 12
  start-page: 41
  issue: 1
  year: 2008
  ident: 10.1016/j.ins.2021.11.052_b0195
  article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.894202
– volume: 21
  start-page: 440
  issue: 3
  year: 2017
  ident: 10.1016/j.ins.2021.11.052_b0060
  article-title: A survey of multi-objective evolutionary algorithms based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 25
  start-page: 5277
  issue: 7
  year: 2021
  ident: 10.1016/j.ins.2021.11.052_b0065
  article-title: An improved differential evolution algorithm and its application in optimization problem
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-020-05527-x
– ident: 10.1016/j.ins.2021.11.052_b0115
  doi: 10.1109/ACCESS.2020.2997302
– volume: 86
  year: 2020
  ident: 10.1016/j.ins.2021.11.052_b0040
  article-title: An enhanced bacterial foraging optimization and its application for training kernel extreme learning machine
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105884
– year: 2020
  ident: 10.1016/j.ins.2021.11.052_b0030
  article-title: A novel gate resource allocation method using improved PSO-based QEA
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 448–449
  start-page: 112
  year: 2018
  ident: 10.1016/j.ins.2021.11.052_b0015
  article-title: New automatic fuzzy relational clustering algorithms using multi-objective NSGA-II
  publication-title: Inf. Sci.
– ident: 10.1016/j.ins.2021.11.052_b0170
  doi: 10.1109/CEC.2019.8790338
– year: 2021
  ident: 10.1016/j.ins.2021.11.052_b0175
  article-title: Two-stage double niched evolution strategy for multimodal multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3064508
– ident: 10.1016/j.ins.2021.11.052_b0145
  doi: 10.1007/978-3-319-93815-8_52
– volume: 6
  issue: 2
  year: 2002
  ident: 10.1016/j.ins.2021.11.052_b0090
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 224
  year: 2021
  ident: 10.1016/j.ins.2021.11.052_b0010
  article-title: Quantum differential evolution with cooperative coevolution framework and hybrid mutation strategy for large scale optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107080
– volume: 113
  year: 2021
  ident: 10.1016/j.ins.2021.11.052_b0045
  article-title: Forecasting crude oil prices based on variational mode decomposition and random sparse Bayesian learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108032
– ident: 10.1016/j.ins.2021.11.052_b0125
  doi: 10.1145/1814256.1814259
– volume: 13
  start-page: 1167
  issue: 5
  year: 2009
  ident: 10.1016/j.ins.2021.11.052_b0190
  article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2021467
– volume: 8
  start-page: 856
  issue: 4
  year: 2021
  ident: 10.1016/j.ins.2021.11.052_b0120
  article-title: Information-utilization-method-assisted multimodal multiobjective optimization and application to credit card fraud detection
  publication-title: IEEE Trans. Comput. Social Syst.
  doi: 10.1109/TCSS.2021.3061439
– ident: 10.1016/j.ins.2021.11.052_b0050
– volume: 167
  year: 2021
  ident: 10.1016/j.ins.2021.11.052_b0210
  article-title: Ant colony optimization with horizontal and vertical crossover search: Fundamental visions for multi-threshold image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114122
– ident: 10.1016/j.ins.2021.11.052_b0130
  doi: 10.1109/CEC48606.2020.9185549
– volume: 22
  start-page: 805
  issue: 55
  year: 2018
  ident: 10.1016/j.ins.2021.11.052_b0140
  article-title: A multi-objective particle swarm optimizer using ring topology for solving multi-modal multi-objective problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2754271
– ident: 10.1016/j.ins.2021.11.052_b0110
  doi: 10.1109/CEC.2011.5949936
– volume: 24
  start-page: 193
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2021.11.052_b0070
  article-title: A review of evolutionary multimodal multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2909744
– volume: 551
  start-page: 23
  year: 2021
  ident: 10.1016/j.ins.2021.11.052_b0035
  article-title: Non-dominated sorting on performance indicators for evolutionary many-objective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.11.008
– volume: 7
  start-page: 10196
  year: 2019
  ident: 10.1016/j.ins.2021.11.052_b0080
  article-title: Searching with direction awareness: multi-objective genetic algorithm based on angle quantization and crowding distance MOGA-AQCD
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890461
– volume: 22
  start-page: 692
  issue: 5
  year: 2018
  ident: 10.1016/j.ins.2021.11.052_b0020
  article-title: Evolutionary multi-objective optimization-based multimodal optimization: fitness landscape approximation and peak detection
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2744328
– volume: 30
  year: 2021
  ident: 10.1016/j.ins.2021.11.052_b0025
  article-title: Color image encryption based on joint permutation and diffusion
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.30.1.013008
– volume: 143
  year: 2020
  ident: 10.1016/j.ins.2021.11.052_b0200
  article-title: Multiobjective optimization of a continuous kraft pulp digester using SPEA2
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.107086
– volume: 212
  year: 2021
  ident: 10.1016/j.ins.2021.11.052_b0205
  article-title: Evolutionary biogeography-based whale optimization methods with communication structure: Towards measuring the balance
  publication-title: Knowl. Based Syst
  doi: 10.1016/j.knosys.2020.106642
– volume: 385
  year: 2021
  ident: 10.1016/j.ins.2021.11.052_b0005
  article-title: MOMPA: Multi-objective marine predator algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114029
– volume: 382–383
  start-page: 15
  year: 2017
  ident: 10.1016/j.ins.2021.11.052_b0055
  article-title: The elitist non-dominated sorting genetic algorithm with inheritance (i-NSGA-II) and its jumping gene adaptations for multi-objective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.12.003
– volume: 49
  start-page: 569
  issue: 2
  year: 2019
  ident: 10.1016/j.ins.2021.11.052_b0180
  article-title: An improved adaptive NSGA-II with multi-population algorithm
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-018-1263-6
– volume: 6
  start-page: 22920
  year: 2018
  ident: 10.1016/j.ins.2021.11.052_b0075
  article-title: A multi-objective genetic algorithm based on fitting and interpolation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2829262
– volume: 33
  start-page: 60
  issue: 1
  year: 2018
  ident: 10.1016/j.ins.2021.11.052_b0095
  article-title: A local search strategy based on density for NSGA2 algorithm
  publication-title: Control and Decision
– volume: 55
  start-page: 3035
  year: 2021
  ident: 10.1016/j.ins.2021.11.052_b0105
  article-title: The route problem of multimodal transportation with timetable under uncertainty: multi-objective robust optimization model and heuristic approach
  publication-title: RAIRO-Oper. Res.
  doi: 10.1051/ro/2020110
– volume: 546
  start-page: 1148
  year: 2020
  ident: 10.1016/j.ins.2021.11.052_b0155
  article-title: Preference-inspired coevolutionary algorithm with active diversity strategy for multi-objective multi-modal optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.09.075
– ident: 10.1016/j.ins.2021.11.052_b0160
  doi: 10.1109/CEC.2019.8790286
SSID ssj0004766
Score 2.7148292
Snippet Multi-modal multi-objective optimization problem (MMOPs) has attracted more and more attention in evolutionary computing recently. It is not easy to solve...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 441
SubjectTerms Adaptive crossover
Multi-modal multi-objective
Non-dominated solutions sorting genetic algorithm
Pareto solutions
Special crowding distance
Title An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems
URI https://dx.doi.org/10.1016/j.ins.2021.11.052
Volume 585
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AKRWK
  dateStart: 19681201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IXvRgFDWiQnowHkwK29r94EiIBDVykoSTS9ttMIKDwLz6t_ve1ikm6sHbsrRN8_r6-r30-14JubZh_weCa2bbWjIBAIMpXwvWcyKBSkdRFqt-GnujiXiYutMaGVRaGKRVmthfxvQiWps_XWPN7jpNUePrFIgYkhYbcDWK-AQMDT7def-ieQi_vK_ENAlbVzebBccrzbBit2N3sJCn6_x8Nu2cN8MjcmiAIu2XczkmtThrkIOd8oEN0jKiA3pDjaoIrUzNdj0hL_2Mxtm8uOOnidzmFHJ9Fq2Q_QJAk1ZuBx9YS2BGwZlQ00jlcrbapPn8lcKotOAcspValLGRmjdotqdkMrx7HoyYeU-Bae7xnHkJ6m41V7BnARlESeIFIgoC1-Kul_g8sRPpKkdrHajY8r3IcezYjQHSRZ7UUcLPSB3mGZ8T2rNcCTm5K4OAC0AESiolLB1rjlJY6TWJVVky1KbYOL55sQwrVtkiBOOHaHxIQkIwfpPcfnZZl5U2_mosquUJv7lLCCfB790u_tftkuw7qHooqGdXpJ5v3uIWYJFctQtna5O9_v3jaPwBss3eQQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgAD4inK0wNiQDIkfiTpiBCoQGECiYnIdhIoKi2iYeW3c5c4PCRgYIsiX2Rdzufv5Ps-A-yGuP4TJR0PQ2e4QoDBbewU74pMEdNR1WLVl1dR70ad3-rbFhw3XBhqq_S5v87pVbb2bw69Nw-fBwPi-IoKEWPREiKu7k7BtNIipgrs4O2zz0PF9YEl1Uk0vDnarJq8BiOS7BbhASl5avHz5vRlwzldgHmPFNlRPZlFaOWjJZj7oh-4BFuedcD2mKcVkZuZX6_LcHc0YvnooTrkZ4WZlAyLfZ6Nqf0FkSZr4g4fSEzgnmE0EamRmeH9-GVQPjwx_Cqrmg752D7WyZH5S2gmK3BzenJ93OP-QgXuZCRLHhVEvHXS4qJFaJAVRZSoLEl0IHVUxLIIC6OtcM4lNg_iKBMizHWOmC6LjMsKuQptnGe-BqwbaINFuTZJIhVCAmusVYHLnSQurIk6EDSeTJ1XG6dLL4Zp01b2mKLzU3I-ViEpOr8D-x8mz7XUxl-DVfN70m_xkuJW8LvZ-v_MdmCmd33ZT_tnVxcbMCuIAlH1oW1Cu3x5zbcQmJR2uwq8d_NT39Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+enhanced+fast+non-dominated+solution+sorting+genetic+algorithm+for+multi-objective+problems&rft.jtitle=Information+sciences&rft.au=Deng%2C+Wu&rft.au=Zhang%2C+Xiaoxiao&rft.au=Zhou%2C+Yongquan&rft.au=Liu%2C+Yi&rft.date=2022-03-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=585&rft.spage=441&rft.epage=453&rft_id=info:doi/10.1016%2Fj.ins.2021.11.052&rft.externalDocID=S0020025521011749
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon