Hybrid prediction-optimization approaches for maximizing parts density in SLM of Ti6Al4V titanium alloy
It is well known that the processing parameters of selective laser melting (SLM) highly influence mechanical and physical properties of the manufactured parts. Also, the energy density is insufficient to detect the process window for producing full dense components. In fact, parts produced with the...
Saved in:
| Published in | Journal of intelligent manufacturing Vol. 33; no. 7; pp. 1967 - 1989 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.10.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0956-5515 1572-8145 1572-8145 |
| DOI | 10.1007/s10845-022-01938-9 |
Cover
| Abstract | It is well known that the processing parameters of selective laser melting (SLM) highly influence mechanical and physical properties of the manufactured parts. Also, the energy density is insufficient to detect the process window for producing full dense components. In fact, parts produced with the same energy density but different combinations of parameters may present different properties even under the microstructural viewpoint. In this context, the need to assess the influence of the process parameters and to select the best parameters set able to optimize the final properties of SLM parts has been capturing the attention of both academics and practitioners. In this paper different hybrid prediction-optimization approaches for maximizing the relative density of Ti6Al4V SLM manufactured parts are proposed. An extended design of experiments involving six process parameters has been configured for constructing two surrogate models based on response surface methodology (RSM) and artificial neural network (ANN), respectively. The optimization phase has been performed by means of evolutionary computations. To this end, three nature-inspired metaheuristic algorithms have been integrated with the prediction modelling structures. A series of experimental tests has been carried out to validate the results from the proposed hybrid optimization procedures. Also, a sensitivity analysis based on the results from the analysis of variance was executed to evaluate the influence of the processing parameter and their reciprocal interactions on the part porosity. |
|---|---|
| AbstractList | It is well known that the processing parameters of selective laser melting (SLM) highly influence mechanical and physical properties of the manufactured parts. Also, the energy density is insufficient to detect the process window for producing full dense components. In fact, parts produced with the same energy density but different combinations of parameters may present different properties even under the microstructural viewpoint. In this context, the need to assess the influence of the process parameters and to select the best parameters set able to optimize the final properties of SLM parts has been capturing the attention of both academics and practitioners. In this paper different hybrid prediction-optimization approaches for maximizing the relative density of Ti6Al4V SLM manufactured parts are proposed. An extended design of experiments involving six process parameters has been configured for constructing two surrogate models based on response surface methodology (RSM) and artificial neural network (ANN), respectively. The optimization phase has been performed by means of evolutionary computations. To this end, three nature-inspired metaheuristic algorithms have been integrated with the prediction modelling structures. A series of experimental tests has been carried out to validate the results from the proposed hybrid optimization procedures. Also, a sensitivity analysis based on the results from the analysis of variance was executed to evaluate the influence of the processing parameter and their reciprocal interactions on the part porosity. |
| Author | Costa, A. Fratini, L. Pollara, G. Buffa, G. Palmeri, D. |
| Author_xml | – sequence: 1 givenname: A. surname: Costa fullname: Costa, A. organization: DICAR Department, University of Catania – sequence: 2 givenname: G. orcidid: 0000-0002-5247-0747 surname: Buffa fullname: Buffa, G. email: gianluca.buffa@unipa.it organization: Department of Engineering, University of Palermo – sequence: 3 givenname: D. surname: Palmeri fullname: Palmeri, D. organization: Department of Engineering, University of Palermo – sequence: 4 givenname: G. surname: Pollara fullname: Pollara, G. organization: Department of Engineering, University of Palermo – sequence: 5 givenname: L. surname: Fratini fullname: Fratini, L. organization: Department of Engineering, University of Palermo |
| BookMark | eNqNkEFPAyEUhImpiW31D3gi8YzCsuyyx6ZRa1LjweqVUJatNFtYgUbXXy-1TUw8NJ7Iy5vhzXwjMLDOagAuCb4mGJc3gWCeM4SzDGFSUY6qEzAkrMwQJzkbgCGuWIEYI-wMjEJYY4wrXpAhWM36pTc17LyujYrGWeS6aDbmS-4GKLvOO6nedICN83AjP3c7Y1ewkz4GWGsbTOyhsfB5_ghdAxemmLT5K4wmSmu2Gyjb1vXn4LSRbdAXh3cMXu5uF9MZmj_dP0wnc6RoQSNiNa0Jz-tSKc1LmrOGVVozSbmSVVrlmlJd0opgJouSZFrWGW9wuWR0yfJG0TGg-3-3tpP9R7otOm820veCYLFjJfasRGIlfliJKrmu9q5U9n2rQxRrt_U2BRVZiXnSY86Siu9VyrsQvG6ESh13mKKXpj1-IPtj_VeqQ5eQxHal_W-qI65vUHydXA |
| CitedBy_id | crossref_primary_10_1080_10426914_2024_2395002 crossref_primary_10_1007_s00170_023_11179_6 crossref_primary_10_1007_s42791_023_00057_7 crossref_primary_10_1007_s11665_024_09862_0 crossref_primary_10_1088_2631_7990_ada8e4 crossref_primary_10_1007_s10845_024_02490_4 crossref_primary_10_3390_ma16155476 crossref_primary_10_1007_s00170_024_14735_w crossref_primary_10_1016_j_jmapro_2024_04_044 crossref_primary_10_1016_j_jallcom_2023_172642 crossref_primary_10_1007_s10845_022_02012_0 crossref_primary_10_1016_j_optlastec_2025_112650 crossref_primary_10_1007_s00170_023_12651_z crossref_primary_10_1007_s13369_023_08627_6 crossref_primary_10_1007_s13369_024_08838_5 crossref_primary_10_1007_s10845_024_02554_5 crossref_primary_10_1007_s40194_024_01861_y crossref_primary_10_1108_RPJ_10_2024_0435 |
| Cites_doi | 10.1007/s11721-007-0002-0 10.1007/s11837-020-04155-y 10.1007/s12541-017-0190-5 10.1016/j.cirpj.2020.05.009 10.1108/RPJ-06-2017-0111 10.1007/s00170-017-1045-z 10.1016/j.pmatsci.2017.10.001 10.1108/RPJ-12-2015-0193 10.1016/j.cie.2016.12.031 10.1016/s0893-6080(00)00081-2 10.1007/s00170-012-4558-5 10.1016/j.addma.2020.101096 10.3390/met9040447 10.1016/j.actamat.2014.11.028 10.1016/j.msea.2019.138455 10.1016/j.addma.2018.09.002 10.3390/app10134628 10.1016/j.jmapro.2020.04.014 10.1007/978-0-387-39940-9_565 10.1007/s11465-013-0248-8 10.1016/j.eng.2019.04.012 10.1016/j.matdes.2016.05.070 10.1007/s40964-020-00157-z 10.1016/j.matdes.2015.07.147 10.1007/s10845-020-01725-4 10.1115/1.4051799 10.1016/j.patcog.2017.11.007 10.1016/j.jmatprotec.2021.117113 10.1016/S1005-0302(12)60016-4 10.1016/j.actamat.2015.06.004 10.1109/LSP.2015.2420092 10.1016/j.addma.2014.12.008 10.1007/s00170-008-1669-0 10.1016/j.optlastec.2018.01.013 10.1007/s40964-021-00180-8 10.1007/s10845-021-01773-4 10.1016/j.asoc.2011.01.037 10.3934/mbe.2019102 10.1016/S0020-0255(96)00200-9 10.1016/j.optlastec.2012.12.002 10.1016/j.ijmachtools.2018.01.003 10.1080/00224065.2004.11980252 10.1016/j.actamat.2016.07.019 10.1080/10485252.2015.1010532 10.1177/003754970107600201 10.1016/j.eswa.2009.09.008 10.1007/s11665-014-0958-z 10.1016/j.amc.2007.03.046 10.1016/j.autcon.2017.01.018 10.1016/j.msea.2013.04.099 10.1007/s12008-019-00536-z 10.1109/ICNN.1995.488968 10.1108/RPJ-03-2016-0045 10.1016/j.addma.2016.05.009 10.1109/CEC.2001.934376 10.1136/bmj.i1114 10.1007/978-3-662-03315-9 10.1016/j.addma.2014.08.002 10.4135/9781483384733 10.1007/978-1-4471-4480-9_11 10.1016/j.addma.2020.101538 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. corrected publication 2022 The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022. corrected publication 2022 – notice: The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88E 8AL 8AO 8FD 8FE 8FG 8FJ 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. L.- L6V L7M L~C L~D M0C M0N M0S M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY |
| DOI | 10.1007/s10845-022-01938-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection (ProQuest) Computing Database Health & Medical Collection (Alumni) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1572-8145 |
| EndPage | 1989 |
| ExternalDocumentID | 10.1007/s10845-022-01938-9 10_1007_s10845_022_01938_9 |
| GroupedDBID | -4X -57 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 3-Y 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 7X7 88E 8AO 8FE 8FG 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Z Z81 Z83 Z88 Z8N Z92 ZMTXR ZYFGU ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c363t-5d3d184d7cce87345f59ee5a38ca93d14e33e739105a6712ead28f07b53b54fc3 |
| IEDL.DBID | UNPAY |
| ISSN | 0956-5515 1572-8145 |
| IngestDate | Sun Oct 26 03:54:51 EDT 2025 Sat Sep 06 22:13:20 EDT 2025 Wed Oct 01 03:41:01 EDT 2025 Thu Apr 24 23:07:27 EDT 2025 Fri Feb 21 02:44:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Artificial neural network Response surface methodology Optimization Predictive model Metaheuristic algorithms |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-5d3d184d7cce87345f59ee5a38ca93d14e33e739105a6712ead28f07b53b54fc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5247-0747 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10845-022-01938-9.pdf |
| PQID | 2708084085 |
| PQPubID | 32407 |
| PageCount | 23 |
| ParticipantIDs | unpaywall_primary_10_1007_s10845_022_01938_9 proquest_journals_2708084085 crossref_citationtrail_10_1007_s10845_022_01938_9 crossref_primary_10_1007_s10845_022_01938_9 springer_journals_10_1007_s10845_022_01938_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20221000 2022-10-00 20221001 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 20221000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: London |
| PublicationTitle | Journal of intelligent manufacturing |
| PublicationTitleAbbrev | J Intell Manuf |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Shipley, McDonnell, Culleton, Coull, Lupoi, O'Donnell, Trimble (CR52) 2018; 128 Kasperovich, Haubrich, Gussone, Requena (CR21) 2016; 105 Khorasani, Gibson, Awan, Ghaderi (CR25) 2019; 25 Deep, Thakur (CR5) 2007; 193 Narayan (CR38) 1997; 99 Sokal, Rohlf (CR54) 1995 Park, Nguyen, Le-Hong, Van Tran (CR67) 2021 Ponz-Tienda, Salcedobernal, Pellicer, Benlloch-Marco (CR42) 2017; 77 CR32 Geem, Kim, Loganathan (CR12) 2001; 76 Krizhevsky, Sutskever, Hinton (CR24) 2012; 25 CR70 Wauthle, Vrancken, Beynaerts, Jorissen, Schrooten, Kruth, Van Humbeeck (CR69) 2015; 5 Nguyen, Park, Lee (CR39) 2020; 55 Saad, Nor, Zakaria, Baharudin, Yusoff (CR50) 2021; 6 CR3 CR6 Montalbano, Briggs, Waterman, Nimer, Peitsch, Sopcisak, Trigg, Storck (CR35) 2021; 294 CR8 CR9 Qiu, Panwisawas, Ward, Basoalto, Brooks, Attallah (CR45) 2015; 96 Murr, Gaytan, Ramirez, Martinez, Hernandez, Amato, Shindo, Medina, Wicker (CR36) 2012; 28 Myers, Montgomery, Vining, Borror, Kowalski (CR37) 2004; 36 Qi, Chen, Li, Cheng, Li (CR43) 2019; 5 Deshwal, Kumar, Chhabra (CR7) 2020; 31 Tapia, Khairallah, Matthews, King, Elwany (CR58) 2018; 94 M’zoughi, F., Garrido, I., Garrido, A. J., & De La Sen, M. (CR31) 2020; 10 Richardson, Reynolds, Dehak (CR47) 2015; 22 Costa, Fichera (CR2) 2017; 105 Poli, Kennedy, Blackwell (CR41) 2007; 1 Xia, Pan, Polden, Li, Xu, Chen (CR61) 2021 Frazier (CR11) 2014; 23 Blanco, Delgado, Pegalajar (CR1) 2001; 14 Tao, Zhong, Li, Hu, Gong, Xu (CR66) 2019; 9 CR15 Rong-Ji, Xin-Hua, Qing-Ding, Lingling (CR48) 2009; 42 CR57 Sun, Yang, Wang (CR56) 2013; 49 CR55 CR10 CR53 Nickabadi, Ebadzadeh, Safabakhsh (CR40) 2011; 11 Kuo, Su, Chiang (CR26) 2017; 18 Larimian, Kannan, Grzesiak, AlMangour, Borkar (CR27) 2020; 770 Guo, Leu (CR13) 2013; 8 DebRoy, Wei, Zuback, Mukherjee, Elmer, Milewski, Beese, Wilson-Heid, De, Zhang (CR4) 2018; 92 Jung, Hu (CR20) 2015; 27 Sharma, Chen, Diewald, Imanian, Beuth, Liu (CR51) 2021; 8 Huang, Liu, Mokasdar, Hou (CR19) 2013; 67 Li, Wang, Wang, Lu (CR29) 2018; 76 Xu, Brandt, Sun, Elambasseril, Liu, Latham, Xia, Qian (CR63) 2015; 85 Robinson, Ashton, Jones, Fox, Sutcliffe (CR49) 2019; 25 Meng, McWilliams, Jarosinski, Park, Jung, Lee, Zhang (CR33) 2020; 72 Wang, Huang (CR60) 2010; 37 CR28 Zhang, Choi, Moon, Ngo (CR65) 2020; 33 Refaeilzadeh, Tang, Liu (CR46) 2009; 5 Yi, Lu, Li (CR64) 2019; 16 Han, Yang, Yu, Yin, Gao, Wang, Zeng (CR17) 2017; 23 CR68 CR22 Kladovasilakis, Charalampous, Kostavelis, Tzetzis, Tzovaras (CR23) 2021; 6 Herzog, Seyda, Wycisk, Emmelmann (CR18) 2016; 117 CR62 Qiu, Adkins, Attallah (CR44) 2013; 578 Zhuang, Lee, Hsieh, Yang (CR71) 2018; 103 Gong, Rafi, Gu, Ram, Starr, Stucker (CR16) 2015; 86 P Li (1938_CR29) 2018; 76 1938_CR32 W Rong-Ji (1938_CR48) 2009; 42 J Yi (1938_CR64) 2019; 16 A Nickabadi (1938_CR40) 2011; 11 W Xu (1938_CR63) 2015; 85 HS Park (1938_CR67) 2021 J Sun (1938_CR56) 2013; 49 X Qi (1938_CR43) 2019; 5 J Han (1938_CR17) 2017; 23 A Sharma (1938_CR51) 2021; 8 C Xia (1938_CR61) 2021 C Kuo (1938_CR26) 2017; 18 JL Ponz-Tienda (1938_CR42) 2017; 77 S Deshwal (1938_CR7) 2020; 31 MS Saad (1938_CR50) 2021; 6 T Montalbano (1938_CR35) 2021; 294 SH Huang (1938_CR19) 2013; 67 ZW Geem (1938_CR12) 2001; 76 G Kasperovich (1938_CR21) 2016; 105 A Khorasani (1938_CR25) 2019; 25 L Meng (1938_CR33) 2020; 72 K Deep (1938_CR5) 2007; 193 N Kladovasilakis (1938_CR23) 2021; 6 A Krizhevsky (1938_CR24) 2012; 25 1938_CR53 N Guo (1938_CR13) 2013; 8 1938_CR57 T Larimian (1938_CR27) 2020; 770 1938_CR55 1938_CR10 RH Myers (1938_CR37) 2004; 36 1938_CR15 F Richardson (1938_CR47) 2015; 22 CM Wang (1938_CR60) 2010; 37 P Tao (1938_CR66) 2019; 9 C Qiu (1938_CR45) 2015; 96 1938_CR6 D Herzog (1938_CR18) 2016; 117 C Qiu (1938_CR44) 2013; 578 R Wauthle (1938_CR69) 2015; 5 1938_CR8 P Refaeilzadeh (1938_CR46) 2009; 5 1938_CR3 1938_CR9 1938_CR62 A Blanco (1938_CR1) 2001; 14 WE Frazier (1938_CR11) 2014; 23 1938_CR68 1938_CR22 1938_CR28 S Narayan (1938_CR38) 1997; 99 A Costa (1938_CR2) 2017; 105 DS Nguyen (1938_CR39) 2020; 55 R Poli (1938_CR41) 2007; 1 JH Robinson (1938_CR49) 2019; 25 Y Jung (1938_CR20) 2015; 27 H Zhang (1938_CR65) 2020; 33 H Shipley (1938_CR52) 2018; 128 H Gong (1938_CR16) 2015; 86 RR Sokal (1938_CR54) 1995 T DebRoy (1938_CR4) 2018; 92 1938_CR70 LE Murr (1938_CR36) 2012; 28 M’zoughi, F., Garrido, I., Garrido (1938_CR31) 2020; 10 G Tapia (1938_CR58) 2018; 94 JR Zhuang (1938_CR71) 2018; 103 |
| References_xml | – ident: CR70 – ident: CR22 – volume: 1 start-page: 33 issue: 1 year: 2007 end-page: 57 ident: CR41 article-title: Particle Swarm Optimization publication-title: Swarm Intelligence doi: 10.1007/s11721-007-0002-0 – volume: 72 start-page: 2363 issue: 6 year: 2020 end-page: 2377 ident: CR33 article-title: Machine learning in additive manufacturing: A review publication-title: JOM Journal of the Minerals Metals and Materials Society doi: 10.1007/s11837-020-04155-y – ident: CR68 – volume: 18 start-page: 1609 issue: 11 year: 2017 end-page: 1618 ident: CR26 article-title: Parametric optimization of density and dimensions in three-dimensional printing of Ti-6Al-4V powders on titanium plates using selective laser melting publication-title: International Journal of Precision Engineering and Manufacturing doi: 10.1007/s12541-017-0190-5 – volume: 31 start-page: 189 year: 2020 end-page: 199 ident: CR7 article-title: Exercising hybrid statistical tools GA-RSM, GA-ANN and GA-ANFIS to optimize FDM process parameters for tensile strength improvement publication-title: CIRP Journal of Manufacturing Science and Technology doi: 10.1016/j.cirpj.2020.05.009 – volume: 25 start-page: 289 issue: 2 year: 2019 end-page: 298 ident: CR49 article-title: The effect of hatch angle rotation on parts manufactured using selective laser melting publication-title: Rapid Prototyping Journal doi: 10.1108/RPJ-06-2017-0111 – volume: 94 start-page: 3591 issue: 9 year: 2018 end-page: 3603 ident: CR58 article-title: Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-017-1045-z – volume: 92 start-page: 112 year: 2018 end-page: 224 ident: CR4 article-title: Additive manufacturing of metallic components–process, structure and properties publication-title: Progress in Materials Science doi: 10.1016/j.pmatsci.2017.10.001 – ident: CR8 – volume: 23 start-page: 217 issue: 2 year: 2017 end-page: 226 ident: CR17 article-title: Microstructure and mechanical property of selective laser melted Ti6Al4V dependence on laser energy density publication-title: Rapid Prototyping Journal doi: 10.1108/RPJ-12-2015-0193 – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: CR24 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 105 start-page: 174 year: 2017 end-page: 189 ident: CR2 article-title: Economic statistical design of ARMA control chart through a modified fitnessbased selfadaptive differential evolution publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2016.12.031 – ident: CR15 – volume: 14 start-page: 93 issue: 1 year: 2001 end-page: 105 ident: CR1 article-title: A real-coded genetic algorithm for training recurrent neural networks publication-title: Neural Networks doi: 10.1016/s0893-6080(00)00081-2 – volume: 67 start-page: 1191 issue: 5 year: 2013 end-page: 1203 ident: CR19 article-title: Additive manufacturing and its societal impact: A literature review publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-012-4558-5 – volume: 33 year: 2020 ident: CR65 article-title: A hybrid multi-objective optimization of aerosol jet printing process via response surface methodology publication-title: Additive Manufacturing doi: 10.1016/j.addma.2020.101096 – ident: CR9 – ident: CR57 – ident: CR32 – volume: 9 start-page: 447 issue: 4 year: 2019 ident: CR66 article-title: Microstructure, mechanical properties, and constitutive models for Ti–6Al–4V alloy fabricated by selective laser melting (SLM) publication-title: Metals doi: 10.3390/met9040447 – volume: 85 start-page: 74 year: 2015 end-page: 84 ident: CR63 article-title: Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition publication-title: Acta Materialia doi: 10.1016/j.actamat.2014.11.028 – volume: 770 start-page: 138455 year: 2020 ident: CR27 article-title: Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting publication-title: Materials Science and Engineering A doi: 10.1016/j.msea.2019.138455 – volume: 25 start-page: 176 year: 2019 end-page: 186 ident: CR25 article-title: The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4V publication-title: Additive Manufacturing doi: 10.1016/j.addma.2018.09.002 – volume: 10 start-page: 4628 issue: 13 year: 2020 ident: CR31 article-title: Selfa-daptive global-best harmony search algorithmbased airflow control of a wells-turbine-based oscillating-water column publication-title: Applied Sciences doi: 10.3390/app10134628 – ident: CR53 – volume: 55 start-page: 230 year: 2020 end-page: 235 ident: CR39 article-title: Optimization of selective laser melting process parameters for Ti-6Al-4V alloy manufacturing using deep learning publication-title: Journal of Manufacturing Processes doi: 10.1016/j.jmapro.2020.04.014 – volume: 5 start-page: 532 year: 2009 end-page: 538 ident: CR46 article-title: Cross-Validation publication-title: Encyclopedia of Database Systems doi: 10.1007/978-0-387-39940-9_565 – ident: CR10 – volume: 8 start-page: 215 issue: 3 year: 2013 end-page: 243 ident: CR13 article-title: Additive manufacturing: Technology, applications and research needs publication-title: Frontiers of Mechanical Engineering doi: 10.1007/s11465-013-0248-8 – volume: 5 start-page: 721 issue: 4 year: 2019 end-page: 729 ident: CR43 article-title: Applying neural-network-based machine learning to additive manufacturing: Current applications, challenges, and future perspectives publication-title: Engineering doi: 10.1016/j.eng.2019.04.012 – volume: 105 start-page: 160 year: 2016 end-page: 170 ident: CR21 article-title: Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting publication-title: Materials & Design doi: 10.1016/j.matdes.2016.05.070 – ident: CR6 – volume: 6 start-page: 143 issue: 1 year: 2021 end-page: 154 ident: CR50 article-title: Modelling and evolutionary computation optimization on FDM process for flexural strength using integrated approach RSM and PSO publication-title: Progress in Additive Manufacturing doi: 10.1007/s40964-020-00157-z – volume: 86 start-page: 545 year: 2015 end-page: 554 ident: CR16 article-title: Influence of defects on mechanical properties of Ti–6Al–4 V components produced by selective laser melting and electron beam melting publication-title: Materials & Design doi: 10.1016/j.matdes.2015.07.147 – year: 2021 ident: CR61 article-title: Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-020-01725-4 – volume: 8 issue: 1 year: 2021 ident: CR51 article-title: Data-driven sensitivity analysis for static mechanical properties of additively manufactured Ti–6Al–4V publication-title: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part b: Mechanical Engineering doi: 10.1115/1.4051799 – volume: 76 start-page: 323 year: 2018 end-page: 338 ident: CR29 article-title: Deep visual tracking: Review and experimental comparison publication-title: Pattern Recognition doi: 10.1016/j.patcog.2017.11.007 – volume: 294 year: 2021 ident: CR35 article-title: Uncovering the coupled impact of defect morphology and microstructure on the tensile behavior of Ti-6Al-4V fabricated via laser powder bed fusion publication-title: Journal of Materials Processing Technology doi: 10.1016/j.jmatprotec.2021.117113 – volume: 28 start-page: 1 issue: 1 year: 2012 end-page: 14 ident: CR36 article-title: Metal fabrication by additive manufacturing using laser and electron beam melting technologies publication-title: Journal of Materials Science & Technology doi: 10.1016/S1005-0302(12)60016-4 – volume: 96 start-page: 72 year: 2015 end-page: 79 ident: CR45 article-title: On the role of melt flow into the surface structure and porosity development during selective laser melting publication-title: Acta Materialia doi: 10.1016/j.actamat.2015.06.004 – volume: 22 start-page: 1671 issue: 10 year: 2015 end-page: 1675 ident: CR47 article-title: Deep neural network approaches to speaker and language recognition publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2015.2420092 – volume: 5 start-page: 77 year: 2015 end-page: 84 ident: CR69 article-title: Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures publication-title: Additive Manufacturing doi: 10.1016/j.addma.2014.12.008 – volume: 42 start-page: 1035 issue: 11 year: 2009 end-page: 1042 ident: CR48 article-title: Optimizing process parameters for selective laser sintering based on neural network and genetic algorithm publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-008-1669-0 – volume: 103 start-page: 59 year: 2018 end-page: 76 ident: CR71 article-title: Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder publication-title: Optics & Laser Technology doi: 10.1016/j.optlastec.2018.01.013 – volume: 6 start-page: 349 year: 2021 end-page: 365 ident: CR23 article-title: Impact of metal additive manufacturing parameters on the powder bed fusion and direct energy deposition processes: A comprehensive review publication-title: Progress in Additive Manufacturing doi: 10.1007/s40964-021-00180-8 – year: 2021 ident: CR67 article-title: Machine learning-based optimization of process parameters in selective laser melting for biomedical applications publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-021-01773-4 – volume: 11 start-page: 3658 issue: 4 year: 2011 end-page: 3670 ident: CR40 article-title: A novel particle swarm optimization algorithm with adaptive inertia weight publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2011.01.037 – volume: 16 start-page: 2086 issue: 4 year: 2019 end-page: 2117 ident: CR64 article-title: A literature review on latest developments of Harmony Search and its applications to intelligent manufacturing publication-title: Mathematical Biosciences and Engineering doi: 10.3934/mbe.2019102 – volume: 99 start-page: 69 issue: 1–2 year: 1997 end-page: 82 ident: CR38 article-title: The generalized sigmoid activation function: Competitive supervised learning publication-title: Information Sciences doi: 10.1016/S0020-0255(96)00200-9 – volume: 49 start-page: 118 year: 2013 end-page: 124 ident: CR56 article-title: Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method publication-title: Optics & Laser Technology doi: 10.1016/j.optlastec.2012.12.002 – volume: 128 start-page: 1 year: 2018 end-page: 20 ident: CR52 article-title: Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2018.01.003 – ident: CR3 – volume: 36 start-page: 53 issue: 1 year: 2004 end-page: 77 ident: CR37 article-title: Response surface methodology: A retrospective and literature survey publication-title: Journal of Quality Technology doi: 10.1080/00224065.2004.11980252 – volume: 117 start-page: 371 year: 2016 end-page: 392 ident: CR18 article-title: Additive manufacturing of metals publication-title: Acta Materialia doi: 10.1016/j.actamat.2016.07.019 – year: 1995 ident: CR54 publication-title: Biometry: The principles and practice of statistics in biological research – volume: 27 start-page: 167 issue: 2 year: 2015 end-page: 179 ident: CR20 article-title: A K-fold averaging cross-validation procedure publication-title: Journal of Nonparametric Statistics doi: 10.1080/10485252.2015.1010532 – volume: 76 start-page: 60 issue: 2 year: 2001 end-page: 68 ident: CR12 article-title: A new heuristic optimization algorithm: Harmony search publication-title: SIMULATION doi: 10.1177/003754970107600201 – ident: CR55 – volume: 37 start-page: 2826 issue: 4 year: 2010 end-page: 2837 ident: CR60 article-title: Selfad-aptive harmony search algorithm for optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.09.008 – volume: 23 start-page: 1917 issue: 6 year: 2014 end-page: 1928 ident: CR11 article-title: Metal additive manufacturing: A review publication-title: Journal of Materials Engineering and Performance doi: 10.1007/s11665-014-0958-z – volume: 193 start-page: 211 issue: 1 year: 2007 end-page: 230 ident: CR5 article-title: A new mutation operator for real coded genetic algorithms publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2007.03.046 – ident: CR28 – ident: CR62 – volume: 77 start-page: 82 year: 2017 end-page: 92 ident: CR42 article-title: Improved adaptive harmony search algorithm for the resource leveling problem with minimal lags publication-title: Automation in Construction doi: 10.1016/j.autcon.2017.01.018 – volume: 578 start-page: 230 year: 2013 end-page: 239 ident: CR44 article-title: Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V publication-title: Materials Science and Engineering: A doi: 10.1016/j.msea.2013.04.099 – volume: 25 start-page: 289 issue: 2 year: 2019 ident: 1938_CR49 publication-title: Rapid Prototyping Journal doi: 10.1108/RPJ-06-2017-0111 – volume: 6 start-page: 349 year: 2021 ident: 1938_CR23 publication-title: Progress in Additive Manufacturing doi: 10.1007/s40964-021-00180-8 – volume: 25 start-page: 1097 year: 2012 ident: 1938_CR24 publication-title: Advances in Neural Information Processing Systems – volume: 193 start-page: 211 issue: 1 year: 2007 ident: 1938_CR5 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2007.03.046 – volume: 76 start-page: 323 year: 2018 ident: 1938_CR29 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2017.11.007 – volume: 5 start-page: 77 year: 2015 ident: 1938_CR69 publication-title: Additive Manufacturing doi: 10.1016/j.addma.2014.12.008 – volume: 33 year: 2020 ident: 1938_CR65 publication-title: Additive Manufacturing doi: 10.1016/j.addma.2020.101096 – volume: 103 start-page: 59 year: 2018 ident: 1938_CR71 publication-title: Optics & Laser Technology doi: 10.1016/j.optlastec.2018.01.013 – volume: 6 start-page: 143 issue: 1 year: 2021 ident: 1938_CR50 publication-title: Progress in Additive Manufacturing doi: 10.1007/s40964-020-00157-z – volume: 72 start-page: 2363 issue: 6 year: 2020 ident: 1938_CR33 publication-title: JOM Journal of the Minerals Metals and Materials Society doi: 10.1007/s11837-020-04155-y – volume: 36 start-page: 53 issue: 1 year: 2004 ident: 1938_CR37 publication-title: Journal of Quality Technology doi: 10.1080/00224065.2004.11980252 – ident: 1938_CR62 – volume: 85 start-page: 74 year: 2015 ident: 1938_CR63 publication-title: Acta Materialia doi: 10.1016/j.actamat.2014.11.028 – volume: 294 year: 2021 ident: 1938_CR35 publication-title: Journal of Materials Processing Technology doi: 10.1016/j.jmatprotec.2021.117113 – volume: 42 start-page: 1035 issue: 11 year: 2009 ident: 1938_CR48 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-008-1669-0 – volume: 77 start-page: 82 year: 2017 ident: 1938_CR42 publication-title: Automation in Construction doi: 10.1016/j.autcon.2017.01.018 – volume: 18 start-page: 1609 issue: 11 year: 2017 ident: 1938_CR26 publication-title: International Journal of Precision Engineering and Manufacturing doi: 10.1007/s12541-017-0190-5 – ident: 1938_CR6 doi: 10.1007/s12008-019-00536-z – volume: 76 start-page: 60 issue: 2 year: 2001 ident: 1938_CR12 publication-title: SIMULATION doi: 10.1177/003754970107600201 – volume: 67 start-page: 1191 issue: 5 year: 2013 ident: 1938_CR19 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-012-4558-5 – volume: 94 start-page: 3591 issue: 9 year: 2018 ident: 1938_CR58 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-017-1045-z – volume: 22 start-page: 1671 issue: 10 year: 2015 ident: 1938_CR47 publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2015.2420092 – ident: 1938_CR9 doi: 10.1109/ICNN.1995.488968 – ident: 1938_CR28 doi: 10.1108/RPJ-03-2016-0045 – volume: 14 start-page: 93 issue: 1 year: 2001 ident: 1938_CR1 publication-title: Neural Networks doi: 10.1016/s0893-6080(00)00081-2 – ident: 1938_CR57 doi: 10.1016/j.addma.2016.05.009 – volume: 37 start-page: 2826 issue: 4 year: 2010 ident: 1938_CR60 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.09.008 – ident: 1938_CR10 doi: 10.1109/CEC.2001.934376 – volume: 23 start-page: 217 issue: 2 year: 2017 ident: 1938_CR17 publication-title: Rapid Prototyping Journal doi: 10.1108/RPJ-12-2015-0193 – volume: 578 start-page: 230 year: 2013 ident: 1938_CR44 publication-title: Materials Science and Engineering: A doi: 10.1016/j.msea.2013.04.099 – volume: 49 start-page: 118 year: 2013 ident: 1938_CR56 publication-title: Optics & Laser Technology doi: 10.1016/j.optlastec.2012.12.002 – volume: 105 start-page: 160 year: 2016 ident: 1938_CR21 publication-title: Materials & Design doi: 10.1016/j.matdes.2016.05.070 – volume: 8 issue: 1 year: 2021 ident: 1938_CR51 publication-title: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part b: Mechanical Engineering doi: 10.1115/1.4051799 – ident: 1938_CR55 doi: 10.1136/bmj.i1114 – ident: 1938_CR32 doi: 10.1007/978-3-662-03315-9 – volume: 16 start-page: 2086 issue: 4 year: 2019 ident: 1938_CR64 publication-title: Mathematical Biosciences and Engineering doi: 10.3934/mbe.2019102 – volume: 55 start-page: 230 year: 2020 ident: 1938_CR39 publication-title: Journal of Manufacturing Processes doi: 10.1016/j.jmapro.2020.04.014 – volume: 11 start-page: 3658 issue: 4 year: 2011 ident: 1938_CR40 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2011.01.037 – volume: 770 start-page: 138455 year: 2020 ident: 1938_CR27 publication-title: Materials Science and Engineering A doi: 10.1016/j.msea.2019.138455 – year: 2021 ident: 1938_CR67 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-021-01773-4 – volume: 92 start-page: 112 year: 2018 ident: 1938_CR4 publication-title: Progress in Materials Science doi: 10.1016/j.pmatsci.2017.10.001 – volume: 10 start-page: 4628 issue: 13 year: 2020 ident: 1938_CR31 publication-title: Applied Sciences doi: 10.3390/app10134628 – volume: 99 start-page: 69 issue: 1–2 year: 1997 ident: 1938_CR38 publication-title: Information Sciences doi: 10.1016/S0020-0255(96)00200-9 – volume: 1 start-page: 33 issue: 1 year: 2007 ident: 1938_CR41 publication-title: Swarm Intelligence doi: 10.1007/s11721-007-0002-0 – volume: 86 start-page: 545 year: 2015 ident: 1938_CR16 publication-title: Materials & Design doi: 10.1016/j.matdes.2015.07.147 – ident: 1938_CR3 – volume: 25 start-page: 176 year: 2019 ident: 1938_CR25 publication-title: Additive Manufacturing doi: 10.1016/j.addma.2018.09.002 – volume: 105 start-page: 174 year: 2017 ident: 1938_CR2 publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2016.12.031 – ident: 1938_CR15 doi: 10.1016/j.addma.2014.08.002 – volume: 128 start-page: 1 year: 2018 ident: 1938_CR52 publication-title: International Journal of Machine Tools and Manufacture doi: 10.1016/j.ijmachtools.2018.01.003 – ident: 1938_CR22 doi: 10.4135/9781483384733 – ident: 1938_CR70 – volume: 8 start-page: 215 issue: 3 year: 2013 ident: 1938_CR13 publication-title: Frontiers of Mechanical Engineering doi: 10.1007/s11465-013-0248-8 – ident: 1938_CR53 doi: 10.1007/978-1-4471-4480-9_11 – volume: 117 start-page: 371 year: 2016 ident: 1938_CR18 publication-title: Acta Materialia doi: 10.1016/j.actamat.2016.07.019 – volume: 5 start-page: 721 issue: 4 year: 2019 ident: 1938_CR43 publication-title: Engineering doi: 10.1016/j.eng.2019.04.012 – volume-title: Biometry: The principles and practice of statistics in biological research year: 1995 ident: 1938_CR54 – ident: 1938_CR8 – volume: 5 start-page: 532 year: 2009 ident: 1938_CR46 publication-title: Encyclopedia of Database Systems doi: 10.1007/978-0-387-39940-9_565 – volume: 31 start-page: 189 year: 2020 ident: 1938_CR7 publication-title: CIRP Journal of Manufacturing Science and Technology doi: 10.1016/j.cirpj.2020.05.009 – volume: 96 start-page: 72 year: 2015 ident: 1938_CR45 publication-title: Acta Materialia doi: 10.1016/j.actamat.2015.06.004 – volume: 27 start-page: 167 issue: 2 year: 2015 ident: 1938_CR20 publication-title: Journal of Nonparametric Statistics doi: 10.1080/10485252.2015.1010532 – volume: 28 start-page: 1 issue: 1 year: 2012 ident: 1938_CR36 publication-title: Journal of Materials Science & Technology doi: 10.1016/S1005-0302(12)60016-4 – ident: 1938_CR68 doi: 10.1016/j.addma.2020.101538 – volume: 9 start-page: 447 issue: 4 year: 2019 ident: 1938_CR66 publication-title: Metals doi: 10.3390/met9040447 – volume: 23 start-page: 1917 issue: 6 year: 2014 ident: 1938_CR11 publication-title: Journal of Materials Engineering and Performance doi: 10.1007/s11665-014-0958-z – year: 2021 ident: 1938_CR61 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-020-01725-4 |
| SSID | ssj0009861 |
| Score | 2.455998 |
| Snippet | It is well known that the processing parameters of selective laser melting (SLM) highly influence mechanical and physical properties of the manufactured parts.... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1967 |
| SubjectTerms | Advanced manufacturing technologies Algorithms Artificial neural networks Business and Management Control Design of experiments Heuristic methods Laser beam melting Machines Manufacturing Mathematical models Maximization Mechatronics Optimization Physical properties Porosity Prediction models Process parameters Processes Production Response surface methodology Robotics Sensitivity analysis Specific gravity Titanium alloys Titanium base alloys Variance analysis |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6K85IENIkhsx8mAECBQhaBCvMQWObaDKrVpoK2g_x5fcBpYKmY7sZTvfD7n7vsO4EAyyrQ1Fi8QkbEXFM68NKTKY_Z0V7GSyqdITr5rh61ndvPKX2egXXFhsKyy8omlo9Z9hf_IjwNhY5sI9bjOincPu0ZhdrVqoSFdawV9WkqMzcJcgMpYDZi7uGrfP9QyvFGpoFqq79mJ3NFoHJkuYshWxlKFGN3A36Oqjj8nKdNFmB_lhRx_ym7316l0vQJLLpwk5z_4r8KMyddguWrVQNzOXYPFX7qD6_DWGiNRixQfmKZBaLy-dR09x8kkldC4GRAb05Ke_MIx-ygprKUNiMaq9-GYdHLyeHtH-hl56oTnXfZCkLKWd0Y9gvn88QY8X189XbY813HBUzSkQ49rqu2VTwulTCQo4xmPjeGSRkrGdogZSo2gNsTgMhR-YM0wiLITkXKacpYpugmNvJ-bLSB-IGLtp4EIecaUH0Y2djRplinGRKilaIJffdxEOTly7IrRTWohZQQksYAkJSBJ3ITDyTPFjxjH1Nm7FWaJ25iDpDajJhxVONbD0952NMH6H4tvT198BxYCtLSyKnAXGsOPkdmz0c0w3Xcm-w3J2fNm priority: 102 providerName: ProQuest – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgGP2i20E9OJ0a569w8KZdbIHSHhczXfx10Zl5aiilZrHrFtdF618vdHSbxhg9U2gL74NH-N4D4JgTTCIFFsthnlQbFEqs0MXCImp1F77gwsZanHx753a65KpHe0YUNi6z3csjyWKmXhC7eUSriXUqga_DdBmqhd9WBaqty6fr9txs1yt8UguPPcUIqBHL_NzK1wVpzjJnB6NrsDJJRzx_40mysPZc1KBbfvU05eSlOcnCpvj4Zuj439_agHVDRlFrip5NWJJpHWrlRQ_IxH0d1hZcC7fguZNrmRcavepDHj2w1lBNPAOj6ESlTbkcI8WI0YC_6zJVFY0UTsco0jnzWY76Kbq_uUXDGD303VZCHpEWvKX9yQDpbIB8G7oX7YfzjmXua7AEdnFm0QhHasMYMSGkxzChMfWlpBx7gvuqiEiMJcOKoFDuMttRIHa8-IyFFIeUxALvQCUdpnIXkO0wP7JDh7k0JsJ2PcU8ZRjHghDmRpw1wC4HLRDGzFzfqZEEcxtm3a-B6teg6NfAb8DJrM5oauXx69MHJRYCE9bjwGGKYHvaFK4Bp-Vwzot_a-10hqE_vHzvf63vw6qjAVTkGB5AJXudyEPFlbLwyITGJyO3BvA priority: 102 providerName: Springer Nature |
| Title | Hybrid prediction-optimization approaches for maximizing parts density in SLM of Ti6Al4V titanium alloy |
| URI | https://link.springer.com/article/10.1007/s10845-022-01938-9 https://www.proquest.com/docview/2708084085 https://link.springer.com/content/pdf/10.1007/s10845-022-01938-9.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1572-8145 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: ADMLS dateStart: 20080201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1572-8145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1572-8145 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1572-8145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1572-8145 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH7a2gPagbEBotOofNiNpSPxr-QYunYVrNXEVrSdosRxUEWbRmuq0f31e27jtiA0gbjEh2cnsv1sf47f9xngJGaUpegsjid9jRsUzpxEUOUwXN1VoGLlUkNO7g9Eb8g-3_LbHTi3XJhltLs9klxxGoxKU16eFWl2tkV885lhFpuwgsAM2Raad6EuOCLyGtSHg6vwzsrsISjgS9lU6Zk_Xrzizvz5Rb-uTxvQuT4n3YMX87yIFw_xeLy1FHX3QdtKrCJQfrTmZdJSj7_pO_5vLV_BywqrknDlXAewo_ND2Lf3QJBqWjiEvS1Rw9fwvbcwLDBS3JszINPvzhTnpUlF-CRWxVzPCAJmMol_GhsWJQW68YykJqS-XJBRTq4v-2SakZuRCMfsGzF8uHw0nxATLLB4A8Nu56bdc6rrHBxFBS0dntIU95OpVEr7kjKe8UBrHlNfxQGamKZUS4r4hcdCuh76uOdnH2XCacJZpuhbqOXTXL8D4noySN3Ek4JnTLnCR2CqkyxTjEmRxrIBru3ESFVa5-bKjXG0UWk2bRth20bLto2CBnxYlylWSh_P5j62vhFVo34WeRLxt2804xpwart3Y37ubadrn_qLjx_9W_ZjqJX3c_0e0VOZNGHX7140oR6e9y-vTXpx96WD6afO4OorWtuijc-hFzarYfQEPloXwA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH4a22HssMEAUTbABzixCBLbcXKYpgGbOtZWCDq0W-Y4DqrUpmFtNfLP8bfxXuY041Jx2dmJnfi9vB_x-74H8EYLLjJUFi9QkcUERQovDbnxBHp3ExttfE7g5P4g7F6IL5fycg3-NFgYKqtsbGJtqLOpoX_k7wOFsU1EfFxH5S-PukbR6WrTQkO71grZYU0x5oAd57a6wRRudnj2GeX9NghOT4afup7rMuAZHvK5JzOeYZqTKWNspLiQuYytlZpHRsc4JCznVnF0q1KHyg9w64Mo_6BSyVMpcsNx3gewge8cY_K38fFk8PVbS_sb1YytNdsfPph0sB0H3osEoaOpNCIms_Ova2zj3eUR7RZsLopSVzd6PL7jBU8fwbYLX9nxrb49hjVb7MJO0xqCOUuxC1t3eA6fwM9uRcAwVl7TsRCpgjdFUzVxGFDWEJvbGcMYmk30bxrDW1mJmj1jGVXZzys2Ktj3Xp9NczYchcdj8YMRRK4YLSaM6geqp3BxL3v_DNaLaWGfA_MDFWd-GqhQ5sL4YYSxqk3z3AihwkyrDvjN5ibG0Z9TF45x0hI3k0ASFEhSCySJO_BueU95S_6x8ur9RmaJMwSzpFXbDhw0cmyHV812sJT1fyz-YvXir2GzO-z3kt7Z4HwPHgakdXVF4j6sz68X9iVGVvP0lVNfBlf3_cX8BQOXMEc |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE98CigLhTwAU40KvEjTg4IVZRlSx9CokW9pY7jVCvtZkN3VyV_jV_HTNbZlMuKS8-ObcnzeTyO5_sG4K2RQuYIloDr2OEFRckgi4QNJJ7uNrHGhoLIyccn0eBMfjtX52vwp-XCUFpl6xMbR51PLP0j3-UaY5uY9Lh2C58W8X2__6n6FVAFKXppbctpLCBy6OprvL5NPx7so63fcd7_cvp5EPgKA4EVkZgFKhc5XnFyba2LtZCqUIlzyojYmgSbpBPCaYFHqjKRDjkuO4-LDzpTIlOysALHvQN3Nam4E0u9_7UT_I0brdZG5w-jEuUJO562F0viRVNSREIO599DsYt0l4-zG3B_Xlamvjaj0Y3zr_8YHvrAle0tkPYE1ly5CY_aohDM-4hN2LihcPgULgc1UcJYdUUPQgSCYIJOauzZn6yVNHdThtEzG5vf1IZdWYWYnrKc8utnNRuW7MfRMZsU7HQY7Y3kT0bkuHI4HzPKHKifwdmtrPxzWC8npdsCFnKd5GHGdaQKacMoxijVZUVhpdRRbnQPwnZxU-uFz6n-xijtJJvJICkaJG0MkiY9eL_sUy1kP1Z-vd3aLPUuYJp2gO3BTmvHrnnVaDtLW__H5C9WT_4G7uE-SY8OTg5fwgNOoGtSEbdhfXY1d68wpJplrxvsMri47c3yF52bLeE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6x5YA48NwVRYB84AYpm_iVHCseqhAgJCiCU-Q4zqqiTSOaCsqvZ9zGbUEILeI8tiPbY_tzZr7PAPuKUZais3iBDA1eUDjzEkG1x_B015FW2qeWnHx5JVptdn7P7xfgxHFhxtnuLiQ54TRYlaa8PCrS7GiO-BYyyyy2aQWRXbINNP-CRcERkddgsX113XxwMnsICvhYNlUG9o8Xr7gznzf0_nyagc5pnHQZloZ5oUbPqtudO4rOVsG4TkwyUB4bwzJp6NcP-o4_7eUarFRYlTQnzrUOCybfgFX3DgSptoUNWJ4TNdyEf62RZYGR4snGgOy8e33cl3oV4ZM4FXMzIAiYSU-9WBtWJQW68YCkNqW-HJFOTm4uLkk_I7cd0eyyO2L5cHln2CM2WWD0G9pnp7fHLa96zsHTVNDS4ylN8T6ZSq1NKCnjGY-M4YqGWkVoYoZSIyniF66E9AP08SDM_sqE04SzTNM_UMv7udkC4gcySv0kkIJnTPsiRGBqkizTjEmRKlkH301irCutc_vkRjeeqTTbsY1xbOPx2MZRHQ6mdYqJ0seXpXecb8TVqh_EgUT8HVrNuDocuumdmb9q7XDqU__x8e3vFd-BWvk0NLuInspkr1ocbwECEFI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+prediction-optimization+approaches+for+maximizing+parts+density+in+SLM+of+Ti6Al4V+titanium+alloy&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Costa%2C+A&rft.au=Buffa%2C+G&rft.au=Palmeri%2C+D&rft.au=Pollara%2C+G&rft.date=2022-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=33&rft.issue=7&rft.spage=1967&rft.epage=1989&rft_id=info:doi/10.1007%2Fs10845-022-01938-9&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon |