Hybrid prediction-optimization approaches for maximizing parts density in SLM of Ti6Al4V titanium alloy

It is well known that the processing parameters of selective laser melting (SLM) highly influence mechanical and physical properties of the manufactured parts. Also, the energy density is insufficient to detect the process window for producing full dense components. In fact, parts produced with the...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent manufacturing Vol. 33; no. 7; pp. 1967 - 1989
Main Authors Costa, A., Buffa, G., Palmeri, D., Pollara, G., Fratini, L.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0956-5515
1572-8145
1572-8145
DOI10.1007/s10845-022-01938-9

Cover

Abstract It is well known that the processing parameters of selective laser melting (SLM) highly influence mechanical and physical properties of the manufactured parts. Also, the energy density is insufficient to detect the process window for producing full dense components. In fact, parts produced with the same energy density but different combinations of parameters may present different properties even under the microstructural viewpoint. In this context, the need to assess the influence of the process parameters and to select the best parameters set able to optimize the final properties of SLM parts has been capturing the attention of both academics and practitioners. In this paper different hybrid prediction-optimization approaches for maximizing the relative density of Ti6Al4V SLM manufactured parts are proposed. An extended design of experiments involving six process parameters has been configured for constructing two surrogate models based on response surface methodology (RSM) and artificial neural network (ANN), respectively. The optimization phase has been performed by means of evolutionary computations. To this end, three nature-inspired metaheuristic algorithms have been integrated with the prediction modelling structures. A series of experimental tests has been carried out to validate the results from the proposed hybrid optimization procedures. Also, a sensitivity analysis based on the results from the analysis of variance was executed to evaluate the influence of the processing parameter and their reciprocal interactions on the part porosity.
AbstractList It is well known that the processing parameters of selective laser melting (SLM) highly influence mechanical and physical properties of the manufactured parts. Also, the energy density is insufficient to detect the process window for producing full dense components. In fact, parts produced with the same energy density but different combinations of parameters may present different properties even under the microstructural viewpoint. In this context, the need to assess the influence of the process parameters and to select the best parameters set able to optimize the final properties of SLM parts has been capturing the attention of both academics and practitioners. In this paper different hybrid prediction-optimization approaches for maximizing the relative density of Ti6Al4V SLM manufactured parts are proposed. An extended design of experiments involving six process parameters has been configured for constructing two surrogate models based on response surface methodology (RSM) and artificial neural network (ANN), respectively. The optimization phase has been performed by means of evolutionary computations. To this end, three nature-inspired metaheuristic algorithms have been integrated with the prediction modelling structures. A series of experimental tests has been carried out to validate the results from the proposed hybrid optimization procedures. Also, a sensitivity analysis based on the results from the analysis of variance was executed to evaluate the influence of the processing parameter and their reciprocal interactions on the part porosity.
Author Costa, A.
Fratini, L.
Pollara, G.
Buffa, G.
Palmeri, D.
Author_xml – sequence: 1
  givenname: A.
  surname: Costa
  fullname: Costa, A.
  organization: DICAR Department, University of Catania
– sequence: 2
  givenname: G.
  orcidid: 0000-0002-5247-0747
  surname: Buffa
  fullname: Buffa, G.
  email: gianluca.buffa@unipa.it
  organization: Department of Engineering, University of Palermo
– sequence: 3
  givenname: D.
  surname: Palmeri
  fullname: Palmeri, D.
  organization: Department of Engineering, University of Palermo
– sequence: 4
  givenname: G.
  surname: Pollara
  fullname: Pollara, G.
  organization: Department of Engineering, University of Palermo
– sequence: 5
  givenname: L.
  surname: Fratini
  fullname: Fratini, L.
  organization: Department of Engineering, University of Palermo
BookMark eNqNkEFPAyEUhImpiW31D3gi8YzCsuyyx6ZRa1LjweqVUJatNFtYgUbXXy-1TUw8NJ7Iy5vhzXwjMLDOagAuCb4mGJc3gWCeM4SzDGFSUY6qEzAkrMwQJzkbgCGuWIEYI-wMjEJYY4wrXpAhWM36pTc17LyujYrGWeS6aDbmS-4GKLvOO6nedICN83AjP3c7Y1ewkz4GWGsbTOyhsfB5_ghdAxemmLT5K4wmSmu2Gyjb1vXn4LSRbdAXh3cMXu5uF9MZmj_dP0wnc6RoQSNiNa0Jz-tSKc1LmrOGVVozSbmSVVrlmlJd0opgJouSZFrWGW9wuWR0yfJG0TGg-3-3tpP9R7otOm820veCYLFjJfasRGIlfliJKrmu9q5U9n2rQxRrt_U2BRVZiXnSY86Siu9VyrsQvG6ESh13mKKXpj1-IPtj_VeqQ5eQxHal_W-qI65vUHydXA
CitedBy_id crossref_primary_10_1080_10426914_2024_2395002
crossref_primary_10_1007_s00170_023_11179_6
crossref_primary_10_1007_s42791_023_00057_7
crossref_primary_10_1007_s11665_024_09862_0
crossref_primary_10_1088_2631_7990_ada8e4
crossref_primary_10_1007_s10845_024_02490_4
crossref_primary_10_3390_ma16155476
crossref_primary_10_1007_s00170_024_14735_w
crossref_primary_10_1016_j_jmapro_2024_04_044
crossref_primary_10_1016_j_jallcom_2023_172642
crossref_primary_10_1007_s10845_022_02012_0
crossref_primary_10_1016_j_optlastec_2025_112650
crossref_primary_10_1007_s00170_023_12651_z
crossref_primary_10_1007_s13369_023_08627_6
crossref_primary_10_1007_s13369_024_08838_5
crossref_primary_10_1007_s10845_024_02554_5
crossref_primary_10_1007_s40194_024_01861_y
crossref_primary_10_1108_RPJ_10_2024_0435
Cites_doi 10.1007/s11721-007-0002-0
10.1007/s11837-020-04155-y
10.1007/s12541-017-0190-5
10.1016/j.cirpj.2020.05.009
10.1108/RPJ-06-2017-0111
10.1007/s00170-017-1045-z
10.1016/j.pmatsci.2017.10.001
10.1108/RPJ-12-2015-0193
10.1016/j.cie.2016.12.031
10.1016/s0893-6080(00)00081-2
10.1007/s00170-012-4558-5
10.1016/j.addma.2020.101096
10.3390/met9040447
10.1016/j.actamat.2014.11.028
10.1016/j.msea.2019.138455
10.1016/j.addma.2018.09.002
10.3390/app10134628
10.1016/j.jmapro.2020.04.014
10.1007/978-0-387-39940-9_565
10.1007/s11465-013-0248-8
10.1016/j.eng.2019.04.012
10.1016/j.matdes.2016.05.070
10.1007/s40964-020-00157-z
10.1016/j.matdes.2015.07.147
10.1007/s10845-020-01725-4
10.1115/1.4051799
10.1016/j.patcog.2017.11.007
10.1016/j.jmatprotec.2021.117113
10.1016/S1005-0302(12)60016-4
10.1016/j.actamat.2015.06.004
10.1109/LSP.2015.2420092
10.1016/j.addma.2014.12.008
10.1007/s00170-008-1669-0
10.1016/j.optlastec.2018.01.013
10.1007/s40964-021-00180-8
10.1007/s10845-021-01773-4
10.1016/j.asoc.2011.01.037
10.3934/mbe.2019102
10.1016/S0020-0255(96)00200-9
10.1016/j.optlastec.2012.12.002
10.1016/j.ijmachtools.2018.01.003
10.1080/00224065.2004.11980252
10.1016/j.actamat.2016.07.019
10.1080/10485252.2015.1010532
10.1177/003754970107600201
10.1016/j.eswa.2009.09.008
10.1007/s11665-014-0958-z
10.1016/j.amc.2007.03.046
10.1016/j.autcon.2017.01.018
10.1016/j.msea.2013.04.099
10.1007/s12008-019-00536-z
10.1109/ICNN.1995.488968
10.1108/RPJ-03-2016-0045
10.1016/j.addma.2016.05.009
10.1109/CEC.2001.934376
10.1136/bmj.i1114
10.1007/978-3-662-03315-9
10.1016/j.addma.2014.08.002
10.4135/9781483384733
10.1007/978-1-4471-4480-9_11
10.1016/j.addma.2020.101538
ContentType Journal Article
Copyright The Author(s) 2022. corrected publication 2022
The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022. corrected publication 2022
– notice: The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88E
8AL
8AO
8FD
8FE
8FG
8FJ
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M0S
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOI 10.1007/s10845-022-01938-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection (ProQuest)
Computing Database
Health & Medical Collection (Alumni)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1572-8145
EndPage 1989
ExternalDocumentID 10.1007/s10845-022-01938-9
10_1007_s10845_022_01938_9
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
3-Y
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
8AO
8FE
8FG
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZYFGU
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c363t-5d3d184d7cce87345f59ee5a38ca93d14e33e739105a6712ead28f07b53b54fc3
IEDL.DBID UNPAY
ISSN 0956-5515
1572-8145
IngestDate Sun Oct 26 03:54:51 EDT 2025
Sat Sep 06 22:13:20 EDT 2025
Wed Oct 01 03:41:01 EDT 2025
Thu Apr 24 23:07:27 EDT 2025
Fri Feb 21 02:44:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Artificial neural network
Response surface methodology
Optimization
Predictive model
Metaheuristic algorithms
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-5d3d184d7cce87345f59ee5a38ca93d14e33e739105a6712ead28f07b53b54fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5247-0747
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10845-022-01938-9.pdf
PQID 2708084085
PQPubID 32407
PageCount 23
ParticipantIDs unpaywall_primary_10_1007_s10845_022_01938_9
proquest_journals_2708084085
crossref_citationtrail_10_1007_s10845_022_01938_9
crossref_primary_10_1007_s10845_022_01938_9
springer_journals_10_1007_s10845_022_01938_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221000
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: London
PublicationTitle Journal of intelligent manufacturing
PublicationTitleAbbrev J Intell Manuf
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Shipley, McDonnell, Culleton, Coull, Lupoi, O'Donnell, Trimble (CR52) 2018; 128
Kasperovich, Haubrich, Gussone, Requena (CR21) 2016; 105
Khorasani, Gibson, Awan, Ghaderi (CR25) 2019; 25
Deep, Thakur (CR5) 2007; 193
Narayan (CR38) 1997; 99
Sokal, Rohlf (CR54) 1995
Park, Nguyen, Le-Hong, Van Tran (CR67) 2021
Ponz-Tienda, Salcedobernal, Pellicer, Benlloch-Marco (CR42) 2017; 77
CR32
Geem, Kim, Loganathan (CR12) 2001; 76
Krizhevsky, Sutskever, Hinton (CR24) 2012; 25
CR70
Wauthle, Vrancken, Beynaerts, Jorissen, Schrooten, Kruth, Van Humbeeck (CR69) 2015; 5
Nguyen, Park, Lee (CR39) 2020; 55
Saad, Nor, Zakaria, Baharudin, Yusoff (CR50) 2021; 6
CR3
CR6
Montalbano, Briggs, Waterman, Nimer, Peitsch, Sopcisak, Trigg, Storck (CR35) 2021; 294
CR8
CR9
Qiu, Panwisawas, Ward, Basoalto, Brooks, Attallah (CR45) 2015; 96
Murr, Gaytan, Ramirez, Martinez, Hernandez, Amato, Shindo, Medina, Wicker (CR36) 2012; 28
Myers, Montgomery, Vining, Borror, Kowalski (CR37) 2004; 36
Qi, Chen, Li, Cheng, Li (CR43) 2019; 5
Deshwal, Kumar, Chhabra (CR7) 2020; 31
Tapia, Khairallah, Matthews, King, Elwany (CR58) 2018; 94
M’zoughi, F., Garrido, I., Garrido, A. J., & De La Sen, M. (CR31) 2020; 10
Richardson, Reynolds, Dehak (CR47) 2015; 22
Costa, Fichera (CR2) 2017; 105
Poli, Kennedy, Blackwell (CR41) 2007; 1
Xia, Pan, Polden, Li, Xu, Chen (CR61) 2021
Frazier (CR11) 2014; 23
Blanco, Delgado, Pegalajar (CR1) 2001; 14
Tao, Zhong, Li, Hu, Gong, Xu (CR66) 2019; 9
CR15
Rong-Ji, Xin-Hua, Qing-Ding, Lingling (CR48) 2009; 42
CR57
Sun, Yang, Wang (CR56) 2013; 49
CR55
CR10
CR53
Nickabadi, Ebadzadeh, Safabakhsh (CR40) 2011; 11
Kuo, Su, Chiang (CR26) 2017; 18
Larimian, Kannan, Grzesiak, AlMangour, Borkar (CR27) 2020; 770
Guo, Leu (CR13) 2013; 8
DebRoy, Wei, Zuback, Mukherjee, Elmer, Milewski, Beese, Wilson-Heid, De, Zhang (CR4) 2018; 92
Jung, Hu (CR20) 2015; 27
Sharma, Chen, Diewald, Imanian, Beuth, Liu (CR51) 2021; 8
Huang, Liu, Mokasdar, Hou (CR19) 2013; 67
Li, Wang, Wang, Lu (CR29) 2018; 76
Xu, Brandt, Sun, Elambasseril, Liu, Latham, Xia, Qian (CR63) 2015; 85
Robinson, Ashton, Jones, Fox, Sutcliffe (CR49) 2019; 25
Meng, McWilliams, Jarosinski, Park, Jung, Lee, Zhang (CR33) 2020; 72
Wang, Huang (CR60) 2010; 37
CR28
Zhang, Choi, Moon, Ngo (CR65) 2020; 33
Refaeilzadeh, Tang, Liu (CR46) 2009; 5
Yi, Lu, Li (CR64) 2019; 16
Han, Yang, Yu, Yin, Gao, Wang, Zeng (CR17) 2017; 23
CR68
CR22
Kladovasilakis, Charalampous, Kostavelis, Tzetzis, Tzovaras (CR23) 2021; 6
Herzog, Seyda, Wycisk, Emmelmann (CR18) 2016; 117
CR62
Qiu, Adkins, Attallah (CR44) 2013; 578
Zhuang, Lee, Hsieh, Yang (CR71) 2018; 103
Gong, Rafi, Gu, Ram, Starr, Stucker (CR16) 2015; 86
P Li (1938_CR29) 2018; 76
1938_CR32
W Rong-Ji (1938_CR48) 2009; 42
J Yi (1938_CR64) 2019; 16
A Nickabadi (1938_CR40) 2011; 11
W Xu (1938_CR63) 2015; 85
HS Park (1938_CR67) 2021
J Sun (1938_CR56) 2013; 49
X Qi (1938_CR43) 2019; 5
J Han (1938_CR17) 2017; 23
A Sharma (1938_CR51) 2021; 8
C Xia (1938_CR61) 2021
C Kuo (1938_CR26) 2017; 18
JL Ponz-Tienda (1938_CR42) 2017; 77
S Deshwal (1938_CR7) 2020; 31
MS Saad (1938_CR50) 2021; 6
T Montalbano (1938_CR35) 2021; 294
SH Huang (1938_CR19) 2013; 67
ZW Geem (1938_CR12) 2001; 76
G Kasperovich (1938_CR21) 2016; 105
A Khorasani (1938_CR25) 2019; 25
L Meng (1938_CR33) 2020; 72
K Deep (1938_CR5) 2007; 193
N Kladovasilakis (1938_CR23) 2021; 6
A Krizhevsky (1938_CR24) 2012; 25
1938_CR53
N Guo (1938_CR13) 2013; 8
1938_CR57
T Larimian (1938_CR27) 2020; 770
1938_CR55
1938_CR10
RH Myers (1938_CR37) 2004; 36
1938_CR15
F Richardson (1938_CR47) 2015; 22
CM Wang (1938_CR60) 2010; 37
P Tao (1938_CR66) 2019; 9
C Qiu (1938_CR45) 2015; 96
1938_CR6
D Herzog (1938_CR18) 2016; 117
C Qiu (1938_CR44) 2013; 578
R Wauthle (1938_CR69) 2015; 5
1938_CR8
P Refaeilzadeh (1938_CR46) 2009; 5
1938_CR3
1938_CR9
1938_CR62
A Blanco (1938_CR1) 2001; 14
WE Frazier (1938_CR11) 2014; 23
1938_CR68
1938_CR22
1938_CR28
S Narayan (1938_CR38) 1997; 99
A Costa (1938_CR2) 2017; 105
DS Nguyen (1938_CR39) 2020; 55
R Poli (1938_CR41) 2007; 1
JH Robinson (1938_CR49) 2019; 25
Y Jung (1938_CR20) 2015; 27
H Zhang (1938_CR65) 2020; 33
H Shipley (1938_CR52) 2018; 128
H Gong (1938_CR16) 2015; 86
RR Sokal (1938_CR54) 1995
T DebRoy (1938_CR4) 2018; 92
1938_CR70
LE Murr (1938_CR36) 2012; 28
M’zoughi, F., Garrido, I., Garrido (1938_CR31) 2020; 10
G Tapia (1938_CR58) 2018; 94
JR Zhuang (1938_CR71) 2018; 103
References_xml – ident: CR70
– ident: CR22
– volume: 1
  start-page: 33
  issue: 1
  year: 2007
  end-page: 57
  ident: CR41
  article-title: Particle Swarm Optimization
  publication-title: Swarm Intelligence
  doi: 10.1007/s11721-007-0002-0
– volume: 72
  start-page: 2363
  issue: 6
  year: 2020
  end-page: 2377
  ident: CR33
  article-title: Machine learning in additive manufacturing: A review
  publication-title: JOM Journal of the Minerals Metals and Materials Society
  doi: 10.1007/s11837-020-04155-y
– ident: CR68
– volume: 18
  start-page: 1609
  issue: 11
  year: 2017
  end-page: 1618
  ident: CR26
  article-title: Parametric optimization of density and dimensions in three-dimensional printing of Ti-6Al-4V powders on titanium plates using selective laser melting
  publication-title: International Journal of Precision Engineering and Manufacturing
  doi: 10.1007/s12541-017-0190-5
– volume: 31
  start-page: 189
  year: 2020
  end-page: 199
  ident: CR7
  article-title: Exercising hybrid statistical tools GA-RSM, GA-ANN and GA-ANFIS to optimize FDM process parameters for tensile strength improvement
  publication-title: CIRP Journal of Manufacturing Science and Technology
  doi: 10.1016/j.cirpj.2020.05.009
– volume: 25
  start-page: 289
  issue: 2
  year: 2019
  end-page: 298
  ident: CR49
  article-title: The effect of hatch angle rotation on parts manufactured using selective laser melting
  publication-title: Rapid Prototyping Journal
  doi: 10.1108/RPJ-06-2017-0111
– volume: 94
  start-page: 3591
  issue: 9
  year: 2018
  end-page: 3603
  ident: CR58
  article-title: Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-017-1045-z
– volume: 92
  start-page: 112
  year: 2018
  end-page: 224
  ident: CR4
  article-title: Additive manufacturing of metallic components–process, structure and properties
  publication-title: Progress in Materials Science
  doi: 10.1016/j.pmatsci.2017.10.001
– ident: CR8
– volume: 23
  start-page: 217
  issue: 2
  year: 2017
  end-page: 226
  ident: CR17
  article-title: Microstructure and mechanical property of selective laser melted Ti6Al4V dependence on laser energy density
  publication-title: Rapid Prototyping Journal
  doi: 10.1108/RPJ-12-2015-0193
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: CR24
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 105
  start-page: 174
  year: 2017
  end-page: 189
  ident: CR2
  article-title: Economic statistical design of ARMA control chart through a modified fitnessbased selfadaptive differential evolution
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2016.12.031
– ident: CR15
– volume: 14
  start-page: 93
  issue: 1
  year: 2001
  end-page: 105
  ident: CR1
  article-title: A real-coded genetic algorithm for training recurrent neural networks
  publication-title: Neural Networks
  doi: 10.1016/s0893-6080(00)00081-2
– volume: 67
  start-page: 1191
  issue: 5
  year: 2013
  end-page: 1203
  ident: CR19
  article-title: Additive manufacturing and its societal impact: A literature review
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-012-4558-5
– volume: 33
  year: 2020
  ident: CR65
  article-title: A hybrid multi-objective optimization of aerosol jet printing process via response surface methodology
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2020.101096
– ident: CR9
– ident: CR57
– ident: CR32
– volume: 9
  start-page: 447
  issue: 4
  year: 2019
  ident: CR66
  article-title: Microstructure, mechanical properties, and constitutive models for Ti–6Al–4V alloy fabricated by selective laser melting (SLM)
  publication-title: Metals
  doi: 10.3390/met9040447
– volume: 85
  start-page: 74
  year: 2015
  end-page: 84
  ident: CR63
  article-title: Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2014.11.028
– volume: 770
  start-page: 138455
  year: 2020
  ident: CR27
  article-title: Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting
  publication-title: Materials Science and Engineering A
  doi: 10.1016/j.msea.2019.138455
– volume: 25
  start-page: 176
  year: 2019
  end-page: 186
  ident: CR25
  article-title: The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4V
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2018.09.002
– volume: 10
  start-page: 4628
  issue: 13
  year: 2020
  ident: CR31
  article-title: Selfa-daptive global-best harmony search algorithmbased airflow control of a wells-turbine-based oscillating-water column
  publication-title: Applied Sciences
  doi: 10.3390/app10134628
– ident: CR53
– volume: 55
  start-page: 230
  year: 2020
  end-page: 235
  ident: CR39
  article-title: Optimization of selective laser melting process parameters for Ti-6Al-4V alloy manufacturing using deep learning
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2020.04.014
– volume: 5
  start-page: 532
  year: 2009
  end-page: 538
  ident: CR46
  article-title: Cross-Validation
  publication-title: Encyclopedia of Database Systems
  doi: 10.1007/978-0-387-39940-9_565
– ident: CR10
– volume: 8
  start-page: 215
  issue: 3
  year: 2013
  end-page: 243
  ident: CR13
  article-title: Additive manufacturing: Technology, applications and research needs
  publication-title: Frontiers of Mechanical Engineering
  doi: 10.1007/s11465-013-0248-8
– volume: 5
  start-page: 721
  issue: 4
  year: 2019
  end-page: 729
  ident: CR43
  article-title: Applying neural-network-based machine learning to additive manufacturing: Current applications, challenges, and future perspectives
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.04.012
– volume: 105
  start-page: 160
  year: 2016
  end-page: 170
  ident: CR21
  article-title: Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2016.05.070
– ident: CR6
– volume: 6
  start-page: 143
  issue: 1
  year: 2021
  end-page: 154
  ident: CR50
  article-title: Modelling and evolutionary computation optimization on FDM process for flexural strength using integrated approach RSM and PSO
  publication-title: Progress in Additive Manufacturing
  doi: 10.1007/s40964-020-00157-z
– volume: 86
  start-page: 545
  year: 2015
  end-page: 554
  ident: CR16
  article-title: Influence of defects on mechanical properties of Ti–6Al–4 V components produced by selective laser melting and electron beam melting
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2015.07.147
– year: 2021
  ident: CR61
  article-title: Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01725-4
– volume: 8
  issue: 1
  year: 2021
  ident: CR51
  article-title: Data-driven sensitivity analysis for static mechanical properties of additively manufactured Ti–6Al–4V
  publication-title: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part b: Mechanical Engineering
  doi: 10.1115/1.4051799
– volume: 76
  start-page: 323
  year: 2018
  end-page: 338
  ident: CR29
  article-title: Deep visual tracking: Review and experimental comparison
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2017.11.007
– volume: 294
  year: 2021
  ident: CR35
  article-title: Uncovering the coupled impact of defect morphology and microstructure on the tensile behavior of Ti-6Al-4V fabricated via laser powder bed fusion
  publication-title: Journal of Materials Processing Technology
  doi: 10.1016/j.jmatprotec.2021.117113
– volume: 28
  start-page: 1
  issue: 1
  year: 2012
  end-page: 14
  ident: CR36
  article-title: Metal fabrication by additive manufacturing using laser and electron beam melting technologies
  publication-title: Journal of Materials Science & Technology
  doi: 10.1016/S1005-0302(12)60016-4
– volume: 96
  start-page: 72
  year: 2015
  end-page: 79
  ident: CR45
  article-title: On the role of melt flow into the surface structure and porosity development during selective laser melting
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2015.06.004
– volume: 22
  start-page: 1671
  issue: 10
  year: 2015
  end-page: 1675
  ident: CR47
  article-title: Deep neural network approaches to speaker and language recognition
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2015.2420092
– volume: 5
  start-page: 77
  year: 2015
  end-page: 84
  ident: CR69
  article-title: Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2014.12.008
– volume: 42
  start-page: 1035
  issue: 11
  year: 2009
  end-page: 1042
  ident: CR48
  article-title: Optimizing process parameters for selective laser sintering based on neural network and genetic algorithm
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-008-1669-0
– volume: 103
  start-page: 59
  year: 2018
  end-page: 76
  ident: CR71
  article-title: Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder
  publication-title: Optics & Laser Technology
  doi: 10.1016/j.optlastec.2018.01.013
– volume: 6
  start-page: 349
  year: 2021
  end-page: 365
  ident: CR23
  article-title: Impact of metal additive manufacturing parameters on the powder bed fusion and direct energy deposition processes: A comprehensive review
  publication-title: Progress in Additive Manufacturing
  doi: 10.1007/s40964-021-00180-8
– year: 2021
  ident: CR67
  article-title: Machine learning-based optimization of process parameters in selective laser melting for biomedical applications
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-021-01773-4
– volume: 11
  start-page: 3658
  issue: 4
  year: 2011
  end-page: 3670
  ident: CR40
  article-title: A novel particle swarm optimization algorithm with adaptive inertia weight
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2011.01.037
– volume: 16
  start-page: 2086
  issue: 4
  year: 2019
  end-page: 2117
  ident: CR64
  article-title: A literature review on latest developments of Harmony Search and its applications to intelligent manufacturing
  publication-title: Mathematical Biosciences and Engineering
  doi: 10.3934/mbe.2019102
– volume: 99
  start-page: 69
  issue: 1–2
  year: 1997
  end-page: 82
  ident: CR38
  article-title: The generalized sigmoid activation function: Competitive supervised learning
  publication-title: Information Sciences
  doi: 10.1016/S0020-0255(96)00200-9
– volume: 49
  start-page: 118
  year: 2013
  end-page: 124
  ident: CR56
  article-title: Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method
  publication-title: Optics & Laser Technology
  doi: 10.1016/j.optlastec.2012.12.002
– volume: 128
  start-page: 1
  year: 2018
  end-page: 20
  ident: CR52
  article-title: Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2018.01.003
– ident: CR3
– volume: 36
  start-page: 53
  issue: 1
  year: 2004
  end-page: 77
  ident: CR37
  article-title: Response surface methodology: A retrospective and literature survey
  publication-title: Journal of Quality Technology
  doi: 10.1080/00224065.2004.11980252
– volume: 117
  start-page: 371
  year: 2016
  end-page: 392
  ident: CR18
  article-title: Additive manufacturing of metals
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2016.07.019
– year: 1995
  ident: CR54
  publication-title: Biometry: The principles and practice of statistics in biological research
– volume: 27
  start-page: 167
  issue: 2
  year: 2015
  end-page: 179
  ident: CR20
  article-title: A K-fold averaging cross-validation procedure
  publication-title: Journal of Nonparametric Statistics
  doi: 10.1080/10485252.2015.1010532
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  end-page: 68
  ident: CR12
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: SIMULATION
  doi: 10.1177/003754970107600201
– ident: CR55
– volume: 37
  start-page: 2826
  issue: 4
  year: 2010
  end-page: 2837
  ident: CR60
  article-title: Selfad-aptive harmony search algorithm for optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.09.008
– volume: 23
  start-page: 1917
  issue: 6
  year: 2014
  end-page: 1928
  ident: CR11
  article-title: Metal additive manufacturing: A review
  publication-title: Journal of Materials Engineering and Performance
  doi: 10.1007/s11665-014-0958-z
– volume: 193
  start-page: 211
  issue: 1
  year: 2007
  end-page: 230
  ident: CR5
  article-title: A new mutation operator for real coded genetic algorithms
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2007.03.046
– ident: CR28
– ident: CR62
– volume: 77
  start-page: 82
  year: 2017
  end-page: 92
  ident: CR42
  article-title: Improved adaptive harmony search algorithm for the resource leveling problem with minimal lags
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2017.01.018
– volume: 578
  start-page: 230
  year: 2013
  end-page: 239
  ident: CR44
  article-title: Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V
  publication-title: Materials Science and Engineering: A
  doi: 10.1016/j.msea.2013.04.099
– volume: 25
  start-page: 289
  issue: 2
  year: 2019
  ident: 1938_CR49
  publication-title: Rapid Prototyping Journal
  doi: 10.1108/RPJ-06-2017-0111
– volume: 6
  start-page: 349
  year: 2021
  ident: 1938_CR23
  publication-title: Progress in Additive Manufacturing
  doi: 10.1007/s40964-021-00180-8
– volume: 25
  start-page: 1097
  year: 2012
  ident: 1938_CR24
  publication-title: Advances in Neural Information Processing Systems
– volume: 193
  start-page: 211
  issue: 1
  year: 2007
  ident: 1938_CR5
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2007.03.046
– volume: 76
  start-page: 323
  year: 2018
  ident: 1938_CR29
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2017.11.007
– volume: 5
  start-page: 77
  year: 2015
  ident: 1938_CR69
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2014.12.008
– volume: 33
  year: 2020
  ident: 1938_CR65
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2020.101096
– volume: 103
  start-page: 59
  year: 2018
  ident: 1938_CR71
  publication-title: Optics & Laser Technology
  doi: 10.1016/j.optlastec.2018.01.013
– volume: 6
  start-page: 143
  issue: 1
  year: 2021
  ident: 1938_CR50
  publication-title: Progress in Additive Manufacturing
  doi: 10.1007/s40964-020-00157-z
– volume: 72
  start-page: 2363
  issue: 6
  year: 2020
  ident: 1938_CR33
  publication-title: JOM Journal of the Minerals Metals and Materials Society
  doi: 10.1007/s11837-020-04155-y
– volume: 36
  start-page: 53
  issue: 1
  year: 2004
  ident: 1938_CR37
  publication-title: Journal of Quality Technology
  doi: 10.1080/00224065.2004.11980252
– ident: 1938_CR62
– volume: 85
  start-page: 74
  year: 2015
  ident: 1938_CR63
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2014.11.028
– volume: 294
  year: 2021
  ident: 1938_CR35
  publication-title: Journal of Materials Processing Technology
  doi: 10.1016/j.jmatprotec.2021.117113
– volume: 42
  start-page: 1035
  issue: 11
  year: 2009
  ident: 1938_CR48
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-008-1669-0
– volume: 77
  start-page: 82
  year: 2017
  ident: 1938_CR42
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2017.01.018
– volume: 18
  start-page: 1609
  issue: 11
  year: 2017
  ident: 1938_CR26
  publication-title: International Journal of Precision Engineering and Manufacturing
  doi: 10.1007/s12541-017-0190-5
– ident: 1938_CR6
  doi: 10.1007/s12008-019-00536-z
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 1938_CR12
  publication-title: SIMULATION
  doi: 10.1177/003754970107600201
– volume: 67
  start-page: 1191
  issue: 5
  year: 2013
  ident: 1938_CR19
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-012-4558-5
– volume: 94
  start-page: 3591
  issue: 9
  year: 2018
  ident: 1938_CR58
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-017-1045-z
– volume: 22
  start-page: 1671
  issue: 10
  year: 2015
  ident: 1938_CR47
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2015.2420092
– ident: 1938_CR9
  doi: 10.1109/ICNN.1995.488968
– ident: 1938_CR28
  doi: 10.1108/RPJ-03-2016-0045
– volume: 14
  start-page: 93
  issue: 1
  year: 2001
  ident: 1938_CR1
  publication-title: Neural Networks
  doi: 10.1016/s0893-6080(00)00081-2
– ident: 1938_CR57
  doi: 10.1016/j.addma.2016.05.009
– volume: 37
  start-page: 2826
  issue: 4
  year: 2010
  ident: 1938_CR60
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.09.008
– ident: 1938_CR10
  doi: 10.1109/CEC.2001.934376
– volume: 23
  start-page: 217
  issue: 2
  year: 2017
  ident: 1938_CR17
  publication-title: Rapid Prototyping Journal
  doi: 10.1108/RPJ-12-2015-0193
– volume: 578
  start-page: 230
  year: 2013
  ident: 1938_CR44
  publication-title: Materials Science and Engineering: A
  doi: 10.1016/j.msea.2013.04.099
– volume: 49
  start-page: 118
  year: 2013
  ident: 1938_CR56
  publication-title: Optics & Laser Technology
  doi: 10.1016/j.optlastec.2012.12.002
– volume: 105
  start-page: 160
  year: 2016
  ident: 1938_CR21
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2016.05.070
– volume: 8
  issue: 1
  year: 2021
  ident: 1938_CR51
  publication-title: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part b: Mechanical Engineering
  doi: 10.1115/1.4051799
– ident: 1938_CR55
  doi: 10.1136/bmj.i1114
– ident: 1938_CR32
  doi: 10.1007/978-3-662-03315-9
– volume: 16
  start-page: 2086
  issue: 4
  year: 2019
  ident: 1938_CR64
  publication-title: Mathematical Biosciences and Engineering
  doi: 10.3934/mbe.2019102
– volume: 55
  start-page: 230
  year: 2020
  ident: 1938_CR39
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2020.04.014
– volume: 11
  start-page: 3658
  issue: 4
  year: 2011
  ident: 1938_CR40
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2011.01.037
– volume: 770
  start-page: 138455
  year: 2020
  ident: 1938_CR27
  publication-title: Materials Science and Engineering A
  doi: 10.1016/j.msea.2019.138455
– year: 2021
  ident: 1938_CR67
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-021-01773-4
– volume: 92
  start-page: 112
  year: 2018
  ident: 1938_CR4
  publication-title: Progress in Materials Science
  doi: 10.1016/j.pmatsci.2017.10.001
– volume: 10
  start-page: 4628
  issue: 13
  year: 2020
  ident: 1938_CR31
  publication-title: Applied Sciences
  doi: 10.3390/app10134628
– volume: 99
  start-page: 69
  issue: 1–2
  year: 1997
  ident: 1938_CR38
  publication-title: Information Sciences
  doi: 10.1016/S0020-0255(96)00200-9
– volume: 1
  start-page: 33
  issue: 1
  year: 2007
  ident: 1938_CR41
  publication-title: Swarm Intelligence
  doi: 10.1007/s11721-007-0002-0
– volume: 86
  start-page: 545
  year: 2015
  ident: 1938_CR16
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2015.07.147
– ident: 1938_CR3
– volume: 25
  start-page: 176
  year: 2019
  ident: 1938_CR25
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2018.09.002
– volume: 105
  start-page: 174
  year: 2017
  ident: 1938_CR2
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2016.12.031
– ident: 1938_CR15
  doi: 10.1016/j.addma.2014.08.002
– volume: 128
  start-page: 1
  year: 2018
  ident: 1938_CR52
  publication-title: International Journal of Machine Tools and Manufacture
  doi: 10.1016/j.ijmachtools.2018.01.003
– ident: 1938_CR22
  doi: 10.4135/9781483384733
– ident: 1938_CR70
– volume: 8
  start-page: 215
  issue: 3
  year: 2013
  ident: 1938_CR13
  publication-title: Frontiers of Mechanical Engineering
  doi: 10.1007/s11465-013-0248-8
– ident: 1938_CR53
  doi: 10.1007/978-1-4471-4480-9_11
– volume: 117
  start-page: 371
  year: 2016
  ident: 1938_CR18
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2016.07.019
– volume: 5
  start-page: 721
  issue: 4
  year: 2019
  ident: 1938_CR43
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.04.012
– volume-title: Biometry: The principles and practice of statistics in biological research
  year: 1995
  ident: 1938_CR54
– ident: 1938_CR8
– volume: 5
  start-page: 532
  year: 2009
  ident: 1938_CR46
  publication-title: Encyclopedia of Database Systems
  doi: 10.1007/978-0-387-39940-9_565
– volume: 31
  start-page: 189
  year: 2020
  ident: 1938_CR7
  publication-title: CIRP Journal of Manufacturing Science and Technology
  doi: 10.1016/j.cirpj.2020.05.009
– volume: 96
  start-page: 72
  year: 2015
  ident: 1938_CR45
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2015.06.004
– volume: 27
  start-page: 167
  issue: 2
  year: 2015
  ident: 1938_CR20
  publication-title: Journal of Nonparametric Statistics
  doi: 10.1080/10485252.2015.1010532
– volume: 28
  start-page: 1
  issue: 1
  year: 2012
  ident: 1938_CR36
  publication-title: Journal of Materials Science & Technology
  doi: 10.1016/S1005-0302(12)60016-4
– ident: 1938_CR68
  doi: 10.1016/j.addma.2020.101538
– volume: 9
  start-page: 447
  issue: 4
  year: 2019
  ident: 1938_CR66
  publication-title: Metals
  doi: 10.3390/met9040447
– volume: 23
  start-page: 1917
  issue: 6
  year: 2014
  ident: 1938_CR11
  publication-title: Journal of Materials Engineering and Performance
  doi: 10.1007/s11665-014-0958-z
– year: 2021
  ident: 1938_CR61
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01725-4
SSID ssj0009861
Score 2.455998
Snippet It is well known that the processing parameters of selective laser melting (SLM) highly influence mechanical and physical properties of the manufactured parts....
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1967
SubjectTerms Advanced manufacturing technologies
Algorithms
Artificial neural networks
Business and Management
Control
Design of experiments
Heuristic methods
Laser beam melting
Machines
Manufacturing
Mathematical models
Maximization
Mechatronics
Optimization
Physical properties
Porosity
Prediction models
Process parameters
Processes
Production
Response surface methodology
Robotics
Sensitivity analysis
Specific gravity
Titanium alloys
Titanium base alloys
Variance analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6K85IENIkhsx8mAECBQhaBCvMQWObaDKrVpoK2g_x5fcBpYKmY7sZTvfD7n7vsO4EAyyrQ1Fi8QkbEXFM68NKTKY_Z0V7GSyqdITr5rh61ndvPKX2egXXFhsKyy8omlo9Z9hf_IjwNhY5sI9bjOincPu0ZhdrVqoSFdawV9WkqMzcJcgMpYDZi7uGrfP9QyvFGpoFqq79mJ3NFoHJkuYshWxlKFGN3A36Oqjj8nKdNFmB_lhRx_ym7316l0vQJLLpwk5z_4r8KMyddguWrVQNzOXYPFX7qD6_DWGiNRixQfmKZBaLy-dR09x8kkldC4GRAb05Ke_MIx-ygprKUNiMaq9-GYdHLyeHtH-hl56oTnXfZCkLKWd0Y9gvn88QY8X189XbY813HBUzSkQ49rqu2VTwulTCQo4xmPjeGSRkrGdogZSo2gNsTgMhR-YM0wiLITkXKacpYpugmNvJ-bLSB-IGLtp4EIecaUH0Y2djRplinGRKilaIJffdxEOTly7IrRTWohZQQksYAkJSBJ3ITDyTPFjxjH1Nm7FWaJ25iDpDajJhxVONbD0952NMH6H4tvT198BxYCtLSyKnAXGsOPkdmz0c0w3Xcm-w3J2fNm
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgGP2i20E9OJ0a569w8KZdbIHSHhczXfx10Zl5aiilZrHrFtdF618vdHSbxhg9U2gL74NH-N4D4JgTTCIFFsthnlQbFEqs0MXCImp1F77gwsZanHx753a65KpHe0YUNi6z3csjyWKmXhC7eUSriXUqga_DdBmqhd9WBaqty6fr9txs1yt8UguPPcUIqBHL_NzK1wVpzjJnB6NrsDJJRzx_40mysPZc1KBbfvU05eSlOcnCpvj4Zuj439_agHVDRlFrip5NWJJpHWrlRQ_IxH0d1hZcC7fguZNrmRcavepDHj2w1lBNPAOj6ESlTbkcI8WI0YC_6zJVFY0UTsco0jnzWY76Kbq_uUXDGD303VZCHpEWvKX9yQDpbIB8G7oX7YfzjmXua7AEdnFm0QhHasMYMSGkxzChMfWlpBx7gvuqiEiMJcOKoFDuMttRIHa8-IyFFIeUxALvQCUdpnIXkO0wP7JDh7k0JsJ2PcU8ZRjHghDmRpw1wC4HLRDGzFzfqZEEcxtm3a-B6teg6NfAb8DJrM5oauXx69MHJRYCE9bjwGGKYHvaFK4Bp-Vwzot_a-10hqE_vHzvf63vw6qjAVTkGB5AJXudyEPFlbLwyITGJyO3BvA
  priority: 102
  providerName: Springer Nature
Title Hybrid prediction-optimization approaches for maximizing parts density in SLM of Ti6Al4V titanium alloy
URI https://link.springer.com/article/10.1007/s10845-022-01938-9
https://www.proquest.com/docview/2708084085
https://link.springer.com/content/pdf/10.1007/s10845-022-01938-9.pdf
UnpaywallVersion publishedVersion
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: ADMLS
  dateStart: 20080201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-8145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH7a2gPagbEBotOofNiNpSPxr-QYunYVrNXEVrSdosRxUEWbRmuq0f31e27jtiA0gbjEh2cnsv1sf47f9xngJGaUpegsjid9jRsUzpxEUOUwXN1VoGLlUkNO7g9Eb8g-3_LbHTi3XJhltLs9klxxGoxKU16eFWl2tkV885lhFpuwgsAM2Raad6EuOCLyGtSHg6vwzsrsISjgS9lU6Zk_Xrzizvz5Rb-uTxvQuT4n3YMX87yIFw_xeLy1FHX3QdtKrCJQfrTmZdJSj7_pO_5vLV_BywqrknDlXAewo_ND2Lf3QJBqWjiEvS1Rw9fwvbcwLDBS3JszINPvzhTnpUlF-CRWxVzPCAJmMol_GhsWJQW68YykJqS-XJBRTq4v-2SakZuRCMfsGzF8uHw0nxATLLB4A8Nu56bdc6rrHBxFBS0dntIU95OpVEr7kjKe8UBrHlNfxQGamKZUS4r4hcdCuh76uOdnH2XCacJZpuhbqOXTXL8D4noySN3Ek4JnTLnCR2CqkyxTjEmRxrIBru3ESFVa5-bKjXG0UWk2bRth20bLto2CBnxYlylWSh_P5j62vhFVo34WeRLxt2804xpwart3Y37ubadrn_qLjx_9W_ZjqJX3c_0e0VOZNGHX7140oR6e9y-vTXpx96WD6afO4OorWtuijc-hFzarYfQEPloXwA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH4a22HssMEAUTbABzixCBLbcXKYpgGbOtZWCDq0W-Y4DqrUpmFtNfLP8bfxXuY041Jx2dmJnfi9vB_x-74H8EYLLjJUFi9QkcUERQovDbnxBHp3ExttfE7g5P4g7F6IL5fycg3-NFgYKqtsbGJtqLOpoX_k7wOFsU1EfFxH5S-PukbR6WrTQkO71grZYU0x5oAd57a6wRRudnj2GeX9NghOT4afup7rMuAZHvK5JzOeYZqTKWNspLiQuYytlZpHRsc4JCznVnF0q1KHyg9w64Mo_6BSyVMpcsNx3gewge8cY_K38fFk8PVbS_sb1YytNdsfPph0sB0H3osEoaOpNCIms_Ova2zj3eUR7RZsLopSVzd6PL7jBU8fwbYLX9nxrb49hjVb7MJO0xqCOUuxC1t3eA6fwM9uRcAwVl7TsRCpgjdFUzVxGFDWEJvbGcMYmk30bxrDW1mJmj1jGVXZzys2Ktj3Xp9NczYchcdj8YMRRK4YLSaM6geqp3BxL3v_DNaLaWGfA_MDFWd-GqhQ5sL4YYSxqk3z3AihwkyrDvjN5ibG0Z9TF45x0hI3k0ASFEhSCySJO_BueU95S_6x8ur9RmaJMwSzpFXbDhw0cmyHV812sJT1fyz-YvXir2GzO-z3kt7Z4HwPHgakdXVF4j6sz68X9iVGVvP0lVNfBlf3_cX8BQOXMEc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE98CigLhTwAU40KvEjTg4IVZRlSx9CokW9pY7jVCvtZkN3VyV_jV_HTNbZlMuKS8-ObcnzeTyO5_sG4K2RQuYIloDr2OEFRckgi4QNJJ7uNrHGhoLIyccn0eBMfjtX52vwp-XCUFpl6xMbR51PLP0j3-UaY5uY9Lh2C58W8X2__6n6FVAFKXppbctpLCBy6OprvL5NPx7so63fcd7_cvp5EPgKA4EVkZgFKhc5XnFyba2LtZCqUIlzyojYmgSbpBPCaYFHqjKRDjkuO4-LDzpTIlOysALHvQN3Nam4E0u9_7UT_I0brdZG5w-jEuUJO562F0viRVNSREIO599DsYt0l4-zG3B_Xlamvjaj0Y3zr_8YHvrAle0tkPYE1ly5CY_aohDM-4hN2LihcPgULgc1UcJYdUUPQgSCYIJOauzZn6yVNHdThtEzG5vf1IZdWYWYnrKc8utnNRuW7MfRMZsU7HQY7Y3kT0bkuHI4HzPKHKifwdmtrPxzWC8npdsCFnKd5GHGdaQKacMoxijVZUVhpdRRbnQPwnZxU-uFz6n-xijtJJvJICkaJG0MkiY9eL_sUy1kP1Z-vd3aLPUuYJp2gO3BTmvHrnnVaDtLW__H5C9WT_4G7uE-SY8OTg5fwgNOoGtSEbdhfXY1d68wpJplrxvsMri47c3yF52bLeE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6x5YA48NwVRYB84AYpm_iVHCseqhAgJCiCU-Q4zqqiTSOaCsqvZ9zGbUEILeI8tiPbY_tzZr7PAPuKUZais3iBDA1eUDjzEkG1x_B015FW2qeWnHx5JVptdn7P7xfgxHFhxtnuLiQ54TRYlaa8PCrS7GiO-BYyyyy2aQWRXbINNP-CRcERkddgsX113XxwMnsICvhYNlUG9o8Xr7gznzf0_nyagc5pnHQZloZ5oUbPqtudO4rOVsG4TkwyUB4bwzJp6NcP-o4_7eUarFRYlTQnzrUOCybfgFX3DgSptoUNWJ4TNdyEf62RZYGR4snGgOy8e33cl3oV4ZM4FXMzIAiYSU-9WBtWJQW68YCkNqW-HJFOTm4uLkk_I7cd0eyyO2L5cHln2CM2WWD0G9pnp7fHLa96zsHTVNDS4ylN8T6ZSq1NKCnjGY-M4YqGWkVoYoZSIyniF66E9AP08SDM_sqE04SzTNM_UMv7udkC4gcySv0kkIJnTPsiRGBqkizTjEmRKlkH301irCutc_vkRjeeqTTbsY1xbOPx2MZRHQ6mdYqJ0seXpXecb8TVqh_EgUT8HVrNuDocuumdmb9q7XDqU__x8e3vFd-BWvk0NLuInspkr1ocbwECEFI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+prediction-optimization+approaches+for+maximizing+parts+density+in+SLM+of+Ti6Al4V+titanium+alloy&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Costa%2C+A&rft.au=Buffa%2C+G&rft.au=Palmeri%2C+D&rft.au=Pollara%2C+G&rft.date=2022-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=33&rft.issue=7&rft.spage=1967&rft.epage=1989&rft_id=info:doi/10.1007%2Fs10845-022-01938-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon