A variable neighborhood search and mixed-integer programming models for a distributed maintenance service network scheduling problem
Ship maintenance service optimisation is of great significance for improving the competitiveness of shipbuilding enterprises. In this paper, we investigate a ship maintenance service scheduling problem considering the deteriorating maintenance time, distributed maintenance tasks, and limited mainten...
Saved in:
| Published in | International journal of production research Vol. 62; no. 20; pp. 7466 - 7485 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Taylor & Francis
17.10.2024
Taylor & Francis LLC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0020-7543 1366-588X |
| DOI | 10.1080/00207543.2022.2138612 |
Cover
| Abstract | Ship maintenance service optimisation is of great significance for improving the competitiveness of shipbuilding enterprises. In this paper, we investigate a ship maintenance service scheduling problem considering the deteriorating maintenance time, distributed maintenance tasks, and limited maintenance teams. The objective is to minimise the service span. First, we construct an initial mixed-integer programming model for the studied problem. Then, through the property analysis of the problem with a single maintenance team, an exact scheduling algorithm is proposed. In addition, the lower bound of the problem with multiple maintenance teams is derived. A scheduled rule is developed to obtain the lower bound for the problem. Based on the property analysis, the original mixed-integer programming model is simplified to an improved mathematical programming model. Since the studied problem is NP-hard, this paper proposes two heuristic algorithms and an integrated metaheuristic algorithm based on the variable neighbourhood search to obtain approximate optimal solutions in a reasonable time. In computational experiments, the two models can solve problems on small scale, while metaheuristics can find approximately optimal solutions in each problem category. Moreover, the computational results validate the performance of the proposed integrated metaheuristic in terms of convergence and stability. |
|---|---|
| AbstractList | Ship maintenance service optimisation is of great significance for improving the competitiveness of shipbuilding enterprises. In this paper, we investigate a ship maintenance service scheduling problem considering the deteriorating maintenance time, distributed maintenance tasks, and limited maintenance teams. The objective is to minimise the service span. First, we construct an initial mixed-integer programming model for the studied problem. Then, through the property analysis of the problem with a single maintenance team, an exact scheduling algorithm is proposed. In addition, the lower bound of the problem with multiple maintenance teams is derived. A scheduled rule is developed to obtain the lower bound for the problem. Based on the property analysis, the original mixed-integer programming model is simplified to an improved mathematical programming model. Since the studied problem is NP-hard, this paper proposes two heuristic algorithms and an integrated metaheuristic algorithm based on the variable neighbourhood search to obtain approximate optimal solutions in a reasonable time. In computational experiments, the two models can solve problems on small scale, while metaheuristics can find approximately optimal solutions in each problem category. Moreover, the computational results validate the performance of the proposed integrated metaheuristic in terms of convergence and stability. |
| Author | Zhu, Xing Jiang, Tao Lu, Shaojun Liao, Baoyu |
| Author_xml | – sequence: 1 givenname: Baoyu surname: Liao fullname: Liao, Baoyu organization: School of Management, Hefei University of Technology – sequence: 2 givenname: Shaojun surname: Lu fullname: Lu, Shaojun email: lushaojun@hfut.edu.cn organization: Hefei University of Technology – sequence: 3 givenname: Tao surname: Jiang fullname: Jiang, Tao organization: Hefei University of Technology – sequence: 4 givenname: Xing surname: Zhu fullname: Zhu, Xing email: 1922491183@qq.com organization: College of Economics and Management, Anhui Agricultural University |
| BookMark | eNqFkMtuFDEQRS0UJCaBT0CyxLoHu90Po2yIIkIiRWIDEjvLj_KMQ7edlD157Plw3Jlkk0WojTf33HKdQ3IQUwRCPnK25kyyz4y1bOw7sW5Z265bLuTA2zdkxcUwNL2Uvw_Iask0S-gdOcz5itXpZbcif0_orcagzQQ0QthsTcJtSo5m0Gi3VEdH53APrgmxwAaQXmPaoJ7nEDd0Tg6mTH1CqqkLuWAwuwIV0Us86mihNuFtsEt9uUv4h2a7BbebFr521cXze_LW6ynDh6f3iPw6-_bz9Ly5_PH94vTksrFiEKXpe2-4NlbWo8XAHPTCDrIfR8HcKKCzvjMd19yPxtmxjhmEN_CFDZ63RnpxRD7te-vemx3koq7SDmNdqQRnbGxlbaupfp-ymHJG8Ooaw6zxQXGmFuHqWbhahKsn4ZU7fsHZUHQJKRbUYfov_XVPh1h1zrqqmpwq-mFK6LGKDI-ffK3iH5iGniw |
| CitedBy_id | crossref_primary_10_1080_00207543_2023_2269565 crossref_primary_10_1080_00207543_2023_2280882 crossref_primary_10_1080_00207543_2023_2217284 crossref_primary_10_1080_00207543_2023_2270076 crossref_primary_10_1080_00207543_2024_2384171 crossref_primary_10_1080_00207543_2023_2275634 crossref_primary_10_1080_00207543_2024_2381144 |
| Cites_doi | 10.1007/s10479-020-03758-7 10.1287/ijoc.2018.0876 10.1016/S0167-5060(08)70356-X 10.1007/s42524-021-0171-3 10.1016/j.ejor.2018.05.050 10.1016/j.asoc.2018.02.018 10.1016/0360-8352(94)90338-7 10.1016/j.eswa.2005.04.009 10.1080/00207543.2020.1775911 10.1007/s11590-018-1322-2 10.1016/j.asoc.2010.05.029 10.1016/j.cie.2009.06.016 10.1109/12.30866 10.1016/j.cie.2020.106320 10.1007/s10462-012-9342-2 10.1016/j.cie.2007.11.006 10.1287/msom.2020.0916 10.1007/s10479-017-2481-8 10.1016/S0927-0507(05)80189-6 10.1016/j.swevo.2019.03.007 10.1080/0305215X.2019.1638920 10.1080/00207543.2017.1418986 10.1007/s10845-017-1385-4 10.1007/s00170-010-2743-y 10.1016/j.ejor.2020.04.041 10.1080/00207543.2020.1780333 10.1016/j.cor.2020.104943 10.1016/j.tre.2020.102162 10.1007/978-3-319-93025-1_4 10.1016/j.ins.2015.07.044 10.1111/poms.13189 10.1016/j.asoc.2021.107312 10.1080/00207543.2022.2049911 10.1287/mnsc.10.2.316 10.1080/00207543.2020.1791998 10.1080/17517575.2020.1746406 10.1016/S0377-2217(00)00100-4 10.1016/j.ins.2017.06.019 10.1109/TFUZZ.2020.2998174 10.1016/j.ejor.2011.01.011 10.1016/S0377-2217(97)00399-8 10.1007/BF02078647 10.1016/j.cor.2020.104927 10.1016/j.engappai.2008.11.004 10.1016/j.ejor.2019.04.023 10.1016/j.ijpe.2010.10.005 10.1016/j.ins.2016.12.021 10.1007/s11740-017-0716-9 10.1287/opre.38.3.495 10.1016/j.cor.2014.11.016 10.1126/science.220.4598.671 10.1080/00207721.2013.876519 10.1038/scientificamerican0792-66 10.1109/TCYB.2019.2943606 |
| ContentType | Journal Article |
| Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
| DOI | 10.1080/00207543.2022.2138612 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1366-588X |
| EndPage | 7485 |
| ExternalDocumentID | 10_1080_00207543_2022_2138612 2138612 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 72101071 |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 8VB A8Z AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACGOD ACIWK ACNCT ACTIO ADCVX ADGTB ADXPE AEGXH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AHQJS AIAGR AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBD EBE EBO EBR EBS EBU EMK EPL ESTFP E~A E~B GTTXZ H13 HF~ HZ~ H~9 H~P I-F IPNFZ J.P KYCEM LJTGL M4Z ML~ NA5 NX~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TH9 TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAYXX CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c363t-55fb1abc8080360de53c6857730d73e4cf4b41a1f7bdc7777b63fbe906f12b8f3 |
| ISSN | 0020-7543 |
| IngestDate | Wed Aug 13 09:31:33 EDT 2025 Thu Apr 24 23:14:07 EDT 2025 Wed Oct 01 04:11:15 EDT 2025 Mon Oct 20 23:47:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c363t-55fb1abc8080360de53c6857730d73e4cf4b41a1f7bdc7777b63fbe906f12b8f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3100728857 |
| PQPubID | 30924 |
| PageCount | 20 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_00207543_2022_2138612 crossref_primary_10_1080_00207543_2022_2138612 proquest_journals_3100728857 crossref_citationtrail_10_1080_00207543_2022_2138612 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-17 |
| PublicationDateYYYYMMDD | 2024-10-17 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | International journal of production research |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis Taylor & Francis LLC |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
| References | e_1_3_3_52_1 e_1_3_3_50_1 e_1_3_3_18_1 e_1_3_3_39_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_35_1 e_1_3_3_58_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_56_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_54_1 e_1_3_3_40_1 e_1_3_3_7_1 e_1_3_3_9_1 Hardy G. H. (e_1_3_3_16_1) 1967 e_1_3_3_29_1 e_1_3_3_25_1 e_1_3_3_48_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 Goldberg D. E. (e_1_3_3_13_1) 1989 e_1_3_3_30_1 e_1_3_3_51_1 e_1_3_3_17_1 e_1_3_3_19_1 e_1_3_3_38_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_57_1 e_1_3_3_34_1 e_1_3_3_55_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_53_1 e_1_3_3_41_1 e_1_3_3_6_1 e_1_3_3_8_1 e_1_3_3_28_1 e_1_3_3_24_1 e_1_3_3_49_1 e_1_3_3_26_1 e_1_3_3_47_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_43_1 |
| References_xml | – ident: e_1_3_3_21_1 doi: 10.1007/s10479-020-03758-7 – ident: e_1_3_3_41_1 doi: 10.1287/ijoc.2018.0876 – ident: e_1_3_3_14_1 doi: 10.1016/S0167-5060(08)70356-X – ident: e_1_3_3_20_1 doi: 10.1007/s42524-021-0171-3 – ident: e_1_3_3_52_1 doi: 10.1016/j.ejor.2018.05.050 – ident: e_1_3_3_35_1 doi: 10.1016/j.asoc.2018.02.018 – ident: e_1_3_3_23_1 doi: 10.1016/0360-8352(94)90338-7 – ident: e_1_3_3_6_1 doi: 10.1016/j.eswa.2005.04.009 – ident: e_1_3_3_28_1 doi: 10.1080/00207543.2020.1775911 – ident: e_1_3_3_34_1 doi: 10.1007/s11590-018-1322-2 – ident: e_1_3_3_53_1 doi: 10.1016/j.asoc.2010.05.029 – ident: e_1_3_3_57_1 doi: 10.1016/j.asoc.2010.05.029 – ident: e_1_3_3_55_1 doi: 10.1016/j.cie.2009.06.016 – ident: e_1_3_3_44_1 doi: 10.1109/12.30866 – ident: e_1_3_3_27_1 doi: 10.1016/j.cie.2020.106320 – ident: e_1_3_3_39_1 doi: 10.1007/s10462-012-9342-2 – ident: e_1_3_3_7_1 doi: 10.1016/j.cie.2007.11.006 – ident: e_1_3_3_22_1 doi: 10.1287/msom.2020.0916 – ident: e_1_3_3_40_1 doi: 10.1007/s10479-017-2481-8 – ident: e_1_3_3_26_1 doi: 10.1016/S0927-0507(05)80189-6 – ident: e_1_3_3_54_1 doi: 10.1016/j.swevo.2019.03.007 – volume-title: Inequalities[M] year: 1967 ident: e_1_3_3_16_1 – ident: e_1_3_3_31_1 doi: 10.1080/0305215X.2019.1638920 – start-page: 2104 issue: 7 year: 1989 ident: e_1_3_3_13_1 article-title: Genetic Algorithm in Search Optimization and Machine Learning publication-title: Addison Wesley – ident: e_1_3_3_32_1 doi: 10.1080/00207543.2017.1418986 – ident: e_1_3_3_11_1 doi: 10.1007/s10845-017-1385-4 – ident: e_1_3_3_29_1 doi: 10.1007/s00170-010-2743-y – ident: e_1_3_3_56_1 doi: 10.1016/j.ejor.2020.04.041 – ident: e_1_3_3_5_1 doi: 10.1080/00207543.2020.1780333 – ident: e_1_3_3_2_1 doi: 10.1016/j.cor.2020.104943 – ident: e_1_3_3_19_1 doi: 10.1016/j.tre.2020.102162 – ident: e_1_3_3_36_1 doi: 10.1007/978-3-319-93025-1_4 – ident: e_1_3_3_37_1 doi: 10.1016/j.ins.2015.07.044 – ident: e_1_3_3_42_1 doi: 10.1111/poms.13189 – ident: e_1_3_3_48_1 doi: 10.1016/j.asoc.2021.107312 – ident: e_1_3_3_43_1 doi: 10.1080/00207543.2022.2049911 – ident: e_1_3_3_51_1 doi: 10.1287/mnsc.10.2.316 – ident: e_1_3_3_58_1 doi: 10.1080/00207543.2020.1791998 – ident: e_1_3_3_17_1 doi: 10.1080/17517575.2020.1746406 – ident: e_1_3_3_15_1 doi: 10.1016/S0377-2217(00)00100-4 – ident: e_1_3_3_10_1 doi: 10.1016/j.ins.2017.06.019 – ident: e_1_3_3_49_1 doi: 10.1109/TFUZZ.2020.2998174 – ident: e_1_3_3_50_1 doi: 10.1016/j.ejor.2011.01.011 – ident: e_1_3_3_47_1 doi: 10.1016/S0377-2217(97)00399-8 – ident: e_1_3_3_12_1 doi: 10.1007/BF02078647 – ident: e_1_3_3_46_1 doi: 10.1016/j.cor.2020.104927 – ident: e_1_3_3_9_1 doi: 10.1016/j.engappai.2008.11.004 – ident: e_1_3_3_45_1 doi: 10.1016/j.ejor.2019.04.023 – ident: e_1_3_3_8_1 doi: 10.1016/j.ijpe.2010.10.005 – ident: e_1_3_3_3_1 doi: 10.1016/j.ins.2016.12.021 – ident: e_1_3_3_25_1 doi: 10.1007/s11740-017-0716-9 – ident: e_1_3_3_4_1 doi: 10.1287/opre.38.3.495 – ident: e_1_3_3_38_1 doi: 10.1016/j.cor.2014.11.016 – ident: e_1_3_3_24_1 doi: 10.1126/science.220.4598.671 – ident: e_1_3_3_33_1 doi: 10.1080/00207721.2013.876519 – ident: e_1_3_3_18_1 doi: 10.1038/scientificamerican0792-66 – ident: e_1_3_3_30_1 doi: 10.1109/TCYB.2019.2943606 |
| SSID | ssj0000584 |
| Score | 2.479449 |
| Snippet | Ship maintenance service optimisation is of great significance for improving the competitiveness of shipbuilding enterprises. In this paper, we investigate a... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7466 |
| SubjectTerms | Algorithms Heuristic methods Integer programming Lower bounds Maintenance Mathematical programming metaheuristic Mixed integer optimization Repair & maintenance services Scheduling Scheduling algorithms service optimization ship maintenance Shipbuilding Task scheduling |
| Title | A variable neighborhood search and mixed-integer programming models for a distributed maintenance service network scheduling problem |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00207543.2022.2138612 https://www.proquest.com/docview/3100728857 |
| Volume | 62 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1366-588X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000584 issn: 0020-7543 databaseCode: A8Z dateStart: 19611101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1366-588X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000584 issn: 0020-7543 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1366-588X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000584 issn: 0020-7543 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHxFMUCtoDPVWObO_DzjGijaIqlIsjIi7Wrr0rgsiDNqkKZ34iP4jZh52NUlEgByvaeG3H3-ed2fHONwi9VTmnHGYekWAkjmhep5HUQkYqz2pNE01ZbLKR31_w0YSeT9m00_kVrFrarGWv-nFrXsn_oAptgKvJkv0HZNuDQgN8B3xhCwjD9q8wHpxcw1TXJj8tTIgT8LQqxT6UYWLi89mNqiMrCqEum9VYcxMfsDVwrtwqSvOexpW-Av9zLszuC5tLcOWGEji8XS1-AnNhsE0-hd2Wogm9293wYiBKsXK6soZqXl2ojUKPZ2LpXnwsv2_axo2Nyn4Wyy-blr3nMx_bLsRyG--2e04bA-zjFyk1A79L17SMK_ZKibTlkpt0gzjKmNNy6ik3ShPOI5bbmsTtMM7TgK5pHAzKGeU8MPAZdUWC9oxHs9oyjc35enCxaS9NSM79Qu8dse6LD-VwMh6Xxdm0OCbD1bfIVDIzb_yPyamj2j10kIKtibvoYDA6_fRx6yGw3KuDu7_WZJYZzffbzr7jM-0o6u55ENYtKh6hh34-gweOnI9RRy2eoAeByuVT9HOAG5rikKbYEQEDTfEOTXFAU-xoiuFisMABTXFAU-xpij1N8Zam2NP0GZoMz4p3o8gX_4gqwsk6YkzLRMjK6J4SHteKkYrnLAOLVGdE0UpTSROR6EzWVQYfyYmWqh9znaQy1-Q56i6WC_UCYSnAjmmquGKcKpUIQkklYeph_FXRJ4eINre3rLwyvinQ8rVMWgFdh0ppUCk9Koeo13ZbOWmYuzr0Q-zKtaW-dqwvyR19jxqgS__42i5xluZwV17--edX6P720TtC3fXlRr0GZ3ot33hu_gaGYsud |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAG_HGA6urOH4kHREClUc7FYktsh1bQtCC2hQhZn44d3lAASGGZk3OiS_2Pay77yPkxKdaasg8mFEiYjLNY2aDscynSR4kD1JF2I3c7enOrby6U3dTvTBYVok5dKiAIkpbjZsbD6Obkjhs4QZPJwWkd3HcirlINRINLygI9pHFQES9L2us0hqJOWIo03Tx_DXMN__0Db30l7UuXdDFKnHNx1eVJw-tSWFb7u0HruNss1sjK3WESk-rJbVO5vxwgyxP4RZukvdT-gI5NnZd0SGercJCQnhkWu0bCu-mg_tXn7MSjcKPaF0GNgBxWpLvjClMmRqaI3Avcm55EDH4OCKAeDqubBgMX5apU0jCwSli7zytOXC2yO3Fef-sw2o6B-aEFgVTKlhurEMkS6Gj3CvhdKoSsDF5Irx0QVrJDQ-JzV0Cl9UiWN-OdOCxTYPYJvPDp6HfIdQasExBeu2Vlt5zI6RwFoJJjEBMW-wS2fzEzNVY50i58ZjxT0jUSskZKjmrlbxLWp9izxXYx38C7ekVkhXlKUuoKFEy8Y_sQbOcstpulCJREqeglb0Zhj4mi51-9ya7uexd75MluCXR3fLkgMwXo4k_hDiqsEflRvkAJokPyg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIHrwLb7NwWuWpnm0exR18bl4cMFbSdoERHcVt4p49oc706a6q8ge7LWdtJlO5pHMfEPIgUu11BB5MKNExGRaxMx6Y5lLk8JL7qWKsBr5qqtPe_L8VjXZhMOQVokxtK-BIipdjYv7qfBNRhxWcIOhkwKiuzhuxVykGvsMz2g8FcMqjqj7rYxVGoCYI4Y0TRHPX8OMmacx8NJfyrqyQJ1FYptvrxNP7lsvpW3l7z9gHf81uSWyEPxTelgL1DKZcoMVMj-CWrhKPg7pK0TYWHNFB7izCmKE4Mi0XjUUXk37d2-uYBUWhXumIQmsD-S0ar0zpDBjamiBsL3YccsBicHHEf_D0WGtwWD4KkmdQggOJhEr52nogLNGep2Tm6NTFpo5sFxoUTKlvOXG5ohjKXRUOCVynaoENEyRCCdzL63khvvEFnkCl9XCW9eOtOexTb1YJ9ODx4HbINQa0EteOu2Uls5xI6TILbiS6H-YttgksvmHWR6QzrHhxkPGvwBRayZnyOQsMHmTtL7Inmqoj0kE7VEBycpqj8XXDVEyMYF2p5GmLGiNiiRK4hS4svWPoffJ7PVxJ7s8615skzm4I9HW8mSHTJfPL24XnKjS7lXL5BO6Gw5u |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+variable+neighborhood+search+and+mixed-integer+programming+models+for+a+distributed+maintenance+service+network+scheduling+problem&rft.jtitle=International+journal+of+production+research&rft.au=Liao%2C+Baoyu&rft.au=Lu%2C+Shaojun&rft.au=Jiang%2C+Tao&rft.au=Zhu%2C+Xing&rft.date=2024-10-17&rft.pub=Taylor+%26+Francis+LLC&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=62&rft.issue=20&rft.spage=7466&rft.epage=7485&rft_id=info:doi/10.1080%2F00207543.2022.2138612&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon |