Obey validity limits of data-driven models through topological data analysis and one-class classification
Data-driven models are becoming increasingly popular in engineering, on their own or in combination with mechanistic models. Commonly, the trained models are subsequently used in model-based optimization of design and/or operation of processes. Thus, it is critical to ensure that data-driven models...
Saved in:
| Published in | Optimization and engineering Vol. 23; no. 2; pp. 855 - 876 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.06.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1389-4420 1573-2924 1573-2924 |
| DOI | 10.1007/s11081-021-09608-0 |
Cover
| Abstract | Data-driven models are becoming increasingly popular in engineering, on their own or in combination with mechanistic models. Commonly, the trained models are subsequently used in model-based optimization of design and/or operation of processes. Thus, it is critical to ensure that data-driven models are not evaluated outside their validity domain during process optimization. We propose a method to learn this validity domain and encode it as constraints in process optimization. We first perform a topological data analysis using persistent homology identifying potential holes or separated clusters in the training data. In case clusters or holes are identified, we train a one-class classifier, i.e., a one-class support vector machine, on the training data domain and encode it as constraints in the subsequent process optimization. Otherwise, we construct the convex hull of the data and encode it as constraints. We finally perform deterministic global process optimization with the data-driven models subject to their respective validity constraints. To ensure computational tractability, we develop a reduced-space formulation for trained one-class support vector machines and show that our formulation outperforms common full-space formulations by a factor of over 3000, making it a viable tool for engineering applications. The method is ready-to-use and available open-source as part of our MeLOn toolbox (
https://git.rwth-aachen.de/avt.svt/public/MeLOn
). |
|---|---|
| AbstractList | Data-driven models are becoming increasingly popular in engineering, on their own or in combination with mechanistic models. Commonly, the trained models are subsequently used in model-based optimization of design and/or operation of processes. Thus, it is critical to ensure that data-driven models are not evaluated outside their validity domain during process optimization. We propose a method to learn this validity domain and encode it as constraints in process optimization. We first perform a topological data analysis using persistent homology identifying potential holes or separated clusters in the training data. In case clusters or holes are identified, we train a one-class classifier, i.e., a one-class support vector machine, on the training data domain and encode it as constraints in the subsequent process optimization. Otherwise, we construct the convex hull of the data and encode it as constraints. We finally perform deterministic global process optimization with the data-driven models subject to their respective validity constraints. To ensure computational tractability, we develop a reduced-space formulation for trained one-class support vector machines and show that our formulation outperforms common full-space formulations by a factor of over 3000, making it a viable tool for engineering applications. The method is ready-to-use and available open-source as part of our MeLOn toolbox (https://git.rwth-aachen.de/avt.svt/public/MeLOn). Data-driven models are becoming increasingly popular in engineering, on their own or in combination with mechanistic models. Commonly, the trained models are subsequently used in model-based optimization of design and/or operation of processes. Thus, it is critical to ensure that data-driven models are not evaluated outside their validity domain during process optimization. We propose a method to learn this validity domain and encode it as constraints in process optimization. We first perform a topological data analysis using persistent homology identifying potential holes or separated clusters in the training data. In case clusters or holes are identified, we train a one-class classifier, i.e., a one-class support vector machine, on the training data domain and encode it as constraints in the subsequent process optimization. Otherwise, we construct the convex hull of the data and encode it as constraints. We finally perform deterministic global process optimization with the data-driven models subject to their respective validity constraints. To ensure computational tractability, we develop a reduced-space formulation for trained one-class support vector machines and show that our formulation outperforms common full-space formulations by a factor of over 3000, making it a viable tool for engineering applications. The method is ready-to-use and available open-source as part of our MeLOn toolbox ( https://git.rwth-aachen.de/avt.svt/public/MeLOn ). |
| Author | Netze, Linus Mitsos, Alexander Weber, Jana M. Wende, Christian Schweidtmann, Artur M. |
| Author_xml | – sequence: 1 givenname: Artur M. orcidid: 0000-0001-8885-6847 surname: Schweidtmann fullname: Schweidtmann, Artur M. email: artur.schweidtmann@rwth-aachen.de organization: Process Systems Engineering (AVT.SVT), RWTH Aachen University, Department of Chemical Engineering, Delft University of Technology – sequence: 2 givenname: Jana M. orcidid: 0000-0002-2867-0087 surname: Weber fullname: Weber, Jana M. organization: Department of Chemical Engineering and Biotechnology, University of Cambridge – sequence: 3 givenname: Christian surname: Wende fullname: Wende, Christian organization: Process Systems Engineering (AVT.SVT), RWTH Aachen University – sequence: 4 givenname: Linus surname: Netze fullname: Netze, Linus organization: Process Systems Engineering (AVT.SVT), RWTH Aachen University – sequence: 5 givenname: Alexander orcidid: 0000-0003-0335-6566 surname: Mitsos fullname: Mitsos, Alexander organization: Process Systems Engineering (AVT.SVT), RWTH Aachen University, JARA-CSD, Institute of Energy and Climate Research, Energy Systems Engineering (IEK-10) |
| BookMark | eNqNUMtKAzEUDaJgW_0BVwHX0TxmMjNLKb6g0I2uQyaTtCnppCZpZf7e9AGCi-LiPhbn3HvOGYPL3vcagDuCHwjG1WMkBNcEYZqr4bhG-AKMSFkxRBtaXOad1Q0qCoqvwTjGFcaEl7QeATtv9QB30tnOpgE6u7YpQm9gJ5NEXbA73cO177SLMC2D3y6WMPmNd35hlXQHGJS9dEO0MS8dzMKQcjJGeOjWZFyyvr8BV0a6qG9PcwI-X54_pm9oNn99nz7NkGKcJVSytjRlYypVMdJUivBaGc2NVowQ1mFcMEMwl0a3NalYU9Ki1KSUuqEtbg1nE8COd7f9Rg7f0jmxCXYtwyAIFvu0xDEtkdMSh7QEzqz7I2sT_NdWxyRWfhuyrygo57TKjexv10eUCj7GoI1QNh3cpSCtO_-A_qH-S9XJS8zgfqHDr6ozrB_lbJ4d |
| CitedBy_id | crossref_primary_10_1016_j_dche_2024_100212 crossref_primary_10_1016_j_ifacol_2023_10_597 crossref_primary_10_1039_D4ME00074A crossref_primary_10_1287_ijoc_2022_0312 crossref_primary_10_1007_s11081_022_09740_5 crossref_primary_10_1016_j_bej_2023_108813 crossref_primary_10_1016_j_dche_2023_100136 crossref_primary_10_1016_j_compchemeng_2024_108660 crossref_primary_10_1016_j_compchemeng_2024_108643 crossref_primary_10_1016_j_compchemeng_2022_108127 crossref_primary_10_1021_acs_iecr_2c00113 crossref_primary_10_1002_aic_17971 crossref_primary_10_1007_s10257_023_00636_0 crossref_primary_10_1007_s10898_022_01228_x crossref_primary_10_1287_ijoc_2023_1285 crossref_primary_10_1002_aic_17524 crossref_primary_10_1002_aic_18338 crossref_primary_10_1016_j_jprocont_2023_103089 |
| Cites_doi | 10.1137/080717341 10.1016/j.ifacol.2015.09.097 10.1007/s11081-015-9288-8 10.1002/cite.201800091 10.1109/JPROC.2015.2494218 10.1007/s10107-005-0581-8 10.1016/j.compchemeng.2019.106519 10.1016/j.compchemeng.2013.08.008 10.1016/j.entcs.2014.06.011 10.1002/cite.202000001 10.1115/1.4005861 10.1002/aic.16489 10.1016/j.memsci.2018.10.013 10.1016/j.compchemeng.2011.06.005 10.1016/j.ifacol.2020.12.1207 10.1039/C8CP01552J 10.1007/978-3-642-17080-5_21 10.1002/aic.16214 10.1007/978-3-540-74690-4_28 10.1016/S1570-7946(02)80183-3 10.1140/epjds/s13688-016-0097-x 10.1287/mnsc.6.1.73 10.1038/s41592-019-0686-2 10.1109/72.963764 10.1016/j.asr.2017.04.020 10.1039/C9CP03009C 10.1016/j.neucom.2013.12.002 10.1016/j.cep.2007.02.031 10.1146/annurev-statistics-031017-100045 10.1002/cite.201800086 10.1007/s10957-018-1396-0 10.1021/ie0601605 10.1201/9781351184373 10.1038/ncomms15082 10.1016/0893-6080(94)90065-5 10.1115/1.4002151 10.1016/j.chemolab.2017.11.010 10.1109/TMI.2015.2416271 10.1016/j.compchemeng.2007.02.014 10.1016/j.sigpro.2013.12.026 10.1080/10556788.2020.1786566 10.1145/1541880.1541882 10.1021/bp0502328 10.1016/S1474-6670(17)45602-3 10.1016/j.compchemeng.2020.107202 10.3390/pharmaceutics12060562 10.1023/B:STCO.0000035301.49549.88 10.1016/S0967-0661(03)00079-0 10.21105/joss.00925 10.1017/S026988891300043X 10.1016/0098-1354(92)80035-8 10.1073/pnas.1520877113 10.1007/978-3-319-58821-6 10.1038/s41524-019-0209-9 10.1140/epjds/s13688-017-0109-5 10.1007/978-3-319-89593-2_2 10.1109/TCYB.2014.2340433 10.1023/A:1008212418949 10.1109/ICMLA.2019.00106 10.1016/j.knosys.2014.01.020 10.1007/s00454-004-1146-y 10.1007/s00449-019-02181-y 10.26434/chemrxiv.12280325 10.1016/j.compchemeng.2017.09.017 10.1007/s00454-002-2885-2 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 7TB 8FD FR3 KR7 ADTOC UNPAY |
| DOI | 10.1007/s11081-021-09608-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1573-2924 |
| EndPage | 876 |
| ExternalDocumentID | 10.1007/s11081-021-09608-0 10_1007_s11081_021_09608_0 |
| GrantInformation_xml | – fundername: RWTH Aachen (3131) |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Y Z7Z Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BGLVJ CCPQU CITATION M7S PHGZM PHGZT PQGLB PTHSS S0W 7TB 8FD FR3 KR7 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c363t-53b5f59f7c73197c168cfe6fec3113d0043f106afeb817395245e15ae92b0bf63 |
| IEDL.DBID | C6C |
| ISSN | 1389-4420 1573-2924 |
| IngestDate | Sun Oct 26 04:12:38 EDT 2025 Thu Sep 25 00:51:54 EDT 2025 Wed Oct 01 00:48:39 EDT 2025 Thu Apr 24 23:10:55 EDT 2025 Fri Feb 21 02:47:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Persistent homology Topological data analysis One-class support vector machine Machine-learning Deterministic global optimization |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-53b5f59f7c73197c168cfe6fec3113d0043f106afeb817395245e15ae92b0bf63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2867-0087 0000-0003-0335-6566 0000-0001-8885-6847 |
| OpenAccessLink | https://doi.org/10.1007/s11081-021-09608-0 |
| PQID | 2662726616 |
| PQPubID | 326265 |
| PageCount | 22 |
| ParticipantIDs | unpaywall_primary_10_1007_s11081_021_09608_0 proquest_journals_2662726616 crossref_citationtrail_10_1007_s11081_021_09608_0 crossref_primary_10_1007_s11081_021_09608_0 springer_journals_10_1007_s11081_021_09608_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | International Multidisciplinary Journal to Promote Optimization Theory & Applications in Engineering Sciences |
| PublicationTitle | Optimization and engineering |
| PublicationTitleAbbrev | Optim Eng |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Asprion (CR1) 2020; 92 Xiao, Wang, Xu (CR83) 2014; 45 Xiao, Wang, Zhang, Xu (CR84) 2014; 59 Schweidtmann, Mitsos (CR65) 2019; 180 Roach, Parker, Malak (CR58) 2011; 54822 Xia, Anand, Shikhar, Mu (CR82) 2019; 21 CR39 CR36 Khan, Madden (CR37) 2014; 29 Kahrs, Marquardt (CR33) 2007; 46 CR35 Epperly, Pistikopoulos (CR24) 1997; 11 CR32 CR71 Quek, Balasubramanian, Rangaiah (CR56) 2000; 79 Rall, Menne, Schweidtmann, Kamp, von Kolzenberg, Mitsos, Wessling (CR57) 2019; 569 Quaglio, Fraga, Cao, Gavriilidis, Galvanin (CR55) 2018; 172 Von Stosch, Oliveira, Peres, de Azevedo (CR77) 2014; 60 Simutis, Havlik, Schneider, Dors, Lübbert (CR67) 1995; 28 Charnes, Cooper (CR14) 1959; 6 CR3 Mitsos, Chachuat, Barton (CR47) 2009; 20 CR5 Binchi, Merelli, Rucco, Petri, Vaccarino (CR4) 2014; 306 Patania, Vaccarino, Petri (CR51) 2017; 6 CR7 CR9 Letscher, Edelsbrunner, Zomorodian (CR43) 2002; 28 CR48 Cortes, Vapnik (CR19) 1995; 20 Kumar, Li, Tang, Buonassisi, Gonzalez-Oyarce, Ye (CR40) 2019; 5 CR46 Asprion, Böttcher, Pack, Stavrou, Höller, Schwientek, Bortz (CR2) 2019; 91 Venkatasubramanian (CR75) 2019; 65 CR44 Wasserman (CR79) 2018; 5 Chachuat, Houska, Paulen, Peric, Rajyaguru, Villanueva (CR11) 2015; 48 Chen, Paulavičius, Adjiman, García-Muñoz (CR16) 2018; 64 von Stosch, Schenkendorf, Geldhof, Varsakelis, Mariti, Dessoy, Vandercammen, Pysik, Sanders (CR78) 2020; 12 CR41 Saadatfar, Takeuchi, Robins, Francois, Hiraoka (CR59) 2017; 8 Kimura, Imai (CR38) 2017; 60 Pinto, de Azevedo, Oliveira, von Stosch (CR54) 2019; 42 Chachuat, Singer, Barton (CR10) 2006; 45 Shahriari, Swersky, Wang, Adams, de Freitas (CR66) 2016; 104 CR80 Smola, Schölkopf (CR69) 2004; 14 Hüllen, Zhai, Kim, Sinha, Realff, Boukouvala (CR31) 2019 Papadopoulos, Edwards, Murray (CR50) 2001; 12 Tawarmalani, Sahinidis (CR70) 2005; 103 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (CR52) 2011; 12 Kahrs, Marquardt (CR34) 2008; 32 Otter, Porter, Tillmann, Grindrod, Harrington (CR49) 2017; 6 Leonard, Kramer, Ungar (CR42) 1992; 16 CR17 Fortuna, Rizzo, Sinatra, Xibilia (CR26) 2003; 11 CR15 CR12 Hiraoka, Nakamura, Hirata, Escolar, Matsue, Nishiura (CR30) 2016; 113 Bongartz, Mitsos (CR6) 2017; 20 Tralie, Saul, Bar-On (CR74) 2018; 3 Zhang, Grossmann, Sundaramoorthy, Pinto (CR85) 2016; 17 Chung, Hanson, Ye, Davidson, Pollak (CR18) 2015; 34 Zomorodian, Carlsson (CR86) 2005; 33 CR29 Ding, Li, Belatreche, Maguire (CR21) 2014; 135 CR28 Courrieu (CR20) 1994; 7 CR27 Boukouvala, Ierapetritou (CR8) 2012; 36 Tax, Duin (CR72) 1999; 99 Xia (CR81) 2018; 20 CR25 CR68 CR23 CR22 Pimentel, Clifton, Clifton, Tarassenko (CR53) 2014; 99 CR64 Teixeira, Clemente, Cunha, Carrondo, Oliveira (CR73) 2006; 22 McBride, Sundmacher (CR45) 2019; 91 CR63 Chandola, Banerjee, Kumar (CR13) 2009; 41 CR62 CR61 CR60 Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright (CR76) 2020; 17 J Pinto (9608_CR54) 2019; 42 N Asprion (9608_CR2) 2019; 91 N Asprion (9608_CR1) 2020; 92 E Roach (9608_CR58) 2011; 54822 AP Teixeira (9608_CR73) 2006; 22 F Pedregosa (9608_CR52) 2011; 12 9608_CR9 O Kahrs (9608_CR33) 2007; 46 P Courrieu (9608_CR20) 1994; 7 V Chandola (9608_CR13) 2009; 41 9608_CR80 9608_CR5 9608_CR7 9608_CR3 9608_CR41 H Letscher (9608_CR43) 2002; 28 9608_CR44 Q Chen (9608_CR16) 2018; 64 R Simutis (9608_CR67) 1995; 28 9608_CR46 SS Khan (9608_CR37) 2014; 29 JN Kumar (9608_CR40) 2019; 5 9608_CR48 C Quek (9608_CR56) 2000; 79 AJ Smola (9608_CR69) 2004; 14 Y Kimura (9608_CR38) 2017; 60 L Wasserman (9608_CR79) 2018; 5 B Chachuat (9608_CR11) 2015; 48 A Charnes (9608_CR14) 1959; 6 X Ding (9608_CR21) 2014; 135 M Saadatfar (9608_CR59) 2017; 8 Y Xiao (9608_CR83) 2014; 45 N Otter (9608_CR49) 2017; 6 A Mitsos (9608_CR47) 2009; 20 P Virtanen (9608_CR76) 2020; 17 M Quaglio (9608_CR55) 2018; 172 9608_CR12 9608_CR15 9608_CR17 B Shahriari (9608_CR66) 2016; 104 A Patania (9608_CR51) 2017; 6 9608_CR29 K Xia (9608_CR81) 2018; 20 MK Chung (9608_CR18) 2015; 34 M von Stosch (9608_CR78) 2020; 12 F Boukouvala (9608_CR8) 2012; 36 J Binchi (9608_CR4) 2014; 306 B Chachuat (9608_CR10) 2006; 45 9608_CR60 V Venkatasubramanian (9608_CR75) 2019; 65 9608_CR62 M Von Stosch (9608_CR77) 2014; 60 G Papadopoulos (9608_CR50) 2001; 12 9608_CR61 9608_CR64 Y Hiraoka (9608_CR30) 2016; 113 9608_CR63 9608_CR22 D Bongartz (9608_CR6) 2017; 20 9608_CR68 9608_CR23 TGW Epperly (9608_CR24) 1997; 11 MA Pimentel (9608_CR53) 2014; 99 9608_CR25 9608_CR28 O Kahrs (9608_CR34) 2008; 32 9608_CR27 K McBride (9608_CR45) 2019; 91 C Tralie (9608_CR74) 2018; 3 C Cortes (9608_CR19) 1995; 20 AM Schweidtmann (9608_CR65) 2019; 180 M Tawarmalani (9608_CR70) 2005; 103 J Leonard (9608_CR42) 1992; 16 Q Zhang (9608_CR85) 2016; 17 A Zomorodian (9608_CR86) 2005; 33 L Fortuna (9608_CR26) 2003; 11 K Xia (9608_CR82) 2019; 21 DM Tax (9608_CR72) 1999; 99 9608_CR71 D Rall (9608_CR57) 2019; 569 Y Xiao (9608_CR84) 2014; 59 9608_CR32 9608_CR35 G Hüllen (9608_CR31) 2019 9608_CR36 9608_CR39 |
| References_xml | – ident: CR22 – volume: 34 start-page: 1928 issue: 9 year: 2015 end-page: 1939 ident: CR18 article-title: Persistent homology in sparse regression and its application to brain morphometry publication-title: IEEE Trans Med Imaging – volume: 6 start-page: 73 issue: 1 year: 1959 end-page: 79 ident: CR14 article-title: Chance-constrained programming publication-title: Manage Sci – ident: CR68 – volume: 91 start-page: 305 issue: 3 year: 2019 end-page: 313 ident: CR2 article-title: Gray-box modeling for the optimization of chemical processes publication-title: Chem Ing Tech – volume: 6 start-page: 17 issue: 1 year: 2017 ident: CR49 article-title: A roadmap for the computation of persistent homology publication-title: EPJ Data Sci – volume: 5 start-page: 501 year: 2018 end-page: 532 ident: CR79 article-title: Topological data analysis publication-title: Ann Rev Stat Appl – ident: CR39 – volume: 14 start-page: 199 issue: 3 year: 2004 end-page: 222 ident: CR69 article-title: A tutorial on support vector regression publication-title: Stat Comput – volume: 59 start-page: 75 year: 2014 end-page: 84 ident: CR84 article-title: Two methods of selecting Gaussian kernel parameters for one-class svm and their application to fault detection publication-title: Knowl-Based Syst – ident: CR12 – ident: CR35 – volume: 65 start-page: 466 issue: 2 year: 2019 end-page: 78 ident: CR75 article-title: The promise of artificial intelligence in chemical engineering: is it here, finally publication-title: AIChE J – ident: CR29 – ident: CR61 – ident: CR80 – volume: 20 start-page: 573 issue: 2 year: 2009 end-page: 601 ident: CR47 article-title: McCormick-based relaxations of algorithms publication-title: SIAM J Optim doi: 10.1137/080717341 – ident: CR25 – volume: 45 start-page: 8373 issue: 25 year: 2006 end-page: 8392 ident: CR10 article-title: Global methods for dynamic optimization and mixed-integer dynamic optimization publication-title: Ind Eng Chem Res – volume: 99 start-page: 251 year: 1999 end-page: 256 ident: CR72 article-title: Data domain description using support vectors publication-title: ESANN – volume: 22 start-page: 247 issue: 1 year: 2006 end-page: 258 ident: CR73 article-title: Bioprocess iterative batch-to-batch optimization based on hybrid parametric/nonparametric models publication-title: Biotechnol Prog – volume: 54822 start-page: 741 year: 2011 end-page: 751 ident: CR58 article-title: An improved support vector domain description method for modeling valid search domains in engineering design problems publication-title: Int Des Eng Tech Conf Comput Inf Eng Conf – ident: CR46 – ident: CR71 – volume: 32 start-page: 694 issue: 4–5 year: 2008 end-page: 705 ident: CR34 article-title: Incremental identification of hybrid process models publication-title: Comput Chem Eng – volume: 29 start-page: 345 issue: 3 year: 2014 end-page: 374 ident: CR37 article-title: One-class classification: taxonomy of study and review of techniques publication-title: Knowl Eng Rev – volume: 60 start-page: 722 issue: 3 year: 2017 end-page: 736 ident: CR38 article-title: Quantification of LSS using the persistent homology in the SDSS fields publication-title: Adv Space Res – volume: 42 start-page: 1853 issue: 11 year: 2019 end-page: 1865 ident: CR54 article-title: A bootstrap-aggregated hybrid semi-parametric modeling framework for bioprocess development publication-title: Bioprocess Biosyst Eng – ident: CR15 – volume: 48 start-page: 981 issue: 8 year: 2015 end-page: 995 ident: CR11 article-title: Set-theoretic approaches in analysis, estimation and control of nonlinear systems publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.09.097 – volume: 306 start-page: 5 year: 2014 end-page: 18 ident: CR4 article-title: jholes: a tool for understanding biological complex networks via clique weight rank persistent homology publication-title: Electron Notes Theor Comput Sci – volume: 17 start-page: 289 issue: 2 year: 2016 end-page: 332 ident: CR85 article-title: Data-driven construction of convex region surrogate models publication-title: Optim Eng doi: 10.1007/s11081-015-9288-8 – ident: CR9 – volume: 64 start-page: 3944 issue: 11 year: 2018 end-page: 3957 ident: CR16 article-title: An optimization framework to combine operable space maximization with design of experiments publication-title: AIChE J – ident: CR32 – volume: 16 start-page: 819 issue: 9 year: 1992 end-page: 835 ident: CR42 article-title: A neural network architecture that computes its own reliability publication-title: Comput Chem Eng – ident: CR60 – ident: CR36 – ident: CR5 – volume: 7 start-page: 169 issue: 1 year: 1994 end-page: 174 ident: CR20 article-title: Three algorithms for estimating the domain of validity of feedforward neural networks publication-title: Neural Netw – volume: 3 start-page: 925 issue: 29 year: 2018 ident: CR74 article-title: Ripser.py: a lean persistent homology library for python publication-title: J Open Source Softw – volume: 11 start-page: 287 issue: 3 year: 1997 end-page: 311 ident: CR24 article-title: A reduced space branch and bound algorithm for global optimization publication-title: J Global Optim – ident: CR64 – volume: 5 start-page: 1 issue: 1 year: 2019 end-page: 6 ident: CR40 article-title: Machine learning enables polymer cloud-point engineering via inverse design publication-title: NPJ Comput Mater – volume: 91 start-page: 228 issue: 3 year: 2019 end-page: 239 ident: CR45 article-title: Overview of surrogate modeling in chemical process engineering publication-title: Chem Ing Tech doi: 10.1002/cite.201800091 – volume: 99 start-page: 215 year: 2014 end-page: 249 ident: CR53 article-title: A review of novelty detection publication-title: Sig Process – volume: 46 start-page: 1054 issue: 11 year: 2007 end-page: 1066 ident: CR33 article-title: The validity domain of hybrid models and its application in process optimization publication-title: Chem Eng Process – volume: 92 start-page: 879 issue: 7 year: 2020 end-page: 889 ident: CR1 article-title: Modeling, simulation, and optimization 4.0 for a distillation column publication-title: Chem Ing Tech – volume: 79 start-page: 101 issue: 1 year: 2000 end-page: 106 ident: CR56 article-title: Consider using soft analyzers to improve SRU control publication-title: Hydrocarbon processing – volume: 569 start-page: 209 year: 2019 end-page: 219 ident: CR57 article-title: Rational design of ion separation membranes publication-title: J Membr Sci – volume: 180 start-page: 925 issue: 3 year: 2019 end-page: 948 ident: CR65 article-title: Deterministic global optimization with artificial neural networks embedded publication-title: J Optim Theory Appl – volume: 28 start-page: 59 issue: 3 year: 1995 end-page: 65 ident: CR67 article-title: Artificial neural networks of improved reliability for industrial process supervision publication-title: IFAC Proc Vol – volume: 33 start-page: 249 issue: 2 year: 2005 end-page: 274 ident: CR86 article-title: Computing persistent homology publication-title: Discrete Comput Geom – volume: 135 start-page: 313 year: 2014 end-page: 327 ident: CR21 article-title: An experimental evaluation of novelty detection methods publication-title: Neurocomputing – ident: CR63 – volume: 11 start-page: 1491 issue: 12 year: 2003 end-page: 1500 ident: CR26 article-title: Soft analyzers for a sulfur recovery unit publication-title: Control Eng Pract – ident: CR27 – ident: CR23 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR52 article-title: Scikit-learn: machine learning in python publication-title: J Mach Learn Res – volume: 104 start-page: 148 issue: 1 year: 2016 end-page: 175 ident: CR66 article-title: Taking the human out of the loop: a review of bayesian optimization publication-title: Proc IEEE doi: 10.1109/JPROC.2015.2494218 – ident: CR44 – volume: 20 start-page: 419 issue: 9 year: 2017 ident: CR6 article-title: Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations publication-title: J Global Optim – ident: CR48 – volume: 12 start-page: 562 issue: 6 year: 2020 ident: CR78 article-title: Working within the design space: do our static process characterization methods suffice? publication-title: Pharmaceutics – volume: 17 start-page: 261 issue: 3 year: 2020 end-page: 272 ident: CR76 article-title: Scipy 1.0: fundamental algorithms for scientific computing in python publication-title: Nat Methods – volume: 36 start-page: 358 year: 2012 end-page: 368 ident: CR8 article-title: Feasibility analysis of black-box processes using an adaptive sampling kriging-based method publication-title: Comput Chem Eng – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 ident: CR19 article-title: Support-vector networks publication-title: Mach Learn – volume: 113 start-page: 7035 issue: 26 year: 2016 end-page: 7040 ident: CR30 article-title: Hierarchical structures of amorphous solids characterized by persistent homology publication-title: Proc Natl Acad Sci – ident: CR3 – ident: CR17 – volume: 8 start-page: 1 issue: 1 year: 2017 end-page: 11 ident: CR59 article-title: Pore configuration landscape of granular crystallization publication-title: Nat Commun – volume: 28 start-page: 511 year: 2002 end-page: 533 ident: CR43 article-title: Topological persistence and simplification publication-title: Discrete Comput Geom – volume: 172 start-page: 58 year: 2018 end-page: 67 ident: CR55 article-title: A model-based data mining approach for determining the domain of validity of approximated models publication-title: Chemometr Intell Lab Syst – volume: 6 start-page: 1 year: 2017 end-page: 6 ident: CR51 article-title: Topological analysis of data publication-title: EPJ Data Sci – volume: 103 start-page: 225 issue: 2 year: 2005 end-page: 249 ident: CR70 article-title: A polyhedral branch-and-cut approach to global optimization publication-title: Math Program doi: 10.1007/s10107-005-0581-8 – volume: 21 start-page: 21038 issue: 37 year: 2019 end-page: 21048 ident: CR82 article-title: Persistent homology analysis of osmolyte molecular aggregation and their hydrogen-bonding networks publication-title: Phys Chem Chem Phys – volume: 41 start-page: 1 issue: 3 year: 2009 end-page: 58 ident: CR13 article-title: Anomaly detection: a survey publication-title: ACM Comput Sur (CSUR) – year: 2019 ident: CR31 article-title: Managing uncertainty in data-driven simulation-based optimization publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2019.106519 – ident: CR7 – volume: 12 start-page: 1278 issue: 6 year: 2001 end-page: 1287 ident: CR50 article-title: Confidence estimation methods for neural networks: a practical comparison publication-title: IEEE Trans Neural Netw – volume: 20 start-page: 13448 issue: 19 year: 2018 end-page: 13460 ident: CR81 article-title: Persistent homology analysis of ion aggregations and hydrogen-bonding networks publication-title: Phys Chem Chem Phys – ident: CR28 – ident: CR41 – ident: CR62 – volume: 45 start-page: 941 issue: 5 year: 2014 end-page: 953 ident: CR83 article-title: Parameter selection of Gaussian kernel for one-class svm publication-title: IEEE Trans Cybern – volume: 60 start-page: 86 year: 2014 end-page: 101 ident: CR77 article-title: Hybrid semi-parametric modeling in process systems engineering: past, present and future publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2013.08.008 – volume: 306 start-page: 5 year: 2014 ident: 9608_CR4 publication-title: Electron Notes Theor Comput Sci doi: 10.1016/j.entcs.2014.06.011 – ident: 9608_CR27 – volume: 92 start-page: 879 issue: 7 year: 2020 ident: 9608_CR1 publication-title: Chem Ing Tech doi: 10.1002/cite.202000001 – volume: 17 start-page: 289 issue: 2 year: 2016 ident: 9608_CR85 publication-title: Optim Eng doi: 10.1007/s11081-015-9288-8 – ident: 9608_CR41 doi: 10.1115/1.4005861 – volume: 65 start-page: 466 issue: 2 year: 2019 ident: 9608_CR75 publication-title: AIChE J doi: 10.1002/aic.16489 – ident: 9608_CR46 – volume: 569 start-page: 209 year: 2019 ident: 9608_CR57 publication-title: J Membr Sci doi: 10.1016/j.memsci.2018.10.013 – volume: 36 start-page: 358 year: 2012 ident: 9608_CR8 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2011.06.005 – ident: 9608_CR22 doi: 10.1016/j.ifacol.2020.12.1207 – ident: 9608_CR62 – ident: 9608_CR23 – volume: 20 start-page: 13448 issue: 19 year: 2018 ident: 9608_CR81 publication-title: Phys Chem Chem Phys doi: 10.1039/C8CP01552J – ident: 9608_CR36 doi: 10.1007/978-3-642-17080-5_21 – volume: 64 start-page: 3944 issue: 11 year: 2018 ident: 9608_CR16 publication-title: AIChE J doi: 10.1002/aic.16214 – ident: 9608_CR25 doi: 10.1007/978-3-540-74690-4_28 – volume: 60 start-page: 86 year: 2014 ident: 9608_CR77 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2013.08.008 – ident: 9608_CR71 – ident: 9608_CR48 doi: 10.1016/S1570-7946(02)80183-3 – volume: 6 start-page: 1 year: 2017 ident: 9608_CR51 publication-title: EPJ Data Sci doi: 10.1140/epjds/s13688-016-0097-x – volume: 6 start-page: 73 issue: 1 year: 1959 ident: 9608_CR14 publication-title: Manage Sci doi: 10.1287/mnsc.6.1.73 – volume: 79 start-page: 101 issue: 1 year: 2000 ident: 9608_CR56 publication-title: Hydrocarbon processing – volume: 17 start-page: 261 issue: 3 year: 2020 ident: 9608_CR76 publication-title: Nat Methods doi: 10.1038/s41592-019-0686-2 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 9608_CR19 publication-title: Mach Learn – volume: 12 start-page: 1278 issue: 6 year: 2001 ident: 9608_CR50 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.963764 – volume: 12 start-page: 2825 year: 2011 ident: 9608_CR52 publication-title: J Mach Learn Res – volume: 60 start-page: 722 issue: 3 year: 2017 ident: 9608_CR38 publication-title: Adv Space Res doi: 10.1016/j.asr.2017.04.020 – volume: 21 start-page: 21038 issue: 37 year: 2019 ident: 9608_CR82 publication-title: Phys Chem Chem Phys doi: 10.1039/C9CP03009C – ident: 9608_CR61 – volume: 135 start-page: 313 year: 2014 ident: 9608_CR21 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.12.002 – volume: 46 start-page: 1054 issue: 11 year: 2007 ident: 9608_CR33 publication-title: Chem Eng Process doi: 10.1016/j.cep.2007.02.031 – volume: 5 start-page: 501 year: 2018 ident: 9608_CR79 publication-title: Ann Rev Stat Appl doi: 10.1146/annurev-statistics-031017-100045 – volume: 91 start-page: 305 issue: 3 year: 2019 ident: 9608_CR2 publication-title: Chem Ing Tech doi: 10.1002/cite.201800086 – ident: 9608_CR7 – volume: 99 start-page: 251 year: 1999 ident: 9608_CR72 publication-title: ESANN – volume: 20 start-page: 419 issue: 9 year: 2017 ident: 9608_CR6 publication-title: J Global Optim – volume: 180 start-page: 925 issue: 3 year: 2019 ident: 9608_CR65 publication-title: J Optim Theory Appl doi: 10.1007/s10957-018-1396-0 – volume: 45 start-page: 8373 issue: 25 year: 2006 ident: 9608_CR10 publication-title: Ind Eng Chem Res doi: 10.1021/ie0601605 – ident: 9608_CR28 doi: 10.1201/9781351184373 – ident: 9608_CR17 – volume: 8 start-page: 1 issue: 1 year: 2017 ident: 9608_CR59 publication-title: Nat Commun doi: 10.1038/ncomms15082 – volume: 7 start-page: 169 issue: 1 year: 1994 ident: 9608_CR20 publication-title: Neural Netw doi: 10.1016/0893-6080(94)90065-5 – ident: 9608_CR44 doi: 10.1115/1.4002151 – volume: 103 start-page: 225 issue: 2 year: 2005 ident: 9608_CR70 publication-title: Math Program doi: 10.1007/s10107-005-0581-8 – volume: 172 start-page: 58 year: 2018 ident: 9608_CR55 publication-title: Chemometr Intell Lab Syst doi: 10.1016/j.chemolab.2017.11.010 – volume: 34 start-page: 1928 issue: 9 year: 2015 ident: 9608_CR18 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2416271 – ident: 9608_CR60 – ident: 9608_CR5 – volume: 32 start-page: 694 issue: 4–5 year: 2008 ident: 9608_CR34 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2007.02.014 – volume: 99 start-page: 215 year: 2014 ident: 9608_CR53 publication-title: Sig Process doi: 10.1016/j.sigpro.2013.12.026 – ident: 9608_CR80 doi: 10.1080/10556788.2020.1786566 – year: 2019 ident: 9608_CR31 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2019.106519 – volume: 41 start-page: 1 issue: 3 year: 2009 ident: 9608_CR13 publication-title: ACM Comput Sur (CSUR) doi: 10.1145/1541880.1541882 – volume: 22 start-page: 247 issue: 1 year: 2006 ident: 9608_CR73 publication-title: Biotechnol Prog doi: 10.1021/bp0502328 – volume: 28 start-page: 59 issue: 3 year: 1995 ident: 9608_CR67 publication-title: IFAC Proc Vol doi: 10.1016/S1474-6670(17)45602-3 – ident: 9608_CR68 doi: 10.1016/j.compchemeng.2020.107202 – volume: 12 start-page: 562 issue: 6 year: 2020 ident: 9608_CR78 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12060562 – ident: 9608_CR35 – volume: 14 start-page: 199 issue: 3 year: 2004 ident: 9608_CR69 publication-title: Stat Comput doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 104 start-page: 148 issue: 1 year: 2016 ident: 9608_CR66 publication-title: Proc IEEE doi: 10.1109/JPROC.2015.2494218 – volume: 11 start-page: 1491 issue: 12 year: 2003 ident: 9608_CR26 publication-title: Control Eng Pract doi: 10.1016/S0967-0661(03)00079-0 – volume: 3 start-page: 925 issue: 29 year: 2018 ident: 9608_CR74 publication-title: J Open Source Softw doi: 10.21105/joss.00925 – volume: 29 start-page: 345 issue: 3 year: 2014 ident: 9608_CR37 publication-title: Knowl Eng Rev doi: 10.1017/S026988891300043X – volume: 16 start-page: 819 issue: 9 year: 1992 ident: 9608_CR42 publication-title: Comput Chem Eng doi: 10.1016/0098-1354(92)80035-8 – volume: 113 start-page: 7035 issue: 26 year: 2016 ident: 9608_CR30 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1520877113 – ident: 9608_CR29 doi: 10.1007/978-3-319-58821-6 – volume: 5 start-page: 1 issue: 1 year: 2019 ident: 9608_CR40 publication-title: NPJ Comput Mater doi: 10.1038/s41524-019-0209-9 – volume: 6 start-page: 17 issue: 1 year: 2017 ident: 9608_CR49 publication-title: EPJ Data Sci doi: 10.1140/epjds/s13688-017-0109-5 – ident: 9608_CR12 doi: 10.1007/978-3-319-89593-2_2 – volume: 45 start-page: 941 issue: 5 year: 2014 ident: 9608_CR83 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2340433 – ident: 9608_CR9 – volume: 48 start-page: 981 issue: 8 year: 2015 ident: 9608_CR11 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.09.097 – volume: 11 start-page: 287 issue: 3 year: 1997 ident: 9608_CR24 publication-title: J Global Optim doi: 10.1023/A:1008212418949 – volume: 54822 start-page: 741 year: 2011 ident: 9608_CR58 publication-title: Int Des Eng Tech Conf Comput Inf Eng Conf – ident: 9608_CR63 – volume: 91 start-page: 228 issue: 3 year: 2019 ident: 9608_CR45 publication-title: Chem Ing Tech doi: 10.1002/cite.201800091 – ident: 9608_CR39 doi: 10.1109/ICMLA.2019.00106 – volume: 59 start-page: 75 year: 2014 ident: 9608_CR84 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2014.01.020 – volume: 20 start-page: 573 issue: 2 year: 2009 ident: 9608_CR47 publication-title: SIAM J Optim doi: 10.1137/080717341 – volume: 33 start-page: 249 issue: 2 year: 2005 ident: 9608_CR86 publication-title: Discrete Comput Geom doi: 10.1007/s00454-004-1146-y – volume: 42 start-page: 1853 issue: 11 year: 2019 ident: 9608_CR54 publication-title: Bioprocess Biosyst Eng doi: 10.1007/s00449-019-02181-y – ident: 9608_CR64 doi: 10.26434/chemrxiv.12280325 – ident: 9608_CR3 doi: 10.1016/j.compchemeng.2017.09.017 – ident: 9608_CR15 – ident: 9608_CR32 – volume: 28 start-page: 511 year: 2002 ident: 9608_CR43 publication-title: Discrete Comput Geom doi: 10.1007/s00454-002-2885-2 |
| SSID | ssj0016528 |
| Score | 2.468103 |
| Snippet | Data-driven models are becoming increasingly popular in engineering, on their own or in combination with mechanistic models. Commonly, the trained models are... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 855 |
| SubjectTerms | Clusters Computational geometry Control Convexity Data analysis Design optimization Domains Engineering Environmental Management Financial Engineering Homology Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Research Article Support vector machines Systems Theory Topology Training Validity |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PegefIvrixy8adZNm7Tdo_hABB8HF_RUkjQBcamL20XWX28mbXdVRBQvpSVpQpJJ8iUz8w3AfsKFzJhiVKOSkAdMUsnDDuWRjbtuu1DGX-ZcXUcXPX55L-5n4LT2hfHW7rVKsvRpQJamvDgaZPZo6vjG3FZG0bwAIXhCO22XPAtzkXCfDZjrXd8eP_izVtKlnHt2RiZiDFsW8Mp35vuCPu9PU9A50ZM2YX6UD-T4Vfb7H7ai8yUwdSNKC5Sn9qhQbf32hd_xv61chsUKq5LjUrhWYMbkq9D8wGC4Bo83yoyJk9bHzMF50kd3qSF5tgQtT2n2gmsp8dF2hqQKCUSKMi4DSofPRmRFjOJeMvKcG6oR0hP_REsmLzzr0Ds_uzu5oFX0Bj_sBRWhElZ0baxjN81jzaJEWxNZo0PGwgxVkNadR6U1KmGoLgy4MExI0w1UR9ko3IBG7urcBJJk0p2erXVYLOSxllKK0K3LPJFCcRvYFrB6zFJdUZtjhI1-OiVlxq5MXVemvivTTgsOJv8MSmKPH3Pv1KKQVpN8mAZIno8AJ2rBYT2a0-SfSjuciNAvKt_6W_ZtWAjQR8NfFe1Ao3gZmV2HnAq1V02Md9YcDSY priority: 102 providerName: Unpaywall |
| Title | Obey validity limits of data-driven models through topological data analysis and one-class classification |
| URI | https://link.springer.com/article/10.1007/s11081-021-09608-0 https://www.proquest.com/docview/2662726616 https://link.springer.com/content/pdf/10.1007/s11081-021-09608-0.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-2924 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016528 issn: 1389-4420 databaseCode: AFBBN dateStart: 20000601 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-2924 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016528 issn: 1389-4420 databaseCode: AGYKE dateStart: 20000101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-2924 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016528 issn: 1389-4420 databaseCode: U2A dateStart: 20000601 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5iD-pBfGK1lhy8abDJJtntsRQfKD4OFuppSXYTEEpbui3Sf-9Mut2qiOhhwz4T2C_JfJPJzBBylkhlcm45y9BIKAU3zMioxaT2cRvEhXVhMefhUd_25F1f9cswOegL881-f1ngNnVQeAUcQLYTBup5DYSUDoZZ3a0sBlqFPKpod2NSilbpIPNzHV-F0IpZVsbQLbIxG47N_N0MBp_kzfUO2S6JIu0skN0la264R7Y-hQ-Eq4cq5mqxT96erJtT6DhvOTBrOkDPpYKOPMVNoCyf4LRGQ-KbgpbZeeh0kSIBgQqvUVPGKIGTnI6GjmXIrmkocVNRwPGA9K6vXrq3rEykEBCYMhVZ5VXbx1kMIy7OuE4y77R3WcR5lKM10INqaLyzCUfLnZDKcWVcW9iW9To6JOtDaPOI0CQ3oMh6D7QoknFmjFERTJEyMcpKL3yd8OWfTbMyyjgmuxikq_jIiEYKaKQBjbRVJ-fVN-NFjI1f324sAUvL8VakAuPYI9fQdXKxBHH1-LfaLiqg_9D48f9qPyGbAt0lwqpNg6xPJzN3CiRmapuk1rl5vb9qhl4MZU904F7v8bnz-gH6-elJ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6hcgAOPBbQlqcP3MCoTuwkPSIElEfhQiU4RbZjS2irgkgqBL8ej-uksEIILlGiJHZijz2fPTPfAOxlXMiCKUY1Ggl5xCSVPO5Qnti069SFMn4zp3-d9Ab84k7chaCwsvZ2r02SfqaeBrsxp74ouhQg7M6oW6jPcrdAiVowe3R2f3nSWA8S4XOqog2Och51QrDM16V8VkhTlNkYRhdgbjx6kq8vcjj8oHtOl2BQf_XE5eTf4bhSh_rtP0LH3_7WMiwGMEqOJtKzAjNm9AcWPlAUuqt-w-tarsLDjTKvxAnnQ-HQOxlidFRJHi1BR1NaPOPUSXxynZKEDECkmqRhQGHwjxEZeFDcSUEeR4ZqRPDEH9FxycvKGgxOT26PezQka_C9XFERK2FF16Y6daM61SzJtDWJNTpmLC7Q4mjd8lNaozKG1sGIC8OENN1IdZRN4nVojVydf4FkhXSLZWsd9Ip5qqWUInbTMM-kUNxGtg2s7rFcByZzTKgxzKcczNiouWvU3Ddq3mnDfvPO04TH49unt2pByMOYLvMIufIRzyRtOKj7cnr7u9IOGgH6QeUbvyt9F-Z6t_2r_Or8-nIT5iMMz_C7RFvQqp7HZtuBpkrthDHyDhruCSg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yQd2DeMXp1Dz45sKWNmm7R5mOedn0wcHeStImMBjd2Dpk_96c9LIJMvSl9JIm0C9pvuSc8x2E7gLGRUwlJREYCZlDBRHMbRHmab9tpgup7GZOf-D1huxlxEcbUfzW270wSWYxDaDSlKTNWayb68A3aqYyAu4FQMEDYhbtu8zcghwGHa9T2hE8brOrgjWOMOa08rCZ3-v4OTWt-WZpIq2i_WUyE6svMZlszELdI3SY00f8kOF9jHZUcoKqG6KC5qpfKrEuTtH4XaoVNt1pHBu-jScQz7TAU43BNZTEc_jZYZsOZ4HznD04zRInAHy2GBa5cok5ifE0USQCzo3tEVyNLLpnaNh9-uz0SJ5eweKSEu5Krnlb-5FvxqEfUS-ItPK0ilxK3RhshNosGIVWMqBgz3MYV5QL1XZkS2rPPUeVxLR5gXAQC7O81dqQJZf5kRCCu-bHyQLBJdOOriFafNkwyrXHIQXGJFyrJgMaoUEjtGiErRq6L9-ZZcobW0vXC8DCfBQuQgfU7YGBeDXUKEBcP95WW6ME-g-NX_6v9lu09_HYDd-eB69X6MCBeAq7rVNHlXS-VNeG5aTyxnbkb3gh8FI |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PegefIvrixy8adZNm7Tdo_hABB8HF_RUkjQBcamL20XWX28mbXdVRBQvpSVpQpJJ8iUz8w3AfsKFzJhiVKOSkAdMUsnDDuWRjbtuu1DGX-ZcXUcXPX55L-5n4LT2hfHW7rVKsvRpQJamvDgaZPZo6vjG3FZG0bwAIXhCO22XPAtzkXCfDZjrXd8eP_izVtKlnHt2RiZiDFsW8Mp35vuCPu9PU9A50ZM2YX6UD-T4Vfb7H7ai8yUwdSNKC5Sn9qhQbf32hd_xv61chsUKq5LjUrhWYMbkq9D8wGC4Bo83yoyJk9bHzMF50kd3qSF5tgQtT2n2gmsp8dF2hqQKCUSKMi4DSofPRmRFjOJeMvKcG6oR0hP_REsmLzzr0Ds_uzu5oFX0Bj_sBRWhElZ0baxjN81jzaJEWxNZo0PGwgxVkNadR6U1KmGoLgy4MExI0w1UR9ko3IBG7urcBJJk0p2erXVYLOSxllKK0K3LPJFCcRvYFrB6zFJdUZtjhI1-OiVlxq5MXVemvivTTgsOJv8MSmKPH3Pv1KKQVpN8mAZIno8AJ2rBYT2a0-SfSjuciNAvKt_6W_ZtWAjQR8NfFe1Ao3gZmV2HnAq1V02Md9YcDSY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Obey+validity+limits+of+data-driven+models+through+topological+data+analysis+and+one-class+classification&rft.jtitle=Optimization+and+engineering&rft.au=Schweidtmann%2C+Artur+M&rft.au=Weber%2C+Jana+M&rft.au=Wende%2C+Christian&rft.au=Netze+Linus&rft.date=2022-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1389-4420&rft.eissn=1573-2924&rft.volume=23&rft.issue=2&rft.spage=855&rft.epage=876&rft_id=info:doi/10.1007%2Fs11081-021-09608-0&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-4420&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-4420&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-4420&client=summon |