Obey validity limits of data-driven models through topological data analysis and one-class classification

Data-driven models are becoming increasingly popular in engineering, on their own or in combination with mechanistic models. Commonly, the trained models are subsequently used in model-based optimization of design and/or operation of processes. Thus, it is critical to ensure that data-driven models...

Full description

Saved in:
Bibliographic Details
Published inOptimization and engineering Vol. 23; no. 2; pp. 855 - 876
Main Authors Schweidtmann, Artur M., Weber, Jana M., Wende, Christian, Netze, Linus, Mitsos, Alexander
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1389-4420
1573-2924
1573-2924
DOI10.1007/s11081-021-09608-0

Cover

Abstract Data-driven models are becoming increasingly popular in engineering, on their own or in combination with mechanistic models. Commonly, the trained models are subsequently used in model-based optimization of design and/or operation of processes. Thus, it is critical to ensure that data-driven models are not evaluated outside their validity domain during process optimization. We propose a method to learn this validity domain and encode it as constraints in process optimization. We first perform a topological data analysis using persistent homology identifying potential holes or separated clusters in the training data. In case clusters or holes are identified, we train a one-class classifier, i.e., a one-class support vector machine, on the training data domain and encode it as constraints in the subsequent process optimization. Otherwise, we construct the convex hull of the data and encode it as constraints. We finally perform deterministic global process optimization with the data-driven models subject to their respective validity constraints. To ensure computational tractability, we develop a reduced-space formulation for trained one-class support vector machines and show that our formulation outperforms common full-space formulations by a factor of over 3000, making it a viable tool for engineering applications. The method is ready-to-use and available open-source as part of our MeLOn toolbox ( https://git.rwth-aachen.de/avt.svt/public/MeLOn ).
AbstractList Data-driven models are becoming increasingly popular in engineering, on their own or in combination with mechanistic models. Commonly, the trained models are subsequently used in model-based optimization of design and/or operation of processes. Thus, it is critical to ensure that data-driven models are not evaluated outside their validity domain during process optimization. We propose a method to learn this validity domain and encode it as constraints in process optimization. We first perform a topological data analysis using persistent homology identifying potential holes or separated clusters in the training data. In case clusters or holes are identified, we train a one-class classifier, i.e., a one-class support vector machine, on the training data domain and encode it as constraints in the subsequent process optimization. Otherwise, we construct the convex hull of the data and encode it as constraints. We finally perform deterministic global process optimization with the data-driven models subject to their respective validity constraints. To ensure computational tractability, we develop a reduced-space formulation for trained one-class support vector machines and show that our formulation outperforms common full-space formulations by a factor of over 3000, making it a viable tool for engineering applications. The method is ready-to-use and available open-source as part of our MeLOn toolbox (https://git.rwth-aachen.de/avt.svt/public/MeLOn).
Data-driven models are becoming increasingly popular in engineering, on their own or in combination with mechanistic models. Commonly, the trained models are subsequently used in model-based optimization of design and/or operation of processes. Thus, it is critical to ensure that data-driven models are not evaluated outside their validity domain during process optimization. We propose a method to learn this validity domain and encode it as constraints in process optimization. We first perform a topological data analysis using persistent homology identifying potential holes or separated clusters in the training data. In case clusters or holes are identified, we train a one-class classifier, i.e., a one-class support vector machine, on the training data domain and encode it as constraints in the subsequent process optimization. Otherwise, we construct the convex hull of the data and encode it as constraints. We finally perform deterministic global process optimization with the data-driven models subject to their respective validity constraints. To ensure computational tractability, we develop a reduced-space formulation for trained one-class support vector machines and show that our formulation outperforms common full-space formulations by a factor of over 3000, making it a viable tool for engineering applications. The method is ready-to-use and available open-source as part of our MeLOn toolbox ( https://git.rwth-aachen.de/avt.svt/public/MeLOn ).
Author Netze, Linus
Mitsos, Alexander
Weber, Jana M.
Wende, Christian
Schweidtmann, Artur M.
Author_xml – sequence: 1
  givenname: Artur M.
  orcidid: 0000-0001-8885-6847
  surname: Schweidtmann
  fullname: Schweidtmann, Artur M.
  email: artur.schweidtmann@rwth-aachen.de
  organization: Process Systems Engineering (AVT.SVT), RWTH Aachen University, Department of Chemical Engineering, Delft University of Technology
– sequence: 2
  givenname: Jana M.
  orcidid: 0000-0002-2867-0087
  surname: Weber
  fullname: Weber, Jana M.
  organization: Department of Chemical Engineering and Biotechnology, University of Cambridge
– sequence: 3
  givenname: Christian
  surname: Wende
  fullname: Wende, Christian
  organization: Process Systems Engineering (AVT.SVT), RWTH Aachen University
– sequence: 4
  givenname: Linus
  surname: Netze
  fullname: Netze, Linus
  organization: Process Systems Engineering (AVT.SVT), RWTH Aachen University
– sequence: 5
  givenname: Alexander
  orcidid: 0000-0003-0335-6566
  surname: Mitsos
  fullname: Mitsos, Alexander
  organization: Process Systems Engineering (AVT.SVT), RWTH Aachen University, JARA-CSD, Institute of Energy and Climate Research, Energy Systems Engineering (IEK-10)
BookMark eNqNUMtKAzEUDaJgW_0BVwHX0TxmMjNLKb6g0I2uQyaTtCnppCZpZf7e9AGCi-LiPhbn3HvOGYPL3vcagDuCHwjG1WMkBNcEYZqr4bhG-AKMSFkxRBtaXOad1Q0qCoqvwTjGFcaEl7QeATtv9QB30tnOpgE6u7YpQm9gJ5NEXbA73cO177SLMC2D3y6WMPmNd35hlXQHGJS9dEO0MS8dzMKQcjJGeOjWZFyyvr8BV0a6qG9PcwI-X54_pm9oNn99nz7NkGKcJVSytjRlYypVMdJUivBaGc2NVowQ1mFcMEMwl0a3NalYU9Ki1KSUuqEtbg1nE8COd7f9Rg7f0jmxCXYtwyAIFvu0xDEtkdMSh7QEzqz7I2sT_NdWxyRWfhuyrygo57TKjexv10eUCj7GoI1QNh3cpSCtO_-A_qH-S9XJS8zgfqHDr6ozrB_lbJ4d
CitedBy_id crossref_primary_10_1016_j_dche_2024_100212
crossref_primary_10_1016_j_ifacol_2023_10_597
crossref_primary_10_1039_D4ME00074A
crossref_primary_10_1287_ijoc_2022_0312
crossref_primary_10_1007_s11081_022_09740_5
crossref_primary_10_1016_j_bej_2023_108813
crossref_primary_10_1016_j_dche_2023_100136
crossref_primary_10_1016_j_compchemeng_2024_108660
crossref_primary_10_1016_j_compchemeng_2024_108643
crossref_primary_10_1016_j_compchemeng_2022_108127
crossref_primary_10_1021_acs_iecr_2c00113
crossref_primary_10_1002_aic_17971
crossref_primary_10_1007_s10257_023_00636_0
crossref_primary_10_1007_s10898_022_01228_x
crossref_primary_10_1287_ijoc_2023_1285
crossref_primary_10_1002_aic_17524
crossref_primary_10_1002_aic_18338
crossref_primary_10_1016_j_jprocont_2023_103089
Cites_doi 10.1137/080717341
10.1016/j.ifacol.2015.09.097
10.1007/s11081-015-9288-8
10.1002/cite.201800091
10.1109/JPROC.2015.2494218
10.1007/s10107-005-0581-8
10.1016/j.compchemeng.2019.106519
10.1016/j.compchemeng.2013.08.008
10.1016/j.entcs.2014.06.011
10.1002/cite.202000001
10.1115/1.4005861
10.1002/aic.16489
10.1016/j.memsci.2018.10.013
10.1016/j.compchemeng.2011.06.005
10.1016/j.ifacol.2020.12.1207
10.1039/C8CP01552J
10.1007/978-3-642-17080-5_21
10.1002/aic.16214
10.1007/978-3-540-74690-4_28
10.1016/S1570-7946(02)80183-3
10.1140/epjds/s13688-016-0097-x
10.1287/mnsc.6.1.73
10.1038/s41592-019-0686-2
10.1109/72.963764
10.1016/j.asr.2017.04.020
10.1039/C9CP03009C
10.1016/j.neucom.2013.12.002
10.1016/j.cep.2007.02.031
10.1146/annurev-statistics-031017-100045
10.1002/cite.201800086
10.1007/s10957-018-1396-0
10.1021/ie0601605
10.1201/9781351184373
10.1038/ncomms15082
10.1016/0893-6080(94)90065-5
10.1115/1.4002151
10.1016/j.chemolab.2017.11.010
10.1109/TMI.2015.2416271
10.1016/j.compchemeng.2007.02.014
10.1016/j.sigpro.2013.12.026
10.1080/10556788.2020.1786566
10.1145/1541880.1541882
10.1021/bp0502328
10.1016/S1474-6670(17)45602-3
10.1016/j.compchemeng.2020.107202
10.3390/pharmaceutics12060562
10.1023/B:STCO.0000035301.49549.88
10.1016/S0967-0661(03)00079-0
10.21105/joss.00925
10.1017/S026988891300043X
10.1016/0098-1354(92)80035-8
10.1073/pnas.1520877113
10.1007/978-3-319-58821-6
10.1038/s41524-019-0209-9
10.1140/epjds/s13688-017-0109-5
10.1007/978-3-319-89593-2_2
10.1109/TCYB.2014.2340433
10.1023/A:1008212418949
10.1109/ICMLA.2019.00106
10.1016/j.knosys.2014.01.020
10.1007/s00454-004-1146-y
10.1007/s00449-019-02181-y
10.26434/chemrxiv.12280325
10.1016/j.compchemeng.2017.09.017
10.1007/s00454-002-2885-2
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7TB
8FD
FR3
KR7
ADTOC
UNPAY
DOI 10.1007/s11081-021-09608-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2924
EndPage 876
ExternalDocumentID 10.1007/s11081-021-09608-0
10_1007_s11081_021_09608_0
GrantInformation_xml – fundername: RWTH Aachen (3131)
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BGLVJ
CCPQU
CITATION
M7S
PHGZM
PHGZT
PQGLB
PTHSS
S0W
7TB
8FD
FR3
KR7
ADTOC
UNPAY
ID FETCH-LOGICAL-c363t-53b5f59f7c73197c168cfe6fec3113d0043f106afeb817395245e15ae92b0bf63
IEDL.DBID C6C
ISSN 1389-4420
1573-2924
IngestDate Sun Oct 26 04:12:38 EDT 2025
Thu Sep 25 00:51:54 EDT 2025
Wed Oct 01 00:48:39 EDT 2025
Thu Apr 24 23:10:55 EDT 2025
Fri Feb 21 02:47:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Persistent homology
Topological data analysis
One-class support vector machine
Machine-learning
Deterministic global optimization
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-53b5f59f7c73197c168cfe6fec3113d0043f106afeb817395245e15ae92b0bf63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2867-0087
0000-0003-0335-6566
0000-0001-8885-6847
OpenAccessLink https://doi.org/10.1007/s11081-021-09608-0
PQID 2662726616
PQPubID 326265
PageCount 22
ParticipantIDs unpaywall_primary_10_1007_s11081_021_09608_0
proquest_journals_2662726616
crossref_citationtrail_10_1007_s11081_021_09608_0
crossref_primary_10_1007_s11081_021_09608_0
springer_journals_10_1007_s11081_021_09608_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle International Multidisciplinary Journal to Promote Optimization Theory & Applications in Engineering Sciences
PublicationTitle Optimization and engineering
PublicationTitleAbbrev Optim Eng
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Asprion (CR1) 2020; 92
Xiao, Wang, Xu (CR83) 2014; 45
Xiao, Wang, Zhang, Xu (CR84) 2014; 59
Schweidtmann, Mitsos (CR65) 2019; 180
Roach, Parker, Malak (CR58) 2011; 54822
Xia, Anand, Shikhar, Mu (CR82) 2019; 21
CR39
CR36
Khan, Madden (CR37) 2014; 29
Kahrs, Marquardt (CR33) 2007; 46
CR35
Epperly, Pistikopoulos (CR24) 1997; 11
CR32
CR71
Quek, Balasubramanian, Rangaiah (CR56) 2000; 79
Rall, Menne, Schweidtmann, Kamp, von Kolzenberg, Mitsos, Wessling (CR57) 2019; 569
Quaglio, Fraga, Cao, Gavriilidis, Galvanin (CR55) 2018; 172
Von Stosch, Oliveira, Peres, de Azevedo (CR77) 2014; 60
Simutis, Havlik, Schneider, Dors, Lübbert (CR67) 1995; 28
Charnes, Cooper (CR14) 1959; 6
CR3
Mitsos, Chachuat, Barton (CR47) 2009; 20
CR5
Binchi, Merelli, Rucco, Petri, Vaccarino (CR4) 2014; 306
Patania, Vaccarino, Petri (CR51) 2017; 6
CR7
CR9
Letscher, Edelsbrunner, Zomorodian (CR43) 2002; 28
CR48
Cortes, Vapnik (CR19) 1995; 20
Kumar, Li, Tang, Buonassisi, Gonzalez-Oyarce, Ye (CR40) 2019; 5
CR46
Asprion, Böttcher, Pack, Stavrou, Höller, Schwientek, Bortz (CR2) 2019; 91
Venkatasubramanian (CR75) 2019; 65
CR44
Wasserman (CR79) 2018; 5
Chachuat, Houska, Paulen, Peric, Rajyaguru, Villanueva (CR11) 2015; 48
Chen, Paulavičius, Adjiman, García-Muñoz (CR16) 2018; 64
von Stosch, Schenkendorf, Geldhof, Varsakelis, Mariti, Dessoy, Vandercammen, Pysik, Sanders (CR78) 2020; 12
CR41
Saadatfar, Takeuchi, Robins, Francois, Hiraoka (CR59) 2017; 8
Kimura, Imai (CR38) 2017; 60
Pinto, de Azevedo, Oliveira, von Stosch (CR54) 2019; 42
Chachuat, Singer, Barton (CR10) 2006; 45
Shahriari, Swersky, Wang, Adams, de Freitas (CR66) 2016; 104
CR80
Smola, Schölkopf (CR69) 2004; 14
Hüllen, Zhai, Kim, Sinha, Realff, Boukouvala (CR31) 2019
Papadopoulos, Edwards, Murray (CR50) 2001; 12
Tawarmalani, Sahinidis (CR70) 2005; 103
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (CR52) 2011; 12
Kahrs, Marquardt (CR34) 2008; 32
Otter, Porter, Tillmann, Grindrod, Harrington (CR49) 2017; 6
Leonard, Kramer, Ungar (CR42) 1992; 16
CR17
Fortuna, Rizzo, Sinatra, Xibilia (CR26) 2003; 11
CR15
CR12
Hiraoka, Nakamura, Hirata, Escolar, Matsue, Nishiura (CR30) 2016; 113
Bongartz, Mitsos (CR6) 2017; 20
Tralie, Saul, Bar-On (CR74) 2018; 3
Zhang, Grossmann, Sundaramoorthy, Pinto (CR85) 2016; 17
Chung, Hanson, Ye, Davidson, Pollak (CR18) 2015; 34
Zomorodian, Carlsson (CR86) 2005; 33
CR29
Ding, Li, Belatreche, Maguire (CR21) 2014; 135
CR28
Courrieu (CR20) 1994; 7
CR27
Boukouvala, Ierapetritou (CR8) 2012; 36
Tax, Duin (CR72) 1999; 99
Xia (CR81) 2018; 20
CR25
CR68
CR23
CR22
Pimentel, Clifton, Clifton, Tarassenko (CR53) 2014; 99
CR64
Teixeira, Clemente, Cunha, Carrondo, Oliveira (CR73) 2006; 22
McBride, Sundmacher (CR45) 2019; 91
CR63
Chandola, Banerjee, Kumar (CR13) 2009; 41
CR62
CR61
CR60
Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright (CR76) 2020; 17
J Pinto (9608_CR54) 2019; 42
N Asprion (9608_CR2) 2019; 91
N Asprion (9608_CR1) 2020; 92
E Roach (9608_CR58) 2011; 54822
AP Teixeira (9608_CR73) 2006; 22
F Pedregosa (9608_CR52) 2011; 12
9608_CR9
O Kahrs (9608_CR33) 2007; 46
P Courrieu (9608_CR20) 1994; 7
V Chandola (9608_CR13) 2009; 41
9608_CR80
9608_CR5
9608_CR7
9608_CR3
9608_CR41
H Letscher (9608_CR43) 2002; 28
9608_CR44
Q Chen (9608_CR16) 2018; 64
R Simutis (9608_CR67) 1995; 28
9608_CR46
SS Khan (9608_CR37) 2014; 29
JN Kumar (9608_CR40) 2019; 5
9608_CR48
C Quek (9608_CR56) 2000; 79
AJ Smola (9608_CR69) 2004; 14
Y Kimura (9608_CR38) 2017; 60
L Wasserman (9608_CR79) 2018; 5
B Chachuat (9608_CR11) 2015; 48
A Charnes (9608_CR14) 1959; 6
X Ding (9608_CR21) 2014; 135
M Saadatfar (9608_CR59) 2017; 8
Y Xiao (9608_CR83) 2014; 45
N Otter (9608_CR49) 2017; 6
A Mitsos (9608_CR47) 2009; 20
P Virtanen (9608_CR76) 2020; 17
M Quaglio (9608_CR55) 2018; 172
9608_CR12
9608_CR15
9608_CR17
B Shahriari (9608_CR66) 2016; 104
A Patania (9608_CR51) 2017; 6
9608_CR29
K Xia (9608_CR81) 2018; 20
MK Chung (9608_CR18) 2015; 34
M von Stosch (9608_CR78) 2020; 12
F Boukouvala (9608_CR8) 2012; 36
J Binchi (9608_CR4) 2014; 306
B Chachuat (9608_CR10) 2006; 45
9608_CR60
V Venkatasubramanian (9608_CR75) 2019; 65
9608_CR62
M Von Stosch (9608_CR77) 2014; 60
G Papadopoulos (9608_CR50) 2001; 12
9608_CR61
9608_CR64
Y Hiraoka (9608_CR30) 2016; 113
9608_CR63
9608_CR22
D Bongartz (9608_CR6) 2017; 20
9608_CR68
9608_CR23
TGW Epperly (9608_CR24) 1997; 11
MA Pimentel (9608_CR53) 2014; 99
9608_CR25
9608_CR28
O Kahrs (9608_CR34) 2008; 32
9608_CR27
K McBride (9608_CR45) 2019; 91
C Tralie (9608_CR74) 2018; 3
C Cortes (9608_CR19) 1995; 20
AM Schweidtmann (9608_CR65) 2019; 180
M Tawarmalani (9608_CR70) 2005; 103
J Leonard (9608_CR42) 1992; 16
Q Zhang (9608_CR85) 2016; 17
A Zomorodian (9608_CR86) 2005; 33
L Fortuna (9608_CR26) 2003; 11
K Xia (9608_CR82) 2019; 21
DM Tax (9608_CR72) 1999; 99
9608_CR71
D Rall (9608_CR57) 2019; 569
Y Xiao (9608_CR84) 2014; 59
9608_CR32
9608_CR35
G Hüllen (9608_CR31) 2019
9608_CR36
9608_CR39
References_xml – ident: CR22
– volume: 34
  start-page: 1928
  issue: 9
  year: 2015
  end-page: 1939
  ident: CR18
  article-title: Persistent homology in sparse regression and its application to brain morphometry
  publication-title: IEEE Trans Med Imaging
– volume: 6
  start-page: 73
  issue: 1
  year: 1959
  end-page: 79
  ident: CR14
  article-title: Chance-constrained programming
  publication-title: Manage Sci
– ident: CR68
– volume: 91
  start-page: 305
  issue: 3
  year: 2019
  end-page: 313
  ident: CR2
  article-title: Gray-box modeling for the optimization of chemical processes
  publication-title: Chem Ing Tech
– volume: 6
  start-page: 17
  issue: 1
  year: 2017
  ident: CR49
  article-title: A roadmap for the computation of persistent homology
  publication-title: EPJ Data Sci
– volume: 5
  start-page: 501
  year: 2018
  end-page: 532
  ident: CR79
  article-title: Topological data analysis
  publication-title: Ann Rev Stat Appl
– ident: CR39
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  end-page: 222
  ident: CR69
  article-title: A tutorial on support vector regression
  publication-title: Stat Comput
– volume: 59
  start-page: 75
  year: 2014
  end-page: 84
  ident: CR84
  article-title: Two methods of selecting Gaussian kernel parameters for one-class svm and their application to fault detection
  publication-title: Knowl-Based Syst
– ident: CR12
– ident: CR35
– volume: 65
  start-page: 466
  issue: 2
  year: 2019
  end-page: 78
  ident: CR75
  article-title: The promise of artificial intelligence in chemical engineering: is it here, finally
  publication-title: AIChE J
– ident: CR29
– ident: CR61
– ident: CR80
– volume: 20
  start-page: 573
  issue: 2
  year: 2009
  end-page: 601
  ident: CR47
  article-title: McCormick-based relaxations of algorithms
  publication-title: SIAM J Optim
  doi: 10.1137/080717341
– ident: CR25
– volume: 45
  start-page: 8373
  issue: 25
  year: 2006
  end-page: 8392
  ident: CR10
  article-title: Global methods for dynamic optimization and mixed-integer dynamic optimization
  publication-title: Ind Eng Chem Res
– volume: 99
  start-page: 251
  year: 1999
  end-page: 256
  ident: CR72
  article-title: Data domain description using support vectors
  publication-title: ESANN
– volume: 22
  start-page: 247
  issue: 1
  year: 2006
  end-page: 258
  ident: CR73
  article-title: Bioprocess iterative batch-to-batch optimization based on hybrid parametric/nonparametric models
  publication-title: Biotechnol Prog
– volume: 54822
  start-page: 741
  year: 2011
  end-page: 751
  ident: CR58
  article-title: An improved support vector domain description method for modeling valid search domains in engineering design problems
  publication-title: Int Des Eng Tech Conf Comput Inf Eng Conf
– ident: CR46
– ident: CR71
– volume: 32
  start-page: 694
  issue: 4–5
  year: 2008
  end-page: 705
  ident: CR34
  article-title: Incremental identification of hybrid process models
  publication-title: Comput Chem Eng
– volume: 29
  start-page: 345
  issue: 3
  year: 2014
  end-page: 374
  ident: CR37
  article-title: One-class classification: taxonomy of study and review of techniques
  publication-title: Knowl Eng Rev
– volume: 60
  start-page: 722
  issue: 3
  year: 2017
  end-page: 736
  ident: CR38
  article-title: Quantification of LSS using the persistent homology in the SDSS fields
  publication-title: Adv Space Res
– volume: 42
  start-page: 1853
  issue: 11
  year: 2019
  end-page: 1865
  ident: CR54
  article-title: A bootstrap-aggregated hybrid semi-parametric modeling framework for bioprocess development
  publication-title: Bioprocess Biosyst Eng
– ident: CR15
– volume: 48
  start-page: 981
  issue: 8
  year: 2015
  end-page: 995
  ident: CR11
  article-title: Set-theoretic approaches in analysis, estimation and control of nonlinear systems
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.09.097
– volume: 306
  start-page: 5
  year: 2014
  end-page: 18
  ident: CR4
  article-title: jholes: a tool for understanding biological complex networks via clique weight rank persistent homology
  publication-title: Electron Notes Theor Comput Sci
– volume: 17
  start-page: 289
  issue: 2
  year: 2016
  end-page: 332
  ident: CR85
  article-title: Data-driven construction of convex region surrogate models
  publication-title: Optim Eng
  doi: 10.1007/s11081-015-9288-8
– ident: CR9
– volume: 64
  start-page: 3944
  issue: 11
  year: 2018
  end-page: 3957
  ident: CR16
  article-title: An optimization framework to combine operable space maximization with design of experiments
  publication-title: AIChE J
– ident: CR32
– volume: 16
  start-page: 819
  issue: 9
  year: 1992
  end-page: 835
  ident: CR42
  article-title: A neural network architecture that computes its own reliability
  publication-title: Comput Chem Eng
– ident: CR60
– ident: CR36
– ident: CR5
– volume: 7
  start-page: 169
  issue: 1
  year: 1994
  end-page: 174
  ident: CR20
  article-title: Three algorithms for estimating the domain of validity of feedforward neural networks
  publication-title: Neural Netw
– volume: 3
  start-page: 925
  issue: 29
  year: 2018
  ident: CR74
  article-title: Ripser.py: a lean persistent homology library for python
  publication-title: J Open Source Softw
– volume: 11
  start-page: 287
  issue: 3
  year: 1997
  end-page: 311
  ident: CR24
  article-title: A reduced space branch and bound algorithm for global optimization
  publication-title: J Global Optim
– ident: CR64
– volume: 5
  start-page: 1
  issue: 1
  year: 2019
  end-page: 6
  ident: CR40
  article-title: Machine learning enables polymer cloud-point engineering via inverse design
  publication-title: NPJ Comput Mater
– volume: 91
  start-page: 228
  issue: 3
  year: 2019
  end-page: 239
  ident: CR45
  article-title: Overview of surrogate modeling in chemical process engineering
  publication-title: Chem Ing Tech
  doi: 10.1002/cite.201800091
– volume: 99
  start-page: 215
  year: 2014
  end-page: 249
  ident: CR53
  article-title: A review of novelty detection
  publication-title: Sig Process
– volume: 46
  start-page: 1054
  issue: 11
  year: 2007
  end-page: 1066
  ident: CR33
  article-title: The validity domain of hybrid models and its application in process optimization
  publication-title: Chem Eng Process
– volume: 92
  start-page: 879
  issue: 7
  year: 2020
  end-page: 889
  ident: CR1
  article-title: Modeling, simulation, and optimization 4.0 for a distillation column
  publication-title: Chem Ing Tech
– volume: 79
  start-page: 101
  issue: 1
  year: 2000
  end-page: 106
  ident: CR56
  article-title: Consider using soft analyzers to improve SRU control
  publication-title: Hydrocarbon processing
– volume: 569
  start-page: 209
  year: 2019
  end-page: 219
  ident: CR57
  article-title: Rational design of ion separation membranes
  publication-title: J Membr Sci
– volume: 180
  start-page: 925
  issue: 3
  year: 2019
  end-page: 948
  ident: CR65
  article-title: Deterministic global optimization with artificial neural networks embedded
  publication-title: J Optim Theory Appl
– volume: 28
  start-page: 59
  issue: 3
  year: 1995
  end-page: 65
  ident: CR67
  article-title: Artificial neural networks of improved reliability for industrial process supervision
  publication-title: IFAC Proc Vol
– volume: 33
  start-page: 249
  issue: 2
  year: 2005
  end-page: 274
  ident: CR86
  article-title: Computing persistent homology
  publication-title: Discrete Comput Geom
– volume: 135
  start-page: 313
  year: 2014
  end-page: 327
  ident: CR21
  article-title: An experimental evaluation of novelty detection methods
  publication-title: Neurocomputing
– ident: CR63
– volume: 11
  start-page: 1491
  issue: 12
  year: 2003
  end-page: 1500
  ident: CR26
  article-title: Soft analyzers for a sulfur recovery unit
  publication-title: Control Eng Pract
– ident: CR27
– ident: CR23
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR52
  article-title: Scikit-learn: machine learning in python
  publication-title: J Mach Learn Res
– volume: 104
  start-page: 148
  issue: 1
  year: 2016
  end-page: 175
  ident: CR66
  article-title: Taking the human out of the loop: a review of bayesian optimization
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2015.2494218
– ident: CR44
– volume: 20
  start-page: 419
  issue: 9
  year: 2017
  ident: CR6
  article-title: Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations
  publication-title: J Global Optim
– ident: CR48
– volume: 12
  start-page: 562
  issue: 6
  year: 2020
  ident: CR78
  article-title: Working within the design space: do our static process characterization methods suffice?
  publication-title: Pharmaceutics
– volume: 17
  start-page: 261
  issue: 3
  year: 2020
  end-page: 272
  ident: CR76
  article-title: Scipy 1.0: fundamental algorithms for scientific computing in python
  publication-title: Nat Methods
– volume: 36
  start-page: 358
  year: 2012
  end-page: 368
  ident: CR8
  article-title: Feasibility analysis of black-box processes using an adaptive sampling kriging-based method
  publication-title: Comput Chem Eng
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  ident: CR19
  article-title: Support-vector networks
  publication-title: Mach Learn
– volume: 113
  start-page: 7035
  issue: 26
  year: 2016
  end-page: 7040
  ident: CR30
  article-title: Hierarchical structures of amorphous solids characterized by persistent homology
  publication-title: Proc Natl Acad Sci
– ident: CR3
– ident: CR17
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  end-page: 11
  ident: CR59
  article-title: Pore configuration landscape of granular crystallization
  publication-title: Nat Commun
– volume: 28
  start-page: 511
  year: 2002
  end-page: 533
  ident: CR43
  article-title: Topological persistence and simplification
  publication-title: Discrete Comput Geom
– volume: 172
  start-page: 58
  year: 2018
  end-page: 67
  ident: CR55
  article-title: A model-based data mining approach for determining the domain of validity of approximated models
  publication-title: Chemometr Intell Lab Syst
– volume: 6
  start-page: 1
  year: 2017
  end-page: 6
  ident: CR51
  article-title: Topological analysis of data
  publication-title: EPJ Data Sci
– volume: 103
  start-page: 225
  issue: 2
  year: 2005
  end-page: 249
  ident: CR70
  article-title: A polyhedral branch-and-cut approach to global optimization
  publication-title: Math Program
  doi: 10.1007/s10107-005-0581-8
– volume: 21
  start-page: 21038
  issue: 37
  year: 2019
  end-page: 21048
  ident: CR82
  article-title: Persistent homology analysis of osmolyte molecular aggregation and their hydrogen-bonding networks
  publication-title: Phys Chem Chem Phys
– volume: 41
  start-page: 1
  issue: 3
  year: 2009
  end-page: 58
  ident: CR13
  article-title: Anomaly detection: a survey
  publication-title: ACM Comput Sur (CSUR)
– year: 2019
  ident: CR31
  article-title: Managing uncertainty in data-driven simulation-based optimization
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2019.106519
– ident: CR7
– volume: 12
  start-page: 1278
  issue: 6
  year: 2001
  end-page: 1287
  ident: CR50
  article-title: Confidence estimation methods for neural networks: a practical comparison
  publication-title: IEEE Trans Neural Netw
– volume: 20
  start-page: 13448
  issue: 19
  year: 2018
  end-page: 13460
  ident: CR81
  article-title: Persistent homology analysis of ion aggregations and hydrogen-bonding networks
  publication-title: Phys Chem Chem Phys
– ident: CR28
– ident: CR41
– ident: CR62
– volume: 45
  start-page: 941
  issue: 5
  year: 2014
  end-page: 953
  ident: CR83
  article-title: Parameter selection of Gaussian kernel for one-class svm
  publication-title: IEEE Trans Cybern
– volume: 60
  start-page: 86
  year: 2014
  end-page: 101
  ident: CR77
  article-title: Hybrid semi-parametric modeling in process systems engineering: past, present and future
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2013.08.008
– volume: 306
  start-page: 5
  year: 2014
  ident: 9608_CR4
  publication-title: Electron Notes Theor Comput Sci
  doi: 10.1016/j.entcs.2014.06.011
– ident: 9608_CR27
– volume: 92
  start-page: 879
  issue: 7
  year: 2020
  ident: 9608_CR1
  publication-title: Chem Ing Tech
  doi: 10.1002/cite.202000001
– volume: 17
  start-page: 289
  issue: 2
  year: 2016
  ident: 9608_CR85
  publication-title: Optim Eng
  doi: 10.1007/s11081-015-9288-8
– ident: 9608_CR41
  doi: 10.1115/1.4005861
– volume: 65
  start-page: 466
  issue: 2
  year: 2019
  ident: 9608_CR75
  publication-title: AIChE J
  doi: 10.1002/aic.16489
– ident: 9608_CR46
– volume: 569
  start-page: 209
  year: 2019
  ident: 9608_CR57
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2018.10.013
– volume: 36
  start-page: 358
  year: 2012
  ident: 9608_CR8
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2011.06.005
– ident: 9608_CR22
  doi: 10.1016/j.ifacol.2020.12.1207
– ident: 9608_CR62
– ident: 9608_CR23
– volume: 20
  start-page: 13448
  issue: 19
  year: 2018
  ident: 9608_CR81
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C8CP01552J
– ident: 9608_CR36
  doi: 10.1007/978-3-642-17080-5_21
– volume: 64
  start-page: 3944
  issue: 11
  year: 2018
  ident: 9608_CR16
  publication-title: AIChE J
  doi: 10.1002/aic.16214
– ident: 9608_CR25
  doi: 10.1007/978-3-540-74690-4_28
– volume: 60
  start-page: 86
  year: 2014
  ident: 9608_CR77
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2013.08.008
– ident: 9608_CR71
– ident: 9608_CR48
  doi: 10.1016/S1570-7946(02)80183-3
– volume: 6
  start-page: 1
  year: 2017
  ident: 9608_CR51
  publication-title: EPJ Data Sci
  doi: 10.1140/epjds/s13688-016-0097-x
– volume: 6
  start-page: 73
  issue: 1
  year: 1959
  ident: 9608_CR14
  publication-title: Manage Sci
  doi: 10.1287/mnsc.6.1.73
– volume: 79
  start-page: 101
  issue: 1
  year: 2000
  ident: 9608_CR56
  publication-title: Hydrocarbon processing
– volume: 17
  start-page: 261
  issue: 3
  year: 2020
  ident: 9608_CR76
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 9608_CR19
  publication-title: Mach Learn
– volume: 12
  start-page: 1278
  issue: 6
  year: 2001
  ident: 9608_CR50
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.963764
– volume: 12
  start-page: 2825
  year: 2011
  ident: 9608_CR52
  publication-title: J Mach Learn Res
– volume: 60
  start-page: 722
  issue: 3
  year: 2017
  ident: 9608_CR38
  publication-title: Adv Space Res
  doi: 10.1016/j.asr.2017.04.020
– volume: 21
  start-page: 21038
  issue: 37
  year: 2019
  ident: 9608_CR82
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C9CP03009C
– ident: 9608_CR61
– volume: 135
  start-page: 313
  year: 2014
  ident: 9608_CR21
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.12.002
– volume: 46
  start-page: 1054
  issue: 11
  year: 2007
  ident: 9608_CR33
  publication-title: Chem Eng Process
  doi: 10.1016/j.cep.2007.02.031
– volume: 5
  start-page: 501
  year: 2018
  ident: 9608_CR79
  publication-title: Ann Rev Stat Appl
  doi: 10.1146/annurev-statistics-031017-100045
– volume: 91
  start-page: 305
  issue: 3
  year: 2019
  ident: 9608_CR2
  publication-title: Chem Ing Tech
  doi: 10.1002/cite.201800086
– ident: 9608_CR7
– volume: 99
  start-page: 251
  year: 1999
  ident: 9608_CR72
  publication-title: ESANN
– volume: 20
  start-page: 419
  issue: 9
  year: 2017
  ident: 9608_CR6
  publication-title: J Global Optim
– volume: 180
  start-page: 925
  issue: 3
  year: 2019
  ident: 9608_CR65
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-018-1396-0
– volume: 45
  start-page: 8373
  issue: 25
  year: 2006
  ident: 9608_CR10
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie0601605
– ident: 9608_CR28
  doi: 10.1201/9781351184373
– ident: 9608_CR17
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 9608_CR59
  publication-title: Nat Commun
  doi: 10.1038/ncomms15082
– volume: 7
  start-page: 169
  issue: 1
  year: 1994
  ident: 9608_CR20
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(94)90065-5
– ident: 9608_CR44
  doi: 10.1115/1.4002151
– volume: 103
  start-page: 225
  issue: 2
  year: 2005
  ident: 9608_CR70
  publication-title: Math Program
  doi: 10.1007/s10107-005-0581-8
– volume: 172
  start-page: 58
  year: 2018
  ident: 9608_CR55
  publication-title: Chemometr Intell Lab Syst
  doi: 10.1016/j.chemolab.2017.11.010
– volume: 34
  start-page: 1928
  issue: 9
  year: 2015
  ident: 9608_CR18
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2416271
– ident: 9608_CR60
– ident: 9608_CR5
– volume: 32
  start-page: 694
  issue: 4–5
  year: 2008
  ident: 9608_CR34
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2007.02.014
– volume: 99
  start-page: 215
  year: 2014
  ident: 9608_CR53
  publication-title: Sig Process
  doi: 10.1016/j.sigpro.2013.12.026
– ident: 9608_CR80
  doi: 10.1080/10556788.2020.1786566
– year: 2019
  ident: 9608_CR31
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2019.106519
– volume: 41
  start-page: 1
  issue: 3
  year: 2009
  ident: 9608_CR13
  publication-title: ACM Comput Sur (CSUR)
  doi: 10.1145/1541880.1541882
– volume: 22
  start-page: 247
  issue: 1
  year: 2006
  ident: 9608_CR73
  publication-title: Biotechnol Prog
  doi: 10.1021/bp0502328
– volume: 28
  start-page: 59
  issue: 3
  year: 1995
  ident: 9608_CR67
  publication-title: IFAC Proc Vol
  doi: 10.1016/S1474-6670(17)45602-3
– ident: 9608_CR68
  doi: 10.1016/j.compchemeng.2020.107202
– volume: 12
  start-page: 562
  issue: 6
  year: 2020
  ident: 9608_CR78
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics12060562
– ident: 9608_CR35
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  ident: 9608_CR69
  publication-title: Stat Comput
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 104
  start-page: 148
  issue: 1
  year: 2016
  ident: 9608_CR66
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume: 11
  start-page: 1491
  issue: 12
  year: 2003
  ident: 9608_CR26
  publication-title: Control Eng Pract
  doi: 10.1016/S0967-0661(03)00079-0
– volume: 3
  start-page: 925
  issue: 29
  year: 2018
  ident: 9608_CR74
  publication-title: J Open Source Softw
  doi: 10.21105/joss.00925
– volume: 29
  start-page: 345
  issue: 3
  year: 2014
  ident: 9608_CR37
  publication-title: Knowl Eng Rev
  doi: 10.1017/S026988891300043X
– volume: 16
  start-page: 819
  issue: 9
  year: 1992
  ident: 9608_CR42
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(92)80035-8
– volume: 113
  start-page: 7035
  issue: 26
  year: 2016
  ident: 9608_CR30
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1520877113
– ident: 9608_CR29
  doi: 10.1007/978-3-319-58821-6
– volume: 5
  start-page: 1
  issue: 1
  year: 2019
  ident: 9608_CR40
  publication-title: NPJ Comput Mater
  doi: 10.1038/s41524-019-0209-9
– volume: 6
  start-page: 17
  issue: 1
  year: 2017
  ident: 9608_CR49
  publication-title: EPJ Data Sci
  doi: 10.1140/epjds/s13688-017-0109-5
– ident: 9608_CR12
  doi: 10.1007/978-3-319-89593-2_2
– volume: 45
  start-page: 941
  issue: 5
  year: 2014
  ident: 9608_CR83
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2340433
– ident: 9608_CR9
– volume: 48
  start-page: 981
  issue: 8
  year: 2015
  ident: 9608_CR11
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.09.097
– volume: 11
  start-page: 287
  issue: 3
  year: 1997
  ident: 9608_CR24
  publication-title: J Global Optim
  doi: 10.1023/A:1008212418949
– volume: 54822
  start-page: 741
  year: 2011
  ident: 9608_CR58
  publication-title: Int Des Eng Tech Conf Comput Inf Eng Conf
– ident: 9608_CR63
– volume: 91
  start-page: 228
  issue: 3
  year: 2019
  ident: 9608_CR45
  publication-title: Chem Ing Tech
  doi: 10.1002/cite.201800091
– ident: 9608_CR39
  doi: 10.1109/ICMLA.2019.00106
– volume: 59
  start-page: 75
  year: 2014
  ident: 9608_CR84
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2014.01.020
– volume: 20
  start-page: 573
  issue: 2
  year: 2009
  ident: 9608_CR47
  publication-title: SIAM J Optim
  doi: 10.1137/080717341
– volume: 33
  start-page: 249
  issue: 2
  year: 2005
  ident: 9608_CR86
  publication-title: Discrete Comput Geom
  doi: 10.1007/s00454-004-1146-y
– volume: 42
  start-page: 1853
  issue: 11
  year: 2019
  ident: 9608_CR54
  publication-title: Bioprocess Biosyst Eng
  doi: 10.1007/s00449-019-02181-y
– ident: 9608_CR64
  doi: 10.26434/chemrxiv.12280325
– ident: 9608_CR3
  doi: 10.1016/j.compchemeng.2017.09.017
– ident: 9608_CR15
– ident: 9608_CR32
– volume: 28
  start-page: 511
  year: 2002
  ident: 9608_CR43
  publication-title: Discrete Comput Geom
  doi: 10.1007/s00454-002-2885-2
SSID ssj0016528
Score 2.468103
Snippet Data-driven models are becoming increasingly popular in engineering, on their own or in combination with mechanistic models. Commonly, the trained models are...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 855
SubjectTerms Clusters
Computational geometry
Control
Convexity
Data analysis
Design optimization
Domains
Engineering
Environmental Management
Financial Engineering
Homology
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Research Article
Support vector machines
Systems Theory
Topology
Training
Validity
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PegefIvrixy8adZNm7Tdo_hABB8HF_RUkjQBcamL20XWX28mbXdVRBQvpSVpQpJJ8iUz8w3AfsKFzJhiVKOSkAdMUsnDDuWRjbtuu1DGX-ZcXUcXPX55L-5n4LT2hfHW7rVKsvRpQJamvDgaZPZo6vjG3FZG0bwAIXhCO22XPAtzkXCfDZjrXd8eP_izVtKlnHt2RiZiDFsW8Mp35vuCPu9PU9A50ZM2YX6UD-T4Vfb7H7ai8yUwdSNKC5Sn9qhQbf32hd_xv61chsUKq5LjUrhWYMbkq9D8wGC4Bo83yoyJk9bHzMF50kd3qSF5tgQtT2n2gmsp8dF2hqQKCUSKMi4DSofPRmRFjOJeMvKcG6oR0hP_REsmLzzr0Ds_uzu5oFX0Bj_sBRWhElZ0baxjN81jzaJEWxNZo0PGwgxVkNadR6U1KmGoLgy4MExI0w1UR9ko3IBG7urcBJJk0p2erXVYLOSxllKK0K3LPJFCcRvYFrB6zFJdUZtjhI1-OiVlxq5MXVemvivTTgsOJv8MSmKPH3Pv1KKQVpN8mAZIno8AJ2rBYT2a0-SfSjuciNAvKt_6W_ZtWAjQR8NfFe1Ao3gZmV2HnAq1V02Md9YcDSY
  priority: 102
  providerName: Unpaywall
Title Obey validity limits of data-driven models through topological data analysis and one-class classification
URI https://link.springer.com/article/10.1007/s11081-021-09608-0
https://www.proquest.com/docview/2662726616
https://link.springer.com/content/pdf/10.1007/s11081-021-09608-0.pdf
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-2924
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016528
  issn: 1389-4420
  databaseCode: AFBBN
  dateStart: 20000601
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-2924
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016528
  issn: 1389-4420
  databaseCode: AGYKE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-2924
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016528
  issn: 1389-4420
  databaseCode: U2A
  dateStart: 20000601
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5iD-pBfGK1lhy8abDJJtntsRQfKD4OFuppSXYTEEpbui3Sf-9Mut2qiOhhwz4T2C_JfJPJzBBylkhlcm45y9BIKAU3zMioxaT2cRvEhXVhMefhUd_25F1f9cswOegL881-f1ngNnVQeAUcQLYTBup5DYSUDoZZ3a0sBlqFPKpod2NSilbpIPNzHV-F0IpZVsbQLbIxG47N_N0MBp_kzfUO2S6JIu0skN0la264R7Y-hQ-Eq4cq5mqxT96erJtT6DhvOTBrOkDPpYKOPMVNoCyf4LRGQ-KbgpbZeeh0kSIBgQqvUVPGKIGTnI6GjmXIrmkocVNRwPGA9K6vXrq3rEykEBCYMhVZ5VXbx1kMIy7OuE4y77R3WcR5lKM10INqaLyzCUfLnZDKcWVcW9iW9To6JOtDaPOI0CQ3oMh6D7QoknFmjFERTJEyMcpKL3yd8OWfTbMyyjgmuxikq_jIiEYKaKQBjbRVJ-fVN-NFjI1f324sAUvL8VakAuPYI9fQdXKxBHH1-LfaLiqg_9D48f9qPyGbAt0lwqpNg6xPJzN3CiRmapuk1rl5vb9qhl4MZU904F7v8bnz-gH6-elJ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6hcgAOPBbQlqcP3MCoTuwkPSIElEfhQiU4RbZjS2irgkgqBL8ej-uksEIILlGiJHZijz2fPTPfAOxlXMiCKUY1Ggl5xCSVPO5Qnti069SFMn4zp3-d9Ab84k7chaCwsvZ2r02SfqaeBrsxp74ouhQg7M6oW6jPcrdAiVowe3R2f3nSWA8S4XOqog2Och51QrDM16V8VkhTlNkYRhdgbjx6kq8vcjj8oHtOl2BQf_XE5eTf4bhSh_rtP0LH3_7WMiwGMEqOJtKzAjNm9AcWPlAUuqt-w-tarsLDjTKvxAnnQ-HQOxlidFRJHi1BR1NaPOPUSXxynZKEDECkmqRhQGHwjxEZeFDcSUEeR4ZqRPDEH9FxycvKGgxOT26PezQka_C9XFERK2FF16Y6daM61SzJtDWJNTpmLC7Q4mjd8lNaozKG1sGIC8OENN1IdZRN4nVojVydf4FkhXSLZWsd9Ip5qqWUInbTMM-kUNxGtg2s7rFcByZzTKgxzKcczNiouWvU3Ddq3mnDfvPO04TH49unt2pByMOYLvMIufIRzyRtOKj7cnr7u9IOGgH6QeUbvyt9F-Z6t_2r_Or8-nIT5iMMz_C7RFvQqp7HZtuBpkrthDHyDhruCSg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yQd2DeMXp1Dz45sKWNmm7R5mOedn0wcHeStImMBjd2Dpk_96c9LIJMvSl9JIm0C9pvuSc8x2E7gLGRUwlJREYCZlDBRHMbRHmab9tpgup7GZOf-D1huxlxEcbUfzW270wSWYxDaDSlKTNWayb68A3aqYyAu4FQMEDYhbtu8zcghwGHa9T2hE8brOrgjWOMOa08rCZ3-v4OTWt-WZpIq2i_WUyE6svMZlszELdI3SY00f8kOF9jHZUcoKqG6KC5qpfKrEuTtH4XaoVNt1pHBu-jScQz7TAU43BNZTEc_jZYZsOZ4HznD04zRInAHy2GBa5cok5ifE0USQCzo3tEVyNLLpnaNh9-uz0SJ5eweKSEu5Krnlb-5FvxqEfUS-ItPK0ilxK3RhshNosGIVWMqBgz3MYV5QL1XZkS2rPPUeVxLR5gXAQC7O81dqQJZf5kRCCu-bHyQLBJdOOriFafNkwyrXHIQXGJFyrJgMaoUEjtGiErRq6L9-ZZcobW0vXC8DCfBQuQgfU7YGBeDXUKEBcP95WW6ME-g-NX_6v9lu09_HYDd-eB69X6MCBeAq7rVNHlXS-VNeG5aTyxnbkb3gh8FI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PegefIvrixy8adZNm7Tdo_hABB8HF_RUkjQBcamL20XWX28mbXdVRBQvpSVpQpJJ8iUz8w3AfsKFzJhiVKOSkAdMUsnDDuWRjbtuu1DGX-ZcXUcXPX55L-5n4LT2hfHW7rVKsvRpQJamvDgaZPZo6vjG3FZG0bwAIXhCO22XPAtzkXCfDZjrXd8eP_izVtKlnHt2RiZiDFsW8Mp35vuCPu9PU9A50ZM2YX6UD-T4Vfb7H7ai8yUwdSNKC5Sn9qhQbf32hd_xv61chsUKq5LjUrhWYMbkq9D8wGC4Bo83yoyJk9bHzMF50kd3qSF5tgQtT2n2gmsp8dF2hqQKCUSKMi4DSofPRmRFjOJeMvKcG6oR0hP_REsmLzzr0Ds_uzu5oFX0Bj_sBRWhElZ0baxjN81jzaJEWxNZo0PGwgxVkNadR6U1KmGoLgy4MExI0w1UR9ko3IBG7urcBJJk0p2erXVYLOSxllKK0K3LPJFCcRvYFrB6zFJdUZtjhI1-OiVlxq5MXVemvivTTgsOJv8MSmKPH3Pv1KKQVpN8mAZIno8AJ2rBYT2a0-SfSjuciNAvKt_6W_ZtWAjQR8NfFe1Ao3gZmV2HnAq1V02Md9YcDSY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Obey+validity+limits+of+data-driven+models+through+topological+data+analysis+and+one-class+classification&rft.jtitle=Optimization+and+engineering&rft.au=Schweidtmann%2C+Artur+M&rft.au=Weber%2C+Jana+M&rft.au=Wende%2C+Christian&rft.au=Netze+Linus&rft.date=2022-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1389-4420&rft.eissn=1573-2924&rft.volume=23&rft.issue=2&rft.spage=855&rft.epage=876&rft_id=info:doi/10.1007%2Fs11081-021-09608-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-4420&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-4420&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-4420&client=summon