EmoMatchSpanishDB: study of speech emotion recognition machine learning models in a new Spanish elicited database

In this paper we present a new speech emotion dataset on Spanish. The database is created using an elicited approach and is composed by fifty non-actors expressing the Ekman’s six basic emotions of anger, disgust, fear, happiness, sadness, and surprise, plus neutral tone. This article describes how...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 5; pp. 13093 - 13112
Main Authors Garcia-Cuesta, Esteban, Salvador, Antonio Barba, Pãez, Diego Gachet
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-7721
1380-7501
1573-7721
DOI10.1007/s11042-023-15959-w

Cover

Abstract In this paper we present a new speech emotion dataset on Spanish. The database is created using an elicited approach and is composed by fifty non-actors expressing the Ekman’s six basic emotions of anger, disgust, fear, happiness, sadness, and surprise, plus neutral tone. This article describes how this database has been created from the recording step to the performed crowdsourcing perception test step. The crowdsourcing has facilitated to statistically validate the emotion of each collected audio sample and also to filter noisy data samples. Hence we obtained two datasets EmoSpanishDB and EmoMatchSpanishDB. The first includes those recorded audios that had consensus during the crowdsourcing process. The second selects from EmoSpanishDB only those audios whose emotion also matches with the originally elicited. Last, we present a baseline comparative study between different state of the art machine learning techniques in terms of accuracy, precision, and recall for both datasets. The results obtained for EmoMatchSpanishDB improves the ones obtained for EmoSpanishDB and thereof, we recommend to follow the methodology that was used for the creation of emotional databases.
AbstractList In this paper we present a new speech emotion dataset on Spanish. The database is created using an elicited approach and is composed by fifty non-actors expressing the Ekman’s six basic emotions of anger, disgust, fear, happiness, sadness, and surprise, plus neutral tone. This article describes how this database has been created from the recording step to the performed crowdsourcing perception test step. The crowdsourcing has facilitated to statistically validate the emotion of each collected audio sample and also to filter noisy data samples. Hence we obtained two datasets EmoSpanishDB and EmoMatchSpanishDB. The first includes those recorded audios that had consensus during the crowdsourcing process. The second selects from EmoSpanishDB only those audios whose emotion also matches with the originally elicited. Last, we present a baseline comparative study between different state of the art machine learning techniques in terms of accuracy, precision, and recall for both datasets. The results obtained for EmoMatchSpanishDB improves the ones obtained for EmoSpanishDB and thereof, we recommend to follow the methodology that was used for the creation of emotional databases.
Author Salvador, Antonio Barba
Pãez, Diego Gachet
Garcia-Cuesta, Esteban
Author_xml – sequence: 1
  givenname: Esteban
  surname: Garcia-Cuesta
  fullname: Garcia-Cuesta, Esteban
  email: esteban.garcia@fi.upm.es
  organization: Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid
– sequence: 2
  givenname: Antonio Barba
  surname: Salvador
  fullname: Salvador, Antonio Barba
  organization: Departamento de Ciencia Y Computación, Universidad Europea de Madrid
– sequence: 3
  givenname: Diego Gachet
  surname: Pãez
  fullname: Pãez, Diego Gachet
  organization: Departmento de Automãtica, Universidad Francisco de Vitoria
BookMark eNp9kEtPwzAQhC0EEm3hD3CyxDngRxIn3KCUh1TEAThbxt60rhK7tVNV_fekTSUQh552DvPtzs4QnTrvAKErSm4oIeI2UkpSlhDGE5qVWZlsTtCAZoInQjB6-kefo2GMC0JonrF0gFaTxr-pVs8_lsrZOH98uMOxXZst9hWOSwA9x9D41nqHA2g_c3avG6Xn1gGuQQVn3Qw33kAdsXVYYQcbfNiHobbatmCwUa36VhEu0Fml6giXhzlCX0-Tz_FLMn1_fh3fTxPNc94mGTFGcKgyRjhhinZPEcgKU2pgRqcqF6TSuSkBeCUoN6IgWrMyo8BZmULKR-i637sMfrWG2MqFXwfXnZSspIXIBctF5yp6lw4-xgCV7NKq3YttULaWlMhdwbIvWHYFy33BctOh7B-6DLZRYXsc4j0UO7ObQfhNdYT6AVXXkbA
CitedBy_id crossref_primary_10_3390_s24175797
crossref_primary_10_1016_j_bspc_2025_107636
crossref_primary_10_1109_TASLPRO_2025_3540662
Cites_doi 10.1007/s10772-018-9491-z
10.1007/s10796-017-9734-6
10.1016/j.brat.2007.08.003
10.1016/j.specom.2011.10.005
10.1109/EMEIT.2011.6023178
10.1080/13546805.2017.1330190
10.31887/DCNS.2006.8.1/ftremeau
10.21437/SpeechProsody.2010-123
10.1037/a0022572
10.1155/2014/757121
10.21437/Interspeech.2005-446
10.1177/1754073910374661
10.25080/Majora-7b98e3ed-003
10.1109/TPAMI.2019.2944808
10.1016/j.csl.2014.01.003
10.21437/Interspeech.2012-118
10.1007/s10772-011-9125-1
10.1515/9781614515159.207
10.7551/mitpress/1140.001.0001
10.1109/ICASSP.2014.6854297
10.1016/j.wocn.2018.07.001
10.1109/MIS.2012.110
10.1007/s10579-019-09450-y
10.21437/Interspeech.2016-129
10.1007/s10772-019-09605-w
10.1057/s41599-020-0499-z
10.1049/el.2009.1977
10.1016/j.cpr.2010.05.001
10.1109/TAFFC.2015.2457417
10.1109/PCTHEALTH.2008.4571041
10.1007/s13278-018-0505-2
10.5370/KIEE.2016.65.1.116
10.1017/S0140525X00076512
10.1098/rsos.160855
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-15959-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: C6C
  name: Springer_OA刊
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 13112
ExternalDocumentID 10_1007_s11042_023_15959_w
GrantInformation_xml – fundername: Universidad Politécnica de Madrid
– fundername: Universidad Europea de Madrid
  grantid: 2019/UEM60
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c363t-50dd73ef520302a19590e58d9ce2dc4a670fc6d9ee3f713d780cc2951e3294e43
IEDL.DBID C6C
ISSN 1573-7721
1380-7501
IngestDate Fri Jul 25 22:20:56 EDT 2025
Tue Jul 01 04:13:24 EDT 2025
Thu Apr 24 22:58:54 EDT 2025
Fri Feb 21 02:41:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Affective analysis
Machine learning
Speech emotion recognition
EmoMatchSpanishDB
Language resources
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-50dd73ef520302a19590e58d9ce2dc4a670fc6d9ee3f713d780cc2951e3294e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s11042-023-15959-w
PQID 2918767267
PQPubID 54626
PageCount 20
ParticipantIDs proquest_journals_2918767267
crossref_citationtrail_10_1007_s11042_023_15959_w
crossref_primary_10_1007_s11042_023_15959_w
springer_journals_10_1007_s11042_023_15959_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References JadoulYThompsonBde BoerBIntroducing Parselmouth: A Python interface to PraatJ Phon20187111510.1016/j.wocn.2018.07.001
LausenAHammerschmidtKEmotion recognition and confidence ratings predicted by vocal stimulus type and prosodic parametersHumanit Soc Sci Commun20207210.1057/s41599-020-0499-z
Schuller B, Steidl S, Batliner A, Hirschberg J, Burgoon JK, Baird A, and Evanini K. (2016). The interspeech 2016 computational paralinguistics challenge: Deception, sincerity and native language. In 17TH Ann Conf Int Speech Comm Assoc (Interspeech 2016),. Vols 1–5 (Vol. 8, pp. 2001–2005). ISCA.
Vaidyanathan PP (2008) The Theory of Linear Prediction. Chapter 8. California Institute of Technology. Morgan and Claypool Publishers Series
AttwoodASEaseyKEDaliliMNSkinnerALWoodsACrickLIlettEPenton-VoakISMunafóMRState anxiety and emotional face recognition in healthy volunteersR Soc Open Sci.20174516085510.1098/rsos.160855
PremackDWoodruffGDoes the chimpanzee have a theory of mind?Behav Brain Sci Special Issue: Cognition and Consiousness in Nonhuman Species.19781451552610.1017/S0140525X00076512
Chang-Hong L, Liao WK, Hsieh WC, Liao WJ, Wang JC (2014) Emotion identification using extremely low frequency components of speech feature contours. Hindawi Publishing Corporation. Sci World J. Volume 2014
Shen P, Changjun Z. and Chen X. (2011) Automatic Speech Emotion Recognition Using Support Vector Machine. Int Conf Electr Mech Eng Inf Technol
Snow R, O' Connor, Jurafsky D. and Ng A. (2008).   evaluating Non-Expert annotations for natural language tasks, Proceedings of EMNLP-08.
GrichkovtsovaIMorelMLacheretAThe role of voice quality and prosodic contour in affective speech perceptionSpeech Comm.201254341442910.1016/j.specom.2011.10.005
Parada-CabaleiroECostantiniGBatlinerADEMoS: an Italian emotional speech corpusLang Res Eval202054234138310.1007/s10579-019-09450-y
TsengHHHuangYLChenJTLiangKYLinCCChenSHFacial and prosodic emotion recognition in social anxiety disorderCogn Neuropsychiatry.201722433134510.1080/13546805.2017.1330190
Sailunaz K, Dhaliwal M, Rokne J, and Alhajj R. (2018) Emotion detection from text and speech: a survey. SocNetw Anal Min. 8(1)
PoornaSSNairGJMultistage classification scheme to enhance speech emotion recognitionInt J Speech Technol.201922232734010.1007/s10772-019-09605-w
Rozgic V, Ananthakrishnan S, Saleem S, Kumar R, Vembu AN, Prasad R. (2012) Emotion recognition using acoustic and lexical features. In: INTERSPEECH. Portland, USA
SwainMRoutrayAKabisatpathyPDatabases, features and classifiers for speech emotion recognition: a reviewInt J Speech Technol20182119312010.1007/s10772-018-9491-z
PobletMGarcia-CuestaECasanovasPCrowdsourcing roles, methods and tools for data-intensive disaster managementInf Syst Front20182061363137910.1007/s10796-017-9734-6
RodriguezIACálculo de frecuencias de aparición de fonemas y alófonos en espanol actual utilizando un transcriptor automaticoLoquens201631e029
EkmanPSchererKEkmanPExpression and the nature of emotionApproaches to Emotion1984Hillsdale, NJErlbaum319344
PicardR(1997) Affective Computing1997CambridgeThe MIT Press
Florian E, Wöllmer M, Schuller B (2010) openSMILE - The Munich Versatile and Fast Open-Source Audio Feature Extractor, Proc. ACM Multimedia (MM), ACM, Florence, Italy, pp. 1459–1462
Iriondo I, Guaus R, Rodriguez A, Lázaro P, Montoya N, Blanco JM, Bernadas D, Oliver JM, Tena D, and Longhi L (2000) Validation of an acoustical modeling of emotional expression in Spanish using speech synthesis techniques. In ITRW on speechand emotion, New Castle, Northern Ireland, UK Sept. 2000
TrémeauFA review of emotion deficits in schizophreniaDialogues Clin Neurosci200681597010.31887/DCNS.2006.8.1/ftremeau
Burkhardt F, Paeschke, Rolfes M, Sendlmeier W, Weiss B (2005) 1129 A database of German emotional speech. In: Proc. Interspeech, pp. 1517–1520
Jiang D, Lu L, Zhang H, Tao J and Cai L. (2002). Music type classification by spectral contrast feature. In Multimedia and Expo, 2002. ICME‘02. Proceedings. 2002 IEEE Int Conf. vol. 1, pp. 113–116. IEEE, 2002
StaugaardSRThreatening faces and social anxiety: A literature reviewClin Psychol Rev201030666969010.1016/j.cpr.2010.05.001
XuZMeyerPFingscheidtT"On the Effects of Speaker Gender in Emotion Recognition Training Data," Speech Communication; 13th ITG-Symposium2018GermanyOldenburg15
KossaifiJSEWA DB: A Rich Database for Audio-Visual Emotion and Sentiment Research in the WildIn IEEE Trans Patt Anal Mach Intell.20214331022104010.1109/TPAMI.2019.2944808
Real Academia Española y Asociación de Academias de la Lengua Española. (2005). Diccionario panhispánico de dudas. Madrid: Santillana
ByunSLeeSEmotion Recognition Using Tone and Tempo Based on Voice for IoTTrans Korean Inst Electr Eng20166511612110.5370/KIEE.2016.65.1.116
Scherer KR, Banziger T and Roesch E. (2010). A Blueprint for Affective Computing: A source book and manual. Oxford University press.
Montoro JM, Gutierrez-Arriola J, Colas J, Enriquez E, and Pardo JM. (1999). Analysis and modeling of emotional speech in Spanish. In Proc. int. conf. on phonetic sciences (pp. 957-960)
Cao H, Verma R, Nenkova A (2014) Speaker-sensitive emotion recognition via ranking: Studies on acted and spontaneous speech. Comput Speech Lang.
CavanaghSRUrryHLShinLMMood-induced shifts in attentional bias to emotional information predict ill-and well-beingEmotion201111224124810.1037/a0022572
MadhuNNote on measures for spectral flatnessElectron Lett20094523119510.1049/el.2009.1977
QuadfliegSWendBMohrAMiltnerWHStraubeTRecognition and evaluation of emotional prosody in individuals with generalized social phobia: A pilot studyBehav Res Ther.200745123096310310.1016/j.brat.2007.08.003
Amer MR, Siddiquie B, Richey C, Divakaran A (2014) Emotion recognition in speech using deep networks. In: ICASSP. Florence, Italy, pp 3752–3756
Polzehl T, Schmitt A, and Metze Florian. (2010). Approaching multi-lingual emotion recognition from speech - on language dependency of acoustic/prosodic features for anger recognition. In Speech Prosody’2010 Conference, paper 442, Chicago, IL, USA May 10–14
Schuller B, Wöllmer M, Eyben F, and Rigoll G. (2009) Spectral or Voice Quality? Feature Type Relevance for the Discrimination of Emotion Pairs. The Role of Prosody in Affective Speech (S. Hancil, ed.), vol. 97 of Linguistic Insights, Studies in Language and Communication, pp. 285-307, Peter Lang Publishing Group
KoolagudiSGRaoKSEmotion recognition from speech: a reviewInt J Speech Technol2012159911710.1007/s10772-011-9125-1
Marchi E, Ringeval F, and Schuller B. (2014) Voice-enabled assistive robots for handling autism spectrum conditions: an examination of the role of prosody,” Speech and Automata in Health Care (Speech Technology and Text Mining in Medicine and Healthcare). De Gruyter, Boston/Berlin/Munich. pp. 207-236
McFee B, Raffel C, Liang D, Ellis DPW, McVicar M,  EB, and Nieto O. (2015) librosa: Audio and music signal analysis in python. In Proceedings of the 14th python in science conference, pp. 18–25
Tacconi D, Mayora O, Lukowicz P, Arnrich B, Setz C, Troster G, and Haring C (2008) Activity and emotion recognition to support early diagnosis of psychiatric diseases. In 2008 Second Int Conf Perv Comput Technol Healthcare, pp. 100-102
Muhammadi J, Rabiee HR, and Hosseini A. (2013). Crowd Labeling: a survey. arXiv: Artificial Intelligence.
MehrabianA(1971) Silent Messages1971Belmont, CAWadsworth Publishing Co.
EybenFSchererKRSchullerBWSundbergJAndréEBussoCTruongKPThe Geneva minimalistic acoustic parameter set (GeMAPS) for voice research and affective computingIEEE Trans Affect Comput20157219020210.1109/TAFFC.2015.2457417
IzardCEThe many meanings/aspects of emotion: Emotion definitions, functions, activation, and regulationEmot Rev20102436337010.1177/1754073910374661
CalvoRAD’MelloSFrontiers of Affect-Aware Learning TechnologiesIntell. Syst. IEEE.20122727868910.1109/MIS.2012.110
S Byun (15959_CR4) 2016; 65
CE Izard (15959_CR14) 2010; 2
SR Cavanagh (15959_CR7) 2011; 11
15959_CR22
15959_CR44
15959_CR21
I Grichkovtsova (15959_CR12) 2012; 54
15959_CR24
E Parada-Cabaleiro (15959_CR26) 2020; 54
15959_CR40
15959_CR41
15959_CR8
15959_CR29
15959_CR6
F Eyben (15959_CR10) 2015; 7
15959_CR25
IA Rodriguez (15959_CR34) 2016; 3
15959_CR47
Z Xu (15959_CR48) 2018
J Kossaifi (15959_CR18) 2021; 43
15959_CR3
15959_CR1
D Premack (15959_CR31) 1978; 1
R Picard (15959_CR27) 1997
P Ekman (15959_CR9) 1984
15959_CR11
15959_CR33
Y Jadoul (15959_CR15) 2018; 71
15959_CR13
15959_CR35
A Lausen (15959_CR19) 2020; 7
HH Tseng (15959_CR46) 2017; 22
N Madhu (15959_CR20) 2009; 45
SS Poorna (15959_CR30) 2019; 22
M Poblet (15959_CR28) 2018; 20
SG Koolagudi (15959_CR17) 2012; 15
S Quadflieg (15959_CR32) 2007; 45
M Swain (15959_CR43) 2018; 21
A Mehrabian (15959_CR23) 1971
15959_CR37
F Trémeau (15959_CR45) 2006; 8
15959_CR36
AS Attwood (15959_CR2) 2017; 4
RA Calvo (15959_CR5) 2012; 27
15959_CR39
15959_CR16
15959_CR38
SR Staugaard (15959_CR42) 2010; 30
References_xml – reference: PobletMGarcia-CuestaECasanovasPCrowdsourcing roles, methods and tools for data-intensive disaster managementInf Syst Front20182061363137910.1007/s10796-017-9734-6
– reference: Scherer KR, Banziger T and Roesch E. (2010). A Blueprint for Affective Computing: A source book and manual. Oxford University press.
– reference: XuZMeyerPFingscheidtT"On the Effects of Speaker Gender in Emotion Recognition Training Data," Speech Communication; 13th ITG-Symposium2018GermanyOldenburg15
– reference: Chang-Hong L, Liao WK, Hsieh WC, Liao WJ, Wang JC (2014) Emotion identification using extremely low frequency components of speech feature contours. Hindawi Publishing Corporation. Sci World J. Volume 2014
– reference: Schuller B, Wöllmer M, Eyben F, and Rigoll G. (2009) Spectral or Voice Quality? Feature Type Relevance for the Discrimination of Emotion Pairs. The Role of Prosody in Affective Speech (S. Hancil, ed.), vol. 97 of Linguistic Insights, Studies in Language and Communication, pp. 285-307, Peter Lang Publishing Group
– reference: KossaifiJSEWA DB: A Rich Database for Audio-Visual Emotion and Sentiment Research in the WildIn IEEE Trans Patt Anal Mach Intell.20214331022104010.1109/TPAMI.2019.2944808
– reference: MadhuNNote on measures for spectral flatnessElectron Lett20094523119510.1049/el.2009.1977
– reference: Sailunaz K, Dhaliwal M, Rokne J, and Alhajj R. (2018) Emotion detection from text and speech: a survey. SocNetw Anal Min. 8(1)
– reference: Marchi E, Ringeval F, and Schuller B. (2014) Voice-enabled assistive robots for handling autism spectrum conditions: an examination of the role of prosody,” Speech and Automata in Health Care (Speech Technology and Text Mining in Medicine and Healthcare). De Gruyter, Boston/Berlin/Munich. pp. 207-236
– reference: AttwoodASEaseyKEDaliliMNSkinnerALWoodsACrickLIlettEPenton-VoakISMunafóMRState anxiety and emotional face recognition in healthy volunteersR Soc Open Sci.20174516085510.1098/rsos.160855
– reference: PremackDWoodruffGDoes the chimpanzee have a theory of mind?Behav Brain Sci Special Issue: Cognition and Consiousness in Nonhuman Species.19781451552610.1017/S0140525X00076512
– reference: TsengHHHuangYLChenJTLiangKYLinCCChenSHFacial and prosodic emotion recognition in social anxiety disorderCogn Neuropsychiatry.201722433134510.1080/13546805.2017.1330190
– reference: Cao H, Verma R, Nenkova A (2014) Speaker-sensitive emotion recognition via ranking: Studies on acted and spontaneous speech. Comput Speech Lang.
– reference: KoolagudiSGRaoKSEmotion recognition from speech: a reviewInt J Speech Technol2012159911710.1007/s10772-011-9125-1
– reference: EybenFSchererKRSchullerBWSundbergJAndréEBussoCTruongKPThe Geneva minimalistic acoustic parameter set (GeMAPS) for voice research and affective computingIEEE Trans Affect Comput20157219020210.1109/TAFFC.2015.2457417
– reference: EkmanPSchererKEkmanPExpression and the nature of emotionApproaches to Emotion1984Hillsdale, NJErlbaum319344
– reference: Amer MR, Siddiquie B, Richey C, Divakaran A (2014) Emotion recognition in speech using deep networks. In: ICASSP. Florence, Italy, pp 3752–3756
– reference: Iriondo I, Guaus R, Rodriguez A, Lázaro P, Montoya N, Blanco JM, Bernadas D, Oliver JM, Tena D, and Longhi L (2000) Validation of an acoustical modeling of emotional expression in Spanish using speech synthesis techniques. In ITRW on speechand emotion, New Castle, Northern Ireland, UK Sept. 2000
– reference: McFee B, Raffel C, Liang D, Ellis DPW, McVicar M,  EB, and Nieto O. (2015) librosa: Audio and music signal analysis in python. In Proceedings of the 14th python in science conference, pp. 18–25
– reference: Vaidyanathan PP (2008) The Theory of Linear Prediction. Chapter 8. California Institute of Technology. Morgan and Claypool Publishers Series
– reference: Burkhardt F, Paeschke, Rolfes M, Sendlmeier W, Weiss B (2005) 1129 A database of German emotional speech. In: Proc. Interspeech, pp. 1517–1520
– reference: PicardR(1997) Affective Computing1997CambridgeThe MIT Press
– reference: PoornaSSNairGJMultistage classification scheme to enhance speech emotion recognitionInt J Speech Technol.201922232734010.1007/s10772-019-09605-w
– reference: Tacconi D, Mayora O, Lukowicz P, Arnrich B, Setz C, Troster G, and Haring C (2008) Activity and emotion recognition to support early diagnosis of psychiatric diseases. In 2008 Second Int Conf Perv Comput Technol Healthcare, pp. 100-102
– reference: QuadfliegSWendBMohrAMiltnerWHStraubeTRecognition and evaluation of emotional prosody in individuals with generalized social phobia: A pilot studyBehav Res Ther.200745123096310310.1016/j.brat.2007.08.003
– reference: CalvoRAD’MelloSFrontiers of Affect-Aware Learning TechnologiesIntell. Syst. IEEE.20122727868910.1109/MIS.2012.110
– reference: GrichkovtsovaIMorelMLacheretAThe role of voice quality and prosodic contour in affective speech perceptionSpeech Comm.201254341442910.1016/j.specom.2011.10.005
– reference: Parada-CabaleiroECostantiniGBatlinerADEMoS: an Italian emotional speech corpusLang Res Eval202054234138310.1007/s10579-019-09450-y
– reference: SwainMRoutrayAKabisatpathyPDatabases, features and classifiers for speech emotion recognition: a reviewInt J Speech Technol20182119312010.1007/s10772-018-9491-z
– reference: ByunSLeeSEmotion Recognition Using Tone and Tempo Based on Voice for IoTTrans Korean Inst Electr Eng20166511612110.5370/KIEE.2016.65.1.116
– reference: RodriguezIACálculo de frecuencias de aparición de fonemas y alófonos en espanol actual utilizando un transcriptor automaticoLoquens201631e029
– reference: TrémeauFA review of emotion deficits in schizophreniaDialogues Clin Neurosci200681597010.31887/DCNS.2006.8.1/ftremeau
– reference: Real Academia Española y Asociación de Academias de la Lengua Española. (2005). Diccionario panhispánico de dudas. Madrid: Santillana
– reference: Jiang D, Lu L, Zhang H, Tao J and Cai L. (2002). Music type classification by spectral contrast feature. In Multimedia and Expo, 2002. ICME‘02. Proceedings. 2002 IEEE Int Conf. vol. 1, pp. 113–116. IEEE, 2002
– reference: CavanaghSRUrryHLShinLMMood-induced shifts in attentional bias to emotional information predict ill-and well-beingEmotion201111224124810.1037/a0022572
– reference: Shen P, Changjun Z. and Chen X. (2011) Automatic Speech Emotion Recognition Using Support Vector Machine. Int Conf Electr Mech Eng Inf Technol
– reference: Polzehl T, Schmitt A, and Metze Florian. (2010). Approaching multi-lingual emotion recognition from speech - on language dependency of acoustic/prosodic features for anger recognition. In Speech Prosody’2010 Conference, paper 442, Chicago, IL, USA May 10–14
– reference: MehrabianA(1971) Silent Messages1971Belmont, CAWadsworth Publishing Co.
– reference: Snow R, O' Connor, Jurafsky D. and Ng A. (2008).   evaluating Non-Expert annotations for natural language tasks, Proceedings of EMNLP-08.
– reference: IzardCEThe many meanings/aspects of emotion: Emotion definitions, functions, activation, and regulationEmot Rev20102436337010.1177/1754073910374661
– reference: Muhammadi J, Rabiee HR, and Hosseini A. (2013). Crowd Labeling: a survey. arXiv: Artificial Intelligence.
– reference: LausenAHammerschmidtKEmotion recognition and confidence ratings predicted by vocal stimulus type and prosodic parametersHumanit Soc Sci Commun20207210.1057/s41599-020-0499-z
– reference: JadoulYThompsonBde BoerBIntroducing Parselmouth: A Python interface to PraatJ Phon20187111510.1016/j.wocn.2018.07.001
– reference: Schuller B, Steidl S, Batliner A, Hirschberg J, Burgoon JK, Baird A, and Evanini K. (2016). The interspeech 2016 computational paralinguistics challenge: Deception, sincerity and native language. In 17TH Ann Conf Int Speech Comm Assoc (Interspeech 2016),. Vols 1–5 (Vol. 8, pp. 2001–2005). ISCA.
– reference: StaugaardSRThreatening faces and social anxiety: A literature reviewClin Psychol Rev201030666969010.1016/j.cpr.2010.05.001
– reference: Rozgic V, Ananthakrishnan S, Saleem S, Kumar R, Vembu AN, Prasad R. (2012) Emotion recognition using acoustic and lexical features. In: INTERSPEECH. Portland, USA
– reference: Montoro JM, Gutierrez-Arriola J, Colas J, Enriquez E, and Pardo JM. (1999). Analysis and modeling of emotional speech in Spanish. In Proc. int. conf. on phonetic sciences (pp. 957-960)
– reference: Florian E, Wöllmer M, Schuller B (2010) openSMILE - The Munich Versatile and Fast Open-Source Audio Feature Extractor, Proc. ACM Multimedia (MM), ACM, Florence, Italy, pp. 1459–1462
– volume: 21
  start-page: 93
  issue: 1
  year: 2018
  ident: 15959_CR43
  publication-title: Int J Speech Technol
  doi: 10.1007/s10772-018-9491-z
– ident: 15959_CR33
– volume: 20
  start-page: 1363
  issue: 6
  year: 2018
  ident: 15959_CR28
  publication-title: Inf Syst Front
  doi: 10.1007/s10796-017-9734-6
– volume: 45
  start-page: 3096
  issue: 12
  year: 2007
  ident: 15959_CR32
  publication-title: Behav Res Ther.
  doi: 10.1016/j.brat.2007.08.003
– ident: 15959_CR37
– volume: 54
  start-page: 414
  issue: 3
  year: 2012
  ident: 15959_CR12
  publication-title: Speech Comm.
  doi: 10.1016/j.specom.2011.10.005
– ident: 15959_CR39
– ident: 15959_CR40
  doi: 10.1109/EMEIT.2011.6023178
– volume: 22
  start-page: 331
  issue: 4
  year: 2017
  ident: 15959_CR46
  publication-title: Cogn Neuropsychiatry.
  doi: 10.1080/13546805.2017.1330190
– volume: 8
  start-page: 59
  issue: 1
  year: 2006
  ident: 15959_CR45
  publication-title: Dialogues Clin Neurosci
  doi: 10.31887/DCNS.2006.8.1/ftremeau
– ident: 15959_CR29
  doi: 10.21437/SpeechProsody.2010-123
– volume: 11
  start-page: 241
  issue: 2
  year: 2011
  ident: 15959_CR7
  publication-title: Emotion
  doi: 10.1037/a0022572
– ident: 15959_CR8
  doi: 10.1155/2014/757121
– ident: 15959_CR25
– ident: 15959_CR3
  doi: 10.21437/Interspeech.2005-446
– start-page: 319
  volume-title: Approaches to Emotion
  year: 1984
  ident: 15959_CR9
– volume: 2
  start-page: 363
  issue: 4
  year: 2010
  ident: 15959_CR14
  publication-title: Emot Rev
  doi: 10.1177/1754073910374661
– ident: 15959_CR22
  doi: 10.25080/Majora-7b98e3ed-003
– volume: 43
  start-page: 1022
  issue: 3
  year: 2021
  ident: 15959_CR18
  publication-title: In IEEE Trans Patt Anal Mach Intell.
  doi: 10.1109/TPAMI.2019.2944808
– ident: 15959_CR6
  doi: 10.1016/j.csl.2014.01.003
– ident: 15959_CR35
  doi: 10.21437/Interspeech.2012-118
– ident: 15959_CR11
– ident: 15959_CR13
– volume: 15
  start-page: 99
  year: 2012
  ident: 15959_CR17
  publication-title: Int J Speech Technol
  doi: 10.1007/s10772-011-9125-1
– ident: 15959_CR21
  doi: 10.1515/9781614515159.207
– volume: 3
  start-page: e029
  issue: 1
  year: 2016
  ident: 15959_CR34
  publication-title: Loquens
– start-page: 1
  volume-title: "On the Effects of Speaker Gender in Emotion Recognition Training Data," Speech Communication; 13th ITG-Symposium
  year: 2018
  ident: 15959_CR48
– volume-title: (1997) Affective Computing
  year: 1997
  ident: 15959_CR27
  doi: 10.7551/mitpress/1140.001.0001
– ident: 15959_CR1
  doi: 10.1109/ICASSP.2014.6854297
– volume: 71
  start-page: 1
  year: 2018
  ident: 15959_CR15
  publication-title: J Phon
  doi: 10.1016/j.wocn.2018.07.001
– volume: 27
  start-page: 86
  issue: 27
  year: 2012
  ident: 15959_CR5
  publication-title: Intell. Syst. IEEE.
  doi: 10.1109/MIS.2012.110
– volume: 54
  start-page: 341
  issue: 2
  year: 2020
  ident: 15959_CR26
  publication-title: Lang Res Eval
  doi: 10.1007/s10579-019-09450-y
– ident: 15959_CR38
  doi: 10.21437/Interspeech.2016-129
– volume: 22
  start-page: 327
  issue: 2
  year: 2019
  ident: 15959_CR30
  publication-title: Int J Speech Technol.
  doi: 10.1007/s10772-019-09605-w
– volume: 7
  start-page: 2
  year: 2020
  ident: 15959_CR19
  publication-title: Humanit Soc Sci Commun
  doi: 10.1057/s41599-020-0499-z
– volume: 45
  start-page: 1195
  issue: 23
  year: 2009
  ident: 15959_CR20
  publication-title: Electron Lett
  doi: 10.1049/el.2009.1977
– ident: 15959_CR16
– ident: 15959_CR41
– volume: 30
  start-page: 669
  issue: 6
  year: 2010
  ident: 15959_CR42
  publication-title: Clin Psychol Rev
  doi: 10.1016/j.cpr.2010.05.001
– volume: 7
  start-page: 190
  issue: 2
  year: 2015
  ident: 15959_CR10
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2015.2457417
– ident: 15959_CR44
  doi: 10.1109/PCTHEALTH.2008.4571041
– ident: 15959_CR36
  doi: 10.1007/s13278-018-0505-2
– volume: 65
  start-page: 116
  year: 2016
  ident: 15959_CR4
  publication-title: Trans Korean Inst Electr Eng
  doi: 10.5370/KIEE.2016.65.1.116
– volume: 1
  start-page: 515
  issue: 4
  year: 1978
  ident: 15959_CR31
  publication-title: Behav Brain Sci Special Issue: Cognition and Consiousness in Nonhuman Species.
  doi: 10.1017/S0140525X00076512
– volume: 4
  start-page: 160855
  issue: 5
  year: 2017
  ident: 15959_CR2
  publication-title: R Soc Open Sci.
  doi: 10.1098/rsos.160855
– volume-title: (1971) Silent Messages
  year: 1971
  ident: 15959_CR23
– ident: 15959_CR24
– ident: 15959_CR47
SSID ssj0016524
Score 2.3915157
Snippet In this paper we present a new speech emotion dataset on Spanish. The database is created using an elicited approach and is composed by fifty non-actors...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13093
SubjectTerms Audio data
Comparative studies
Computer Communication Networks
Computer Science
Crowdsourcing
Data Structures and Information Theory
Datasets
Emotion recognition
Emotions
Machine learning
Multimedia Information Systems
Special Purpose and Application-Based Systems
Speech recognition
State-of-the-art reviews
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED6x8rI9MGCgdWOTH_a2WUv9KwkSQisrQkhU0wYSb5FjX9ZK0BbaiX-fc-K0DIm-RUrsh5zv7rN9930AX7RVjpC84Zm0ijYoiDwLpJ-lp2TtKiErH44GLobm7EqdX-vrDRi2vTChrLKNiXWg9lMXzsi_i7xHjpsKkx7P7nhQjQq3q62Eho3SCv6ophh7BZsUknXSgc3-YPjr9_Jewegoc5slnHJlL7bRNM10vdCqQjmMU4rXOX_4P1Wt8OezK9M6E51uw1aEkOxHY_Md2MDJLrxt5RlY9NZdePOEa_Ad3A1upxcUd0d_yP_H89HP_iGruWXZtGLzGaIbMWw0fdiyqoieb-tqS2RRXuIvq7Vz5mw8YZYRJmdxPoY3YxfwKwtFpyE57sHV6eDy5IxHvQXupJELrhPvU4mVFuT5wgbamQR15nOHwjtlTZpUzvgcUVa0t_VpljgnCKKhFLlCJfehM5lO8D0wW5lSZ7TXskoro0yWySoRaHKPVpem7EKv_bWFi2TkQRPjpljRKAdzFGSOojZH8dCFr8sxs4aKY-3XB63FiuiW82K1iLrwrbXi6vXLs31YP9tHeC0I7DTV3AfQWdz_w08EVhbl57gCHwGMMeXt
  priority: 102
  providerName: ProQuest
Title EmoMatchSpanishDB: study of speech emotion recognition machine learning models in a new Spanish elicited database
URI https://link.springer.com/article/10.1007/s11042-023-15959-w
https://www.proquest.com/docview/2918767267
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH6CcmEHxoBp3aDygRtEBP9KslvbtSAQFQIqwSlK7Je1Umlh6dR_f8-p2wJik3aJI8X2Ic_P32f7-XsAhyqThpi8DmKRSVqgIAaxE_3MLYG1KbgorNsauOrp8768uFf3XibH3YV5c35_UhI8SR4QsgQEvCoJZuuwoWjidaO5rdvLEwOtuPSXYt5v9xp4VmzyzQFohSvdbdjyhJA15xb8BGs43oGPi2QLzPveDnx4oRy4C8-dx8kVzaKDW_LmYTn40frOKqVYNilY-YRoBgznGXrYMkaI3h-r2ElkPlnET1ZlwinZcMwyRgyb-f4YjobGsVHmQkgd1O1Bv9u5a58HPntCYIQW00CF1kYCC8XJj3nmRGRCVLFNDHJrZKajsDDaJoiioJWqjeLQGE6ECwVPJErxGWrjyRi_AMsKnauYVk6ZVFJLHceiCDnqxGKmcp3X4XTxa1PjpcVdhotRuhJFduZIyRxpZY50VoejZZunubDGP2vvLyyWeicrU56c0lwecR3V4XhhxdXnv_f29f-qf4NNTlRmHqu9D7Xpr994QFRkmjdgPe6eNWCj2W21eq48e7jsUNnq9K5vGtUIpWefN_8ASH3dOQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gF44GOAKAzwAzyBRerYToI0IcY6dWytEGzS3jLHvtBKW9uRoop_jr-Nc-K0gMTe9hYpyT34zvdh3_1-AC-VkZYyec3T2EgqUBB56kE_C0fB2pYiLp0_GhiO9OBEfjpVpxvwq52F8W2VrU-sHbWbWX9G_lZkPdq4idDJ-_kl96xR_na1pdAwgVrB7dQQY2Gw4xB_LqmEq3YO9kjfr4TY7x9_HPDAMsBtrOMFV5FzSYylEmTvwniwlQhV6jKLwllpdBKVVrsMMS6ponNJGlkrKDHBWGQSZUxyb8Cm9AcoHdjc7Y8-f1ndY2gVaHXTiFNs7oWxnWZ4r-dHYyhmckopVMaXf4fGdb77zxVtHfn278GdkLKyD42N3YcNnG7B3ZYOggXvsAW3_8A2fACX_YvZkPz8-Cv5m0k13tt9x2osWzYrWTVHtGOGDYcQW3Ux0fNF3d2JLNBZfGM1V0_FJlNmGNUALMhjeD6xPl9mvsnVB-OHcHItK_8IOtPZFB8DM6UuVEq1nZFKaqnTNC4jgTpzaFShiy702qXNbQA_9xwc5_kattmrIyd15LU68mUXXq_-mTfQH1d-vd1qLA9uoMrXRtuFN60W16__L-3J1dJewM3B8fAoPzoYHT6FW4ISraaTfBs6i-8_8BklSoviebBGBmfXvQF-Ax2rIls
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVkJwKFBApBTYA5zAqrMv20gVoiRRS2lUAZV6c9e7YxKpTVIcFPEX-VXM2usEkOitN0u257AzO4_dme8DeKmMtJTJ6ygVRlKBghilHvSzcBSsbclF6fzRwPFQH5zKj2fqbA1-tbMwvq2y9Ym1o3ZT68_Id3nWpY2bcJ3slqEt4qQ3eDe7ijyDlL9pbek0TKBZcHs13FgY8jjCnwsq56q9wx7p_hXng_7XDwdRYByIrNBiHqnYuURgqTjZPjceeCVGlbrMIndWGp3EpdUuQxQlVXcuSWNrOSUpKHgmUQqSews2Eor6VAhu7PeHJ5-XdxpaBYrdNI4oTnfDCE8zyNf1YzIUPyNKL1QWLf4Ok6vc95_r2joKDu7DZkhf2fvG3h7AGk624F5LDcGCp9iCu3_gHD6Eq_7l9Jh8_ugL-Z5xNertv2U1ri2blqyaIdoRw4ZPiC07muj5su70RBaoLb6xmrenYuMJM4zqARbkMbwYW587M9_w6gPzIzi9kZV_DOuT6QSfADOlLlRKdZ6RSmqp01SUMUedOTSq0EUHuu3S5jYAoXs-jot8BeHs1ZGTOvJaHfmiA6-X_8waGJBrv95pNZYHl1DlKwPuwJtWi6vX_5e2fb20F3CbNkL-6XB49BTucMq5mqbyHViff_-BzyhnmhfPgzEyOL9p-_8N1uYmnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EmoMatchSpanishDB%3A+study+of+speech+emotion+recognition+machine+learning+models+in+a+new+Spanish+elicited+database&rft.jtitle=Multimedia+tools+and+applications&rft.au=Garcia-Cuesta%2C+Esteban&rft.au=Salvador%2C+Antonio+Barba&rft.au=P%C3%A3ez%2C+Diego+Gachet&rft.date=2024-02-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=83&rft.issue=5&rft.spage=13093&rft.epage=13112&rft_id=info:doi/10.1007%2Fs11042-023-15959-w&rft.externalDocID=10_1007_s11042_023_15959_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon