Near-Optimal Coresets of Kernel Density Estimates

We construct near-optimal coresets for kernel density estimates for points in R d when the kernel is positive definite. Specifically we provide a polynomial time construction for a coreset of size O ( d / ε · log 1 / ε ) , and we show a near-matching lower bound of size Ω ( min { d / ε , 1 / ε 2 } )...

Full description

Saved in:
Bibliographic Details
Published inDiscrete & computational geometry Vol. 63; no. 4; pp. 867 - 887
Main Authors Phillips, Jeff M., Tai, Wai Ming
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0179-5376
1432-0444
1432-0444
DOI10.1007/s00454-019-00134-6

Cover

Abstract We construct near-optimal coresets for kernel density estimates for points in R d when the kernel is positive definite. Specifically we provide a polynomial time construction for a coreset of size O ( d / ε · log 1 / ε ) , and we show a near-matching lower bound of size Ω ( min { d / ε , 1 / ε 2 } ) . When d ≥ 1 / ε 2 , it is known that the size of coreset can be O ( 1 / ε 2 ) . The upper bound is a polynomial-in- ( 1 / ε ) improvement when d ∈ [ 3 , 1 / ε 2 ) and the lower bound is the first known lower bound to depend on d for this problem. Moreover, the upper bound restriction that the kernel is positive definite is significant in that it applies to a wide variety of kernels, specifically those most important for machine learning. This includes kernels for information distances and the sinc kernel which can be negative.
AbstractList We construct near-optimal coresets for kernel density estimates for points in R d when the kernel is positive definite. Specifically we provide a polynomial time construction for a coreset of size O ( d / ε · log 1 / ε ) , and we show a near-matching lower bound of size Ω ( min { d / ε , 1 / ε 2 } ) . When d ≥ 1 / ε 2 , it is known that the size of coreset can be O ( 1 / ε 2 ) . The upper bound is a polynomial-in- ( 1 / ε ) improvement when d ∈ [ 3 , 1 / ε 2 ) and the lower bound is the first known lower bound to depend on d for this problem. Moreover, the upper bound restriction that the kernel is positive definite is significant in that it applies to a wide variety of kernels, specifically those most important for machine learning. This includes kernels for information distances and the sinc kernel which can be negative.
We construct near-optimal coresets for kernel density estimates for points in Rd when the kernel is positive definite. Specifically we provide a polynomial time construction for a coreset of size O(d/ε·log1/ε), and we show a near-matching lower bound of size Ω(min{d/ε,1/ε2}). When d≥1/ε2, it is known that the size of coreset can be O(1/ε2). The upper bound is a polynomial-in-(1/ε) improvement when d∈[3,1/ε2) and the lower bound is the first known lower bound to depend on d for this problem. Moreover, the upper bound restriction that the kernel is positive definite is significant in that it applies to a wide variety of kernels, specifically those most important for machine learning. This includes kernels for information distances and the sinc kernel which can be negative.
Author Phillips, Jeff M.
Tai, Wai Ming
Author_xml – sequence: 1
  givenname: Jeff M.
  surname: Phillips
  fullname: Phillips, Jeff M.
  organization: University of Utah
– sequence: 2
  givenname: Wai Ming
  orcidid: 0000-0003-4933-7299
  surname: Tai
  fullname: Tai, Wai Ming
  email: taiwaiming2003@gmail.com
  organization: University of Utah
BookMark eNqNjz1PwzAURS1UJNrCH2CKxGx4tp-deESlfIiKLjBbTuSgVMEJtivUf09KKiExVExvuee-e2Zk4jvvCLlkcM0A8psIgBIpME0BmECqTsiUoeAUEHFCpsByTaXI1RmZxbiBIa-hmBL24myg6z41H7bNFl1w0aWYdXX27IJ3bXbnfGzSLlvGfSS5eE5Oa9tGd3G4c_J2v3xdPNLV-uFpcbuilVAiUVSVLFEgFyCdc4wXOZfIZC5KLIGVtoYStKxkjVWRiwKQy0Izi4VWAwNiTsTYu_W93X3ZtjV9GCaEnWFg9tZmtDaDtfmxNmqgrkaqD93n1sVkNt02-GGo4Vwrrblk-xQfU1XoYgyu_l918QeqmmRT0_kUbNMeRw8ucfjj3134XXWE-gaSrYa6
CitedBy_id crossref_primary_10_1007_s10115_022_01765_7
crossref_primary_10_3390_s21196689
crossref_primary_10_1214_23_STS919
crossref_primary_10_3390_info12100392
crossref_primary_10_1109_TIT_2023_3309920
crossref_primary_10_1109_TVCG_2019_2934799
crossref_primary_10_1007_s11432_023_3823_6
crossref_primary_10_1016_j_engappai_2024_107979
Cites_doi 10.1002/9780470316849
10.1109/TSP.2016.2628353
10.1214/14-AOS1252
10.2307/1968466
10.1002/(SICI)1098-2418(199807)12:4<351::AID-RSA3>3.0.CO;2-S
10.2307/1428011
10.1017/CBO9780511626371
10.3150/15-BEJ744
10.1214/009053607000000677
10.1137/0318035
10.1006/jcss.2000.1741
10.1214/10-AOS797
10.1090/S0002-9947-1950-0051437-7
10.1561/2200000060
10.1007/978-1-4899-3324-9
10.1006/jagm.1996.0060
10.1007/s10107-014-0841-6
10.1016/0304-3975(85)90224-5
10.1137/1.9781611973440.63
10.1137/1.9781611975031.173
10.1137/1.9781611973105.116
10.1145/1998196.1998204
10.7551/mitpress/1130.003.0009
10.1145/1390156.1390281
10.1093/imrn/rny033
10.1007/978-3-540-70575-8_37
10.1145/1542362.1542370
10.1145/2783258.2783357
10.1145/3188745.3188850
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOI 10.1007/s00454-019-00134-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Research Library China
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Research Library Prep
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1432-0444
EndPage 887
ExternalDocumentID oai:drops-oai.dagstuhl.de:8779
10_1007_s00454_019_00134_6
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-1350888
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -52
-5D
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.4S
.86
.DC
06D
0R~
0VY
199
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
88I
8AO
8FE
8FG
8FW
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C1A
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KQ8
L6V
LAS
LLZTM
LO0
M0N
M2O
M2P
M4Y
M7S
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P62
P9R
PADUT
PF0
PKN
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YIN
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c363t-46c5b4342305eee12872541573b4b01baf0b095c5f4c87380425891a489623003
IEDL.DBID UNPAY
ISSN 0179-5376
1432-0444
IngestDate Tue Aug 19 23:50:32 EDT 2025
Sat Aug 16 19:51:50 EDT 2025
Wed Oct 01 02:25:19 EDT 2025
Thu Apr 24 23:05:54 EDT 2025
Fri Feb 21 02:43:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Coreset
Discrepancy theory
Kernel density estimate
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-46c5b4342305eee12872541573b4b01baf0b095c5f4c87380425891a489623003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4933-7299
OpenAccessLink https://proxy.k.utb.cz/login?url=https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.66
PQID 2296992516
PQPubID 31658
PageCount 21
ParticipantIDs unpaywall_primary_10_1007_s00454_019_00134_6
proquest_journals_2296992516
crossref_primary_10_1007_s00454_019_00134_6
crossref_citationtrail_10_1007_s00454_019_00134_6
springer_journals_10_1007_s00454_019_00134_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200600
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 6
  year: 2020
  text: 20200600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Discrete & computational geometry
PublicationTitleAbbrev Discrete Comput Geom
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Müller (CR35) 1997; 29
Bentley, Saxe (CR6) 1980; 1
CR39
CR38
Muandet, Fukumizu, Sriperumbudur, Schölkopf (CR34) 2017; 10
CR37
Schoenberg (CR43) 1938; 39
CR36
CR33
CR31
Chazelle (CR8) 2000
Scott (CR46) 1992
Clarkson (CR11) 2010; 4
CR3
CR5
CR48
Chazelle, Matoušek (CR9) 1996; 21
CR45
Schölkopf, Smola (CR44) 2002
CR41
CR40
Freund, Grigas (CR18) 2016; 155
Aronszajn (CR2) 1950; 68
Rinaldo, Wasserman (CR42) 2010; 38
Gretton, Borgwardt, Rasch, Schölkopf, Smola (CR22) 2012; 13
CR19
Dunn (CR15) 1980; 18
Arias-Castro, Mason, Pelletier (CR1) 2016; 17
CR10
Gonzalez (CR21) 1985; 38
CR51
CR50
Matoušek (CR32) 2010
Devroye, Györfi (CR13) 1985
Li, Long, Srinivasan (CR30) 2001; 62
Fan, Gijbels (CR16) 1996
Hofmann, Schölkopf, Smola (CR25) 2008; 36
CR29
Silverman (CR47) 1986
Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, Singh (CR17) 2014; 42
CR28
Cortés, Scott (CR12) 2016; 65
CR27
CR26
CR24
CR23
CR20
Sriperumbudur, Gretton, Fukumizu, Schölkopf, Lanckriet (CR49) 2010; 11
Banaszczyk (CR4) 1998; 12
Bobrowski, Mukherjee, Taylor (CR7) 2017; 23
Drineas, Mahoney (CR14) 2005; 6
BT Fasy (134_CR17) 2014; 42
A Gretton (134_CR22) 2012; 13
B Schölkopf (134_CR44) 2002
JL Bentley (134_CR6) 1980; 1
K Muandet (134_CR34) 2017; 10
134_CR48
EC Cortés (134_CR12) 2016; 65
J Fan (134_CR16) 1996
N Aronszajn (134_CR2) 1950; 68
134_CR51
134_CR3
134_CR10
134_CR5
134_CR50
W Banaszczyk (134_CR4) 1998; 12
134_CR19
O Bobrowski (134_CR7) 2017; 23
K Clarkson (134_CR11) 2010; 4
134_CR23
134_CR24
Y Li (134_CR30) 2001; 62
RM Freund (134_CR18) 2016; 155
IJ Schoenberg (134_CR43) 1938; 39
DW Scott (134_CR46) 1992
BK Sriperumbudur (134_CR49) 2010; 11
134_CR20
TF Gonzalez (134_CR21) 1985; 38
J Matoušek (134_CR32) 2010
B Chazelle (134_CR9) 1996; 21
134_CR27
134_CR26
134_CR29
134_CR28
134_CR33
134_CR36
134_CR31
A Müller (134_CR35) 1997; 29
L Devroye (134_CR13) 1985
JC Dunn (134_CR15) 1980; 18
BW Silverman (134_CR47) 1986
P Drineas (134_CR14) 2005; 6
E Arias-Castro (134_CR1) 2016; 17
134_CR38
134_CR37
134_CR39
B Chazelle (134_CR8) 2000
134_CR45
A Rinaldo (134_CR42) 2010; 38
134_CR41
134_CR40
T Hofmann (134_CR25) 2008; 36
References_xml – ident: CR45
– year: 1992
  ident: CR46
  publication-title: Multivariate Density Estimation: Theory, Practice, and Visualization
  doi: 10.1002/9780470316849
– ident: CR39
– volume: 65
  start-page: 1310
  issue: 5
  year: 2016
  end-page: 1323
  ident: CR12
  article-title: Sparse approximation of a kernel mean
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2628353
– ident: CR51
– volume: 13
  start-page: 723
  year: 2012
  end-page: 773
  ident: CR22
  article-title: A kernel two-sample test
  publication-title: J. Mach. Learn. Res.
– volume: 42
  start-page: 2301
  issue: 6
  year: 2014
  end-page: 2339
  ident: CR17
  article-title: Confidence sets for persistence diagrams
  publication-title: Ann. Stat.
  doi: 10.1214/14-AOS1252
– volume: 17
  start-page: 43
  year: 2016
  ident: CR1
  article-title: On the estimation of the gradient lines of a density and the consistency of the mean-shift algorithm
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 2153
  year: 2005
  end-page: 2175
  ident: CR14
  article-title: On the Nyström method for approximating a Gram matrix for improved kernel-based learning
  publication-title: J. Mach. Learn. Res.
– ident: CR29
– volume: 39
  start-page: 811
  issue: 4
  year: 1938
  end-page: 841
  ident: CR43
  article-title: Metric spaces and completely monotone functions
  publication-title: Ann. Math.
  doi: 10.2307/1968466
– year: 1996
  ident: CR16
  publication-title: Local Polynomial Modelling and Its Applications. Monographs on Statistics and Applied Probability
– volume: 11
  start-page: 1517
  year: 2010
  end-page: 1561
  ident: CR49
  article-title: Hilbert space embeddings and metrics on probability measures
  publication-title: J. Mach. Learn. Res.
– volume: 12
  start-page: 351
  issue: 4
  year: 1998
  end-page: 360
  ident: CR4
  article-title: Balancing vectors and Gaussian measures of -dimensional convex bodies
  publication-title: Random Struct. Algorithms
  doi: 10.1002/(SICI)1098-2418(199807)12:4<351::AID-RSA3>3.0.CO;2-S
– ident: CR19
– volume: 29
  start-page: 429
  issue: 2
  year: 1997
  end-page: 443
  ident: CR35
  article-title: Integral probability metrics and their generating classes of functions
  publication-title: Adv. Appl. Probab.
  doi: 10.2307/1428011
– year: 2000
  ident: CR8
  publication-title: The Discrepancy Method
  doi: 10.1017/CBO9780511626371
– ident: CR50
– ident: CR36
– ident: CR5
– ident: CR26
– volume: 23
  start-page: 288
  issue: 1
  year: 2017
  end-page: 328
  ident: CR7
  article-title: Topological consistency via kernel estimation
  publication-title: Bernoulli
  doi: 10.3150/15-BEJ744
– volume: 36
  start-page: 1171
  issue: 3
  year: 2008
  end-page: 1220
  ident: CR25
  article-title: Kernel methods in machine learning
  publication-title: Ann. Stat.
  doi: 10.1214/009053607000000677
– volume: 1
  start-page: 4
  year: 1980
  ident: CR6
  article-title: Decomposable searching problems I: static-to-dynamic transformations
  publication-title: J. Algorithms
– ident: CR37
– year: 2002
  ident: CR44
  publication-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
– ident: CR10
– volume: 4
  start-page: 63
  issue: 6
  year: 2010
  ident: CR11
  article-title: Coresets, sparse greedy approximation, and the Frank–Wolfe algorithm
  publication-title: ACM Trans. Algorithms
– ident: CR33
– year: 1985
  ident: CR13
  publication-title: Nonparametric Density Estimation: The View. Wiley Series in Probability and Mathematical Statistics: Tracts on Probability and Statistics
– volume: 18
  start-page: 473
  issue: 5
  year: 1980
  end-page: 489
  ident: CR15
  article-title: Convergence rates for conditional gradient sequences generated by implicit step length rules
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0318035
– ident: CR40
– ident: CR27
– volume: 62
  start-page: 516
  issue: 3
  year: 2001
  end-page: 527
  ident: CR30
  article-title: Improved bounds on the samples complexity of learning
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.2000.1741
– ident: CR23
– volume: 38
  start-page: 2678
  issue: 5
  year: 2010
  end-page: 2722
  ident: CR42
  article-title: Generalized density clustering
  publication-title: Ann. Stat.
  doi: 10.1214/10-AOS797
– volume: 68
  start-page: 337
  issue: 3
  year: 1950
  end-page: 404
  ident: CR2
  article-title: Theory of reproducing kernels
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1950-0051437-7
– ident: CR48
– ident: CR3
– year: 2010
  ident: CR32
  publication-title: Geometric Discrepancy: An Illustrated Guide. Algorithms and Combinatorics
– volume: 10
  start-page: 1
  year: 2017
  end-page: 141
  ident: CR34
  article-title: Kernel mean embedding of distributions: a review and beyond
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000060
– ident: CR38
– year: 1986
  ident: CR47
  publication-title: Density Estimation for Statistics and Data Analysis
  doi: 10.1007/978-1-4899-3324-9
– ident: CR31
– volume: 21
  start-page: 579
  issue: 3
  year: 1996
  end-page: 597
  ident: CR9
  article-title: On linear-time deterministic algorithms for optimization problems in fixed dimensions
  publication-title: J. Algorithms
  doi: 10.1006/jagm.1996.0060
– volume: 155
  start-page: 199
  issue: 1–2
  year: 2016
  end-page: 230
  ident: CR18
  article-title: New analysis and results for the Frank–Wolfe method
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0841-6
– volume: 38
  start-page: 293
  issue: 2–3
  year: 1985
  end-page: 306
  ident: CR21
  article-title: Clustering to minimize the maximum intercluster distance
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/0304-3975(85)90224-5
– ident: CR28
– ident: CR41
– ident: CR24
– ident: CR20
– ident: 134_CR45
  doi: 10.1137/1.9781611973440.63
– ident: 134_CR38
  doi: 10.1137/1.9781611975031.173
– ident: 134_CR37
  doi: 10.1137/1.9781611973105.116
– volume: 21
  start-page: 579
  issue: 3
  year: 1996
  ident: 134_CR9
  publication-title: J. Algorithms
  doi: 10.1006/jagm.1996.0060
– volume: 1
  start-page: 4
  year: 1980
  ident: 134_CR6
  publication-title: J. Algorithms
– ident: 134_CR28
  doi: 10.1145/1998196.1998204
– ident: 134_CR10
– volume: 6
  start-page: 2153
  year: 2005
  ident: 134_CR14
  publication-title: J. Mach. Learn. Res.
– volume: 4
  start-page: 63
  issue: 6
  year: 2010
  ident: 134_CR11
  publication-title: ACM Trans. Algorithms
– ident: 134_CR50
  doi: 10.7551/mitpress/1130.003.0009
– volume-title: Multivariate Density Estimation: Theory, Practice, and Visualization
  year: 1992
  ident: 134_CR46
  doi: 10.1002/9780470316849
– volume: 42
  start-page: 2301
  issue: 6
  year: 2014
  ident: 134_CR17
  publication-title: Ann. Stat.
  doi: 10.1214/14-AOS1252
– ident: 134_CR20
– ident: 134_CR24
– volume-title: Local Polynomial Modelling and Its Applications. Monographs on Statistics and Applied Probability
  year: 1996
  ident: 134_CR16
– volume: 155
  start-page: 199
  issue: 1–2
  year: 2016
  ident: 134_CR18
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0841-6
– volume: 29
  start-page: 429
  issue: 2
  year: 1997
  ident: 134_CR35
  publication-title: Adv. Appl. Probab.
  doi: 10.2307/1428011
– volume: 11
  start-page: 1517
  year: 2010
  ident: 134_CR49
  publication-title: J. Mach. Learn. Res.
– ident: 134_CR31
– ident: 134_CR48
  doi: 10.1145/1390156.1390281
– volume: 36
  start-page: 1171
  issue: 3
  year: 2008
  ident: 134_CR25
  publication-title: Ann. Stat.
  doi: 10.1214/009053607000000677
– volume-title: Density Estimation for Statistics and Data Analysis
  year: 1986
  ident: 134_CR47
  doi: 10.1007/978-1-4899-3324-9
– ident: 134_CR29
– volume: 12
  start-page: 351
  issue: 4
  year: 1998
  ident: 134_CR4
  publication-title: Random Struct. Algorithms
  doi: 10.1002/(SICI)1098-2418(199807)12:4<351::AID-RSA3>3.0.CO;2-S
– ident: 134_CR33
  doi: 10.1093/imrn/rny033
– ident: 134_CR39
– volume: 65
  start-page: 1310
  issue: 5
  year: 2016
  ident: 134_CR12
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2628353
– volume: 62
  start-page: 516
  issue: 3
  year: 2001
  ident: 134_CR30
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.2000.1741
– volume: 39
  start-page: 811
  issue: 4
  year: 1938
  ident: 134_CR43
  publication-title: Ann. Math.
  doi: 10.2307/1968466
– volume-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
  year: 2002
  ident: 134_CR44
– ident: 134_CR36
  doi: 10.1007/978-3-540-70575-8_37
– ident: 134_CR19
  doi: 10.1145/1542362.1542370
– volume: 68
  start-page: 337
  issue: 3
  year: 1950
  ident: 134_CR2
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1950-0051437-7
– ident: 134_CR51
  doi: 10.1145/2783258.2783357
– volume: 38
  start-page: 2678
  issue: 5
  year: 2010
  ident: 134_CR42
  publication-title: Ann. Stat.
  doi: 10.1214/10-AOS797
– ident: 134_CR26
– volume-title: The Discrepancy Method
  year: 2000
  ident: 134_CR8
  doi: 10.1017/CBO9780511626371
– ident: 134_CR41
– ident: 134_CR5
  doi: 10.1145/3188745.3188850
– volume-title: Geometric Discrepancy: An Illustrated Guide. Algorithms and Combinatorics
  year: 2010
  ident: 134_CR32
– ident: 134_CR3
– volume: 23
  start-page: 288
  issue: 1
  year: 2017
  ident: 134_CR7
  publication-title: Bernoulli
  doi: 10.3150/15-BEJ744
– volume: 38
  start-page: 293
  issue: 2–3
  year: 1985
  ident: 134_CR21
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/0304-3975(85)90224-5
– volume-title: Nonparametric Density Estimation: The $$L_1$$ View. Wiley Series in Probability and Mathematical Statistics: Tracts on Probability and Statistics
  year: 1985
  ident: 134_CR13
– volume: 13
  start-page: 723
  year: 2012
  ident: 134_CR22
  publication-title: J. Mach. Learn. Res.
– volume: 17
  start-page: 43
  year: 2016
  ident: 134_CR1
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 473
  issue: 5
  year: 1980
  ident: 134_CR15
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0318035
– volume: 10
  start-page: 1
  year: 2017
  ident: 134_CR34
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000060
– ident: 134_CR27
– ident: 134_CR23
– ident: 134_CR40
SSID ssj0004908
Score 2.46318
Snippet We construct near-optimal coresets for kernel density estimates for points in R d when the kernel is positive definite. Specifically we provide a polynomial...
We construct near-optimal coresets for kernel density estimates for points in Rd when the kernel is positive definite. Specifically we provide a polynomial...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 867
SubjectTerms Combinatorics
Computational Mathematics and Numerical Analysis
Density
Kernels
Lower bounds
Machine learning
Mathematics
Mathematics and Statistics
Polynomials
Upper bounds
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH7iGICBo4AolzKwUYs4cZx4QggoCERZQOoWxY4zlaQ0Qaj_Hr_USWCpmH1J7_D7fLzvAVwoX_GQZgFJtFaE4T8aKQKfKCXcSPmu0CnmDr-M-OM7exoHY3vhVtpvlc2eWG_UaaHwjvzK8wQXwkRjfj39JFg1Cl9XbQmNVVinnrEkzBQfPnR5kaKuSIdGR5C2xCbN1KlzNfecOUgLgiiIEf43MHVos30g3YKNr3yazL-TyeRXDBruwrYFj87NQtt7sKLzHuw0hRkc66c92HppyVjLfaAjY83k1ewNH2bwbYEJR1XpFJnzrGe5njh3-Im9mjv3JXYx2PMA3of3b7ePxFZKIMrnfkUYV4FkSObnBlprE3NCc_CjQehLJl0qk8yVBkupIGMqCv0IPTUSNGGRMPDHOPYhrOVFro_A4fg2SI1qacqYp6g0E3k0ydKUSam9sA-0EVOsLI04VrOYxC0Bci3a2Ig2rkUb8z5ctmOmCxKNpb1PG-nH1qHKuFN_HwaNRrrmZbMNWq39Y_Hj5YufwKaHB-76GuYU1qrZlz4zqKSS57Xp_QDabNd1
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5ROCgHUdSIotnBm5SsW_ejR4IgkYAXSfC0rF13cQ7CRgz-9bZjG2oM0XPbt619r_3e-t73AG65yW0HhxbyheCIqDgaRi0TcU51l5s6FYHKHR5P7OGUPM6sWZ4UlhTR7sWVZLZTl8luGVucdH0pUriFIHsfqpZyUCpQ7T68jPrbfEiaVaJTyoYUXUmeLPO7lO8H0hZllhejNThYxQt__e5H0ZezZ1CHafHWm5CT184qZR3-8YPQ8b-fdQxHORjVuhvtOYE9ETegXhR60HK7b0BtXJK7JqeAJ9I60JPca97k4N5cJTCliTYPtZFYxiLS7lVQfLrW-onqIrHsGUwH_efeEOWVFxA3bTNFxOYWI4ocULeEEPIMc6QjiS3HZITpmPmhziQ241ZIuOuYrrJ8l2KfuFTCKblRnEMlnsfiAjRb3TViqSo4IMTgmElBBvbDICCMCcNpAi6m3-M5LbmqjhF5JaFyNkOenCEvmyHPbsJdOWaxIeXY2btVrKqXG2jiGQa1KZXgTja3i4XZNu-S1i614Q8Pv_yf9Cs4NJRDn_3maUElXa7EtUQ9KbvJlfwTiYfxMA
  priority: 102
  providerName: Springer Nature
Title Near-Optimal Coresets of Kernel Density Estimates
URI https://link.springer.com/article/10.1007/s00454-019-00134-6
https://www.proquest.com/docview/2296992516
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.66
UnpaywallVersion submittedVersion
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: AFBBN
  dateStart: 19860301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-0444
  dateEnd: 20241002
  omitProxy: true
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: BENPR
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 20241002
  omitProxy: true
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: 8FG
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH7a2gPagcEAsWlUOXBj7uLEceJjW9oOpoUJqLSdothxNomQVE2iafz1PKdJBhwmkDj54B-R9fyev5f33meAt8pV3KepR2KtFWEmj0YKzyVKCTtQri10YmqHL0J-tmIfr7yrHVh2tTDJpliX6OzelFV9m5k0i45b9DQpVG3-mBlFRxBgn6Lr-0GV4y_FbGlytIIx57sw5CbSNIDhKrycXDcJjL4ghrSkqTNyHWIY0trymaaIrmGhQ5daEIOHGOG_X1EPuLMPle7Bkzpfx_d3cZb9chst9uG228c2CeXbuK7kWP34g-LxP2z0GTxtEas12R6x57Cj8wPY716DsFrjcAB7Fz0DbPkCaIgqRD6hQfqOk2eFqXKqSqtIrXO9yXVmvTeZ89W9NS_NEAS8L2G1mH-dnZH2eQaiXO5WhHHlSWYYBG1Pa40XnY_eJvV8VzJpUxmntkQAp7yUqcB3A2MeAkFjFgjEXGhNXsEgL3L9GixuApIUzxNNGHMUlbiQQ-M0SZiU2vEPgXYSiVTLXW6e0MiinnW5kWKEUowaKUb8EN71c9Zb5o5HRx93go5aLS4jxxFcCESA2H3SCf-h-7HVTvoD8hcfP_q34ccwqDa1foNoqJIj2A0WyxEMJ4vpNDTt8vp8ju10Hl5-xt6VMxm12vATwGUF9Q
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NU9swEN0BeoAc-kHbaQoFH-BUNLUsWbYOTKcDhNCQ9AIz3FxLlk-pk2IzTP5Uf2N3HdtpLxkunC1LM6un1VtJ-xbgyAqrIp6HLHXOMknvaIwOBbNW-7EVvnYZ5Q6PJ2p4K7_fhXcb8KfNhaFnla1PrB11NrN0Rv4lCLTSGndj9XX-m1HVKLpdbUtoLGExcotHDNnK06tznN_jIBhc3JwNWVNVgFmhRMWksqGRJHznh8459M8RBkk8jISRxucmzX2DvMOGubRxJGJCdax5KmONVAEXAfa7CS-kEIK0-uPB5SoPU9cV8AjkjGRSmiSdOlWv1rrDwF0zYl2Sqf83whW77S5ke7D9UMzTxWM6nf6z5w1ew8uGrHrfluh6Axuu2IVXbSEIr_ELu9Abd-Kv5VvgEzQT-4G-6Bf-fDajBKeq9Ga5N3L3hZt65_Rovlp4FyU1Qa77Dm6fxYbvYauYFe4DeIruIjlCiWdSBpYb7CjgaZ5l0hgXRH3grZkS28iWU_WMadIJLtemTdC0SW3aRPXhc_fPfCnasbb1fmv9pFnAZbKCWx9O2hlZfV7X20k3a08Y_OP6wQ9he3gzvk6uryajPdgJKNivj4D2Yau6f3CfkBFV5qCGoQc_nxv3fwHE3BCo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrVToodAWxNIWcoATtRonjhMfKgTdXbUsXSrUSr2F2HFOS3ZpUlX7F_lVzKROll5WXHr2lzSeGY_teW8A3pvQyJgXEcusNUxQHo1WUciMUX5iQl_ZnLDD5xN5eiW-XkfXa_CnxcJQWmXrExtHnc8MvZEfBYGSSuFpLI8KlxZxMRh9mv9mVEGKflrbchqZK7OQHzd0Yw7kMbaLO7zOVcdnA9z7D0EwGl6enDJXcYCZUIY1E9JEWhApnh9Za9F3x3iB4lEcaqF9rrPC1xiTmKgQJonDhDQ-UTwTicIwAg0E530C6zHhRXuw_mU4ufixRGmqpj4emQAjEhUH4WmAfA0THl7rFaOYTDD58Jhcxr7dd-0mPL0t59niLptO_zkRRy9gy4Wy3ud73duGNVvuwPO2TITnvMYObJ531LDVLvAJCop9R0_1CwefzAj-VFferPDG9qa0U29AKfX1whtW1AUj4Zdw9ShSfAW9clba1-BJ-qnkqGg8FyIwXONEAc-KPBda2yDuA2_FlBpHak61NaZpR8fciDZF0aaNaFPZh4_dmPk9pcfK3vut9FNn3lW6VMY-HLY7smxeNdtht2v_sfib1Yu_gw20gfTb2WS8B88Ceglo3of2oVff3NoDDJdq_dbpoQc_H1v1_wJzUhuC
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7R5VBxKBRaQUVRDtyKlzhxnPiItjwrtpXKSvQUxY4DEmmy2iSq6K_vTDYJjwNqpZ49dmTNeOabeOYzwL7xjQx5FrDEWsME1dFoFfjMGOVGxneVTal3-HIqz2bi4jq4XoHTvhcmXZTzCpPdm6pubnMqs-i5RQ_T0jT0x4wOOoIA9xBT33NTjb-Xk1Oq0YrGUr6CVUk3TSNYnU2_Hf1oCxhDxYi0pO0z8j1GDGld-0zbRNey0GFKrRjhIcHk0xD1gDuHq9I1eN0U8-T-V5Lnj6LRyTrc9vtYFqHcjZtaj83vZxSP_2GjG_CmQ6zO0dLE3sKKLTZhvX8NwumcwyasXQ4MsNUW8CkeIfYVHdJPnDwpqcuprpwyc77YRWFz5zNVztf3znFFIgh438Hs5Phqcsa65xmY8aVfMyFNoAUxCLqBtRYDXYjZJg9CXwvtcp1krkYAZ4JMmCj0I3IPkeKJiBRiLvQm72FUlIXdBkfShSRHe-KpEJ7hGhfyeJKlqdDaeuEO8F4jsem4y-kJjTweWJdbLcaoxbjVYix34NMwZ75k7nhRerdXdNyd4ir2PCWVQgSIwwe98h-GX1rtYDCQv_j4h38T34VRvWjsR0RDtd7rLP0PbF7_bQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Optimal+Coresets+of+Kernel+Density+Estimates&rft.jtitle=Discrete+%26+computational+geometry&rft.au=Phillips%2C+Jeff+M.&rft.au=Tai%2C+Wai+Ming&rft.date=2020-06-01&rft.issn=0179-5376&rft.eissn=1432-0444&rft.volume=63&rft.issue=4&rft.spage=867&rft.epage=887&rft_id=info:doi/10.1007%2Fs00454-019-00134-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00454_019_00134_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0179-5376&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0179-5376&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0179-5376&client=summon