Near-Optimal Coresets of Kernel Density Estimates
We construct near-optimal coresets for kernel density estimates for points in R d when the kernel is positive definite. Specifically we provide a polynomial time construction for a coreset of size O ( d / ε · log 1 / ε ) , and we show a near-matching lower bound of size Ω ( min { d / ε , 1 / ε 2 } )...
Saved in:
Published in | Discrete & computational geometry Vol. 63; no. 4; pp. 867 - 887 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0179-5376 1432-0444 1432-0444 |
DOI | 10.1007/s00454-019-00134-6 |
Cover
Abstract | We construct near-optimal coresets for kernel density estimates for points in
R
d
when the kernel is positive definite. Specifically we provide a polynomial time construction for a coreset of size
O
(
d
/
ε
·
log
1
/
ε
)
, and we show a near-matching lower bound of size
Ω
(
min
{
d
/
ε
,
1
/
ε
2
}
)
. When
d
≥
1
/
ε
2
, it is known that the size of coreset can be
O
(
1
/
ε
2
)
. The upper bound is a polynomial-in-
(
1
/
ε
)
improvement when
d
∈
[
3
,
1
/
ε
2
)
and the lower bound is the first known lower bound to depend on
d
for this problem. Moreover, the upper bound restriction that the kernel is positive definite is significant in that it applies to a wide variety of kernels, specifically those most important for machine learning. This includes kernels for information distances and the sinc kernel which can be negative. |
---|---|
AbstractList | We construct near-optimal coresets for kernel density estimates for points in
R
d
when the kernel is positive definite. Specifically we provide a polynomial time construction for a coreset of size
O
(
d
/
ε
·
log
1
/
ε
)
, and we show a near-matching lower bound of size
Ω
(
min
{
d
/
ε
,
1
/
ε
2
}
)
. When
d
≥
1
/
ε
2
, it is known that the size of coreset can be
O
(
1
/
ε
2
)
. The upper bound is a polynomial-in-
(
1
/
ε
)
improvement when
d
∈
[
3
,
1
/
ε
2
)
and the lower bound is the first known lower bound to depend on
d
for this problem. Moreover, the upper bound restriction that the kernel is positive definite is significant in that it applies to a wide variety of kernels, specifically those most important for machine learning. This includes kernels for information distances and the sinc kernel which can be negative. We construct near-optimal coresets for kernel density estimates for points in Rd when the kernel is positive definite. Specifically we provide a polynomial time construction for a coreset of size O(d/ε·log1/ε), and we show a near-matching lower bound of size Ω(min{d/ε,1/ε2}). When d≥1/ε2, it is known that the size of coreset can be O(1/ε2). The upper bound is a polynomial-in-(1/ε) improvement when d∈[3,1/ε2) and the lower bound is the first known lower bound to depend on d for this problem. Moreover, the upper bound restriction that the kernel is positive definite is significant in that it applies to a wide variety of kernels, specifically those most important for machine learning. This includes kernels for information distances and the sinc kernel which can be negative. |
Author | Phillips, Jeff M. Tai, Wai Ming |
Author_xml | – sequence: 1 givenname: Jeff M. surname: Phillips fullname: Phillips, Jeff M. organization: University of Utah – sequence: 2 givenname: Wai Ming orcidid: 0000-0003-4933-7299 surname: Tai fullname: Tai, Wai Ming email: taiwaiming2003@gmail.com organization: University of Utah |
BookMark | eNqNjz1PwzAURS1UJNrCH2CKxGx4tp-deESlfIiKLjBbTuSgVMEJtivUf09KKiExVExvuee-e2Zk4jvvCLlkcM0A8psIgBIpME0BmECqTsiUoeAUEHFCpsByTaXI1RmZxbiBIa-hmBL24myg6z41H7bNFl1w0aWYdXX27IJ3bXbnfGzSLlvGfSS5eE5Oa9tGd3G4c_J2v3xdPNLV-uFpcbuilVAiUVSVLFEgFyCdc4wXOZfIZC5KLIGVtoYStKxkjVWRiwKQy0Izi4VWAwNiTsTYu_W93X3ZtjV9GCaEnWFg9tZmtDaDtfmxNmqgrkaqD93n1sVkNt02-GGo4Vwrrblk-xQfU1XoYgyu_l918QeqmmRT0_kUbNMeRw8ucfjj3134XXWE-gaSrYa6 |
CitedBy_id | crossref_primary_10_1007_s10115_022_01765_7 crossref_primary_10_3390_s21196689 crossref_primary_10_1214_23_STS919 crossref_primary_10_3390_info12100392 crossref_primary_10_1109_TIT_2023_3309920 crossref_primary_10_1109_TVCG_2019_2934799 crossref_primary_10_1007_s11432_023_3823_6 crossref_primary_10_1016_j_engappai_2024_107979 |
Cites_doi | 10.1002/9780470316849 10.1109/TSP.2016.2628353 10.1214/14-AOS1252 10.2307/1968466 10.1002/(SICI)1098-2418(199807)12:4<351::AID-RSA3>3.0.CO;2-S 10.2307/1428011 10.1017/CBO9780511626371 10.3150/15-BEJ744 10.1214/009053607000000677 10.1137/0318035 10.1006/jcss.2000.1741 10.1214/10-AOS797 10.1090/S0002-9947-1950-0051437-7 10.1561/2200000060 10.1007/978-1-4899-3324-9 10.1006/jagm.1996.0060 10.1007/s10107-014-0841-6 10.1016/0304-3975(85)90224-5 10.1137/1.9781611973440.63 10.1137/1.9781611975031.173 10.1137/1.9781611973105.116 10.1145/1998196.1998204 10.7551/mitpress/1130.003.0009 10.1145/1390156.1390281 10.1093/imrn/rny033 10.1007/978-3-540-70575-8_37 10.1145/1542362.1542370 10.1145/2783258.2783357 10.1145/3188745.3188850 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Springer Science+Business Media, LLC, part of Springer Nature 2019. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ GUQSH HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M2O M2P M7S MBDVC P5Z P62 PADUT PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY |
DOI | 10.1007/s00454-019-00134-6 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Research Library China ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1432-0444 |
EndPage | 887 |
ExternalDocumentID | oai:drops-oai.dagstuhl.de:8779 10_1007_s00454_019_00134_6 |
GrantInformation_xml | – fundername: National Science Foundation grantid: CCF-1350888 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | -52 -5D -5G -BR -DZ -EM -Y2 -~C -~X .4S .86 .DC 06D 0R~ 0VY 199 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 88I 8AO 8FE 8FG 8FW 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AAKPC AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIHN ACIPV ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C1A CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KQ8 L6V LAS LLZTM LO0 M0N M2O M2P M4Y M7S MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P62 P9R PADUT PF0 PKN PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I REI RHV RIG RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YIN YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY |
ID | FETCH-LOGICAL-c363t-46c5b4342305eee12872541573b4b01baf0b095c5f4c87380425891a489623003 |
IEDL.DBID | UNPAY |
ISSN | 0179-5376 1432-0444 |
IngestDate | Tue Aug 19 23:50:32 EDT 2025 Sat Aug 16 19:51:50 EDT 2025 Wed Oct 01 02:25:19 EDT 2025 Thu Apr 24 23:05:54 EDT 2025 Fri Feb 21 02:43:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Coreset Discrepancy theory Kernel density estimate |
Language | English |
License | cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-46c5b4342305eee12872541573b4b01baf0b095c5f4c87380425891a489623003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4933-7299 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.66 |
PQID | 2296992516 |
PQPubID | 31658 |
PageCount | 21 |
ParticipantIDs | unpaywall_primary_10_1007_s00454_019_00134_6 proquest_journals_2296992516 crossref_primary_10_1007_s00454_019_00134_6 crossref_citationtrail_10_1007_s00454_019_00134_6 springer_journals_10_1007_s00454_019_00134_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200600 2020-06-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 6 year: 2020 text: 20200600 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Discrete & computational geometry |
PublicationTitleAbbrev | Discrete Comput Geom |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Müller (CR35) 1997; 29 Bentley, Saxe (CR6) 1980; 1 CR39 CR38 Muandet, Fukumizu, Sriperumbudur, Schölkopf (CR34) 2017; 10 CR37 Schoenberg (CR43) 1938; 39 CR36 CR33 CR31 Chazelle (CR8) 2000 Scott (CR46) 1992 Clarkson (CR11) 2010; 4 CR3 CR5 CR48 Chazelle, Matoušek (CR9) 1996; 21 CR45 Schölkopf, Smola (CR44) 2002 CR41 CR40 Freund, Grigas (CR18) 2016; 155 Aronszajn (CR2) 1950; 68 Rinaldo, Wasserman (CR42) 2010; 38 Gretton, Borgwardt, Rasch, Schölkopf, Smola (CR22) 2012; 13 CR19 Dunn (CR15) 1980; 18 Arias-Castro, Mason, Pelletier (CR1) 2016; 17 CR10 Gonzalez (CR21) 1985; 38 CR51 CR50 Matoušek (CR32) 2010 Devroye, Györfi (CR13) 1985 Li, Long, Srinivasan (CR30) 2001; 62 Fan, Gijbels (CR16) 1996 Hofmann, Schölkopf, Smola (CR25) 2008; 36 CR29 Silverman (CR47) 1986 Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, Singh (CR17) 2014; 42 CR28 Cortés, Scott (CR12) 2016; 65 CR27 CR26 CR24 CR23 CR20 Sriperumbudur, Gretton, Fukumizu, Schölkopf, Lanckriet (CR49) 2010; 11 Banaszczyk (CR4) 1998; 12 Bobrowski, Mukherjee, Taylor (CR7) 2017; 23 Drineas, Mahoney (CR14) 2005; 6 BT Fasy (134_CR17) 2014; 42 A Gretton (134_CR22) 2012; 13 B Schölkopf (134_CR44) 2002 JL Bentley (134_CR6) 1980; 1 K Muandet (134_CR34) 2017; 10 134_CR48 EC Cortés (134_CR12) 2016; 65 J Fan (134_CR16) 1996 N Aronszajn (134_CR2) 1950; 68 134_CR51 134_CR3 134_CR10 134_CR5 134_CR50 W Banaszczyk (134_CR4) 1998; 12 134_CR19 O Bobrowski (134_CR7) 2017; 23 K Clarkson (134_CR11) 2010; 4 134_CR23 134_CR24 Y Li (134_CR30) 2001; 62 RM Freund (134_CR18) 2016; 155 IJ Schoenberg (134_CR43) 1938; 39 DW Scott (134_CR46) 1992 BK Sriperumbudur (134_CR49) 2010; 11 134_CR20 TF Gonzalez (134_CR21) 1985; 38 J Matoušek (134_CR32) 2010 B Chazelle (134_CR9) 1996; 21 134_CR27 134_CR26 134_CR29 134_CR28 134_CR33 134_CR36 134_CR31 A Müller (134_CR35) 1997; 29 L Devroye (134_CR13) 1985 JC Dunn (134_CR15) 1980; 18 BW Silverman (134_CR47) 1986 P Drineas (134_CR14) 2005; 6 E Arias-Castro (134_CR1) 2016; 17 134_CR38 134_CR37 134_CR39 B Chazelle (134_CR8) 2000 134_CR45 A Rinaldo (134_CR42) 2010; 38 134_CR41 134_CR40 T Hofmann (134_CR25) 2008; 36 |
References_xml | – ident: CR45 – year: 1992 ident: CR46 publication-title: Multivariate Density Estimation: Theory, Practice, and Visualization doi: 10.1002/9780470316849 – ident: CR39 – volume: 65 start-page: 1310 issue: 5 year: 2016 end-page: 1323 ident: CR12 article-title: Sparse approximation of a kernel mean publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2628353 – ident: CR51 – volume: 13 start-page: 723 year: 2012 end-page: 773 ident: CR22 article-title: A kernel two-sample test publication-title: J. Mach. Learn. Res. – volume: 42 start-page: 2301 issue: 6 year: 2014 end-page: 2339 ident: CR17 article-title: Confidence sets for persistence diagrams publication-title: Ann. Stat. doi: 10.1214/14-AOS1252 – volume: 17 start-page: 43 year: 2016 ident: CR1 article-title: On the estimation of the gradient lines of a density and the consistency of the mean-shift algorithm publication-title: J. Mach. Learn. Res. – volume: 6 start-page: 2153 year: 2005 end-page: 2175 ident: CR14 article-title: On the Nyström method for approximating a Gram matrix for improved kernel-based learning publication-title: J. Mach. Learn. Res. – ident: CR29 – volume: 39 start-page: 811 issue: 4 year: 1938 end-page: 841 ident: CR43 article-title: Metric spaces and completely monotone functions publication-title: Ann. Math. doi: 10.2307/1968466 – year: 1996 ident: CR16 publication-title: Local Polynomial Modelling and Its Applications. Monographs on Statistics and Applied Probability – volume: 11 start-page: 1517 year: 2010 end-page: 1561 ident: CR49 article-title: Hilbert space embeddings and metrics on probability measures publication-title: J. Mach. Learn. Res. – volume: 12 start-page: 351 issue: 4 year: 1998 end-page: 360 ident: CR4 article-title: Balancing vectors and Gaussian measures of -dimensional convex bodies publication-title: Random Struct. Algorithms doi: 10.1002/(SICI)1098-2418(199807)12:4<351::AID-RSA3>3.0.CO;2-S – ident: CR19 – volume: 29 start-page: 429 issue: 2 year: 1997 end-page: 443 ident: CR35 article-title: Integral probability metrics and their generating classes of functions publication-title: Adv. Appl. Probab. doi: 10.2307/1428011 – year: 2000 ident: CR8 publication-title: The Discrepancy Method doi: 10.1017/CBO9780511626371 – ident: CR50 – ident: CR36 – ident: CR5 – ident: CR26 – volume: 23 start-page: 288 issue: 1 year: 2017 end-page: 328 ident: CR7 article-title: Topological consistency via kernel estimation publication-title: Bernoulli doi: 10.3150/15-BEJ744 – volume: 36 start-page: 1171 issue: 3 year: 2008 end-page: 1220 ident: CR25 article-title: Kernel methods in machine learning publication-title: Ann. Stat. doi: 10.1214/009053607000000677 – volume: 1 start-page: 4 year: 1980 ident: CR6 article-title: Decomposable searching problems I: static-to-dynamic transformations publication-title: J. Algorithms – ident: CR37 – year: 2002 ident: CR44 publication-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond – ident: CR10 – volume: 4 start-page: 63 issue: 6 year: 2010 ident: CR11 article-title: Coresets, sparse greedy approximation, and the Frank–Wolfe algorithm publication-title: ACM Trans. Algorithms – ident: CR33 – year: 1985 ident: CR13 publication-title: Nonparametric Density Estimation: The View. Wiley Series in Probability and Mathematical Statistics: Tracts on Probability and Statistics – volume: 18 start-page: 473 issue: 5 year: 1980 end-page: 489 ident: CR15 article-title: Convergence rates for conditional gradient sequences generated by implicit step length rules publication-title: SIAM J. Control Optim. doi: 10.1137/0318035 – ident: CR40 – ident: CR27 – volume: 62 start-page: 516 issue: 3 year: 2001 end-page: 527 ident: CR30 article-title: Improved bounds on the samples complexity of learning publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.2000.1741 – ident: CR23 – volume: 38 start-page: 2678 issue: 5 year: 2010 end-page: 2722 ident: CR42 article-title: Generalized density clustering publication-title: Ann. Stat. doi: 10.1214/10-AOS797 – volume: 68 start-page: 337 issue: 3 year: 1950 end-page: 404 ident: CR2 article-title: Theory of reproducing kernels publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1950-0051437-7 – ident: CR48 – ident: CR3 – year: 2010 ident: CR32 publication-title: Geometric Discrepancy: An Illustrated Guide. Algorithms and Combinatorics – volume: 10 start-page: 1 year: 2017 end-page: 141 ident: CR34 article-title: Kernel mean embedding of distributions: a review and beyond publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000060 – ident: CR38 – year: 1986 ident: CR47 publication-title: Density Estimation for Statistics and Data Analysis doi: 10.1007/978-1-4899-3324-9 – ident: CR31 – volume: 21 start-page: 579 issue: 3 year: 1996 end-page: 597 ident: CR9 article-title: On linear-time deterministic algorithms for optimization problems in fixed dimensions publication-title: J. Algorithms doi: 10.1006/jagm.1996.0060 – volume: 155 start-page: 199 issue: 1–2 year: 2016 end-page: 230 ident: CR18 article-title: New analysis and results for the Frank–Wolfe method publication-title: Math. Program. doi: 10.1007/s10107-014-0841-6 – volume: 38 start-page: 293 issue: 2–3 year: 1985 end-page: 306 ident: CR21 article-title: Clustering to minimize the maximum intercluster distance publication-title: Theoret. Comput. Sci. doi: 10.1016/0304-3975(85)90224-5 – ident: CR28 – ident: CR41 – ident: CR24 – ident: CR20 – ident: 134_CR45 doi: 10.1137/1.9781611973440.63 – ident: 134_CR38 doi: 10.1137/1.9781611975031.173 – ident: 134_CR37 doi: 10.1137/1.9781611973105.116 – volume: 21 start-page: 579 issue: 3 year: 1996 ident: 134_CR9 publication-title: J. Algorithms doi: 10.1006/jagm.1996.0060 – volume: 1 start-page: 4 year: 1980 ident: 134_CR6 publication-title: J. Algorithms – ident: 134_CR28 doi: 10.1145/1998196.1998204 – ident: 134_CR10 – volume: 6 start-page: 2153 year: 2005 ident: 134_CR14 publication-title: J. Mach. Learn. Res. – volume: 4 start-page: 63 issue: 6 year: 2010 ident: 134_CR11 publication-title: ACM Trans. Algorithms – ident: 134_CR50 doi: 10.7551/mitpress/1130.003.0009 – volume-title: Multivariate Density Estimation: Theory, Practice, and Visualization year: 1992 ident: 134_CR46 doi: 10.1002/9780470316849 – volume: 42 start-page: 2301 issue: 6 year: 2014 ident: 134_CR17 publication-title: Ann. Stat. doi: 10.1214/14-AOS1252 – ident: 134_CR20 – ident: 134_CR24 – volume-title: Local Polynomial Modelling and Its Applications. Monographs on Statistics and Applied Probability year: 1996 ident: 134_CR16 – volume: 155 start-page: 199 issue: 1–2 year: 2016 ident: 134_CR18 publication-title: Math. Program. doi: 10.1007/s10107-014-0841-6 – volume: 29 start-page: 429 issue: 2 year: 1997 ident: 134_CR35 publication-title: Adv. Appl. Probab. doi: 10.2307/1428011 – volume: 11 start-page: 1517 year: 2010 ident: 134_CR49 publication-title: J. Mach. Learn. Res. – ident: 134_CR31 – ident: 134_CR48 doi: 10.1145/1390156.1390281 – volume: 36 start-page: 1171 issue: 3 year: 2008 ident: 134_CR25 publication-title: Ann. Stat. doi: 10.1214/009053607000000677 – volume-title: Density Estimation for Statistics and Data Analysis year: 1986 ident: 134_CR47 doi: 10.1007/978-1-4899-3324-9 – ident: 134_CR29 – volume: 12 start-page: 351 issue: 4 year: 1998 ident: 134_CR4 publication-title: Random Struct. Algorithms doi: 10.1002/(SICI)1098-2418(199807)12:4<351::AID-RSA3>3.0.CO;2-S – ident: 134_CR33 doi: 10.1093/imrn/rny033 – ident: 134_CR39 – volume: 65 start-page: 1310 issue: 5 year: 2016 ident: 134_CR12 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2628353 – volume: 62 start-page: 516 issue: 3 year: 2001 ident: 134_CR30 publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.2000.1741 – volume: 39 start-page: 811 issue: 4 year: 1938 ident: 134_CR43 publication-title: Ann. Math. doi: 10.2307/1968466 – volume-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond year: 2002 ident: 134_CR44 – ident: 134_CR36 doi: 10.1007/978-3-540-70575-8_37 – ident: 134_CR19 doi: 10.1145/1542362.1542370 – volume: 68 start-page: 337 issue: 3 year: 1950 ident: 134_CR2 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1950-0051437-7 – ident: 134_CR51 doi: 10.1145/2783258.2783357 – volume: 38 start-page: 2678 issue: 5 year: 2010 ident: 134_CR42 publication-title: Ann. Stat. doi: 10.1214/10-AOS797 – ident: 134_CR26 – volume-title: The Discrepancy Method year: 2000 ident: 134_CR8 doi: 10.1017/CBO9780511626371 – ident: 134_CR41 – ident: 134_CR5 doi: 10.1145/3188745.3188850 – volume-title: Geometric Discrepancy: An Illustrated Guide. Algorithms and Combinatorics year: 2010 ident: 134_CR32 – ident: 134_CR3 – volume: 23 start-page: 288 issue: 1 year: 2017 ident: 134_CR7 publication-title: Bernoulli doi: 10.3150/15-BEJ744 – volume: 38 start-page: 293 issue: 2–3 year: 1985 ident: 134_CR21 publication-title: Theoret. Comput. Sci. doi: 10.1016/0304-3975(85)90224-5 – volume-title: Nonparametric Density Estimation: The $$L_1$$ View. Wiley Series in Probability and Mathematical Statistics: Tracts on Probability and Statistics year: 1985 ident: 134_CR13 – volume: 13 start-page: 723 year: 2012 ident: 134_CR22 publication-title: J. Mach. Learn. Res. – volume: 17 start-page: 43 year: 2016 ident: 134_CR1 publication-title: J. Mach. Learn. Res. – volume: 18 start-page: 473 issue: 5 year: 1980 ident: 134_CR15 publication-title: SIAM J. Control Optim. doi: 10.1137/0318035 – volume: 10 start-page: 1 year: 2017 ident: 134_CR34 publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000060 – ident: 134_CR27 – ident: 134_CR23 – ident: 134_CR40 |
SSID | ssj0004908 |
Score | 2.46318 |
Snippet | We construct near-optimal coresets for kernel density estimates for points in
R
d
when the kernel is positive definite. Specifically we provide a polynomial... We construct near-optimal coresets for kernel density estimates for points in Rd when the kernel is positive definite. Specifically we provide a polynomial... |
SourceID | unpaywall proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 867 |
SubjectTerms | Combinatorics Computational Mathematics and Numerical Analysis Density Kernels Lower bounds Machine learning Mathematics Mathematics and Statistics Polynomials Upper bounds |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH7iGICBo4AolzKwUYs4cZx4QggoCERZQOoWxY4zlaQ0Qaj_Hr_USWCpmH1J7_D7fLzvAVwoX_GQZgFJtFaE4T8aKQKfKCXcSPmu0CnmDr-M-OM7exoHY3vhVtpvlc2eWG_UaaHwjvzK8wQXwkRjfj39JFg1Cl9XbQmNVVinnrEkzBQfPnR5kaKuSIdGR5C2xCbN1KlzNfecOUgLgiiIEf43MHVos30g3YKNr3yazL-TyeRXDBruwrYFj87NQtt7sKLzHuw0hRkc66c92HppyVjLfaAjY83k1ewNH2bwbYEJR1XpFJnzrGe5njh3-Im9mjv3JXYx2PMA3of3b7ePxFZKIMrnfkUYV4FkSObnBlprE3NCc_CjQehLJl0qk8yVBkupIGMqCv0IPTUSNGGRMPDHOPYhrOVFro_A4fg2SI1qacqYp6g0E3k0ydKUSam9sA-0EVOsLI04VrOYxC0Bci3a2Ig2rkUb8z5ctmOmCxKNpb1PG-nH1qHKuFN_HwaNRrrmZbMNWq39Y_Hj5YufwKaHB-76GuYU1qrZlz4zqKSS57Xp_QDabNd1 priority: 102 providerName: ProQuest – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5ROCgHUdSIotnBm5SsW_ejR4IgkYAXSfC0rF13cQ7CRgz-9bZjG2oM0XPbt619r_3e-t73AG65yW0HhxbyheCIqDgaRi0TcU51l5s6FYHKHR5P7OGUPM6sWZ4UlhTR7sWVZLZTl8luGVucdH0pUriFIHsfqpZyUCpQ7T68jPrbfEiaVaJTyoYUXUmeLPO7lO8H0hZllhejNThYxQt__e5H0ZezZ1CHafHWm5CT184qZR3-8YPQ8b-fdQxHORjVuhvtOYE9ETegXhR60HK7b0BtXJK7JqeAJ9I60JPca97k4N5cJTCliTYPtZFYxiLS7lVQfLrW-onqIrHsGUwH_efeEOWVFxA3bTNFxOYWI4ocULeEEPIMc6QjiS3HZITpmPmhziQ241ZIuOuYrrJ8l2KfuFTCKblRnEMlnsfiAjRb3TViqSo4IMTgmElBBvbDICCMCcNpAi6m3-M5LbmqjhF5JaFyNkOenCEvmyHPbsJdOWaxIeXY2btVrKqXG2jiGQa1KZXgTja3i4XZNu-S1i614Q8Pv_yf9Cs4NJRDn_3maUElXa7EtUQ9KbvJlfwTiYfxMA priority: 102 providerName: Springer Nature |
Title | Near-Optimal Coresets of Kernel Density Estimates |
URI | https://link.springer.com/article/10.1007/s00454-019-00134-6 https://www.proquest.com/docview/2296992516 https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.66 |
UnpaywallVersion | submittedVersion |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: AFBBN dateStart: 19860301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-0444 dateEnd: 20241002 omitProxy: true ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: BENPR dateStart: 20010301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1432-0444 dateEnd: 20241002 omitProxy: true ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: 8FG dateStart: 20010301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-0444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH7a2gPagcEAsWlUOXBj7uLEceJjW9oOpoUJqLSdothxNomQVE2iafz1PKdJBhwmkDj54B-R9fyev5f33meAt8pV3KepR2KtFWEmj0YKzyVKCTtQri10YmqHL0J-tmIfr7yrHVh2tTDJpliX6OzelFV9m5k0i45b9DQpVG3-mBlFRxBgn6Lr-0GV4y_FbGlytIIx57sw5CbSNIDhKrycXDcJjL4ghrSkqTNyHWIY0trymaaIrmGhQ5daEIOHGOG_X1EPuLMPle7Bkzpfx_d3cZb9chst9uG228c2CeXbuK7kWP34g-LxP2z0GTxtEas12R6x57Cj8wPY716DsFrjcAB7Fz0DbPkCaIgqRD6hQfqOk2eFqXKqSqtIrXO9yXVmvTeZ89W9NS_NEAS8L2G1mH-dnZH2eQaiXO5WhHHlSWYYBG1Pa40XnY_eJvV8VzJpUxmntkQAp7yUqcB3A2MeAkFjFgjEXGhNXsEgL3L9GixuApIUzxNNGHMUlbiQQ-M0SZiU2vEPgXYSiVTLXW6e0MiinnW5kWKEUowaKUb8EN71c9Zb5o5HRx93go5aLS4jxxFcCESA2H3SCf-h-7HVTvoD8hcfP_q34ccwqDa1foNoqJIj2A0WyxEMJ4vpNDTt8vp8ju10Hl5-xt6VMxm12vATwGUF9Q |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NU9swEN0BeoAc-kHbaQoFH-BUNLUsWbYOTKcDhNCQ9AIz3FxLlk-pk2IzTP5Uf2N3HdtpLxkunC1LM6un1VtJ-xbgyAqrIp6HLHXOMknvaIwOBbNW-7EVvnYZ5Q6PJ2p4K7_fhXcb8KfNhaFnla1PrB11NrN0Rv4lCLTSGndj9XX-m1HVKLpdbUtoLGExcotHDNnK06tznN_jIBhc3JwNWVNVgFmhRMWksqGRJHznh8459M8RBkk8jISRxucmzX2DvMOGubRxJGJCdax5KmONVAEXAfa7CS-kEIK0-uPB5SoPU9cV8AjkjGRSmiSdOlWv1rrDwF0zYl2Sqf83whW77S5ke7D9UMzTxWM6nf6z5w1ew8uGrHrfluh6Axuu2IVXbSEIr_ELu9Abd-Kv5VvgEzQT-4G-6Bf-fDajBKeq9Ga5N3L3hZt65_Rovlp4FyU1Qa77Dm6fxYbvYauYFe4DeIruIjlCiWdSBpYb7CjgaZ5l0hgXRH3grZkS28iWU_WMadIJLtemTdC0SW3aRPXhc_fPfCnasbb1fmv9pFnAZbKCWx9O2hlZfV7X20k3a08Y_OP6wQ9he3gzvk6uryajPdgJKNivj4D2Yau6f3CfkBFV5qCGoQc_nxv3fwHE3BCo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrVToodAWxNIWcoATtRonjhMfKgTdXbUsXSrUSr2F2HFOS3ZpUlX7F_lVzKROll5WXHr2lzSeGY_teW8A3pvQyJgXEcusNUxQHo1WUciMUX5iQl_ZnLDD5xN5eiW-XkfXa_CnxcJQWmXrExtHnc8MvZEfBYGSSuFpLI8KlxZxMRh9mv9mVEGKflrbchqZK7OQHzd0Yw7kMbaLO7zOVcdnA9z7D0EwGl6enDJXcYCZUIY1E9JEWhApnh9Za9F3x3iB4lEcaqF9rrPC1xiTmKgQJonDhDQ-UTwTicIwAg0E530C6zHhRXuw_mU4ufixRGmqpj4emQAjEhUH4WmAfA0THl7rFaOYTDD58Jhcxr7dd-0mPL0t59niLptO_zkRRy9gy4Wy3ud73duGNVvuwPO2TITnvMYObJ531LDVLvAJCop9R0_1CwefzAj-VFferPDG9qa0U29AKfX1whtW1AUj4Zdw9ShSfAW9clba1-BJ-qnkqGg8FyIwXONEAc-KPBda2yDuA2_FlBpHak61NaZpR8fciDZF0aaNaFPZh4_dmPk9pcfK3vut9FNn3lW6VMY-HLY7smxeNdtht2v_sfib1Yu_gw20gfTb2WS8B88Ceglo3of2oVff3NoDDJdq_dbpoQc_H1v1_wJzUhuC |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7R5VBxKBRaQUVRDtyKlzhxnPiItjwrtpXKSvQUxY4DEmmy2iSq6K_vTDYJjwNqpZ49dmTNeOabeOYzwL7xjQx5FrDEWsME1dFoFfjMGOVGxneVTal3-HIqz2bi4jq4XoHTvhcmXZTzCpPdm6pubnMqs-i5RQ_T0jT0x4wOOoIA9xBT33NTjb-Xk1Oq0YrGUr6CVUk3TSNYnU2_Hf1oCxhDxYi0pO0z8j1GDGld-0zbRNey0GFKrRjhIcHk0xD1gDuHq9I1eN0U8-T-V5Lnj6LRyTrc9vtYFqHcjZtaj83vZxSP_2GjG_CmQ6zO0dLE3sKKLTZhvX8NwumcwyasXQ4MsNUW8CkeIfYVHdJPnDwpqcuprpwyc77YRWFz5zNVztf3znFFIgh438Hs5Phqcsa65xmY8aVfMyFNoAUxCLqBtRYDXYjZJg9CXwvtcp1krkYAZ4JMmCj0I3IPkeKJiBRiLvQm72FUlIXdBkfShSRHe-KpEJ7hGhfyeJKlqdDaeuEO8F4jsem4y-kJjTweWJdbLcaoxbjVYix34NMwZ75k7nhRerdXdNyd4ir2PCWVQgSIwwe98h-GX1rtYDCQv_j4h38T34VRvWjsR0RDtd7rLP0PbF7_bQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Optimal+Coresets+of+Kernel+Density+Estimates&rft.jtitle=Discrete+%26+computational+geometry&rft.au=Phillips%2C+Jeff+M.&rft.au=Tai%2C+Wai+Ming&rft.date=2020-06-01&rft.issn=0179-5376&rft.eissn=1432-0444&rft.volume=63&rft.issue=4&rft.spage=867&rft.epage=887&rft_id=info:doi/10.1007%2Fs00454-019-00134-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00454_019_00134_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0179-5376&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0179-5376&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0179-5376&client=summon |