Few-layer fluorine-functionalized graphene hole-selective contacts for efficient inverted perovskite solar cells

We have studied the use of fluorographene (FGr) as the hole transport material (HTL) to replace the most commonly used PEDOT: PSS in inverted perovskite solar cells (PSCs). The presence of the FGr improved the power conversion efficiency to 19.34%, the highest ever reported for a PSC incorporating a...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 430; p. 132831
Main Authors Hanmandlu, Chintam, Sahoo, Mamina, Liu, Chi-Ching, Chen, Hsin-An, Pao, Chun-Wei, Chang, Yun-Chorng, Chu, Chih-Wei, Lai, Chao-Sung
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.02.2022
Online AccessGet full text
ISSN1385-8947
1873-3212
DOI10.1016/j.cej.2021.132831

Cover

Abstract We have studied the use of fluorographene (FGr) as the hole transport material (HTL) to replace the most commonly used PEDOT: PSS in inverted perovskite solar cells (PSCs). The presence of the FGr improved the power conversion efficiency to 19.34%, the highest ever reported for a PSC incorporating a graphene functionalized transport material. Furthermore, the FGr HTL exhibits promising potential for application in flexible PSCs. [Display omitted] •The FGr, bonds strongly with the conductive oxide and the perovskite surface, while being impervious to chemical degradation.•An energetically aligned interface with the perovskite absorbing layer, without undergoing non-radiative losses.•A stabilized PCE of up to 19.34% with an exceptional fill factor of 83.84 %.•A flexible PSCs achieving PCE of 17.5% with good bending stability. Charge-selective contacts can play a critical role in enhancing the efficiency of perovskite solar cells (PSCs). In this study, we employed fluorine-functionalized graphene (FGr) layers having finely tunable energy levels as hole transport layers (HTLs) to improve the power conversion efficiency (PCE) and stability of inverted PSCs. The non-wetting surface of the FGr enhanced the crystallinity of organic–inorganic perovskites films with large aspect ratios, relative to that of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS). Combining the high work function of the HTL interface with the enhanced crystallinity and limited grain boundary area dramatically decreased the charge recombination losses in organic–inorganic trihalide perovskite (OTP) films. Thus, when incorporating FGr HTLs in inverted PSCs, the best PCE reached 19.34%—the highest efficiency reported to date for any PSC featuring a functionalized graphene HTL. Furthermore, we used this HTL to prepare flexible PSCs and obtained a highest efficiency of 17.50%. Therefore, this highly applicable and facile interface strategy using functionalized graphene HTLs provides stable PSCs displaying high PCEs.
AbstractList We have studied the use of fluorographene (FGr) as the hole transport material (HTL) to replace the most commonly used PEDOT: PSS in inverted perovskite solar cells (PSCs). The presence of the FGr improved the power conversion efficiency to 19.34%, the highest ever reported for a PSC incorporating a graphene functionalized transport material. Furthermore, the FGr HTL exhibits promising potential for application in flexible PSCs. [Display omitted] •The FGr, bonds strongly with the conductive oxide and the perovskite surface, while being impervious to chemical degradation.•An energetically aligned interface with the perovskite absorbing layer, without undergoing non-radiative losses.•A stabilized PCE of up to 19.34% with an exceptional fill factor of 83.84 %.•A flexible PSCs achieving PCE of 17.5% with good bending stability. Charge-selective contacts can play a critical role in enhancing the efficiency of perovskite solar cells (PSCs). In this study, we employed fluorine-functionalized graphene (FGr) layers having finely tunable energy levels as hole transport layers (HTLs) to improve the power conversion efficiency (PCE) and stability of inverted PSCs. The non-wetting surface of the FGr enhanced the crystallinity of organic–inorganic perovskites films with large aspect ratios, relative to that of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS). Combining the high work function of the HTL interface with the enhanced crystallinity and limited grain boundary area dramatically decreased the charge recombination losses in organic–inorganic trihalide perovskite (OTP) films. Thus, when incorporating FGr HTLs in inverted PSCs, the best PCE reached 19.34%—the highest efficiency reported to date for any PSC featuring a functionalized graphene HTL. Furthermore, we used this HTL to prepare flexible PSCs and obtained a highest efficiency of 17.50%. Therefore, this highly applicable and facile interface strategy using functionalized graphene HTLs provides stable PSCs displaying high PCEs.
ArticleNumber 132831
Author Sahoo, Mamina
Pao, Chun-Wei
Liu, Chi-Ching
Hanmandlu, Chintam
Chen, Hsin-An
Chang, Yun-Chorng
Chu, Chih-Wei
Lai, Chao-Sung
Author_xml – sequence: 1
  givenname: Chintam
  surname: Hanmandlu
  fullname: Hanmandlu, Chintam
  organization: Research Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 11529, Taiwan Republic of China
– sequence: 2
  givenname: Mamina
  surname: Sahoo
  fullname: Sahoo, Mamina
  organization: Department of Electronic Engineering, Chang Gung University, Wenhua First Road, Taoyuan City, Guishan District 33302, Taiwan Republic of China
– sequence: 3
  givenname: Chi-Ching
  surname: Liu
  fullname: Liu, Chi-Ching
  organization: Research Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 11529, Taiwan Republic of China
– sequence: 4
  givenname: Hsin-An
  surname: Chen
  fullname: Chen, Hsin-An
  organization: Research Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 11529, Taiwan Republic of China
– sequence: 5
  givenname: Chun-Wei
  surname: Pao
  fullname: Pao, Chun-Wei
  organization: Research Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 11529, Taiwan Republic of China
– sequence: 6
  givenname: Yun-Chorng
  surname: Chang
  fullname: Chang, Yun-Chorng
  organization: Research Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 11529, Taiwan Republic of China
– sequence: 7
  givenname: Chih-Wei
  surname: Chu
  fullname: Chu, Chih-Wei
  email: gchu@gate.sinica.edu.tw
  organization: Research Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 11529, Taiwan Republic of China
– sequence: 8
  givenname: Chao-Sung
  surname: Lai
  fullname: Lai, Chao-Sung
  email: cslai@mail.cgu.edu.tw
  organization: Department of Photonics, National Chiao Tung University, Hsinchu 30010, Taiwan Republic of China
BookMark eNp9kM1KAzEUhYNUsK0-gLu8wIzJJJ0fXEmxKhTc6DpkMjc2Y0xKko7Up3eGunLR1blw-C6cb4FmzjtA6JaSnBJa3vW5gj4vSEFzyoqa0Qs0p3XFMlbQYjberF5ldcOrK7SIsSeElA1t5mi_ge_MyiMErO3BB-Mg0wenkvFOWvMDHf4Icr8DB3jnLWQRLIztAFh5l6RKEWsfMGhtlAGXsHEDhDRyewh-iJ8mAY7eyoAVWBuv0aWWNsLNXy7R--bxbf2cbV-fXtYP20yxkqWME901rFSadzVRzQqqruaKA-OrsuK8bRtVV5qxpqyLVhWkbWVDKKcd4VxpIGyJqtNfFXyMAbRQJslpVgrSWEGJmMSJXozixCROnMSNJP1H7oP5kuF4lrk_MTBOGgwEEScbCjoTRl2i8-YM_QugPors
CitedBy_id crossref_primary_10_1002_smll_202205575
crossref_primary_10_1080_25740881_2024_2449006
crossref_primary_10_1002_adfm_202210155
crossref_primary_10_1021_acsami_3c07893
crossref_primary_10_1021_acsami_2c19954
crossref_primary_10_2139_ssrn_3982510
crossref_primary_10_1002_cnma_202300135
crossref_primary_10_1016_j_jcis_2025_137418
crossref_primary_10_1016_j_orgel_2022_106527
crossref_primary_10_1007_s10854_023_09901_x
crossref_primary_10_1016_j_orgel_2022_106525
crossref_primary_10_1016_j_orgel_2022_106568
crossref_primary_10_1002_adfm_202204594
crossref_primary_10_1039_D2TA09696J
Cites_doi 10.1002/jcc.21759
10.1126/sciadv.aav8925
10.1002/adma.201502544
10.1103/PhysRevB.48.13115
10.1021/nl101437p
10.1038/s41467-019-08455-z
10.1021/acs.nanolett.6b02228
10.1038/nenergy.2016.177
10.1038/nature08582
10.1021/ja411014k
10.1039/C7NR03963H
10.1021/acs.chemrev.8b00336
10.1007/s40820-017-0140-x
10.1039/C4TA05196C
10.1039/C9EE02020A
10.1038/s41560-020-00749-7
10.1002/aenm.201400591
10.1002/adfm.201807556
10.1021/acsami.0c04975
10.1038/ncomms8767
10.1038/s41467-018-06608-0
10.1103/PhysRevB.83.235434
10.1016/j.nantod.2015.04.009
10.1039/C7TA01517H
10.1103/PhysRevB.59.1758
10.1088/2053-1583/2/2/024008
10.1039/C4EE01138D
10.1103/PhysRevB.50.17953
10.1002/advs.201500413
10.1021/acsami.8b04329
10.1002/adfm.201800346
10.1016/j.jechem.2020.04.027
10.1021/acs.nanolett.0c01689
10.1021/acs.chemrev.8b00539
10.1016/j.orgel.2017.02.011
10.1002/smll.201301366
10.1063/1.3225154
10.1021/ja412583t
10.1021/jacs.0c08592
10.1088/1361-6633/ab9f88
10.1039/C6EE02650H
10.1038/nphoton.2014.134
10.1038/s41467-018-05760-x
10.1063/1.1532102
10.1103/PhysRevB.49.14251
10.1126/science.abb8687
10.1021/nn300107f
10.1126/science.aax8018
10.1038/ncomms8747
10.1038/s41560-019-0538-4
10.1038/ncomms8348
10.1126/science.aay7044
10.1126/science.aat8235
10.1103/PhysRevB.45.13244
10.1038/nature08522
10.1103/PhysRevB.46.6671
10.1038/s41560-018-0190-4
10.1002/adma.201805554
10.1002/aenm.201701640
10.1002/admt.201900422
10.1103/PhysRevB.47.558
10.1063/1.3382344
10.1021/nl300346j
10.1126/science.aam5655
10.1002/admt.201900972
10.1039/C9EE02268F
10.1021/ja809598r
10.1039/C8TA05811C
10.1038/srep05893
10.1126/science.aaa5760
10.1002/adma.201805660
10.1016/j.joule.2021.01.008
10.1002/aenm.201702762
10.1002/smll.201402767
10.1002/adma.201101414
10.1038/nnano.2015.230
10.1038/s41467-019-09093-1
10.1038/s41560-018-0200-6
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2021.132831
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2021_132831
S1385894721044089
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c363t-40fd936cf4d80c95e7d84c4e3456744bb9c87f339682bc20bba90141d044cfe03
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Thu Apr 24 22:57:00 EDT 2025
Tue Jul 01 04:27:53 EDT 2025
Fri Feb 23 02:40:56 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-40fd936cf4d80c95e7d84c4e3456744bb9c87f339682bc20bba90141d044cfe03
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2021_132831
crossref_primary_10_1016_j_cej_2021_132831
elsevier_sciencedirect_doi_10_1016_j_cej_2021_132831
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-15
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mo, Zhang, Chang, Yang, Xi, Chen, Lin, Lu, Zhang, Hao (b0345) 2017; 5
Wu, Yang, Rudd, Shao, Dai, Wei, Zhao, Fang, Wang, Liu, Deng, Xiao, Feng, Huang (b0075) 2019; 5
Yang, Yang, Wang, Wu, Zhu, Feng, Ren, Fang, Priya, Liu (b0090) 2018; 9
Jung, Park (b0100) 2015; 11
Arora, Dar, Hinderhofer, Pellet, Schreiber, Zakeeruddin, Grätzel (b0135) 2017; 358
Li, Dong, Guo, Li, Li, Niu, Wang (b0220) 2014; 2
Stolterfoht, Caprioglio, Wolff, Márquez, Nordmann, Zhang, Rothhardt, Hörmann, Amir, Redinger, Kegelmann, Zu, Albrecht, Koch, Kirchartz, Saliba, Unold, Neher (b0320) 2019; 12
Chen, Yang, Wang, Zheng, Wu, Yuan, Zhang, Liu (b0155) 2018; 30
Yang, Zhou, Yu, Zhang, Li (b0205) 2014; 4
Chan, Venugopal, Pirkle, McDonnell, Hinojos, Magnuson, Ruoff, Colombo, Wallace, Vogel (b0240) 2012; 6
Blöchl (b0375) 1994; 50
Yang, Li, Wang, Pei, Wang, Zhang, Lin, Li (b0200) 2020; 12
Robinson, Burgess, Junkermeier, Badescu, Reinecke, Perkins, Zalalutdniov, Baldwin, Culbertson, Sheehan, Snow (b0245) 2010; 10
Zhang, Wang, Zhu, Chueh, Chen, Yang, Jen (b0145) 2018; 8
Jang, Lee, Yeom, Jeong, Choi, Choi, Noh (b0015) 2021; 6
Peng, Walter, Ren, Tebyetekerwa, Wu, Duong, Lin, Li, Lu, Mahmud, Lem, Zhao, Liu, Liu, Shen, Li, Kremer, Nguyen, Choi, Weber, Catchpole, White (b0315) 2021; 371
Wang, Wu, Barbaud, Kong, Cui, Chen, Yang, Han (b0210) 2019; 365
Lee, Suk, Chou, Lee, Hao, Wu, Piner, Akinwande, Kim, Ruoff (b0255) 2012; 12
Li, Chao, Chen, Ran, Wang, Niu, Lv, Wu, Xia, Ran, Song, Chen, Chen, Huang (b0335) 2020; 20
Dong, Fang, Shao, Mulligan, Qiu, Cao, Huang (b0045) 2015; 347
Christians, Fung, Kamat (b0150) 2014; 136
Bolotin, Ghahari, Shulman, Stormer, Kim (b0265) 2009; 462
Kresse, Hafner (b0350) 1993; 47
Luo, Lin, Hou, Pan, Huang, Chen (b0215) 2017; 9
Seifert, Vargas, Bobinger, Sachsenhauser, Cummings, Roche, Garrido (b0235) 2015; 2
Ho, Boutchich, Su, Moreddu, Marianathan, Montes, Lai (b0190) 2015; 27
Chen, Li, Wang, Li, Xu, Jiao, Liu, Zhu, Zai, Sun, Zou, Zhang, Xing, Liu, Wang, Li, Huang, Chen, Zhou (b0070) 2019; 10
Ma, Zhao, Li, Zhang, Gu, You (b0140) 2021; 52
Boyd, Cheacharoen, Leijtens, McGehee (b0055) 2019; 119
Zhou, Wu, Zhou, Sun (b0270) 2009; 95
Yoon, Sung, Lee, Cho, Ahn, Jung, Choi (b0020) 2017; 10
Han, Lee, Choi, Tan, Lee, Zhao, Dai, De Marco, Lee, Bae, Yuan, Lee, Huang, Yang (b0080) 2019; 10
Bi, Wang, Shao, Yuan, Xiao, Huang (b0285) 2015; 6
Hanmandlu, Liu, Chen, Boopathi, Wu, Singh, Mohapatra, Lin, Chang, Chang, Lai, Chu (b0340) 2018; 10
Perdew, Wang (b0370) 1992; 45
Ponseca, Savenije, Abdellah, Zheng, Yartsev, Pascher, Harlang, Chabera, Pullerits, Stepanov, Wolf, Sundström (b0050) 2014; 136
You, Meng, Song, Guo, Yang, Chang, Hong, Chen, Zhou, Chen, Liu, De Marco, Yang (b0095) 2016; 11
Rong, Hu, Mei, Tan, Saidaminov, Seok, McGehee, Sargent, Han (b0060) 2018; 361
Jokar, Huang, Narra, Wang, Kattoor, Chung, Diau (b0160) 2018; 8
Yu, Badgujar, Jung, Singh, Kim, Gierschner, Lee, Kim, Cho, Kwon, Song (b0125) 2019; 31
Zheng, Hou, Bao, Yin, Yuan, Huang, Song, Liu, Troughton, Gasparini, Zhou, Lin, Xue, Chen, Johnston, Wei, Hedhili, Wei, Alsalloum, Maity, Turedi, Yang, Baran, Anthopoulos, Han, Lu, Mohammed, Gao, Sargent, Bakr (b0120) 2020; 5
Chen, De Marco, Yang, Song, Chen, Zhao, Hong, Zhou, Yang (b0305) 2015; 10
Xie, Liu, Xu, Li, Liu, Lee (b0295) 2017; 44
Min, Kim, Lee, Kim, Kim, Choi, Lee, Seok (b0010) 2019; 366
Jena, Kulkarni, Miyasaka (b0035) 2019; 119
Yu, Lee, Joh, Yeo, Na (b0165) 2017; 9
Liu, Hong, Sahoo, Ong, Tok, Di, Ho, Liang, Bow, Liu, Wang, Hou, Lai (b0250) 2019; 4
Jung, Heo, Lee, Lee, Lee, Yoon, Yun, Im, Kim, Kwon (b0115) 2018; 28
Jeon, Na, Jung, Yang, Lee, Kim, Shin, Il Seok, Lee, Seo (b0085) 2018; 3
Ho, Huang, Liao, Zhang, Li, Lai, Su (b0225) 2014; 4
Ashraf, Wu, Wang, Yong, Sun, Jing, Haasch, Aluru, Nam (b0275) 2016; 16
Chitara, Panchakarla, Krupanidhi, Rao (b0185) 2011; 23
Hanmandlu, Singh, Boopathi, Lai, Chu (b0030) 2020; 83
Ricciardulli, Blom (b0195) 2020; 5
Choi, Mai, Kim, Jeong, Song, Bazan, Kim, Heeger (b0130) 2015; 6
Ziegler, Gava, Güttinger, Molitor, Wirtz, Lazzeri, Saitta, Stemmer, Mauri, Stampfer (b0300) 2011; 83
Liao (b0025) 2021; 5
Feng, Long, Feng, Li (b0175) 2016; 3
Kresse, Hafner (b0355) 1993; 48
Yang, Sano, Yaguchi, Sun, Sasabe, Kido (b0110) 2019; 29
Leijtens, Bush, Prasanna, McGehee (b0105) 2018; 3
Xiao, Bi, Shao, Dong, Wang, Yuan, Wang, Gao, Huang (b0290) 2014; 7
Su, Eickemeyer, Hope, Jahanbakhshi, Mladenović, Li, Zhou, Mishra, Yum, Ren, Krishna, Ouellette, Wei, Zhou, Huang, Mensi, Sivula, Zakeeruddin, Milić, Hagfeldt, Rothlisberger, Emsley, Zhang, Grätzel (b0325) 2020; 142
Perdew, Chevary, Vosko, Jackson, Pederson, Singh, Fiolhais (b0365) 1992; 46
Jiang, Zhang, Wang, Yang, Meng, Liu, Yin, Wu, Zhang, You (b0065) 2016; 2
Du, Skachko, Duerr, Luican, Andrei (b0260) 2009; 462
Kojima, Teshima, Shirai, Miyasaka (b0005) 2009; 131
Koch, Kahn, Ghijsen, Pireaux, Schwartz, Johnson, Elschner (b0310) 2003; 82
Al-Ashouri, Magomedov, Roß, Jošt, Talaikis, Chistiakova, Bertram, Márquez, Köhnen, Kasparavičius, Levcenco, Gil-Escrig, Hages, Schlatmann, Rech, Malinauskas, Unold, Kaufmann, Korte, Niaura, Getautis, Albrecht (b0330) 2019; 12
Kresse, Joubert (b0380) 1999; 59
Wang, Tian, Mohammad, Li, Wu, Yang, Ren (b0180) 2015; 6
Green, Ho-Baillie, Snaith (b0040) 2014; 8
Javaid, Myung, Pourasad, Rakshit, Kim, Lee (b0170) 2018; 6
Grimme, Antony, Ehrlich, Krieg (b0385) 2010; 132
Prydatko, Belyaeva, Jiang, Lima, Schneider (b0280) 2018; 9
Ho, Liao, Huang, Hsu, Zhang, Lu, Li, Lai, Su (b0230) 2014; 10
Kresse, Hafner (b0360) 1994; 49
Grimme, Ehrlich, Goerigk (b0390) 2011; 32
Peng (10.1016/j.cej.2021.132831_b0315) 2021; 371
Feng (10.1016/j.cej.2021.132831_b0175) 2016; 3
Li (10.1016/j.cej.2021.132831_b0335) 2020; 20
Ma (10.1016/j.cej.2021.132831_b0140) 2021; 52
Yang (10.1016/j.cej.2021.132831_b0200) 2020; 12
You (10.1016/j.cej.2021.132831_b0095) 2016; 11
Jeon (10.1016/j.cej.2021.132831_b0085) 2018; 3
Yang (10.1016/j.cej.2021.132831_b0110) 2019; 29
Li (10.1016/j.cej.2021.132831_b0220) 2014; 2
Lee (10.1016/j.cej.2021.132831_b0255) 2012; 12
Kresse (10.1016/j.cej.2021.132831_b0360) 1994; 49
Liu (10.1016/j.cej.2021.132831_b0250) 2019; 4
Su (10.1016/j.cej.2021.132831_b0325) 2020; 142
Blöchl (10.1016/j.cej.2021.132831_b0375) 1994; 50
Min (10.1016/j.cej.2021.132831_b0010) 2019; 366
Jokar (10.1016/j.cej.2021.132831_b0160) 2018; 8
Grimme (10.1016/j.cej.2021.132831_b0390) 2011; 32
Zheng (10.1016/j.cej.2021.132831_b0120) 2020; 5
Javaid (10.1016/j.cej.2021.132831_b0170) 2018; 6
Du (10.1016/j.cej.2021.132831_b0260) 2009; 462
Dong (10.1016/j.cej.2021.132831_b0045) 2015; 347
Arora (10.1016/j.cej.2021.132831_b0135) 2017; 358
Yang (10.1016/j.cej.2021.132831_b0090) 2018; 9
Chen (10.1016/j.cej.2021.132831_b0070) 2019; 10
Christians (10.1016/j.cej.2021.132831_b0150) 2014; 136
Seifert (10.1016/j.cej.2021.132831_b0235) 2015; 2
Hanmandlu (10.1016/j.cej.2021.132831_b0340) 2018; 10
Stolterfoht (10.1016/j.cej.2021.132831_b0320) 2019; 12
Yu (10.1016/j.cej.2021.132831_b0125) 2019; 31
Rong (10.1016/j.cej.2021.132831_b0060) 2018; 361
Kresse (10.1016/j.cej.2021.132831_b0350) 1993; 47
Zhou (10.1016/j.cej.2021.132831_b0270) 2009; 95
Wang (10.1016/j.cej.2021.132831_b0180) 2015; 6
Ho (10.1016/j.cej.2021.132831_b0190) 2015; 27
Prydatko (10.1016/j.cej.2021.132831_b0280) 2018; 9
Leijtens (10.1016/j.cej.2021.132831_b0105) 2018; 3
Al-Ashouri (10.1016/j.cej.2021.132831_b0330) 2019; 12
Liao (10.1016/j.cej.2021.132831_b0025) 2021; 5
Ponseca (10.1016/j.cej.2021.132831_b0050) 2014; 136
Yu (10.1016/j.cej.2021.132831_b0165) 2017; 9
Luo (10.1016/j.cej.2021.132831_b0215) 2017; 9
Hanmandlu (10.1016/j.cej.2021.132831_b0030) 2020; 83
Ricciardulli (10.1016/j.cej.2021.132831_b0195) 2020; 5
Jung (10.1016/j.cej.2021.132831_b0115) 2018; 28
Ashraf (10.1016/j.cej.2021.132831_b0275) 2016; 16
Yoon (10.1016/j.cej.2021.132831_b0020) 2017; 10
Ziegler (10.1016/j.cej.2021.132831_b0300) 2011; 83
Jung (10.1016/j.cej.2021.132831_b0100) 2015; 11
Chitara (10.1016/j.cej.2021.132831_b0185) 2011; 23
Perdew (10.1016/j.cej.2021.132831_b0365) 1992; 46
Bi (10.1016/j.cej.2021.132831_b0285) 2015; 6
Green (10.1016/j.cej.2021.132831_b0040) 2014; 8
Grimme (10.1016/j.cej.2021.132831_b0385) 2010; 132
Jena (10.1016/j.cej.2021.132831_b0035) 2019; 119
Zhang (10.1016/j.cej.2021.132831_b0145) 2018; 8
Boyd (10.1016/j.cej.2021.132831_b0055) 2019; 119
Kojima (10.1016/j.cej.2021.132831_b0005) 2009; 131
Wang (10.1016/j.cej.2021.132831_b0210) 2019; 365
Kresse (10.1016/j.cej.2021.132831_b0380) 1999; 59
Ho (10.1016/j.cej.2021.132831_b0230) 2014; 10
Chen (10.1016/j.cej.2021.132831_b0155) 2018; 30
Perdew (10.1016/j.cej.2021.132831_b0370) 1992; 45
Jang (10.1016/j.cej.2021.132831_b0015) 2021; 6
Koch (10.1016/j.cej.2021.132831_b0310) 2003; 82
Choi (10.1016/j.cej.2021.132831_b0130) 2015; 6
Robinson (10.1016/j.cej.2021.132831_b0245) 2010; 10
Chen (10.1016/j.cej.2021.132831_b0305) 2015; 10
Kresse (10.1016/j.cej.2021.132831_b0355) 1993; 48
Yang (10.1016/j.cej.2021.132831_b0205) 2014; 4
Mo (10.1016/j.cej.2021.132831_b0345) 2017; 5
Wu (10.1016/j.cej.2021.132831_b0075) 2019; 5
Han (10.1016/j.cej.2021.132831_b0080) 2019; 10
Jiang (10.1016/j.cej.2021.132831_b0065) 2016; 2
Xie (10.1016/j.cej.2021.132831_b0295) 2017; 44
Xiao (10.1016/j.cej.2021.132831_b0290) 2014; 7
Chan (10.1016/j.cej.2021.132831_b0240) 2012; 6
Ho (10.1016/j.cej.2021.132831_b0225) 2014; 4
Bolotin (10.1016/j.cej.2021.132831_b0265) 2009; 462
References_xml – volume: 10
  start-page: 337
  year: 2017
  end-page: 345
  ident: b0020
  article-title: Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 1701640
  year: 2018
  ident: b0160
  article-title: Anamolous charge extraction behaviour for graphene oxide (GO) and reduced graphene oxide (rGO) films as efficient p-contact layers for high performance perovskite solar cells
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 5893
  year: 2014
  ident: b0225
  article-title: Fluorinated graphene as high performance dielectric materials and the applications for graphene nanoelectronics
  publication-title: Sci. Rep.
– volume: 366
  start-page: 749
  year: 2019
  end-page: 753
  ident: b0010
  article-title: Efficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodide
  publication-title: Science
– volume: 462
  start-page: 192
  year: 2009
  end-page: 195
  ident: b0260
  article-title: Fractional quantum hall effect and insulating phase of dirac electrons in graphene
  publication-title: Nature
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: b0375
  article-title: Projector augmented-+rave method
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 20105
  year: 2014
  end-page: 20111
  ident: b0220
  article-title: Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 4708
  year: 2016
  end-page: 4712
  ident: b0275
  article-title: Doping-induced tunable wettability and adhesion of graphene
  publication-title: Nano Lett.
– volume: 5
  start-page: 13032
  year: 2017
  end-page: 13038
  ident: b0345
  article-title: Enhanced efficiency of planar perovskite solar cells via a two-step deposition using DMF as an additive to optimize the crystal growth behavior
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 7348
  year: 2015
  ident: b0130
  article-title: Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells
  publication-title: Nat. Commun.
– volume: 30
  start-page: 1805660
  year: 2018
  ident: b0155
  article-title: Design of an inorganic mesoporous hole transporting layer for highly efficient and stable inverted perovskite solar cells
  publication-title: Adv. Mater.
– volume: 119
  start-page: 3036
  year: 2019
  end-page: 3103
  ident: b0035
  article-title: Halide perovskite photovoltaics: background, status, and future prospects
  publication-title: Chem. Rev.
– volume: 5
  start-page: 1900972
  year: 2020
  ident: b0195
  article-title: Solution processable 2D materials applied in light emitting diodes and solar cells
  publication-title: Adv. Mater. Technol.
– volume: 132
  year: 2010
  ident: b0385
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: The J. Chem. Phys.
– volume: 52
  start-page: 393
  year: 2021
  end-page: 411
  ident: b0140
  article-title: Nickel oxide for inverted structure perovskite solar cells
  publication-title: J. Energy Chem.
– volume: 119
  start-page: 3418
  year: 2019
  end-page: 3451
  ident: b0055
  article-title: Understanding degradation mechanisms and improving stability of perovskite photovoltaics
  publication-title: Chem. Rev.
– volume: 11
  start-page: 10
  year: 2015
  end-page: 25
  ident: b0100
  article-title: From materials to devices
  publication-title: Small
– volume: 5
  start-page: 295
  year: 2021
  end-page: 297
  ident: b0025
  article-title: Behind breakthrough of the 30 % perovskite solar cells
  publication-title: Joule
– volume: 10
  start-page: 3001
  year: 2010
  end-page: 3005
  ident: b0245
  article-title: Properties of fluorinated graphene films
  publication-title: Nano Lett.
– volume: 10
  start-page: 1112
  year: 2019
  ident: b0070
  article-title: Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells
  publication-title: Nat. Commun.
– volume: 5
  start-page: 131
  year: 2020
  end-page: 140
  ident: b0120
  article-title: Managing grains and interfaces via ligand achoring enables 22.3 %-efficiency inverted perovskite solar cells
  publication-title: Nat. Energy
– volume: 6
  start-page: 3224
  year: 2012
  end-page: 3229
  ident: b0240
  article-title: Reducing extrinsic performancelimiting factors in graphene grown by chemical vapor deposition
  publication-title: ACS Nano
– volume: 48
  start-page: 13115
  year: 1993
  end-page: 13118
  ident: b0355
  article-title: Ab initio molecular dynamics for open-shell transition metals
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 989
  year: 2014
  end-page: 997
  ident: b0230
  article-title: One step formation of a single atomic layer transistor by the selective fluorination of a graphene film
  publication-title: Small
– volume: 95
  year: 2009
  ident: b0270
  article-title: Tuning electronic and magnetic properties of graphene by surface modification
  publication-title: Appl. Phys. Lett.
– volume: 82
  start-page: 70
  year: 2003
  end-page: 72
  ident: b0310
  article-title: Conjugated organic molecules on metal versus polymer electrodes: demonstration of a key energy level alignment mechanism
  publication-title: Appl. Phys. Lett.
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: b0380
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 2619
  year: 2014
  end-page: 2623
  ident: b0290
  article-title: Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers
  publication-title: Energy Environ. Sci.
– volume: 131
  start-page: 6050
  year: 2009
  end-page: 6051
  ident: b0005
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
– volume: 361
  start-page: eaat8235
  year: 2018
  ident: b0060
  article-title: Challenges for commercializing perovskite solar cells
  publication-title: Science
– volume: 5
  start-page: eaav8925
  year: 2019
  ident: b0075
  article-title: Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells
  publication-title: Sci. Adv.
– volume: 12
  start-page: 22992
  year: 2020
  end-page: 23001
  ident: b0200
  article-title: Exfoliated fluorographene quantum dots as outstanding passivants for improved flexible perovskite solar cells
  publication-title: ACS Appl Mater. Interfaces
– volume: 9
  start-page: 17167
  year: 2017
  end-page: 17173
  ident: b0165
  article-title: Synergetic effects of solution-processable fluorinated graphene and PEDOT as a hole-transporting layer for highly efficient and stable normal-structure perovskite solar cells
  publication-title: Nanoscale
– volume: 10
  start-page: 17973
  year: 2018
  end-page: 17984
  ident: b0340
  article-title: Top Illuminated hysteresis-free perovskite solar cells incorporating microcavity structures on metal electrodes: a combined experimental and theoretical approach
  publication-title: ACS Appl. Mater. Interfaces
– volume: 347
  start-page: 967
  year: 2015
  end-page: 970
  ident: b0045
  article-title: Electron-hole diffusion lengths > 175 µm in solution-grown CH
  publication-title: Science
– volume: 136
  start-page: 5189
  year: 2014
  end-page: 5192
  ident: b0050
  article-title: Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 1805554
  year: 2019
  ident: b0125
  article-title: Highly efficient and stable inverted perovskite solar cells obtained via treatment by semiconducting chemical additive
  publication-title: Adv. Mater.
– volume: 9
  start-page: 39
  year: 2017
  ident: b0215
  article-title: Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT:PSS hole transport layer
  publication-title: Nano-Micro Lett.
– volume: 83
  year: 2020
  ident: b0030
  article-title: Layered perovskite materials: key solutions for highly efficient and stable perovskite solar cells
  publication-title: Rep. Prog. Phys.
– volume: 27
  start-page: 6519
  year: 2015
  end-page: 6525
  ident: b0190
  article-title: A self-aligned high mobility graphene transistor- decoupling the channel with fluorographene reduce scattering
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1900422
  year: 2019
  ident: b0250
  article-title: A fluorographene based synaptic transistor
  publication-title: Adv. Mater. Technol.
– volume: 358
  start-page: 768
  year: 2017
  end-page: 771
  ident: b0135
  article-title: Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%
  publication-title: Science
– volume: 136
  start-page: 758
  year: 2014
  end-page: 764
  ident: b0150
  article-title: An inorganic hole conductor for organo-lead halide perovskite solar cells. improved hole conductivity with copper iodide
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 16177
  year: 2016
  ident: b0065
  article-title: Enhanced electron extraction using SnO
  publication-title: Nat. Energy
– volume: 47
  start-page: 558
  year: 1993
  end-page: 561
  ident: b0350
  article-title: Ab. initio molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 2374
  year: 2012
  end-page: 2378
  ident: b0255
  article-title: Selective-area fluorination of graphene with fluoropolymer and laser irradiation
  publication-title: Nano Lett.
– volume: 8
  start-page: 1702762
  year: 2018
  ident: b0145
  article-title: Low-temperature solution-processed CuCrO
  publication-title: Adv. Energy Mater.
– volume: 44
  start-page: 120
  year: 2017
  end-page: 125
  ident: b0295
  article-title: Tuning the work function of indium-tin-oxide electrodes for low-temperature-processed, titanium-oxide-free perovskite solar cells
  publication-title: Org. Electron.
– volume: 12
  start-page: 3356
  year: 2019
  end-page: 3369
  ident: b0330
  article-title: Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells
  publication-title: Energy Environ. Sci.
– volume: 462
  start-page: 196
  year: 2009
  end-page: 199
  ident: b0265
  article-title: Observation of the fractional quantum hall effect in graphene
  publication-title: Nature
– volume: 46
  start-page: 6671
  year: 1992
  end-page: 6687
  ident: b0365
  article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 3239
  year: 2018
  ident: b0090
  article-title: High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO
  publication-title: Nat. Commun.
– volume: 23
  start-page: 5419
  year: 2011
  end-page: 5424
  ident: b0185
  article-title: Infrared photodetectors based reduced graphene oxide and graphene nanoribbons
  publication-title: Adv. Mater.
– volume: 2
  year: 2015
  ident: b0235
  article-title: Role of grain boundaries in tailoring electronic properties of polycrystalline graphene by chemical functionalization
  publication-title: 2D Mater.
– volume: 20
  start-page: 5799
  year: 2020
  end-page: 5806
  ident: b0335
  article-title: In situ interface engineering for highly efficient electron-transportlayer-free perovskite solar cells
  publication-title: Nano Lett.
– volume: 11
  start-page: 75
  year: 2016
  end-page: 81
  ident: b0095
  article-title: Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers
  publication-title: Nat. Nanotechnol.
– volume: 4
  start-page: 1400591
  year: 2014
  ident: b0205
  article-title: Work-function tunable chlorinated graphene oxide as an anode interface layer
  publication-title: Adv. Energy Mater.
– volume: 83
  year: 2011
  ident: b0300
  article-title: Variations in the work function of doped single- and few-layer graphene assessed by Kelvin probe force microscopy and density functional theory
  publication-title: Phys. Rev. B
– volume: 28
  start-page: 1800346
  year: 2018
  ident: b0115
  article-title: Nonfullerene electron transforting materials based on napthalene diimide small molecule for highly stable perovskite solar cells with efficiency exceeding 20%
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 7747
  year: 2015
  ident: b0285
  article-title: Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells
  publication-title: Nat. Commun.
– volume: 10
  start-page: 355
  year: 2015
  end-page: 396
  ident: b0305
  article-title: Under the spotlight: the organic-inorganichybrid halide perovskite for optoelectronicapplications
  publication-title: Nano Today
– volume: 32
  start-page: 1456
  year: 2011
  end-page: 1465
  ident: b0390
  article-title: Effect of the damping fucntion in dispersion corrected density fucntional theory
  publication-title: J. Comput. Chem.
– volume: 6
  start-page: 7767
  year: 2015
  ident: b0180
  article-title: A spectrally tunable all-graphene-based flexible field-effect light-emitting device
  publication-title: Nat. Commun.
– volume: 365
  start-page: 687
  year: 2019
  end-page: 691
  ident: b0210
  article-title: Stabilizing heterostructures of soft perovskite semiconductors
  publication-title: Science
– volume: 12
  start-page: 2778
  year: 2019
  end-page: 2788
  ident: b0320
  article-title: The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 63
  year: 2021
  end-page: 71
  ident: b0015
  article-title: Intact 2D/3D halide heterojunction perovskite solar cells solid-phase-in growth
  publication-title: Nat. Energy
– volume: 10
  start-page: 520
  year: 2019
  ident: b0080
  article-title: Perovskite-polymer composite cross-linker approach for highly efficient perovskite solar cells
  publication-title: Nat. Commun.
– volume: 8
  start-page: 506
  year: 2014
  end-page: 514
  ident: b0040
  article-title: The emergence of perovskite solar cells
  publication-title: Nat. Photon.
– volume: 49
  start-page: 14251
  year: 1994
  end-page: 14269
  ident: b0360
  article-title: Ab initio molecular-dynamics simulation of the liquid-metal —amorphous-semiconductor transition in germanium
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 1500413
  year: 2016
  ident: b0175
  article-title: Two-Dimensional fluorinated graphene: synthesis, structures properties and applications
  publication-title: Adv. Sci.
– volume: 6
  start-page: 18635
  year: 2018
  end-page: 18640
  ident: b0170
  article-title: A highly hydrophobic fluorographene-based system as an interlayer for electron transport in organic–inorganic perovskite solar cells
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 682
  year: 2018
  end-page: 689
  ident: b0085
  article-title: A fluorene terminated hole-transporting material for highly efficienct and stable perovskite solar cells
  publication-title: Nat. Energy
– volume: 29
  start-page: 1807556
  year: 2019
  ident: b0110
  article-title: Acheiving 20 % efficiency for low temperature processesd inverted perovskite solar cells
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 4185
  year: 2018
  ident: b0280
  article-title: Contact angle measurement of free-standing square-millimeter single-layer graphene
  publication-title: Nat. Commun.
– volume: 45
  start-page: 13244
  year: 1992
  end-page: 13249
  ident: b0370
  article-title: Accurate and simple analytic representation of the electron-gas correlation energy
  publication-title: Phys. Rev. B
– volume: 371
  start-page: 390
  year: 2021
  end-page: 395
  ident: b0315
  article-title: Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells
  publication-title: Science
– volume: 142
  start-page: 19980
  year: 2020
  end-page: 19991
  ident: b0325
  article-title: Crown ether modulation enables over 23% efficient formamidinium-based perovskite solar cells
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 828
  year: 2018
  end-page: 838
  ident: b0105
  article-title: Oppertunities and challenges for tandem solar cells using metal halide perovskite semiconductors
  publication-title: Nat. Energy
– volume: 32
  start-page: 1456
  year: 2011
  ident: 10.1016/j.cej.2021.132831_b0390
  article-title: Effect of the damping fucntion in dispersion corrected density fucntional theory
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 5
  start-page: eaav8925
  year: 2019
  ident: 10.1016/j.cej.2021.132831_b0075
  article-title: Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav8925
– volume: 27
  start-page: 6519
  year: 2015
  ident: 10.1016/j.cej.2021.132831_b0190
  article-title: A self-aligned high mobility graphene transistor- decoupling the channel with fluorographene reduce scattering
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502544
– volume: 48
  start-page: 13115
  year: 1993
  ident: 10.1016/j.cej.2021.132831_b0355
  article-title: Ab initio molecular dynamics for open-shell transition metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.13115
– volume: 10
  start-page: 3001
  year: 2010
  ident: 10.1016/j.cej.2021.132831_b0245
  article-title: Properties of fluorinated graphene films
  publication-title: Nano Lett.
  doi: 10.1021/nl101437p
– volume: 10
  start-page: 520
  year: 2019
  ident: 10.1016/j.cej.2021.132831_b0080
  article-title: Perovskite-polymer composite cross-linker approach for highly efficient perovskite solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08455-z
– volume: 16
  start-page: 4708
  year: 2016
  ident: 10.1016/j.cej.2021.132831_b0275
  article-title: Doping-induced tunable wettability and adhesion of graphene
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02228
– volume: 2
  start-page: 16177
  year: 2016
  ident: 10.1016/j.cej.2021.132831_b0065
  article-title: Enhanced electron extraction using SnO2 for high-efficiency planar heterostutucre FAPbI3 based perovskite solar cells
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.177
– volume: 462
  start-page: 196
  year: 2009
  ident: 10.1016/j.cej.2021.132831_b0265
  article-title: Observation of the fractional quantum hall effect in graphene
  publication-title: Nature
  doi: 10.1038/nature08582
– volume: 136
  start-page: 758
  year: 2014
  ident: 10.1016/j.cej.2021.132831_b0150
  article-title: An inorganic hole conductor for organo-lead halide perovskite solar cells. improved hole conductivity with copper iodide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411014k
– volume: 9
  start-page: 17167
  year: 2017
  ident: 10.1016/j.cej.2021.132831_b0165
  article-title: Synergetic effects of solution-processable fluorinated graphene and PEDOT as a hole-transporting layer for highly efficient and stable normal-structure perovskite solar cells
  publication-title: Nanoscale
  doi: 10.1039/C7NR03963H
– volume: 119
  start-page: 3418
  year: 2019
  ident: 10.1016/j.cej.2021.132831_b0055
  article-title: Understanding degradation mechanisms and improving stability of perovskite photovoltaics
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00336
– volume: 9
  start-page: 39
  year: 2017
  ident: 10.1016/j.cej.2021.132831_b0215
  article-title: Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT:PSS hole transport layer
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-017-0140-x
– volume: 2
  start-page: 20105
  year: 2014
  ident: 10.1016/j.cej.2021.132831_b0220
  article-title: Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05196C
– volume: 12
  start-page: 2778
  year: 2019
  ident: 10.1016/j.cej.2021.132831_b0320
  article-title: The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02020A
– volume: 6
  start-page: 63
  year: 2021
  ident: 10.1016/j.cej.2021.132831_b0015
  article-title: Intact 2D/3D halide heterojunction perovskite solar cells solid-phase-in growth
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00749-7
– volume: 4
  start-page: 1400591
  year: 2014
  ident: 10.1016/j.cej.2021.132831_b0205
  article-title: Work-function tunable chlorinated graphene oxide as an anode interface layer
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400591
– volume: 29
  start-page: 1807556
  year: 2019
  ident: 10.1016/j.cej.2021.132831_b0110
  article-title: Acheiving 20 % efficiency for low temperature processesd inverted perovskite solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807556
– volume: 12
  start-page: 22992
  year: 2020
  ident: 10.1016/j.cej.2021.132831_b0200
  article-title: Exfoliated fluorographene quantum dots as outstanding passivants for improved flexible perovskite solar cells
  publication-title: ACS Appl Mater. Interfaces
  doi: 10.1021/acsami.0c04975
– volume: 6
  start-page: 7767
  year: 2015
  ident: 10.1016/j.cej.2021.132831_b0180
  article-title: A spectrally tunable all-graphene-based flexible field-effect light-emitting device
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8767
– volume: 9
  start-page: 4185
  year: 2018
  ident: 10.1016/j.cej.2021.132831_b0280
  article-title: Contact angle measurement of free-standing square-millimeter single-layer graphene
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06608-0
– volume: 83
  year: 2011
  ident: 10.1016/j.cej.2021.132831_b0300
  article-title: Variations in the work function of doped single- and few-layer graphene assessed by Kelvin probe force microscopy and density functional theory
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.235434
– volume: 10
  start-page: 355
  year: 2015
  ident: 10.1016/j.cej.2021.132831_b0305
  article-title: Under the spotlight: the organic-inorganichybrid halide perovskite for optoelectronicapplications
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2015.04.009
– volume: 5
  start-page: 13032
  year: 2017
  ident: 10.1016/j.cej.2021.132831_b0345
  article-title: Enhanced efficiency of planar perovskite solar cells via a two-step deposition using DMF as an additive to optimize the crystal growth behavior
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01517H
– volume: 59
  start-page: 1758
  year: 1999
  ident: 10.1016/j.cej.2021.132831_b0380
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 2
  year: 2015
  ident: 10.1016/j.cej.2021.132831_b0235
  article-title: Role of grain boundaries in tailoring electronic properties of polycrystalline graphene by chemical functionalization
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/2/2/024008
– volume: 7
  start-page: 2619
  year: 2014
  ident: 10.1016/j.cej.2021.132831_b0290
  article-title: Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01138D
– volume: 50
  start-page: 17953
  year: 1994
  ident: 10.1016/j.cej.2021.132831_b0375
  article-title: Projector augmented-+rave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 3
  start-page: 1500413
  year: 2016
  ident: 10.1016/j.cej.2021.132831_b0175
  article-title: Two-Dimensional fluorinated graphene: synthesis, structures properties and applications
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500413
– volume: 10
  start-page: 17973
  year: 2018
  ident: 10.1016/j.cej.2021.132831_b0340
  article-title: Top Illuminated hysteresis-free perovskite solar cells incorporating microcavity structures on metal electrodes: a combined experimental and theoretical approach
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b04329
– volume: 28
  start-page: 1800346
  year: 2018
  ident: 10.1016/j.cej.2021.132831_b0115
  article-title: Nonfullerene electron transforting materials based on napthalene diimide small molecule for highly stable perovskite solar cells with efficiency exceeding 20%
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800346
– volume: 52
  start-page: 393
  year: 2021
  ident: 10.1016/j.cej.2021.132831_b0140
  article-title: Nickel oxide for inverted structure perovskite solar cells
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.04.027
– volume: 20
  start-page: 5799
  year: 2020
  ident: 10.1016/j.cej.2021.132831_b0335
  article-title: In situ interface engineering for highly efficient electron-transportlayer-free perovskite solar cells
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c01689
– volume: 119
  start-page: 3036
  year: 2019
  ident: 10.1016/j.cej.2021.132831_b0035
  article-title: Halide perovskite photovoltaics: background, status, and future prospects
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00539
– volume: 44
  start-page: 120
  year: 2017
  ident: 10.1016/j.cej.2021.132831_b0295
  article-title: Tuning the work function of indium-tin-oxide electrodes for low-temperature-processed, titanium-oxide-free perovskite solar cells
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2017.02.011
– volume: 10
  start-page: 989
  year: 2014
  ident: 10.1016/j.cej.2021.132831_b0230
  article-title: One step formation of a single atomic layer transistor by the selective fluorination of a graphene film
  publication-title: Small
  doi: 10.1002/smll.201301366
– volume: 95
  year: 2009
  ident: 10.1016/j.cej.2021.132831_b0270
  article-title: Tuning electronic and magnetic properties of graphene by surface modification
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3225154
– volume: 136
  start-page: 5189
  year: 2014
  ident: 10.1016/j.cej.2021.132831_b0050
  article-title: Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja412583t
– volume: 142
  start-page: 19980
  year: 2020
  ident: 10.1016/j.cej.2021.132831_b0325
  article-title: Crown ether modulation enables over 23% efficient formamidinium-based perovskite solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c08592
– volume: 83
  year: 2020
  ident: 10.1016/j.cej.2021.132831_b0030
  article-title: Layered perovskite materials: key solutions for highly efficient and stable perovskite solar cells
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/ab9f88
– volume: 10
  start-page: 337
  year: 2017
  ident: 10.1016/j.cej.2021.132831_b0020
  article-title: Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02650H
– volume: 8
  start-page: 506
  year: 2014
  ident: 10.1016/j.cej.2021.132831_b0040
  article-title: The emergence of perovskite solar cells
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2014.134
– volume: 9
  start-page: 3239
  year: 2018
  ident: 10.1016/j.cej.2021.132831_b0090
  article-title: High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05760-x
– volume: 82
  start-page: 70
  year: 2003
  ident: 10.1016/j.cej.2021.132831_b0310
  article-title: Conjugated organic molecules on metal versus polymer electrodes: demonstration of a key energy level alignment mechanism
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1532102
– volume: 49
  start-page: 14251
  year: 1994
  ident: 10.1016/j.cej.2021.132831_b0360
  article-title: Ab initio molecular-dynamics simulation of the liquid-metal —amorphous-semiconductor transition in germanium
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.14251
– volume: 371
  start-page: 390
  year: 2021
  ident: 10.1016/j.cej.2021.132831_b0315
  article-title: Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.abb8687
– volume: 6
  start-page: 3224
  year: 2012
  ident: 10.1016/j.cej.2021.132831_b0240
  article-title: Reducing extrinsic performancelimiting factors in graphene grown by chemical vapor deposition
  publication-title: ACS Nano
  doi: 10.1021/nn300107f
– volume: 365
  start-page: 687
  year: 2019
  ident: 10.1016/j.cej.2021.132831_b0210
  article-title: Stabilizing heterostructures of soft perovskite semiconductors
  publication-title: Science
  doi: 10.1126/science.aax8018
– volume: 6
  start-page: 7747
  year: 2015
  ident: 10.1016/j.cej.2021.132831_b0285
  article-title: Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8747
– volume: 5
  start-page: 131
  year: 2020
  ident: 10.1016/j.cej.2021.132831_b0120
  article-title: Managing grains and interfaces via ligand achoring enables 22.3 %-efficiency inverted perovskite solar cells
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0538-4
– volume: 6
  start-page: 7348
  year: 2015
  ident: 10.1016/j.cej.2021.132831_b0130
  article-title: Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8348
– volume: 366
  start-page: 749
  year: 2019
  ident: 10.1016/j.cej.2021.132831_b0010
  article-title: Efficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodide
  publication-title: Science
  doi: 10.1126/science.aay7044
– volume: 361
  start-page: eaat8235
  year: 2018
  ident: 10.1016/j.cej.2021.132831_b0060
  article-title: Challenges for commercializing perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.aat8235
– volume: 45
  start-page: 13244
  year: 1992
  ident: 10.1016/j.cej.2021.132831_b0370
  article-title: Accurate and simple analytic representation of the electron-gas correlation energy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.13244
– volume: 462
  start-page: 192
  year: 2009
  ident: 10.1016/j.cej.2021.132831_b0260
  article-title: Fractional quantum hall effect and insulating phase of dirac electrons in graphene
  publication-title: Nature
  doi: 10.1038/nature08522
– volume: 46
  start-page: 6671
  year: 1992
  ident: 10.1016/j.cej.2021.132831_b0365
  article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.6671
– volume: 3
  start-page: 828
  year: 2018
  ident: 10.1016/j.cej.2021.132831_b0105
  article-title: Oppertunities and challenges for tandem solar cells using metal halide perovskite semiconductors
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0190-4
– volume: 31
  start-page: 1805554
  year: 2019
  ident: 10.1016/j.cej.2021.132831_b0125
  article-title: Highly efficient and stable inverted perovskite solar cells obtained via treatment by semiconducting chemical additive
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805554
– volume: 8
  start-page: 1701640
  year: 2018
  ident: 10.1016/j.cej.2021.132831_b0160
  article-title: Anamolous charge extraction behaviour for graphene oxide (GO) and reduced graphene oxide (rGO) films as efficient p-contact layers for high performance perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701640
– volume: 4
  start-page: 1900422
  year: 2019
  ident: 10.1016/j.cej.2021.132831_b0250
  article-title: A fluorographene based synaptic transistor
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201900422
– volume: 47
  start-page: 558
  year: 1993
  ident: 10.1016/j.cej.2021.132831_b0350
  article-title: Ab. initio molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 132
  year: 2010
  ident: 10.1016/j.cej.2021.132831_b0385
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: The J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 12
  start-page: 2374
  year: 2012
  ident: 10.1016/j.cej.2021.132831_b0255
  article-title: Selective-area fluorination of graphene with fluoropolymer and laser irradiation
  publication-title: Nano Lett.
  doi: 10.1021/nl300346j
– volume: 358
  start-page: 768
  year: 2017
  ident: 10.1016/j.cej.2021.132831_b0135
  article-title: Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%
  publication-title: Science
  doi: 10.1126/science.aam5655
– volume: 5
  start-page: 1900972
  year: 2020
  ident: 10.1016/j.cej.2021.132831_b0195
  article-title: Solution processable 2D materials applied in light emitting diodes and solar cells
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201900972
– volume: 12
  start-page: 3356
  year: 2019
  ident: 10.1016/j.cej.2021.132831_b0330
  article-title: Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02268F
– volume: 131
  start-page: 6050
  year: 2009
  ident: 10.1016/j.cej.2021.132831_b0005
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 6
  start-page: 18635
  year: 2018
  ident: 10.1016/j.cej.2021.132831_b0170
  article-title: A highly hydrophobic fluorographene-based system as an interlayer for electron transport in organic–inorganic perovskite solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05811C
– volume: 4
  start-page: 5893
  year: 2014
  ident: 10.1016/j.cej.2021.132831_b0225
  article-title: Fluorinated graphene as high performance dielectric materials and the applications for graphene nanoelectronics
  publication-title: Sci. Rep.
  doi: 10.1038/srep05893
– volume: 347
  start-page: 967
  year: 2015
  ident: 10.1016/j.cej.2021.132831_b0045
  article-title: Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals
  publication-title: Science
  doi: 10.1126/science.aaa5760
– volume: 30
  start-page: 1805660
  year: 2018
  ident: 10.1016/j.cej.2021.132831_b0155
  article-title: Design of an inorganic mesoporous hole transporting layer for highly efficient and stable inverted perovskite solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805660
– volume: 5
  start-page: 295
  year: 2021
  ident: 10.1016/j.cej.2021.132831_b0025
  article-title: Behind breakthrough of the 30 % perovskite solar cells
  publication-title: Joule
  doi: 10.1016/j.joule.2021.01.008
– volume: 8
  start-page: 1702762
  year: 2018
  ident: 10.1016/j.cej.2021.132831_b0145
  article-title: Low-temperature solution-processed CuCrO2 hole-transporting layer for efficient and photostable perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702762
– volume: 11
  start-page: 10
  year: 2015
  ident: 10.1016/j.cej.2021.132831_b0100
  article-title: From materials to devices
  publication-title: Small
  doi: 10.1002/smll.201402767
– volume: 23
  start-page: 5419
  year: 2011
  ident: 10.1016/j.cej.2021.132831_b0185
  article-title: Infrared photodetectors based reduced graphene oxide and graphene nanoribbons
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201101414
– volume: 11
  start-page: 75
  year: 2016
  ident: 10.1016/j.cej.2021.132831_b0095
  article-title: Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.230
– volume: 10
  start-page: 1112
  year: 2019
  ident: 10.1016/j.cej.2021.132831_b0070
  article-title: Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09093-1
– volume: 3
  start-page: 682
  year: 2018
  ident: 10.1016/j.cej.2021.132831_b0085
  article-title: A fluorene terminated hole-transporting material for highly efficienct and stable perovskite solar cells
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0200-6
SSID ssj0006919
Score 2.45485
Snippet We have studied the use of fluorographene (FGr) as the hole transport material (HTL) to replace the most commonly used PEDOT: PSS in inverted perovskite solar...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 132831
Title Few-layer fluorine-functionalized graphene hole-selective contacts for efficient inverted perovskite solar cells
URI https://dx.doi.org/10.1016/j.cej.2021.132831
Volume 430
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-3212
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006919
  issn: 1385-8947
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-3212
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006919
  issn: 1385-8947
  databaseCode: .~1
  dateStart: 19970115
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-3212
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006919
  issn: 1385-8947
  databaseCode: AIKHN
  dateStart: 19970115
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Sciencedirect - Freedom Collection
  customDbUrl:
  eissn: 1873-3212
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006919
  issn: 1385-8947
  databaseCode: ACRLP
  dateStart: 19970115
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3212
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006919
  issn: 1385-8947
  databaseCode: AKRWK
  dateStart: 19970115
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuLnyMGT0K1t0jY9juGYDndQh7uVJk2hY9RhOwUP_u2-l7Y6QT14KpS8Ul6S95H38vsRcsGx-Mdhf3NbBRb4W8SAFJCqMBG4XhJ4rul2v534oym_mXmzFhk0d2GwrbK2_ZVNN9a6ftOrtdlbZlnv3sGaVsghhTG0yXiJD9G_YE1337_aPPzQkHvgYAtHN5VN0-Ol9BxSRNfpQk4mmPOzb1rzN8Mdsl0HirRf_csuael8j2ytwQfuk-VQv1qLGIJmmi5W2EmnLfRT1fFe9qYTavCowZxRpMG1CkN6A_aNYod6rMqCQsxKtYGRAO9DsxzpmUEO4cNfCjzZpQUmvxQP-IsDMh1ePQxGVs2gYCnmsxImIE1C5quUJ8JWoaeDRHDFNYOwKeBcylCJIGUMpseVyrWljLGs6iSgUZVqmx2Sdv6U6yNCucCaHHzMTx0exLaIwxSiB53E0pNc28fEbnQXqRpeHFkuFlHTRzaPQN0Rqjuq1H1MLj9FlhW2xl-DeTMh0bcFEoHt_13s5H9ip2TTxXsOyPzinZF2-bzS5xB9lLJjlleHbPSvx6MJPsd3j-MPYADZ9w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPrcw-ehNgku3kdS7Gk9nGxhd5CstlAS4nFpAr-emfykArqwWvYCWF2881z5wO4E1T8E_h_C106GtpbmgHpYqjCXce0Yscyi2738cT2Z-Jpbs0b0KvvwlBbZYX9JaYXaF096VTa7KwXi86zQTUtT2AIU9AmezvQEhZichNa3cHQn3wBsu0V_B60XiOBurhZtHlJtcQo0TQeMCxzufGzedoyOf1DOKh8RdYtP-cIGio9hv2tCYInsO6rd20Vot_MktWGmumURqaqzPAtPlTMipHUiGiMmHC1rOC9QYhj1KQeyjxj6LYyVUySQAPEFikxNKMcTRB_yyi5yzKKfxnl-LNTmPUfpz1fq0gUNMltnuMeJLHHbZmI2NWlZykndoUUiqPn5AgRRZ50nYRz3CEzkqYeRSFVVo0YlSoTpfMzaKYvqToHJlwqy-HL7MQQTqi7oZegA6HiMLIiofQ26LXuAllNGCeii1VQt5ItA1R3QOoOSnW34f5LZF2O1_hrsag3JPh2RgKE_9_FLv4ndgu7_nQ8CkaDyfAS9ky69kBEMNYVNPPXjbpGZySPbqrD9gn89tr_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Few-layer+fluorine-functionalized+graphene+hole-selective+contacts+for+efficient+inverted+perovskite+solar+cells&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Hanmandlu%2C+Chintam&rft.au=Sahoo%2C+Mamina&rft.au=Liu%2C+Chi-Ching&rft.au=Chen%2C+Hsin-An&rft.date=2022-02-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=430&rft_id=info:doi/10.1016%2Fj.cej.2021.132831&rft.externalDocID=S1385894721044089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon