A regularization approach for estimating the type of a plane curve singularity

We address the algebraic problem of analyzing the local topology of each singularity of a plane complex algebraic curve defined by a squarefree polynomial with both exact (i.e. integers or rationals) and inexact data (i.e. numerical values). For the inexact data, we associate a positive real number...

Full description

Saved in:
Bibliographic Details
Published inTheoretical computer science Vol. 479; pp. 99 - 119
Main Authors Hodorog, Mădălina, Schicho, Josef
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2013
Subjects
Online AccessGet full text
ISSN0304-3975
1879-2294
DOI10.1016/j.tcs.2012.10.026

Cover

Abstract We address the algebraic problem of analyzing the local topology of each singularity of a plane complex algebraic curve defined by a squarefree polynomial with both exact (i.e. integers or rationals) and inexact data (i.e. numerical values). For the inexact data, we associate a positive real number that measures the noise in the coefficients. This problem is ill-posed in the sense that tiny changes in the input produce huge changes in the output. We design a regularization method for estimating the local topological type of each singularity of a plane complex algebraic curve. Our regularization method consists of the following: (i) a symbolic–numeric algorithm that computes the approximate local topological type of each singularity; (ii) and a parameter choice rule, i.e. a function in the noise level. We prove that the symbolic–numeric algorithm together with the parameter choice rule computes an approximate solution, which satisfies the convergence for noisy data property. We implement our algorithm in a new software package called GENOM3CK written in the Axel free algebraic geometric modeler and in the Mathemagix free computer algebra system. For our purpose, both of these systems provide modern graphical capabilities, and algebraic and geometric tools for exact and inexact input data.
AbstractList We address the algebraic problem of analyzing the local topology of each singularity of a plane complex algebraic curve defined by a squarefree polynomial with both exact (i.e. integers or rationals) and inexact data (i.e. numerical values). For the inexact data, we associate a positive real number that measures the noise in the coefficients. This problem is ill-posed in the sense that tiny changes in the input produce huge changes in the output. We design a regularization method for estimating the local topological type of each singularity of a plane complex algebraic curve. Our regularization method consists of the following: (i) a symbolic–numeric algorithm that computes the approximate local topological type of each singularity; (ii) and a parameter choice rule, i.e. a function in the noise level. We prove that the symbolic–numeric algorithm together with the parameter choice rule computes an approximate solution, which satisfies the convergence for noisy data property. We implement our algorithm in a new software package called GENOM3CK written in the Axel free algebraic geometric modeler and in the Mathemagix free computer algebra system. For our purpose, both of these systems provide modern graphical capabilities, and algebraic and geometric tools for exact and inexact input data.
Author Schicho, Josef
Hodorog, Mădălina
Author_xml – sequence: 1
  givenname: Mădălina
  surname: Hodorog
  fullname: Hodorog, Mădălina
  email: madalina.hodorog@oeaw.ac.at, madalina.hodorog@gmail.com
– sequence: 2
  givenname: Josef
  surname: Schicho
  fullname: Schicho, Josef
  email: josef.schicho@oeaw.ac.at
BookMark eNp9kE1OwzAQhS1UJNrCAdj5Agm2YzuxWFUVf1IFG1hbxhm3rkIS2aZSOT1uy4pFZzOaGX1Pb94MTfqhB4RuKSkpofJuWyYbS0Yoy3NJmLxAU9rUqmBM8QmakorwolK1uEKzGLckl6jlFL0ucID1d2eC_zHJDz024xgGYzfYDQFDTP4r7_s1ThvAaT8CHhw2eOxMD9h-hx3gmM9HhbS_RpfOdBFu_vocfTw-vC-fi9Xb08tysSpsJauUjXDBqbOK1AqgFkq0hCvFyKeQtmlcC8RIQ6RgNRNUVi13lnMuGSONMhKqOapPujYMMQZw2vp09J-C8Z2mRB9i0VudY9GHWA6rHEsm6T9yDPnFsD_L3J8YyC_tPAQdrYfeQusD2KTbwZ-hfwEoo3zM
CitedBy_id crossref_primary_10_1016_j_cam_2013_12_052
Cites_doi 10.1016/j.jpaa.2010.10.016
10.1016/0040-9383(84)90011-9
10.1090/S0002-9947-1928-1501429-1
10.1016/j.jsc.2008.04.016
10.1016/j.jlap.2004.07.006
10.1145/1940475.1940519
10.1109/SYNASC.2010.41
10.1016/j.cagd.2009.12.002
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.tcs.2012.10.026
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 119
ExternalDocumentID 10_1016_j_tcs_2012_10_026
S0304397512009474
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FGOYB
G-2
HZ~
R2-
SEW
TAE
WUQ
XJT
ZY4
~HD
ID FETCH-LOGICAL-c363t-394541fc9079ee7595d049920b56c88fde0a6a0652725163d4fc444622089a6e3
IEDL.DBID .~1
ISSN 0304-3975
IngestDate Thu Apr 24 22:59:34 EDT 2025
Wed Oct 01 03:58:19 EDT 2025
Fri Feb 23 02:30:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Symbolic–numeric algorithm
Alexander polynomial
Local topological type
Link of a singularity
Delta-invariant
Genus
Ill-posed problem
Regularization
Plane curve singularity
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-394541fc9079ee7595d049920b56c88fde0a6a0652725163d4fc444622089a6e3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0304397512009474
PageCount 21
ParticipantIDs crossref_citationtrail_10_1016_j_tcs_2012_10_026
crossref_primary_10_1016_j_tcs_2012_10_026
elsevier_sciencedirect_doi_10_1016_j_tcs_2012_10_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-01
2013-04-00
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Theoretical computer science
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tikhonov, Arsenin (br000150) 1977
Bates, Peterson, Sommese, Wampler (br000010) 2011; 215
Munkres (br000110) 1996
V.D.J. Hoeven, G. Lecerf, B. Mourrain, Mathemagix computer algebra system.
Sendra, Winkler, Pérez-Díaz (br000135) 2008
Hodorog, Mourrain, Schicho (br000055) 2011; vol. 6784
de Berg, Krefeld, Overmars, Schwarzkopf (br000035) 2008
R.G. Scharein, Knotplot. a program for viewing mathematical knots. Centre for Experimental and Constructive Mathematics, Simon Fraser University, 2002.
Liang, Mourrain, Pavone (br000085) 2008
Winkler (br000160) 1996
Alexander (br000005) 1928; 30
(br000125) 2009
Yamamoto (br000175) 1984; 23
Li, Pion, Yap (br000080) 2004; 64
Cimasoni (br000025) 2004; 10
Blanchette, Summerfield (br000015) 2008
Zeng (br000180) 2003
Kaltofen, Yang, Zhi (br000075) 2007
Bochnak, Coste, Roy (br000020) 1998
J. Wintz, S. Chau, L. Alberti, B. Mourrain, Axel algebraic geometric modeler.
Pérez-Díaz, Sendra, Rueda, Sendra (br000120) 2010; 27
Milnor (br000100) 1968
M. Hodorog, B. Mourrain, J. Schicho, A symbolic–numeric algorithm for computing the Alexander polynomial of a plane curve singularity, in: T. Ida, V. Negru, T. Jebelean, D. Petcu, S. Watt, D. Zaharie (Eds.), Proceedings of the 12th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2010, pp. 21–28.
Livingston (br000090) 1993
Mourrain, Pavone (br000105) 2009; 44
Stetter (br000145) 2004
Walker (br000155) 1978
Engl, Hanke, Neubauer (br000040) 1996
.
Wolfram (br000170) 2000
Marker (br000095) 2002
Neumann (br000115) 2003
Hodorog, Schicho (br000065) 2011
Hodorog, Schicho (br000060) 2011
Zeng (br000185) 2010
M. Hodorog, B. Mourrain, J. Schicho, GENOM3CK — A library for genus computation of plane complex algebraic curves using knot theory, December 2010. in: ACM SIGSAM Communications in Computer Algebra, vol. 44, issue 174, ISSN:1932-2240, pp. 198–200.
Corless, Kaltofen, Watt (br000030) 2003
Sommese, Wampler (br000140) 2005
Li (10.1016/j.tcs.2012.10.026_br000080) 2004; 64
Tikhonov (10.1016/j.tcs.2012.10.026_br000150) 1977
Zeng (10.1016/j.tcs.2012.10.026_br000185) 2010
Marker (10.1016/j.tcs.2012.10.026_br000095) 2002
Mourrain (10.1016/j.tcs.2012.10.026_br000105) 2009; 44
Walker (10.1016/j.tcs.2012.10.026_br000155) 1978
Yamamoto (10.1016/j.tcs.2012.10.026_br000175) 1984; 23
Sommese (10.1016/j.tcs.2012.10.026_br000140) 2005
Bochnak (10.1016/j.tcs.2012.10.026_br000020) 1998
Alexander (10.1016/j.tcs.2012.10.026_br000005) 1928; 30
10.1016/j.tcs.2012.10.026_br000130
10.1016/j.tcs.2012.10.026_br000050
Winkler (10.1016/j.tcs.2012.10.026_br000160) 1996
Zeng (10.1016/j.tcs.2012.10.026_br000180) 2003
10.1016/j.tcs.2012.10.026_br000070
Livingston (10.1016/j.tcs.2012.10.026_br000090) 1993
de Berg (10.1016/j.tcs.2012.10.026_br000035) 2008
Neumann (10.1016/j.tcs.2012.10.026_br000115) 2003
Hodorog (10.1016/j.tcs.2012.10.026_br000055) 2011; vol. 6784
Corless (10.1016/j.tcs.2012.10.026_br000030) 2003
Engl (10.1016/j.tcs.2012.10.026_br000040) 1996
Hodorog (10.1016/j.tcs.2012.10.026_br000060) 2011
Stetter (10.1016/j.tcs.2012.10.026_br000145) 2004
Cimasoni (10.1016/j.tcs.2012.10.026_br000025) 2004; 10
Munkres (10.1016/j.tcs.2012.10.026_br000110) 1996
Kaltofen (10.1016/j.tcs.2012.10.026_br000075) 2007
Pérez-Díaz (10.1016/j.tcs.2012.10.026_br000120) 2010; 27
(10.1016/j.tcs.2012.10.026_br000125) 2009
Liang (10.1016/j.tcs.2012.10.026_br000085) 2008
Sendra (10.1016/j.tcs.2012.10.026_br000135) 2008
10.1016/j.tcs.2012.10.026_br000045
Hodorog (10.1016/j.tcs.2012.10.026_br000065) 2011
Wolfram (10.1016/j.tcs.2012.10.026_br000170) 2000
Bates (10.1016/j.tcs.2012.10.026_br000010) 2011; 215
Blanchette (10.1016/j.tcs.2012.10.026_br000015) 2008
Milnor (10.1016/j.tcs.2012.10.026_br000100) 1968
10.1016/j.tcs.2012.10.026_br000165
References_xml – volume: 30
  start-page: 275
  year: 1928
  end-page: 306
  ident: br000005
  article-title: Topological invariant of knots and links
  publication-title: Transactions of the American Mathematical Society
– year: 1996
  ident: br000040
  article-title: Regularization of Inverse Problems
– year: 2002
  ident: br000095
  publication-title: Model Theory: An Introduction
– volume: 10
  start-page: 107
  year: 2004
  end-page: 115
  ident: br000025
  article-title: Studying the multivariable Alexander polynomial by means of Seifert surfaces
  publication-title: Sociedad Matemática Mexicana. Boletín. Tercera Serie. Soc. Mat. Mexican
– year: 2008
  ident: br000015
  article-title: C
– year: 2008
  ident: br000135
  article-title: Rational Algebraic Curves. A Computer Algebra Approach
– reference: M. Hodorog, B. Mourrain, J. Schicho, GENOM3CK — A library for genus computation of plane complex algebraic curves using knot theory, December 2010. in: ACM SIGSAM Communications in Computer Algebra, vol. 44, issue 174, ISSN:1932-2240, pp. 198–200.
– start-page: 69
  year: 2007
  end-page: 83
  ident: br000075
  article-title: Structured low rank approximation of a Sylvester matrix
  publication-title: Symbolic-Numeric Computation
– start-page: 112
  year: 2003
  end-page: 125
  ident: br000030
  article-title: Hybrid methods
  publication-title: Computer Algebra Handbook
– volume: 27
  start-page: 212
  year: 2010
  end-page: 231
  ident: br000120
  article-title: Approximate parametrization of plane algebraic curves by linear systems of curves
  publication-title: Computer Aided Geometric Design
– volume: 44
  start-page: 292
  year: 2009
  end-page: 306
  ident: br000105
  article-title: Subdivision methods for solving polynomial equations
  publication-title: Symbolic Computation
– start-page: 266
  year: 2003
  end-page: 272
  ident: br000180
  article-title: A method computing multiple roots of inexact polynomials
  publication-title: Proceedings of ISSAC ’03 International Symposium of Symbolic and Algebraic Computation
– year: 2004
  ident: br000145
  article-title: Numerical Polynomial Algebra
– year: 2008
  ident: br000035
  article-title: Computational Geometry: Algorithms and Applications
– year: 1978
  ident: br000155
  article-title: Algebraic Curves
– year: 2000
  ident: br000170
  article-title: The Mathematica Book
– reference: V.D.J. Hoeven, G. Lecerf, B. Mourrain, Mathemagix computer algebra system.
– year: 2005
  ident: br000140
  article-title: Numerical Solution of Polynomial Systems Arising in Engineering and Science
– volume: 64
  start-page: 85
  year: 2004
  end-page: 111
  ident: br000080
  article-title: Recent progress in exact geometric computation
  publication-title: Practical Development of Exact Real Number Computation
– year: 1996
  ident: br000110
  article-title: Topology
– reference: M. Hodorog, B. Mourrain, J. Schicho, A symbolic–numeric algorithm for computing the Alexander polynomial of a plane curve singularity, in: T. Ida, V. Negru, T. Jebelean, D. Petcu, S. Watt, D. Zaharie (Eds.), Proceedings of the 12th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2010, pp. 21–28.
– volume: 23
  start-page: 277
  year: 1984
  end-page: 287
  ident: br000175
  article-title: Classification of isolated algebraic singularities by their Alexander polynomials
  publication-title: Topology
– reference: R.G. Scharein, Knotplot. a program for viewing mathematical knots. Centre for Experimental and Constructive Mathematics, Simon Fraser University, 2002.
– year: 1998
  ident: br000020
  article-title: Real Algebraic Geometry
– start-page: 44
  year: 2011
  end-page: 53
  ident: br000060
  article-title: A regularization method for computing approximate invariants of plane curves singularities
  publication-title: SNC 2011, Proceedings of the 2011 International Workshop on Symbolic-Numeric Computation
– reference: .
– start-page: 727
  year: 2003
  end-page: 737
  ident: br000115
  article-title: Topology of hypersurface singularities
  publication-title: Mathematische Werke (Mathematical Works)
– year: 1993
  ident: br000090
  article-title: Knot Theory
– year: 2009
  ident: br000125
  publication-title: Approximate Commutative Algebra
– year: 1968
  ident: br000100
  article-title: Singular Points of Complex Hypersurfaces
– year: 1977
  ident: br000150
  article-title: Solution of Ill-posed Problems
– volume: 215
  start-page: 1844
  year: 2011
  end-page: 1851
  ident: br000010
  article-title: Numerical computation of the genus of an irreducible curve within an algebraic set
  publication-title: Journal of Pure and Applied Algebra
– volume: vol. 6784
  start-page: 121
  year: 2011
  end-page: 131
  ident: br000055
  article-title: An adapted version of the Bentley-Ottmann algorithm for invariants of plane curve singularities
  publication-title: Proceedings of 11th International Conference on Computational Science and Its Applications, Session: Computational Geometry and Applications
– start-page: 199
  year: 2008
  end-page: 214
  ident: br000085
  article-title: Subdivision methods for the topology of 2d and 3d implicit curves
  publication-title: Geometric Modeling and Algebraic Geometry
– start-page: 65
  year: 2011
  end-page: 95
  ident: br000065
  article-title: A symbolic–numeric algorithm for genus computation
  publication-title: Numerical and Symbolic Scientific Computing: Progress and Prospects
– reference: J. Wintz, S. Chau, L. Alberti, B. Mourrain, Axel algebraic geometric modeler.
– start-page: 125
  year: 2010
  end-page: 162
  ident: br000185
  article-title: Regularization and matrix computation in numerical polynomial algebra
  publication-title: Approximate Commutative Algebra
– year: 1996
  ident: br000160
  article-title: Polynomial Algorithms in Computer Algebra
– volume: 215
  start-page: 1844
  issue: 8
  year: 2011
  ident: 10.1016/j.tcs.2012.10.026_br000010
  article-title: Numerical computation of the genus of an irreducible curve within an algebraic set
  publication-title: Journal of Pure and Applied Algebra
  doi: 10.1016/j.jpaa.2010.10.016
– start-page: 112
  year: 2003
  ident: 10.1016/j.tcs.2012.10.026_br000030
  article-title: Hybrid methods
– volume: 23
  start-page: 277
  year: 1984
  ident: 10.1016/j.tcs.2012.10.026_br000175
  article-title: Classification of isolated algebraic singularities by their Alexander polynomials
  publication-title: Topology
  doi: 10.1016/0040-9383(84)90011-9
– year: 2005
  ident: 10.1016/j.tcs.2012.10.026_br000140
– year: 2008
  ident: 10.1016/j.tcs.2012.10.026_br000035
– volume: 30
  start-page: 275
  year: 1928
  ident: 10.1016/j.tcs.2012.10.026_br000005
  article-title: Topological invariant of knots and links
  publication-title: Transactions of the American Mathematical Society
  doi: 10.1090/S0002-9947-1928-1501429-1
– start-page: 266
  year: 2003
  ident: 10.1016/j.tcs.2012.10.026_br000180
  article-title: A method computing multiple roots of inexact polynomials
– volume: 44
  start-page: 292
  year: 2009
  ident: 10.1016/j.tcs.2012.10.026_br000105
  article-title: Subdivision methods for solving polynomial equations
  publication-title: Symbolic Computation
  doi: 10.1016/j.jsc.2008.04.016
– year: 2000
  ident: 10.1016/j.tcs.2012.10.026_br000170
– volume: 64
  start-page: 85
  issue: 1
  year: 2004
  ident: 10.1016/j.tcs.2012.10.026_br000080
  article-title: Recent progress in exact geometric computation
  publication-title: Journal of Logic and Algebraic Programming
  doi: 10.1016/j.jlap.2004.07.006
– start-page: 69
  year: 2007
  ident: 10.1016/j.tcs.2012.10.026_br000075
  article-title: Structured low rank approximation of a Sylvester matrix
– year: 1978
  ident: 10.1016/j.tcs.2012.10.026_br000155
– ident: 10.1016/j.tcs.2012.10.026_br000165
– year: 2004
  ident: 10.1016/j.tcs.2012.10.026_br000145
– ident: 10.1016/j.tcs.2012.10.026_br000130
– year: 1996
  ident: 10.1016/j.tcs.2012.10.026_br000040
– start-page: 65
  year: 2011
  ident: 10.1016/j.tcs.2012.10.026_br000065
  article-title: A symbolic–numeric algorithm for genus computation
– start-page: 199
  year: 2008
  ident: 10.1016/j.tcs.2012.10.026_br000085
  article-title: Subdivision methods for the topology of 2d and 3d implicit curves
– start-page: 44
  year: 2011
  ident: 10.1016/j.tcs.2012.10.026_br000060
  article-title: A regularization method for computing approximate invariants of plane curves singularities
– year: 1968
  ident: 10.1016/j.tcs.2012.10.026_br000100
– ident: 10.1016/j.tcs.2012.10.026_br000045
  doi: 10.1145/1940475.1940519
– year: 1996
  ident: 10.1016/j.tcs.2012.10.026_br000110
– year: 1998
  ident: 10.1016/j.tcs.2012.10.026_br000020
– volume: 10
  start-page: 107
  issue: 3
  year: 2004
  ident: 10.1016/j.tcs.2012.10.026_br000025
  article-title: Studying the multivariable Alexander polynomial by means of Seifert surfaces
  publication-title: Sociedad Matemática Mexicana. Boletín. Tercera Serie. Soc. Mat. Mexican
– year: 1996
  ident: 10.1016/j.tcs.2012.10.026_br000160
– year: 2008
  ident: 10.1016/j.tcs.2012.10.026_br000015
– year: 1993
  ident: 10.1016/j.tcs.2012.10.026_br000090
– year: 2002
  ident: 10.1016/j.tcs.2012.10.026_br000095
– start-page: 727
  year: 2003
  ident: 10.1016/j.tcs.2012.10.026_br000115
  article-title: Topology of hypersurface singularities
– year: 1977
  ident: 10.1016/j.tcs.2012.10.026_br000150
– start-page: 125
  year: 2010
  ident: 10.1016/j.tcs.2012.10.026_br000185
  article-title: Regularization and matrix computation in numerical polynomial algebra
– volume: vol. 6784
  start-page: 121
  year: 2011
  ident: 10.1016/j.tcs.2012.10.026_br000055
  article-title: An adapted version of the Bentley-Ottmann algorithm for invariants of plane curve singularities
– ident: 10.1016/j.tcs.2012.10.026_br000070
– year: 2008
  ident: 10.1016/j.tcs.2012.10.026_br000135
– ident: 10.1016/j.tcs.2012.10.026_br000050
  doi: 10.1109/SYNASC.2010.41
– volume: 27
  start-page: 212
  issue: 2
  year: 2010
  ident: 10.1016/j.tcs.2012.10.026_br000120
  article-title: Approximate parametrization of plane algebraic curves by linear systems of curves
  publication-title: Computer Aided Geometric Design
  doi: 10.1016/j.cagd.2009.12.002
– year: 2009
  ident: 10.1016/j.tcs.2012.10.026_br000125
SSID ssj0000576
Score 2.02878
Snippet We address the algebraic problem of analyzing the local topology of each singularity of a plane complex algebraic curve defined by a squarefree polynomial with...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 99
SubjectTerms Alexander polynomial
Delta-invariant
Genus
Ill-posed problem
Link of a singularity
Local topological type
Plane curve singularity
Regularization
Symbolic–numeric algorithm
Title A regularization approach for estimating the type of a plane curve singularity
URI https://dx.doi.org/10.1016/j.tcs.2012.10.026
Volume 479
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20211012
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: ACRLP
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - access via UTK
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20211012
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIKHN
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Free and Delayed Access Journal
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20211102
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: IXB
  dateStart: 19750601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AKRWK
  dateStart: 19750601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAo4Aoj8oDE1LaxHWcdCwVVQtqF6jULXJsBxWhtAopEgu_nbvEKSABA2Msn5NcHN-d7_N3hFwiH4nymOcwKYXDWRw7MThxTgD2RDITGm0wUJxMxWjGb-f-vEYG1VkYhFXatb9c04vV2rZ0rDY7q8Wic49JPbCmYLEQHhcgJyjnAVYxaL9_wjzAHynzlZgBgN5VZrPAeOUKGbs91kaAF_Ir_GSbvtib4T7ZtY4i7ZfPckBqJm2QvaoIA7X_ZIPsTDbEqy-HZNqnWVFdPrPnK2lFGk7BO6VIqYFd00cKQhT3X-kyoZKuEPNK1Tp7NRR3D4oR8rcjMhvePAxGji2Z4Kiu6ObwhtznXqIg5O0ZE_g9X2NMw9zYFyoME21cKSS4HSwAx0Z0NU8Uh4iQMTfsSWG6x6SeLlNzQmiYGMG1hggyMFzDeKFwlS8l3MIzTOomcStlRcryiWNZi-eoAo49RaDfCPWLTaDfJrnaiKxKMo2_OvPqC0TfZkQEi_3vYqf_Ezsj26wodIGYnHNSz7O1uQB3I49bxXxqka3--G40havx_PoDfszTmA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHtSDD9SIzz14Mim02-22HAmRoAIXIeHWbLdbgzFAsJh48bc704ePRD14bXa27XQ7j51vvwG4JD4S7XDH4kpJS_AosiIM4iwf_YniJjCxoURxMJS9sbideJMKdMqzMASrLGx_btMza11caRbabC6m0-Y9FfXQm6LHInicL9ZgXXjcpwys8faJ88CAJC9YUgkAh5elzQzklWqi7HZ4gxBeRLDwk3P64nC6u7BdRIqsnT_MHlTMrAY7ZRcGVvyUNdgafDCvPu_DsM2WWXv5ZXHAkpWs4QzDU0acGjR09sBQiNEGLJsnTLEFgV6ZXi1fDKPtg2yG9PUAxt3rUadnFT0TLO1KN8U3FJ5wEo05b8sY32t5MSU13I48qYMgiY2tpMK4g_sY2Ug3FokWmBJybgctJY17CNXZfGaOgAWJkSKOMYX0jYhxvkDa2lMKb-EYruI62KWyQl0QilNfi6ewRI49hqjfkPRLl1C_dbj6EFnkbBp_DRblFwi_LYkQrf3vYsf_E7uAjd5o0A_7N8O7E9jkWdcLAuicQjVdrswZxh5pdJ6trXeYVtQp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+regularization+approach+for+estimating+the+type+of+a+plane+curve+singularity&rft.jtitle=Theoretical+computer+science&rft.au=Hodorog%2C+M%C4%83d%C4%83lina&rft.au=Schicho%2C+Josef&rft.date=2013-04-01&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=479&rft.spage=99&rft.epage=119&rft_id=info:doi/10.1016%2Fj.tcs.2012.10.026&rft.externalDocID=S0304397512009474
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon