Methods for Cognitive Diagnosis of Students’ Abilities Based on Keystroke Features
Keystroke data contain the behavioral information of students during the programming process. The clustering analysis of keystroke data can classify students based on specific characteristics in the programming process, thereby providing a basis for personalized teaching. Research combined with keys...
Saved in:
| Published in | Applied sciences Vol. 15; no. 9; p. 4783 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.05.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app15094783 |
Cover
| Abstract | Keystroke data contain the behavioral information of students during the programming process. The clustering analysis of keystroke data can classify students based on specific characteristics in the programming process, thereby providing a basis for personalized teaching. Research combined with keystroke features is still in its initial stage. Due to the independence and discreteness of keystroke data, and the lack of a clear requirement for the selection of the number of clusters in traditional clustering algorithms, this selection is rather arbitrary, and outliers will affect the clustering effect. Aiming at the above problems, we improve the original method. Keystroke data were used to obtain students’ programming behavior information and optimize the traditional clustering algorithm according to the characteristics of keystroke data. The K-means++ algorithm was adopted to determine the initial clustering centers, the elbow method was used to determine the number of clusters, and an outlier processing algorithm was introduced. We have independently constructed a keystroke dataset for computer-based programming examinations and used it to verify our method. Moreover, the improved algorithm has shown improvements in multiple evaluation indicators. Experiments have proven that the method proposed in this paper can more accurately classify students’ proficiency levels in the evaluation of students’ programming abilities in the educational field. This provides strong support for the formulation of teaching strategies and the allocation of resources, and the method possesses important application value and practical significance. |
|---|---|
| AbstractList | Keystroke data contain the behavioral information of students during the programming process. The clustering analysis of keystroke data can classify students based on specific characteristics in the programming process, thereby providing a basis for personalized teaching. Research combined with keystroke features is still in its initial stage. Due to the independence and discreteness of keystroke data, and the lack of a clear requirement for the selection of the number of clusters in traditional clustering algorithms, this selection is rather arbitrary, and outliers will affect the clustering effect. Aiming at the above problems, we improve the original method. Keystroke data were used to obtain students’ programming behavior information and optimize the traditional clustering algorithm according to the characteristics of keystroke data. The K-means++ algorithm was adopted to determine the initial clustering centers, the elbow method was used to determine the number of clusters, and an outlier processing algorithm was introduced. We have independently constructed a keystroke dataset for computer-based programming examinations and used it to verify our method. Moreover, the improved algorithm has shown improvements in multiple evaluation indicators. Experiments have proven that the method proposed in this paper can more accurately classify students’ proficiency levels in the evaluation of students’ programming abilities in the educational field. This provides strong support for the formulation of teaching strategies and the allocation of resources, and the method possesses important application value and practical significance. |
| Audience | Academic |
| Author | Chi, Xu Sheng, Yu Guo, Xinyu |
| Author_xml | – sequence: 1 givenname: Xu surname: Chi fullname: Chi, Xu – sequence: 2 givenname: Xinyu surname: Guo fullname: Guo, Xinyu – sequence: 3 givenname: Yu surname: Sheng fullname: Sheng, Yu |
| BookMark | eNp9kc9u1DAQxi1UJErpiRewxBG2-E9ix8dlaaFqEQfK2ZqNJ4uX1A62Q7U3XoPX40kwpEI94TnYGn3zm88zT8lRiAEJec7ZmZSGvYZp4i0zje7kI3IsmFYr2XB99OD9hJzmvGf1GC47zo7JzQcsX6LLdIiJbuIu-OK_I33rYRdi9pnGgX4qs8NQ8q8fP-l668cqwUzfQEZHY6BXeMglxa9ILxDKnDA_I48HGDOe3t8n5PPF-c3m_er647vLzfp61Usly0rqrVLa8EYoIVwvjOgardBI6aTj1S5qkEwBb0XbgWGuVb1qXQtKDQqckCfkcuG6CHs7JX8L6WAjePs3EdPOQiq-H9H2jHddIxxAJSuJW9ZsFYKsPQG4NpX1amHNYYLDHYzjPyBn9s-A7YMBV_mLRT6l-G3GXOw-zinU31opmOSdbpiuqrNFtYPqwYchlgR9DYe3vq_rG3zNrztptNKtULXg5VLQp5hzwuG_Jn4DBVWY3w |
| Cites_doi | 10.1111/bmsp.12155 10.1109/ICACEA.2015.7164699 10.1016/j.lindif.2016.11.004 10.1109/ICSE-SEET55299.2022.9794163 10.35940/ijeat.F1528.089620 10.3389/fcomp.2024.1412458 10.1201/b15410 10.1145/1978942.1979046 10.1109/BigData59044.2023.10386085 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY DOA |
| DOI | 10.3390/app15094783 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials PROQUEST ProQuest One ProQuest Central Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall Open Access - DOAJ |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) Education |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_c018842daad1463eb04b6ea3928aa179 10.3390/app15094783 A839767526 10_3390_app15094783 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI ADTOC IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c363t-37b6679142622dc2928476e933d3d1417e7a306a15258a90d56c65d5a66f6ad23 |
| IEDL.DBID | DOA |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:07:37 EDT 2025 Sun Sep 07 11:13:10 EDT 2025 Mon Jun 30 08:59:58 EDT 2025 Mon Oct 20 16:55:25 EDT 2025 Thu Oct 16 04:42:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-37b6679142622dc2928476e933d3d1417e7a306a15258a90d56c65d5a66f6ad23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/c018842daad1463eb04b6ea3928aa179 |
| PQID | 3203187407 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c018842daad1463eb04b6ea3928aa179 unpaywall_primary_10_3390_app15094783 proquest_journals_3203187407 gale_infotracacademiconefile_A839767526 crossref_primary_10_3390_app15094783 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Ma (ref_12) 2019; 72 Zhang (ref_7) 2020; 21 (ref_15) 2020; 9 ref_14 Limpo (ref_3) 2017; 53 ref_13 Xu (ref_2) 2021; 2 Guo (ref_18) 2020; 56 ref_10 Wang (ref_6) 2020; 41 Xu (ref_1) 2020; 12 ref_19 ref_17 ref_16 ref_9 ref_8 Mahatanankoon (ref_5) 2021; 19 Zhang (ref_11) 2019; 39 An (ref_20) 2015; 7 ref_4 |
| References_xml | – volume: 41 start-page: 1562 year: 2020 ident: ref_6 article-title: Continuous Identity Authentication by Integrating Keystroke Content and Keystroke Behavior publication-title: Comput. Eng. Des. – volume: 72 start-page: 370 year: 2019 ident: ref_12 article-title: Cognitive diagnosis models for multiple strategies publication-title: Br. J. Math. Stat. Psychol. doi: 10.1111/bmsp.12155 – ident: ref_17 doi: 10.1109/ICACEA.2015.7164699 – ident: ref_4 – volume: 39 start-page: 1869 year: 2019 ident: ref_11 article-title: A Review of Clustering Algorithms publication-title: J. Comput. Appl. – volume: 12 start-page: 9 year: 2020 ident: ref_1 article-title: Analysis of Teaching Problems and Countermeasures in Computer Programming Courses publication-title: Comput. Campus. – volume: 56 start-page: 172 year: 2020 ident: ref_18 article-title: K-means Clustering Algorithm with Optimized Initial Clustering Centers publication-title: Comput. Eng. Appl. – volume: 2 start-page: 44 year: 2021 ident: ref_2 article-title: Research on cognitive diagnosis in English testing publication-title: Foreign Lang. Teach. Theory Pract. – volume: 7 start-page: 41 year: 2015 ident: ref_20 article-title: The Complexity of Education and Nonlinear Laws publication-title: Mod. Educ. Manag. – volume: 53 start-page: 26 year: 2017 ident: ref_3 article-title: Examining the transcription-writing link: Effects of handwriting fluency and spelling accuracy on writing performance via planning and translating in middle grades publication-title: Learn. Individ. Differ. doi: 10.1016/j.lindif.2016.11.004 – ident: ref_10 doi: 10.1109/ICSE-SEET55299.2022.9794163 – volume: 9 start-page: 481 year: 2020 ident: ref_15 article-title: Educational Data Mining for Student Learning Pattern Analysis using Clustering Algorithms publication-title: Int. J. Eng. Adv. Technol. doi: 10.35940/ijeat.F1528.089620 – ident: ref_14 doi: 10.3389/fcomp.2024.1412458 – volume: 19 start-page: 11 year: 2021 ident: ref_5 article-title: Cognitive Learning Strategies in an Introductory Computer Programming Course publication-title: Inf. Syst. Educ. J. – ident: ref_13 – ident: ref_19 – volume: 21 start-page: 310 year: 2020 ident: ref_7 article-title: A Review of Keystroke Dynamics Research publication-title: J. Inf. Eng. Univ. – ident: ref_16 doi: 10.1201/b15410 – ident: ref_8 doi: 10.1145/1978942.1979046 – ident: ref_9 doi: 10.1109/BigData59044.2023.10386085 |
| SSID | ssj0000913810 |
| Score | 2.3200247 |
| Snippet | Keystroke data contain the behavioral information of students during the programming process. The clustering analysis of keystroke data can classify students... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 4783 |
| SubjectTerms | Accuracy Algorithms Analysis Behavior Clustering clustering algorithm Cognition & reasoning Cognitive ability cognitive diagnosis Data analysis Deep learning Education keystroke characteristics Learning strategies Machine learning Methods programming education Self-efficacy Students Teaching |
| SummonAdditionalLinks | – databaseName: PROQUEST dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2V7QF6QHQBESjIhyLgEBF_xE4OCO2WVhWoKwSt1Ftkx06FqJJlkxXixt_g7_FL8CTOsgip1yiKLI9n5o0z8x7AIV7ma2VpzAwtY0Gdi40TKq64rZLUGeMMzg6fLeTphXh_mV7uwGKchcG2yjEm9oHaNiXekb_mDI-f8vXH2-W3GFWj8O_qKKGhg7SCfdNTjN2CXYbMWBPYnR8vPn7a3LogC2ZGk2FQj_t6H_8TUySRUxn_JzX1DP7_x-k9uL2ul_rHd319vZWITu7B3YAgyWww-T7suHqK4suhUWMKe1scg1PYD97bkpeBYvrVfTg_64WjW-IhKzkaO4jIu6Hv7ktLmop8Hlgv298_f5FZ30Lri2oy91nPkqYmH_wR6FbNV0cQRa591f4ALk6Oz49O46CvEJdc8s7HFiOlyimS0jNbshxTlXQ555ZbKqhySvuKQqNEUqbzxKaylKlNtZSV1JbxhzCpm9o9AuKRQJ77GM6tqYSxIlepwhk641KPD0oRweG4tcVyoNEofPmBFii2LBDBHLd98wpyX_cPmtVVEVypKBOaZYJZrf0iJXcmEUY67YFeprWPLxG8QKMV6KHdSpc6DBr4lSLXVTHLEIOplMkIDka7FsF12-LvQYvg-cbWN6368c2feQJ3GIoG912SBzDpVmv31COZzjwLx_MPNjnyGg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS91AEB7s8aH1oVXbYlqVhVraPkROstnd5PF4Q1oUQQ_Yp2U3u4Gi5MhJDqJP_Rv9e_4SZ3KRo4Xa17CBYXYu3yQz3wBs0cd8o1wUxjbKwyTyPrQ-UWHBXTEU3lpvaXb46FgejpPv5-J8AT71szBz_-85luP0GzcijjeV8hewKAUC7gEsjo9PRj9pbRxW4SHGYdVO3j1941GuaSj5_w68S_ByVl6Zm2tzeTmXWQ7ewF4vU9tQcrE9q-12fvuErvEZoZfhdYcs2ag1hRVY8OUqLM3xDa7CSufJFfva0U1_ewtnR80S6YohfGW7fTcR22t78H5VbFKw05YBs7r7_YeNmnZaLLDZDmZAxyYl-4HmUE8nF54RopxhBf8Oxgf7Z7uHYbdrIcy55DXGGSulyiIiqI9dHmeUtqTPOHfcRahhrwxWF4bWJaUmGzohcymcMFIW0riYv4dBOSn9GjBEBVmG8Zw7WyTWJZkSiubprBeIFfIkgK3-VvRVS6mhsRQhzek5zQWwQzf2cIR4sJsHqGnduZXOh1GaJrEzBoWU3NthYqU3CPpSYzDWBPCF7luTt9ZTk5tu6AAlJd4rPUoJjykRywDWe5PQnRtXmscU8xQWvQF8fjCTf0n94T_PfYRXMW0Sblon12FQT2d-A-FNbTc7874HlSv1Rg priority: 102 providerName: Unpaywall |
| Title | Methods for Cognitive Diagnosis of Students’ Abilities Based on Keystroke Features |
| URI | https://www.proquest.com/docview/3203187407 https://doi.org/10.3390/app15094783 https://doaj.org/article/c018842daad1463eb04b6ea3928aa179 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (Open Access) customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BOUAPiJYiAu3Kh6LSQ0QSJ3Z83C1dKlBXVelK7cmyY0eqqLLVJivEjdfg9XiSziTZKqgSXDjGymE0n-cvmfkGYJ8-5hvp4jCxcRGmsfeh9akMS-7KKPPWekuzw6czcTJPP19ml4NVX9QT1tEDd4r7UERxnqeJM8ahUXNvo9QKbzCs58bgbSLvG-VqUEy1PljFRF3VDeRxrOvpf3BMZHEy53-EoJap_6E_3oSnq-rW_Phubm4GAWf6Ap73mSIbdxJuwSNfbcPmgD9wG7Z6y6zZ-54--vAlXJy2S6FrhukoO1p3B7GPXU_ddc0WJfvaMVrWv3_-YuO2PRYLZjbBiObYomJfEN5mufjmGWWIK6zId2A-Pb44Ogn73QlhwQVv0G9YIaSKiXA-cUWiKAwJrzh3HBUZSy8NVguG1h_lRkUuE4XIXGaEKIVxCX8FG9Wi8q-BYZRXCv0zd7ZMrUuVzCTNx1mfYewv0gD21-rUtx1FhsbSgrSuB1oPYEKqvn-FeK3bA0Rb92jrf6EdwAEBpcn6mqUpTD9EgJISj5Ue55RfySwRAeyusdS9WdaaJ-TDJBaxAby7x_dvUr_5H1K_hWcJrQ1u-yR3YaNZrvwe5jKNHcHjfPppBE8mx7Oz81F7ifFpPjsbX90BreX0mw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB5V7aH0gNoAwlBgD62Ag4XtXa_tQ4WS_iilTYQglXozu941QlRxGieqeuM1eBkehidhxlmHIKTeerUsazWzO_PNeub7APboMl8lJvQjHRa-CK31tRWJX3JTBrHV2mqaHR4MZf9CfLiML9fgVzsLQ22VbUxsArWpCrojf8cj2n4J1h_vJ9c-qUbR39VWQkM5aQVz0FCMucGOM3t7gyVcfXB6hP7ej6KT49Fh33cqA37BJZ_hCdNSJllI1OyRKaKMAra0WOgbbkIRJjZRiKsVCQWlKgtMLAsZm1hJWUpliPgAU8CG4CLD4m-jdzz8-Gl5y0Osm2kYLAYDOc8C-i8dEmldkvJ_UmGjGPB_XtiCzfl4om5v1NXVSuI72YaHDrGy7mKL7cCaHXdI7Nk1hnRga4XTsAM7LlrU7I2jtH77CEaDRqi6ZgiR2WHbscSOFn1-32pWlezzgmWz_v3jJ-s2LbtYxLMeZlnDqjFDK9ezafXdMkKt86mtH8PFvVj6CayPq7F9CgyRR5ZhzuBGl0IbNH2c0MyetjHikUJ4sNeaNp8saDtyLHfIA_mKBzzokdmXrxDXdvOgmn7N3dHNiyBMUxEZpXCRklsdCC2tQmCZKoXxzIPX5LScIsJsqgrlBhtwpcStlXdTwnxJHEkPdlu_5i5U1Pnfje3B_tLXd6362d2feQWb_dHgPD8_HZ49hwcRCRY3HZq7sD6bzu0LRFEz_dJtVQZf7vt0_AFK5SxZ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NatVAFD6UCmoXYq-KqVVn0aIuQpNMMpMsRG57vbbWFsEWuktnMhMRS3Kb5FK68zV8FR_HJ_Gc_FyvCN11G0IYzu93Jud8B2CLLvOVNL4baD9zQ99aV9tQujk3uRdZra2m2eGjY7F_Gn48i85W4NcwC0NtlUNMbAO1KTO6I9_hAZmfxPpjJ-_bIj5Ppu9mly5tkKI_rcM6jc5EDu31FZZv9duDCep6Owim70_29t1-w4CbccEb9C4thEx8omUPTBYkFKyFxSLfcOOHvrRSIaZWtCQoVolnIpGJyERKiFwoQ6QHGP7vSGJxpyn16YfF_Q7xbca-140Ecp549EfaJ7o6GfN_kmC7K-D_jLAG9-bFTF1fqYuLpZQ3fQgPeqzKxp1xrcOKLUa05rlvCRnB2hKb4QjW-zhRs9c9mfWbR3By1K6orhmCY7Y39CqxSdfh961mZc6-dPya9e8fP9m4bdbF8p3tYn41rCwYyrhuqvK7ZYRX55WtH8Pprcj5CawWZWGfAkPMkSSYLbjReahNmMhI0rSethEikSx0YGsQbTrrCDtSLHRIA-mSBhzYJbEvXiGW7fZBWX1Ne6dNM8-P4zAwSuEhBbfaC7WwCiFlrBRGMgdekdJSigVNpTLVjzTgSYlVKx3HhPZkFAgHNge9pn2QqNO_Ju3A9kLXN5164-bPvIS76BPpp4Pjw2dwP6BNxW1r5iasNtXcPkf41OgXrZ0yOL9tx_gDAlYp8w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS91AEB7s8aH1oVXbYlqVhVraPkROstnd5PF4Q1oUQQ_Yp2U3u4Gi5MhJDqJP_Rv9e_4SZ3KRo4Xa17CBYXYu3yQz3wBs0cd8o1wUxjbKwyTyPrQ-UWHBXTEU3lpvaXb46FgejpPv5-J8AT71szBz_-85luP0GzcijjeV8hewKAUC7gEsjo9PRj9pbRxW4SHGYdVO3j1941GuaSj5_w68S_ByVl6Zm2tzeTmXWQ7ewF4vU9tQcrE9q-12fvuErvEZoZfhdYcs2ag1hRVY8OUqLM3xDa7CSufJFfva0U1_ewtnR80S6YohfGW7fTcR22t78H5VbFKw05YBs7r7_YeNmnZaLLDZDmZAxyYl-4HmUE8nF54RopxhBf8Oxgf7Z7uHYbdrIcy55DXGGSulyiIiqI9dHmeUtqTPOHfcRahhrwxWF4bWJaUmGzohcymcMFIW0riYv4dBOSn9GjBEBVmG8Zw7WyTWJZkSiubprBeIFfIkgK3-VvRVS6mhsRQhzek5zQWwQzf2cIR4sJsHqGnduZXOh1GaJrEzBoWU3NthYqU3CPpSYzDWBPCF7luTt9ZTk5tu6AAlJd4rPUoJjykRywDWe5PQnRtXmscU8xQWvQF8fjCTf0n94T_PfYRXMW0Sblon12FQT2d-A-FNbTc7874HlSv1Rg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methods+for+Cognitive+Diagnosis+of+Students%E2%80%99+Abilities+Based+on+Keystroke+Features&rft.jtitle=Applied+sciences&rft.au=Xu+Chi&rft.au=Xinyu+Guo&rft.au=Yu+Sheng&rft.date=2025-05-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=9&rft.spage=4783&rft_id=info:doi/10.3390%2Fapp15094783&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c018842daad1463eb04b6ea3928aa179 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |