Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes

. We present a package for Mathematica that facilitates the numerical computation of the quasinormal mode (QNM) spectrum of a black hole/black brane. Requiring as input only the QNM equation(s), the application of a single Mathematica function will compute the spectrum efficiently, by discretizing t...

Full description

Saved in:
Bibliographic Details
Published inEuropean physical journal plus Vol. 132; no. 12; p. 546
Main Author Jansen, Aron
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2190-5444
2190-5444
DOI10.1140/epjp/i2017-11825-9

Cover

Abstract . We present a package for Mathematica that facilitates the numerical computation of the quasinormal mode (QNM) spectrum of a black hole/black brane. Requiring as input only the QNM equation(s), the application of a single Mathematica function will compute the spectrum efficiently, by discretizing the equation(s) and solving the resulting generalized eigenvalue equation. It is applicable to a large variety of black holes, independently of their asymptotics. The package comes fully documented and with several tutorials. Here we present a self-contained review of the method and consider several applications. We illustrate the method in the simplest case of scalar QNMs of a Schwarzschild black brane in anti-de Sitter. Then we go on to look at the scalar QNMs of the Schwarzschild black hole in de Sitter, in anti-de Sitter and in asymptotically flat spacetimes, finding a novel infinite set of purely imaginary modes in the first case. We also derive the QNM equations for a generic Einstein-Maxwell-scalar background and use these to compute the QNMs of the asymptotically anti-de Sitter Reissner-Nordström black brane, as a further illustration and check of the method.
AbstractList We present a package for Mathematica that facilitates the numerical computation of the quasinormal mode (QNM) spectrum of a black hole/black brane. Requiring as input only the QNM equation(s), the application of a single Mathematica function will compute the spectrum efficiently, by discretizing the equation(s) and solving the resulting generalized eigenvalue equation. It is applicable to a large variety of black holes, independently of their asymptotics. The package comes fully documented and with several tutorials. Here we present a self-contained review of the method and consider several applications. We illustrate the method in the simplest case of scalar QNMs of a Schwarzschild black brane in anti-de Sitter. Then we go on to look at the scalar QNMs of the Schwarzschild black hole in de Sitter, in anti-de Sitter and in asymptotically flat spacetimes, finding a novel infinite set of purely imaginary modes in the first case. We also derive the QNM equations for a generic Einstein-Maxwell-scalar background and use these to compute the QNMs of the asymptotically anti-de Sitter Reissner-Nordström black brane, as a further illustration and check of the method.
. We present a package for Mathematica that facilitates the numerical computation of the quasinormal mode (QNM) spectrum of a black hole/black brane. Requiring as input only the QNM equation(s), the application of a single Mathematica function will compute the spectrum efficiently, by discretizing the equation(s) and solving the resulting generalized eigenvalue equation. It is applicable to a large variety of black holes, independently of their asymptotics. The package comes fully documented and with several tutorials. Here we present a self-contained review of the method and consider several applications. We illustrate the method in the simplest case of scalar QNMs of a Schwarzschild black brane in anti-de Sitter. Then we go on to look at the scalar QNMs of the Schwarzschild black hole in de Sitter, in anti-de Sitter and in asymptotically flat spacetimes, finding a novel infinite set of purely imaginary modes in the first case. We also derive the QNM equations for a generic Einstein-Maxwell-scalar background and use these to compute the QNMs of the asymptotically anti-de Sitter Reissner-Nordström black brane, as a further illustration and check of the method.
ArticleNumber 546
Author Jansen, Aron
Author_xml – sequence: 1
  givenname: Aron
  surname: Jansen
  fullname: Jansen, Aron
  email: a.p.jansen@uu.nl
  organization: Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University
BookMark eNp9kE1PwzAMhiMEEl_7A5wicS6L02RrjgjxJYE4AOcoS1yWsSYlafn69XQbEogDvtiy38e23n2yHWJAQo6AnQAINsZ20Y49ZzAtACouC7VF9jgoVkghxPavepeMcl6wIYQCocQeeb97xeRM06KjTXSYqQ_03s7fTPrMdu6XrnBI733XYaImOGrorenm2JjOW0NbY5_NE9I6Jjp0aegbTMNgSW1s2r4bVDHQWNOX3mQfYmqG0frOIdmpzTLj6DsfkMeL84ezq-Lm7vL67PSmsOWk7Iqy5ExZh-CYk8oxWTFXTflUlnUJOK1cbaVwFUxmyNmEgRWVBGBcwqzmWNXlATne7G1TfOkxd3oR-xSGk5orUJIpxtSgqjYqm2LOCWtt_eb5Lhm_1MD0ymq9slqvrdZrq_UK5X_QNvnGpI__oXID5UEcnjD9fPUP9QW1UZbv
CitedBy_id crossref_primary_10_1007_JHEP03_2025_168
crossref_primary_10_1103_PhysRevD_99_104003
crossref_primary_10_1007_JHEP10_2022_047
crossref_primary_10_1103_PhysRevD_108_084016
crossref_primary_10_1088_1475_7516_2024_10_037
crossref_primary_10_21105_joss_04077
crossref_primary_10_1088_1674_1137_ac6574
crossref_primary_10_1103_PhysRevD_98_104007
crossref_primary_10_1103_PhysRevD_111_064026
crossref_primary_10_1007_JHEP11_2024_065
crossref_primary_10_1103_PhysRevD_110_064019
crossref_primary_10_1140_epjc_s10052_024_12703_y
crossref_primary_10_1103_PhysRevD_100_046018
crossref_primary_10_1103_PhysRevD_103_064006
crossref_primary_10_21468_SciPostPhysCore_7_2_034
crossref_primary_10_1007_s11433_023_2117_7
crossref_primary_10_1016_j_physletb_2020_136028
crossref_primary_10_1103_PhysRevD_104_106001
crossref_primary_10_1007_JHEP07_2024_046
crossref_primary_10_1007_JHEP02_2023_253
crossref_primary_10_1103_PhysRevD_109_064082
crossref_primary_10_1103_PhysRevD_109_044072
crossref_primary_10_1007_JHEP03_2019_187
crossref_primary_10_1103_PhysRevD_107_044009
crossref_primary_10_1140_epjc_s10052_023_12350_9
crossref_primary_10_1140_epjc_s10052_024_13699_1
crossref_primary_10_1063_5_0062985
crossref_primary_10_1103_PhysRevD_105_L061501
crossref_primary_10_1103_PhysRevD_110_024016
crossref_primary_10_1007_JHEP11_2023_128
crossref_primary_10_1140_epjc_s10052_022_10834_8
crossref_primary_10_1016_j_aop_2025_170007
crossref_primary_10_1007_JHEP10_2023_076
crossref_primary_10_1103_PhysRevD_109_124064
crossref_primary_10_1103_PhysRevD_110_084025
crossref_primary_10_1140_epjc_s10052_020_7962_2
crossref_primary_10_1140_epjc_s10052_023_11252_0
crossref_primary_10_1103_PhysRevD_103_064079
crossref_primary_10_1103_PhysRevD_100_124009
crossref_primary_10_1103_PhysRevD_106_124004
crossref_primary_10_1016_j_aop_2024_169762
crossref_primary_10_1103_PhysRevD_100_124006
crossref_primary_10_1088_1475_7516_2025_01_096
crossref_primary_10_1016_j_physletb_2024_139035
crossref_primary_10_1103_PhysRevD_110_106006
crossref_primary_10_1088_1572_9494_ad5717
crossref_primary_10_1088_1475_7516_2024_01_054
crossref_primary_10_1103_PhysRevD_111_046017
crossref_primary_10_1007_JHEP12_2019_036
crossref_primary_10_1007_JHEP06_2022_095
crossref_primary_10_1088_1361_6382_abc82e
crossref_primary_10_1088_1674_1137_42_10_105102
crossref_primary_10_1007_JHEP08_2024_091
crossref_primary_10_1016_j_physletb_2019_06_015
crossref_primary_10_1140_epjc_s10052_024_13512_z
crossref_primary_10_1007_JHEP05_2021_109
crossref_primary_10_1007_JHEP10_2019_087
crossref_primary_10_1007_JHEP12_2020_112
crossref_primary_10_1140_epjc_s10052_019_7416_x
crossref_primary_10_1103_PhysRevD_108_104002
crossref_primary_10_1103_PhysRevD_98_044042
crossref_primary_10_1103_PhysRevD_105_126020
crossref_primary_10_1007_JHEP07_2021_131
crossref_primary_10_1103_PhysRevD_109_044026
crossref_primary_10_1140_epjc_s10052_023_12336_7
crossref_primary_10_1007_JHEP03_2025_039
crossref_primary_10_1007_s10714_020_02763_2
crossref_primary_10_1088_1361_6382_ac776d
crossref_primary_10_1103_PhysRevD_110_084045
crossref_primary_10_1103_PhysRevD_99_084045
crossref_primary_10_1103_PhysRevD_106_084028
crossref_primary_10_1103_PhysRevD_108_024015
crossref_primary_10_1103_PhysRevLett_130_212303
crossref_primary_10_1103_PhysRevD_109_044023
crossref_primary_10_1140_epjc_s10052_019_6585_y
crossref_primary_10_1103_PhysRevD_105_084003
crossref_primary_10_1103_PhysRevD_109_104018
crossref_primary_10_1103_PhysRevD_107_064053
crossref_primary_10_1103_PhysRevD_102_104037
crossref_primary_10_1103_PhysRevD_107_124032
crossref_primary_10_1140_epjc_s10052_024_12928_x
crossref_primary_10_1155_2019_5472310
crossref_primary_10_1007_JHEP02_2024_140
crossref_primary_10_1103_PhysRevLett_133_211601
crossref_primary_10_1007_JHEP11_2023_059
crossref_primary_10_1140_epjc_s10052_023_11627_3
crossref_primary_10_1140_epjp_s13360_021_01227_z
crossref_primary_10_1007_JHEP02_2019_195
crossref_primary_10_1103_PhysRevD_101_064041
crossref_primary_10_1103_PhysRevD_108_104027
crossref_primary_10_1140_epjc_s10052_025_13813_x
crossref_primary_10_1103_PhysRevD_105_084052
crossref_primary_10_3389_fphy_2024_1497601
crossref_primary_10_1088_1475_7516_2020_07_066
crossref_primary_10_1103_PhysRevD_110_044040
crossref_primary_10_1103_PhysRevD_101_024011
crossref_primary_10_1016_j_physletb_2024_139165
crossref_primary_10_1103_PhysRevD_106_064057
crossref_primary_10_1007_JHEP10_2020_121
crossref_primary_10_1103_PhysRevD_104_124044
crossref_primary_10_1103_PhysRevD_107_044049
crossref_primary_10_1088_1475_7516_2022_11_028
crossref_primary_10_1103_PhysRevD_104_124043
crossref_primary_10_1140_epjc_s10052_022_10865_1
crossref_primary_10_1103_PhysRevD_97_086001
crossref_primary_10_1142_S0217732324501086
crossref_primary_10_1007_JHEP08_2020_120
crossref_primary_10_1007_JHEP12_2024_047
crossref_primary_10_1140_epjc_s10052_025_13926_3
crossref_primary_10_1103_PhysRevD_109_104039
crossref_primary_10_1103_PhysRevD_110_064076
crossref_primary_10_1103_PhysRevD_110_124065
crossref_primary_10_1016_j_physletb_2020_135523
crossref_primary_10_1016_j_physletb_2025_139347
crossref_primary_10_1088_1361_6382_aba17d
crossref_primary_10_1103_PhysRevD_102_124046
crossref_primary_10_1103_PhysRevD_107_104038
crossref_primary_10_1007_JHEP02_2025_055
crossref_primary_10_1103_PhysRevD_107_064025
crossref_primary_10_1140_epjc_s10052_024_12990_5
crossref_primary_10_1140_epjc_s10052_021_09753_x
crossref_primary_10_1007_JHEP01_2024_036
crossref_primary_10_1007_JHEP10_2019_207
crossref_primary_10_1103_PhysRevD_109_064068
crossref_primary_10_1140_epjc_s10052_021_09193_7
crossref_primary_10_1103_PhysRevX_11_031003
crossref_primary_10_1088_1572_9494_ab6912
crossref_primary_10_1007_JHEP09_2022_008
crossref_primary_10_1088_1674_1137_abd01d
crossref_primary_10_1103_PhysRevD_110_084016
crossref_primary_10_1103_PhysRevD_110_064003
crossref_primary_10_1007_JHEP10_2019_280
crossref_primary_10_1007_JHEP01_2019_123
crossref_primary_10_1016_j_aop_2018_05_013
crossref_primary_10_1140_epjc_s10052_023_12066_w
crossref_primary_10_1103_PhysRevD_100_044054
crossref_primary_10_1103_PhysRevD_110_126017
crossref_primary_10_1103_PhysRevD_105_124058
crossref_primary_10_1103_PhysRevD_110_064083
crossref_primary_10_1007_JHEP11_2023_155
crossref_primary_10_1016_j_physletb_2024_138945
crossref_primary_10_1103_PhysRevD_102_044005
crossref_primary_10_1016_j_physletb_2022_137124
crossref_primary_10_1103_PhysRevD_104_064037
crossref_primary_10_1103_PhysRevD_109_026010
crossref_primary_10_1088_1674_1137_abccaf
crossref_primary_10_1103_PhysRevD_105_084047
crossref_primary_10_1007_JHEP08_2024_163
Cites_doi 10.1007/s10714-006-0335-9
10.1103/PhysRevD.60.064003
10.1103/PhysRevLett.118.221101
10.1103/PhysRevD.80.111701
10.1007/s002200100381
10.1103/PhysRevD.93.025006
10.1103/PhysRevD.62.024027
10.1007/JHEP06(2016)047
10.30970/jps.08.93
10.1143/PTP.111.29
10.1098/rspa.1985.0119
10.1007/JHEP08(2017)134
10.1016/0370-2693(85)91415-7
10.1088/1126-6708/2004/06/037
10.1007/JHEP05(2010)076
10.1103/PhysRevD.67.084020
10.1007/JHEP11(2010)036
10.1103/PhysRevLett.87.081601
10.1103/PhysRevLett.116.061102
10.1088/0264-9381/26/16/163001
10.1103/PhysRevD.67.124013
10.1088/0264-9381/31/24/245011
10.1103/PhysRevD.81.024001
10.1088/0264-9381/21/1/019
10.1103/PhysRevD.88.041505
10.1023/A:1026654312961
10.1103/PhysRevLett.110.211602
10.1007/JHEP10(2013)156
10.1103/PhysRevD.94.061901
10.1103/PhysRevLett.114.221101
10.1007/JHEP04(2014)183
10.1007/JHEP04(2017)067
10.1103/PhysRevD.59.064025
10.1007/JHEP09(2013)026
10.1103/PhysRevD.66.044009
10.1103/PhysRevD.82.104025
10.1103/PhysRevLett.108.191601
10.1103/PhysRevD.55.7546
10.1103/PhysRevD.94.104007
10.1103/PhysRevD.35.3621
10.1103/PhysRevD.41.403
10.1103/PhysRevD.80.126016
10.1103/PhysRevD.96.024011
10.4310/ATMP.2004.v8.n6.a4
10.1088/1126-6708/2002/09/043
10.1007/JHEP07(2014)086
10.1088/1126-6708/2008/02/045
10.1103/PhysRevLett.116.241103
10.1103/PhysRevLett.116.221101
10.1103/PhysRevD.72.086009
10.1016/j.physletb.2016.03.044
10.1088/1126-6708/2009/01/025
10.1103/PhysRevLett.117.091603
10.1007/JHEP07(2017)135
10.1007/JHEP08(2011)139
10.1007/JHEP11(2015)087
10.1007/JHEP12(2016)042
10.1088/1126-6708/2002/09/042
10.1103/PhysRevLett.117.051601
10.1103/PhysRevLett.114.151101
10.1103/RevModPhys.83.793
10.1007/JHEP12(2010)067
ContentType Journal Article
Copyright The Author 2017
The Author 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author 2017
– notice: The Author 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1140/epjp/i2017-11825-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2190-5444
ExternalDocumentID 10_1140_epjp_i2017_11825_9
GroupedDBID -5F
-5G
-BR
-EM
-~C
06D
0R~
203
29~
2JN
2KG
30V
4.4
406
408
8UJ
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARMRJ
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
C6C
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P9T
PCBAR
PT4
RID
RLLFE
ROL
RSV
S27
S3B
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7S
Z7Y
ZMTXR
~A9
2VQ
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADQRH
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHSBF
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
O9-
PHGZM
PHGZT
S1Z
8FE
8FG
ABRTQ
DWQXO
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c363t-33209cde1d0d59d0580d872753f31e78dfc54d816be20601c485110251bf2e8f3
IEDL.DBID 8FG
ISSN 2190-5444
IngestDate Fri Jul 25 23:33:30 EDT 2025
Thu Apr 24 23:03:07 EDT 2025
Tue Jul 01 02:42:13 EDT 2025
Fri Feb 21 02:31:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-33209cde1d0d59d0580d872753f31e78dfc54d816be20601c485110251bf2e8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1140/epjp/i2017-11825-9
PQID 2919509009
PQPubID 2044220
ParticipantIDs proquest_journals_2919509009
crossref_citationtrail_10_1140_epjp_i2017_11825_9
crossref_primary_10_1140_epjp_i2017_11825_9
springer_journals_10_1140_epjp_i2017_11825_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle European physical journal plus
PublicationTitleAbbrev Eur. Phys. J. Plus
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References WaeberS.SchferA.VuorinenA.YaffeL.G.JHEP2015110872015JHEP...11..087W10.1007/JHEP11(2015)087
AbbottA.P.Phys. Rev. Lett.20171182211012017PhRvL.118v1101A10.1103/PhysRevLett.118.221101
GürsoyU.JansenA.van der ScheeW.Phys. Rev. D2016940619012016PhRvD..94f1901G10.1103/PhysRevD.94.061901
DiasO.J.C.FiguerasP.MonteiroR.SantosJ.E.JHEP2010120672010JHEP...12..067D10.1007/JHEP12(2010)067
HellerM.P.MateosD.van der ScheeW.TrancanelliD.Phys. Rev. Lett.20121081916012012PhRvL.108s1601H10.1103/PhysRevLett.108.191601
BurgessC.P.LutkenC.A.Phys. Lett. B19851531371985PhLB..153..137B78606910.1016/0370-2693(85)91415-7
KovtunP.K.StarinetsA.O.Phys. Rev. D2005720860092005PhRvD..72h6009K10.1103/PhysRevD.72.086009
DiasO.J.C.MonteiroR.SantosJ.E.JHEP2011081392011JHEP...08..139D10.1007/JHEP08(2011)139
SonD.T.StarinetsA.O.JHEP2002090422002JHEP...09..042S10.1088/1126-6708/2002/09/042
JanikR.A.JankowskiJ.SoltanpanahiH.JHEP2016060472016JHEP...06..047J10.1007/JHEP06(2016)047
BradyP.R.ChambersC.M.LaarakkersW.G.PoissonE.Phys. Rev. D1999600640031999PhRvD..60f4003B10.1103/PhysRevD.60.064003
BertiE.CardosoV.StarinetsA.O.Class. Quantum Grav.2009261630012009CQGra..26p3001B10.1088/0264-9381/26/16/163001
De HaroS.SolodukhinS.N.SkenderisK.Commun. Math. Phys.20012175952001CMaPh.217..595D10.1007/s002200100381
DiasO.J.C.FiguerasP.MonteiroR.SantosJ.E.EmparanR.Phys. Rev. D2009801117012009PhRvD..80k1701D10.1103/PhysRevD.80.111701
JaniszwekskiS.KaminskiM.Phys. Rev. D2016930250062016PhRvD..93b5006J348192210.1103/PhysRevD.93.025006
DiasO.J.C.SantosJ.E.WayB.JHEP201407086
DiasO.J.C.SantosJ.E.JHEP2013101562013JHEP...10..156D10.1007/JHEP10(2013)156
MaldacenaJ.M.Int. J. Theor. Phys.199938111310.1023/A:1026654312961
MasJ.ShockJ.P.TarrioJ.JHEP2009010252009JHEP...01..025M10.1088/1126-6708/2009/01/025
BuchelA.JHEP2017081342017JHEP...08..134B10.1007/JHEP08(2017)134
SantosJ.E.WayB.Phys. Rev. Lett.20151142211012015PhRvL.114v1101S10.1103/PhysRevLett.114.221101
BhattacharyyaS.HubenyV.E.MinwallaS.RangamaniM.JHEP2008020452008JHEP...02..045B10.1088/1126-6708/2008/02/045
DenefF.HartnollS.A.SachdevS.Phys. Rev. D2009801260162009PhRvD..80l6016D10.1103/PhysRevD.80.126016
ChanJ.S.F.MannR.B.Phys. Rev. D1999590640251999PhRvD..59f4025C10.1103/PhysRevD.59.064025
CardosoV.LemosJ.P.S.Phys. Rev. D2003670840202003PhRvD..67h4020C199531010.1103/PhysRevD.67.084020
P. Betzios, U. Gürsoy, J. Matti, G. Policastro, arXiv:hep-th/1708.02252
JansenA.MaganJ.M.Phys. Rev. D2016941040072016PhRvD..94j4007J10.1103/PhysRevD.94.104007
HellerM.P.JanikR.A.WitaszczykP.Phys. Rev. Lett.2013212116022013PhRvL.110u1602H10.1103/PhysRevLett.110.211602
KonoplyaR.ZhidenkoA.Phys. Lett. B20167563502016PhLB..756..350K10.1016/j.physletb.2016.03.044
ZhidenkoA.Class. Quantum Grav.2004212732004CQGra..21..273Z202669210.1088/0264-9381/21/1/019
Lopez-OrtegaA.Gen. Relativ. Gravit.20063815652006GReGr..38.1565L228175910.1007/s10714-006-0335-9
IyerS.WillC.M.Phys. Rev. D19873536211987PhRvD..35.3621I10.1103/PhysRevD.35.3621
CardosoV.DiasO.J.C.HartnettG.S.LehnerL.SantosJ.E.JHEP2014041832014JHEP...04..183C10.1007/JHEP04(2014)183
V. Cardoso, J. Costa, K. Destounis, P. Hintz, A. Jansen, arXiv:1711.10502
PolicastroG.SonD.T.StarinetsA.O.JHEP2002090432002JHEP...09..043P10.1088/1126-6708/2002/09/043
HartnettG.S.SantosJ.E.Phys. Rev. D2013880415052013PhRvD..88d1505H10.1103/PhysRevD.88.041505
AbbottA.P.Phys. Rev. Lett.20161162411032016PhRvL.116x1103A10.1103/PhysRevLett.116.241103
DiasO.J.C.FiguerasP.MonteiroR.SantosJ.E.Phys. Rev. D2010821040252010PhRvD..82j4025D10.1103/PhysRevD.82.104025
PolicastroG.SonD.T.StarinetsA.O.Phys. Rev. Lett.2001870816012001PhRvL..87h1601P10.1103/PhysRevLett.87.081601
MatyjasekJ.OpalaM.Phys. Rev. D2017960240112017PhRvD..96b4011M10.1103/PhysRevD.96.024011
KonoplyaR.A.ZhidenkoA.Rev. Mod. Phys.2011837932011RvMP...83..793K10.1103/RevModPhys.83.793
GrandclementP.NovakJ.JHEP201407086
NunezA.StarinetsA.O.Phys. Rev. D2003671240132003PhRvD..67l4013N201019910.1103/PhysRevD.67.124013
KonoplyaR.A.J. Phys. Stud.20048932117850
AbbottA.P.Phys. Rev. Lett.20161160611022016PhRvL.116f1102A370775810.1103/PhysRevLett.116.061102
ChanJ.S.F.MannR.B.Phys. Rev. D19975575461997PhRvD..55.7546C10.1103/PhysRevD.55.7546
DiasO.J.C.MonteiroR.ReallH.S.SantosJ.E.JHEP2010110362010JHEP...11..036D10.1007/JHEP11(2010)036
A.P. Jansen, QNMspectral, https://github.com/APJansen/QNMspectral
DiasO.J.C.MahdiG.SantosJ.E.Phys. Rev. Lett.20151141511012015PhRvL.114o1101D10.1103/PhysRevLett.114.151101
J.P. Boyd, Chebyshev & Fourier Spectral Methods (Courier Dover Publications, 2001)
HellerM.P.MateosD.van der ScheeW.TrianaM.JHEP2013090262013JHEP...09..026H10.1007/JHEP09(2013)026
DiasO.J.C.FiguerasP.MonteiroR.ReallH.S.SantosJ.E.JHEP2010050762010JHEP...05..076D10.1007/JHEP05(2010)076
BoschP.BuchelA.LehnerL.JHEP2017071352017JHEP...07..135B10.1007/JHEP07(2017)135
AmmonM.KaminskiM.KoiralaR.LieberJ.WuJ.JHEP2017040672017JHEP...04..067A10.1007/JHEP04(2017)067
L. Yaffe, http://msstp.org/?q=node/289
GürsoyU.JansenA.SybesmaW.VandorenS.Phys. Rev. Lett.2016505160110.1103/PhysRevLett.117.051601
HorowitzG.T.HubenyV.E.Phys. Rev. D2000620240272000PhRvD..62b4027H179148210.1103/PhysRevD.62.024027
KonoplyaR.A.Phys. Rev. D2002660440092002PhRvD..66d4009K192474110.1103/PhysRevD.66.044009
CheslerP.M.YaffeL.G.JHEP2014070862014JHEP...07..086C10.1007/JHEP07(2014)086
MellorF.MossI.Phys. Rev. D1990414031990PhRvD..41..403M103219010.1103/PhysRevD.41.403
DiasO.J.C.HartnettG.S.SantosJ.E.Class. Quantum Grav.2014312450112014CQGra..31x5011D10.1088/0264-9381/31/24/245011
AbbotA.P.Phys. Rev. Lett.20161162211012016PhRvL.116v1101A10.1103/PhysRevLett.116.221101
KonoplyaR.A.ZhidenkoA.JHEP2004060372004JHEP...06..037K10.1088/1126-6708/2004/06/037
KodamaH.IshibashiA.Prog. Theor. Phys.2004111292004PThPh.111...29K10.1143/PTP.111.29
MonteiroR.PerryM.J.SantosJ.E.Phys. Rev. D2010810240012010PhRvD..81b4001M261086510.1103/PhysRevD.81.024001
LeaverE.W.Proc. R. Soc. London A19854032851985RSPSA.402..285L82822110.1098/rspa.1985.0119
NatarioJ.SchiappaR.Adv. Theor. Math. Phys.200481001219437410.4310/ATMP.2004.v8.n6.a4
JanikR.A.JankowskiJ.SoltanpanahiH.Phys. Rev. Lett.20161170916032016PhRvL.117i1603J10.1103/PhysRevLett.117.091603
FuiniJ.F.UhlemannC.F.YaffeL.G.JHEP2016120422016JHEP...12..042F10.1007/JHEP12(2016)042
E.W. Leaver (11825_CR53) 1985; 403
J. Matyjasek (11825_CR54) 2017; 96
A. Jansen (11825_CR29) 2016; 94
P.R. Brady (11825_CR42) 1999; 60
G.S. Hartnett (11825_CR57) 2013; 88
P.K. Kovtun (11825_CR11) 2005; 72
A.P. Abbott (11825_CR3) 2017; 118
J. Natario (11825_CR21) 2004; 8
G.T. Horowitz (11825_CR33) 2000; 62
C.P. Burgess (11825_CR36) 1985; 153
S. Waeber (11825_CR63) 2015; 11
V. Cardoso (11825_CR39) 2003; 67
H. Kodama (11825_CR44) 2004; 111
O.J.C. Dias (11825_CR60) 2010; 11
R.A. Konoplya (11825_CR43) 2004; 06
O.J.C. Dias (11825_CR62) 2013; 10
J. Mas (11825_CR49) 2009; 01
J.E. Santos (11825_CR65) 2015; 114
O.J.C. Dias (11825_CR23) 2009; 80
R. Konoplya (11825_CR5) 2016; 756
O.J.C. Dias (11825_CR59) 2010; 12
F. Mellor (11825_CR51) 1990; 41
A. Buchel (11825_CR9) 2017; 08
M.P. Heller (11825_CR17) 2012; 108
A.P. Abbott (11825_CR2) 2016; 116
F. Denef (11825_CR15) 2009; 80
S. Bhattacharyya (11825_CR10) 2008; 02
R.A. Konoplya (11825_CR37) 2002; 66
G. Policastro (11825_CR46) 2002; 09
J.S.F. Chan (11825_CR34) 1997; 55
J.F. Fuini (11825_CR69) 2016; 12
E. Berti (11825_CR18) 2009; 26
A. Zhidenko (11825_CR41) 2004; 21
J.M. Maldacena (11825_CR13) 1999; 38
A. Nunez (11825_CR32) 2003; 67
R.A. Konoplya (11825_CR19) 2011; 83
O.J.C. Dias (11825_CR61) 2010; 82
R.A. Konoplya (11825_CR38) 2004; 8
P. Bosch (11825_CR8) 2017; 07
U. Gürsoy (11825_CR28) 2016; 5
O.J.C. Dias (11825_CR6) 2014; 07
S. Iyer (11825_CR52) 1987; 35
G. Policastro (11825_CR47) 2001; 87
S. De Haro (11825_CR50) 2001; 217
A.P. Abbot (11825_CR4) 2016; 116
M.P. Heller (11825_CR12) 2013; 21
A. Lopez-Ortega (11825_CR40) 2006; 38
S. Janiszwekski (11825_CR45) 2016; 93
O.J.C. Dias (11825_CR66) 2015; 114
P. Grandclement (11825_CR27) 2014; 07
U. Gürsoy (11825_CR7) 2016; 94
11825_CR30
M. Ammon (11825_CR48) 2017; 04
11825_CR31
A.P. Abbott (11825_CR1) 2016; 116
O.J.C. Dias (11825_CR24) 2010; 05
P.M. Chesler (11825_CR26) 2014; 07
J.S.F. Chan (11825_CR35) 1999; 59
O.J.C. Dias (11825_CR67) 2014; 31
R.A. Janik (11825_CR55) 2016; 117
V. Cardoso (11825_CR64) 2014; 04
R. Monteiro (11825_CR25) 2010; 81
M.P. Heller (11825_CR16) 2013; 09
D.T. Son (11825_CR14) 2002; 09
O.J.C. Dias (11825_CR58) 2011; 08
11825_CR68
R.A. Janik (11825_CR56) 2016; 06
11825_CR20
11825_CR22
References_xml – reference: DiasO.J.C.FiguerasP.MonteiroR.SantosJ.E.EmparanR.Phys. Rev. D2009801117012009PhRvD..80k1701D10.1103/PhysRevD.80.111701
– reference: JansenA.MaganJ.M.Phys. Rev. D2016941040072016PhRvD..94j4007J10.1103/PhysRevD.94.104007
– reference: KodamaH.IshibashiA.Prog. Theor. Phys.2004111292004PThPh.111...29K10.1143/PTP.111.29
– reference: BertiE.CardosoV.StarinetsA.O.Class. Quantum Grav.2009261630012009CQGra..26p3001B10.1088/0264-9381/26/16/163001
– reference: MaldacenaJ.M.Int. J. Theor. Phys.199938111310.1023/A:1026654312961
– reference: BuchelA.JHEP2017081342017JHEP...08..134B10.1007/JHEP08(2017)134
– reference: V. Cardoso, J. Costa, K. Destounis, P. Hintz, A. Jansen, arXiv:1711.10502
– reference: ChanJ.S.F.MannR.B.Phys. Rev. D19975575461997PhRvD..55.7546C10.1103/PhysRevD.55.7546
– reference: DiasO.J.C.MahdiG.SantosJ.E.Phys. Rev. Lett.20151141511012015PhRvL.114o1101D10.1103/PhysRevLett.114.151101
– reference: AbbottA.P.Phys. Rev. Lett.20161160611022016PhRvL.116f1102A370775810.1103/PhysRevLett.116.061102
– reference: AmmonM.KaminskiM.KoiralaR.LieberJ.WuJ.JHEP2017040672017JHEP...04..067A10.1007/JHEP04(2017)067
– reference: JanikR.A.JankowskiJ.SoltanpanahiH.Phys. Rev. Lett.20161170916032016PhRvL.117i1603J10.1103/PhysRevLett.117.091603
– reference: AbbottA.P.Phys. Rev. Lett.20161162411032016PhRvL.116x1103A10.1103/PhysRevLett.116.241103
– reference: KonoplyaR.ZhidenkoA.Phys. Lett. B20167563502016PhLB..756..350K10.1016/j.physletb.2016.03.044
– reference: P. Betzios, U. Gürsoy, J. Matti, G. Policastro, arXiv:hep-th/1708.02252
– reference: DiasO.J.C.SantosJ.E.WayB.JHEP201407086
– reference: BoschP.BuchelA.LehnerL.JHEP2017071352017JHEP...07..135B10.1007/JHEP07(2017)135
– reference: NatarioJ.SchiappaR.Adv. Theor. Math. Phys.200481001219437410.4310/ATMP.2004.v8.n6.a4
– reference: CardosoV.DiasO.J.C.HartnettG.S.LehnerL.SantosJ.E.JHEP2014041832014JHEP...04..183C10.1007/JHEP04(2014)183
– reference: HellerM.P.JanikR.A.WitaszczykP.Phys. Rev. Lett.2013212116022013PhRvL.110u1602H10.1103/PhysRevLett.110.211602
– reference: BurgessC.P.LutkenC.A.Phys. Lett. B19851531371985PhLB..153..137B78606910.1016/0370-2693(85)91415-7
– reference: L. Yaffe, http://msstp.org/?q=node/289
– reference: MonteiroR.PerryM.J.SantosJ.E.Phys. Rev. D2010810240012010PhRvD..81b4001M261086510.1103/PhysRevD.81.024001
– reference: DiasO.J.C.FiguerasP.MonteiroR.SantosJ.E.JHEP2010120672010JHEP...12..067D10.1007/JHEP12(2010)067
– reference: AbbotA.P.Phys. Rev. Lett.20161162211012016PhRvL.116v1101A10.1103/PhysRevLett.116.221101
– reference: GürsoyU.JansenA.van der ScheeW.Phys. Rev. D2016940619012016PhRvD..94f1901G10.1103/PhysRevD.94.061901
– reference: HellerM.P.MateosD.van der ScheeW.TrancanelliD.Phys. Rev. Lett.20121081916012012PhRvL.108s1601H10.1103/PhysRevLett.108.191601
– reference: MatyjasekJ.OpalaM.Phys. Rev. D2017960240112017PhRvD..96b4011M10.1103/PhysRevD.96.024011
– reference: DiasO.J.C.MonteiroR.SantosJ.E.JHEP2011081392011JHEP...08..139D10.1007/JHEP08(2011)139
– reference: De HaroS.SolodukhinS.N.SkenderisK.Commun. Math. Phys.20012175952001CMaPh.217..595D10.1007/s002200100381
– reference: NunezA.StarinetsA.O.Phys. Rev. D2003671240132003PhRvD..67l4013N201019910.1103/PhysRevD.67.124013
– reference: PolicastroG.SonD.T.StarinetsA.O.Phys. Rev. Lett.2001870816012001PhRvL..87h1601P10.1103/PhysRevLett.87.081601
– reference: HellerM.P.MateosD.van der ScheeW.TrianaM.JHEP2013090262013JHEP...09..026H10.1007/JHEP09(2013)026
– reference: DiasO.J.C.FiguerasP.MonteiroR.SantosJ.E.Phys. Rev. D2010821040252010PhRvD..82j4025D10.1103/PhysRevD.82.104025
– reference: KovtunP.K.StarinetsA.O.Phys. Rev. D2005720860092005PhRvD..72h6009K10.1103/PhysRevD.72.086009
– reference: KonoplyaR.A.Phys. Rev. D2002660440092002PhRvD..66d4009K192474110.1103/PhysRevD.66.044009
– reference: JaniszwekskiS.KaminskiM.Phys. Rev. D2016930250062016PhRvD..93b5006J348192210.1103/PhysRevD.93.025006
– reference: A.P. Jansen, QNMspectral, https://github.com/APJansen/QNMspectral
– reference: DenefF.HartnollS.A.SachdevS.Phys. Rev. D2009801260162009PhRvD..80l6016D10.1103/PhysRevD.80.126016
– reference: J.P. Boyd, Chebyshev & Fourier Spectral Methods (Courier Dover Publications, 2001)
– reference: BhattacharyyaS.HubenyV.E.MinwallaS.RangamaniM.JHEP2008020452008JHEP...02..045B10.1088/1126-6708/2008/02/045
– reference: SantosJ.E.WayB.Phys. Rev. Lett.20151142211012015PhRvL.114v1101S10.1103/PhysRevLett.114.221101
– reference: CardosoV.LemosJ.P.S.Phys. Rev. D2003670840202003PhRvD..67h4020C199531010.1103/PhysRevD.67.084020
– reference: Lopez-OrtegaA.Gen. Relativ. Gravit.20063815652006GReGr..38.1565L228175910.1007/s10714-006-0335-9
– reference: IyerS.WillC.M.Phys. Rev. D19873536211987PhRvD..35.3621I10.1103/PhysRevD.35.3621
– reference: DiasO.J.C.FiguerasP.MonteiroR.ReallH.S.SantosJ.E.JHEP2010050762010JHEP...05..076D10.1007/JHEP05(2010)076
– reference: DiasO.J.C.MonteiroR.ReallH.S.SantosJ.E.JHEP2010110362010JHEP...11..036D10.1007/JHEP11(2010)036
– reference: PolicastroG.SonD.T.StarinetsA.O.JHEP2002090432002JHEP...09..043P10.1088/1126-6708/2002/09/043
– reference: KonoplyaR.A.J. Phys. Stud.20048932117850
– reference: GrandclementP.NovakJ.JHEP201407086
– reference: BradyP.R.ChambersC.M.LaarakkersW.G.PoissonE.Phys. Rev. D1999600640031999PhRvD..60f4003B10.1103/PhysRevD.60.064003
– reference: DiasO.J.C.HartnettG.S.SantosJ.E.Class. Quantum Grav.2014312450112014CQGra..31x5011D10.1088/0264-9381/31/24/245011
– reference: ZhidenkoA.Class. Quantum Grav.2004212732004CQGra..21..273Z202669210.1088/0264-9381/21/1/019
– reference: FuiniJ.F.UhlemannC.F.YaffeL.G.JHEP2016120422016JHEP...12..042F10.1007/JHEP12(2016)042
– reference: SonD.T.StarinetsA.O.JHEP2002090422002JHEP...09..042S10.1088/1126-6708/2002/09/042
– reference: HartnettG.S.SantosJ.E.Phys. Rev. D2013880415052013PhRvD..88d1505H10.1103/PhysRevD.88.041505
– reference: JanikR.A.JankowskiJ.SoltanpanahiH.JHEP2016060472016JHEP...06..047J10.1007/JHEP06(2016)047
– reference: MellorF.MossI.Phys. Rev. D1990414031990PhRvD..41..403M103219010.1103/PhysRevD.41.403
– reference: CheslerP.M.YaffeL.G.JHEP2014070862014JHEP...07..086C10.1007/JHEP07(2014)086
– reference: KonoplyaR.A.ZhidenkoA.Rev. Mod. Phys.2011837932011RvMP...83..793K10.1103/RevModPhys.83.793
– reference: KonoplyaR.A.ZhidenkoA.JHEP2004060372004JHEP...06..037K10.1088/1126-6708/2004/06/037
– reference: HorowitzG.T.HubenyV.E.Phys. Rev. D2000620240272000PhRvD..62b4027H179148210.1103/PhysRevD.62.024027
– reference: DiasO.J.C.SantosJ.E.JHEP2013101562013JHEP...10..156D10.1007/JHEP10(2013)156
– reference: LeaverE.W.Proc. R. Soc. London A19854032851985RSPSA.402..285L82822110.1098/rspa.1985.0119
– reference: WaeberS.SchferA.VuorinenA.YaffeL.G.JHEP2015110872015JHEP...11..087W10.1007/JHEP11(2015)087
– reference: ChanJ.S.F.MannR.B.Phys. Rev. D1999590640251999PhRvD..59f4025C10.1103/PhysRevD.59.064025
– reference: MasJ.ShockJ.P.TarrioJ.JHEP2009010252009JHEP...01..025M10.1088/1126-6708/2009/01/025
– reference: AbbottA.P.Phys. Rev. Lett.20171182211012017PhRvL.118v1101A10.1103/PhysRevLett.118.221101
– reference: GürsoyU.JansenA.SybesmaW.VandorenS.Phys. Rev. Lett.2016505160110.1103/PhysRevLett.117.051601
– volume: 38
  start-page: 1565
  year: 2006
  ident: 11825_CR40
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/s10714-006-0335-9
– volume: 60
  start-page: 064003
  year: 1999
  ident: 11825_CR42
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.60.064003
– volume: 118
  start-page: 221101
  year: 2017
  ident: 11825_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.221101
– volume: 80
  start-page: 111701
  year: 2009
  ident: 11825_CR23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.111701
– volume: 217
  start-page: 595
  year: 2001
  ident: 11825_CR50
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200100381
– volume: 93
  start-page: 025006
  year: 2016
  ident: 11825_CR45
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.025006
– volume: 62
  start-page: 024027
  year: 2000
  ident: 11825_CR33
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.62.024027
– volume: 06
  start-page: 047
  year: 2016
  ident: 11825_CR56
  publication-title: JHEP
  doi: 10.1007/JHEP06(2016)047
– volume: 8
  start-page: 93
  year: 2004
  ident: 11825_CR38
  publication-title: J. Phys. Stud.
  doi: 10.30970/jps.08.93
– volume: 111
  start-page: 29
  year: 2004
  ident: 11825_CR44
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.111.29
– volume: 403
  start-page: 285
  year: 1985
  ident: 11825_CR53
  publication-title: Proc. R. Soc. London A
  doi: 10.1098/rspa.1985.0119
– volume: 08
  start-page: 134
  year: 2017
  ident: 11825_CR9
  publication-title: JHEP
  doi: 10.1007/JHEP08(2017)134
– volume: 153
  start-page: 137
  year: 1985
  ident: 11825_CR36
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(85)91415-7
– volume: 06
  start-page: 037
  year: 2004
  ident: 11825_CR43
  publication-title: JHEP
  doi: 10.1088/1126-6708/2004/06/037
– volume: 05
  start-page: 076
  year: 2010
  ident: 11825_CR24
  publication-title: JHEP
  doi: 10.1007/JHEP05(2010)076
– volume: 67
  start-page: 084020
  year: 2003
  ident: 11825_CR39
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.67.084020
– volume: 11
  start-page: 036
  year: 2010
  ident: 11825_CR60
  publication-title: JHEP
  doi: 10.1007/JHEP11(2010)036
– ident: 11825_CR22
– volume: 87
  start-page: 081601
  year: 2001
  ident: 11825_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.081601
– volume: 116
  start-page: 061102
  year: 2016
  ident: 11825_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.061102
– volume: 26
  start-page: 163001
  year: 2009
  ident: 11825_CR18
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/26/16/163001
– volume: 67
  start-page: 124013
  year: 2003
  ident: 11825_CR32
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.67.124013
– volume: 31
  start-page: 245011
  year: 2014
  ident: 11825_CR67
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/31/24/245011
– volume: 81
  start-page: 024001
  year: 2010
  ident: 11825_CR25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.024001
– volume: 21
  start-page: 273
  year: 2004
  ident: 11825_CR41
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/21/1/019
– volume: 88
  start-page: 041505
  year: 2013
  ident: 11825_CR57
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.041505
– volume: 38
  start-page: 1113
  year: 1999
  ident: 11825_CR13
  publication-title: Int. J. Theor. Phys.
  doi: 10.1023/A:1026654312961
– volume: 21
  start-page: 211602
  year: 2013
  ident: 11825_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.211602
– volume: 10
  start-page: 156
  year: 2013
  ident: 11825_CR62
  publication-title: JHEP
  doi: 10.1007/JHEP10(2013)156
– volume: 94
  start-page: 061901
  year: 2016
  ident: 11825_CR7
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.061901
– ident: 11825_CR68
– volume: 114
  start-page: 221101
  year: 2015
  ident: 11825_CR65
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.221101
– volume: 04
  start-page: 183
  year: 2014
  ident: 11825_CR64
  publication-title: JHEP
  doi: 10.1007/JHEP04(2014)183
– volume: 04
  start-page: 067
  year: 2017
  ident: 11825_CR48
  publication-title: JHEP
  doi: 10.1007/JHEP04(2017)067
– volume: 59
  start-page: 064025
  year: 1999
  ident: 11825_CR35
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.59.064025
– volume: 09
  start-page: 026
  year: 2013
  ident: 11825_CR16
  publication-title: JHEP
  doi: 10.1007/JHEP09(2013)026
– volume: 66
  start-page: 044009
  year: 2002
  ident: 11825_CR37
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.66.044009
– volume: 82
  start-page: 104025
  year: 2010
  ident: 11825_CR61
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.82.104025
– volume: 108
  start-page: 191601
  year: 2012
  ident: 11825_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.191601
– volume: 55
  start-page: 7546
  year: 1997
  ident: 11825_CR34
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.55.7546
– volume: 07
  start-page: 086
  year: 2014
  ident: 11825_CR6
  publication-title: JHEP
– volume: 94
  start-page: 104007
  year: 2016
  ident: 11825_CR29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.104007
– volume: 35
  start-page: 3621
  year: 1987
  ident: 11825_CR52
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.35.3621
– volume: 41
  start-page: 403
  year: 1990
  ident: 11825_CR51
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.41.403
– volume: 80
  start-page: 126016
  year: 2009
  ident: 11825_CR15
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.126016
– volume: 96
  start-page: 024011
  year: 2017
  ident: 11825_CR54
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.024011
– volume: 8
  start-page: 1001
  year: 2004
  ident: 11825_CR21
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2004.v8.n6.a4
– volume: 09
  start-page: 043
  year: 2002
  ident: 11825_CR46
  publication-title: JHEP
  doi: 10.1088/1126-6708/2002/09/043
– volume: 07
  start-page: 086
  year: 2014
  ident: 11825_CR26
  publication-title: JHEP
  doi: 10.1007/JHEP07(2014)086
– volume: 02
  start-page: 045
  year: 2008
  ident: 11825_CR10
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/02/045
– volume: 116
  start-page: 241103
  year: 2016
  ident: 11825_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.241103
– volume: 116
  start-page: 221101
  year: 2016
  ident: 11825_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.221101
– volume: 07
  start-page: 086
  year: 2014
  ident: 11825_CR27
  publication-title: JHEP
– ident: 11825_CR30
– volume: 72
  start-page: 086009
  year: 2005
  ident: 11825_CR11
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.72.086009
– volume: 756
  start-page: 350
  year: 2016
  ident: 11825_CR5
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2016.03.044
– volume: 01
  start-page: 025
  year: 2009
  ident: 11825_CR49
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/01/025
– volume: 117
  start-page: 091603
  year: 2016
  ident: 11825_CR55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.091603
– volume: 07
  start-page: 135
  year: 2017
  ident: 11825_CR8
  publication-title: JHEP
  doi: 10.1007/JHEP07(2017)135
– volume: 08
  start-page: 139
  year: 2011
  ident: 11825_CR58
  publication-title: JHEP
  doi: 10.1007/JHEP08(2011)139
– volume: 11
  start-page: 087
  year: 2015
  ident: 11825_CR63
  publication-title: JHEP
  doi: 10.1007/JHEP11(2015)087
– ident: 11825_CR20
– volume: 12
  start-page: 042
  year: 2016
  ident: 11825_CR69
  publication-title: JHEP
  doi: 10.1007/JHEP12(2016)042
– volume: 09
  start-page: 042
  year: 2002
  ident: 11825_CR14
  publication-title: JHEP
  doi: 10.1088/1126-6708/2002/09/042
– volume: 5
  start-page: 051601
  year: 2016
  ident: 11825_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.051601
– volume: 114
  start-page: 151101
  year: 2015
  ident: 11825_CR66
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.151101
– ident: 11825_CR31
– volume: 83
  start-page: 793
  year: 2011
  ident: 11825_CR19
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.793
– volume: 12
  start-page: 067
  year: 2010
  ident: 11825_CR59
  publication-title: JHEP
  doi: 10.1007/JHEP12(2010)067
SSID ssj0000491494
Score 2.5641947
Snippet . We present a package for Mathematica that facilitates the numerical computation of the quasinormal mode (QNM) spectrum of a black hole/black brane. Requiring...
We present a package for Mathematica that facilitates the numerical computation of the quasinormal mode (QNM) spectrum of a black hole/black brane. Requiring...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 546
SubjectTerms Applied and Technical Physics
Asymptotic properties
Atomic
Black holes
Branes
Complex Systems
Computation
Condensed Matter Physics
Eigenvalues
Equilibrium
Fluid mechanics
Gravitational waves
Gravity
Mathematical and Computational Physics
Molecular
Numerical analysis
Optical and Plasma Physics
Ordinary differential equations
Physics
Physics and Astronomy
Spacetime
Theoretical
Theory of relativity
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3dS8MwEMCDTgRfxE-cTsmDbxrWNE0_HmU4hqA-zMHeQppLcTq6uW4o_vUmabupqOBrm7Rwd7380svdIXTOg0xpBYyo2ItJwFlC4lSmhEea-0C15i7D-_Yu7A2CmyEfVmVybC7M5_i9Yf-2nj5N2yPf-lKLwpwk62iDG8drrbkTdpb_UwzpGtgP6ryYH6d-XXtWQPktBuqWlu4O2q6YEF-VStxFazrfQ5vubKYq9tHbvTE3kIZvAdvGNQUe5bivHl_l7L1wydgENO6PbF4OljlgiW-XxVglNpviZ-M0sKFTbK7ifFEGacZYuY4OTjV4kuGXhSxGuWXYcfmeAzToXj90eqRqmEAUC9mcMOZ7iQJNwQOegMdjD2IDKJxljOoohkzxAGIaptq3dVhUYHnL7jLSzNdxxg5RI5_k-gjhCKSiNAM_YGkAHkt9DQy07QlBI7PKNxGtRSlUVU3cNrUYizLT2RNW_MKJXzjxi6SJLpZzpmUtjT9Ht2oNieq7KoSf2La1iQHDJrqstba6_fvTjv83_ARtlYZjz620UGM-W-hTQx_z9MyZ3QeW29XQ
  priority: 102
  providerName: Springer Nature
Title Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes
URI https://link.springer.com/article/10.1140/epjp/i2017-11825-9
https://www.proquest.com/docview/2919509009
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS-tAEF48yoHzIl7OwXpjH3zTpdlbmzxJLa2ieOF4Cp6nkOxssFrSaloUf707m6RFQV8S2CS7MDOZ-fYy8xFyoFVmrAHJTBiETGkZsTBNUqbbVgvg1mqf4X151TobqPM7fVctuBXVscraJ3pHDWODa-RNESFhaeQgwfHkiSFrFO6uVhQaP8gKFy7WYqZ4_3S-xuLQr5sAqDpXRgVNO3mYNIcCXTMia82ij_FoATI_7Yv6cNNfI6sVTqSdUrHrZMnmG-SnP69pik3yeu1MEBKHeYEimU1Bhzm9NfcvyfNb4RO0GVh6O8RcHZrkQBN6OS_QmlA3UX50joQ6xEpdK81n5cbNiBrP8uDVRccZfZolxTBHXDsqx_lNBv3ev-4Zq0gUmJEtOWVSiiAyYDkEoCMIdBhA6ECLlpnkth1CZrSCkLdSK7A2i1GIwXDmkWbChpn8Q5bzcW63CG1DYjjPQCiZKghkKixIsMgTwdsu8jcIr0UZm6rCOBJdjOIy-zmIUfyxF3_sxR9HDXI4_2ZS1tf49u3dWkNx9a8V8cIyGuSo1tri8de9bX_f2w75VRoKnl3ZJcvT55ndcwhkmu57M9snK53T_xc9dz_pXd38da3dVtddB6LzDuU54Eo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anRC8IK6iMMAP8ARWE1_a5GFCXDZ1bC2IbdLeguPjiG5V2i2tBvw4fhs-TtIKJPa21yR2pONjn8_2-c4H8FKrwjqLktskSrjSMuVJbnKuB04LjJ3TgeE9GveHx-rTiT7ZgN8tF4bSKts1MSzUOLN0Rt4TKQmWph4SvJ2fc1KNotvVVkLDNNIKuB1KjDXEjn3389Jv4artvY9-vF8Jsbtz9GHIG5UBbmVfLriUIkotuhgj1ClGOokw8VFdy0LGbpBgYbXCJO7nTlDxEqsIpBA0zwvhkkL6fm_ApqIDlA5svt8Zf_m6OuXx-NtvQVTL1lFRz81P572JoOBA2F7z9O-IuIa5_9zMhoC3exfuNEiVvatd6x5suPI-3AwZo7Z6AD8--0mAxqNuZCSnU7FJyQ7t90tz8asKFHGOjh1OiC3ETInMsNGqRKxhfqt-5pcy5jEz809ZuayvjqbMBp2J4DBsVrDzpakmJSHraf2fh3B8LQZ-BJ1yVrrHwAZobBwXKJTMFUYyFw4lOlKqiAcee3Qhbk2Z2abGOUltTLOafx1lZP4smD8L5s_SLrxetZnXFT6u_HqrHaGsme1VtvbNLrxpR239-v-9Pbm6txdwa3g0OsgO9sb7T-F27TSUSbMFncXF0j3zeGiRP2-cjsG36_bzP0zUHQ4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwFHyii1pxAVpALJ8-9NaaTWKbTY4IWKAUWoki0ZPl-DliYRUWkhWIX4_tJGxBUAlxTex82C_2OH4zA_BV8EwbjYzqOIgpFyyhcapSKrpGRBgaIzzD--h4c_-U_zgTZ_-w-H22e7MlWXEanEpTXnaGmNXatkHHDC-GnX7kRlgHkAVNPsAkdx4SLZjc2vt7OP7PYhGwXQTwhi_zYuWnc9IYaD7bG_VTTm8GVPOwVabJ5caoTDf0_TMdx_e8zSxM13iUbFUB9BkmTP4FPvq8UF3Mwd0vG-qoLLZG4kxzCtLPyYk-v1U394UnglM05KTvOEFE5UgUOXoUglXELsgv7YBFLDIm9ijJR9UG0YBo7ybhw4JcZeR6pIp-7vDzoLrPPJz2dv9s79ParIFqtslKylgUJBpNiAGKBAMRBxhbcCRYxkLTjTHTgqPtodRETgNGc4f13AonzSITZ2wBWvlVbhaBdFHpMMww4izlGLA0MsjQOD-KsGsRRhvCprukrpXMnaHGQFYs60C6FpW-RaVvUZm04dtjnWGl4_Hf0itNFMj6my5klDjL3MSC0jZ8bzp1fPr1qy29rfg6fPq905M_D44Pl2GqCguXPrMCrfJmZFYtCCrTtTrOHwCwWwOk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overdamped+modes+in+Schwarzschild-de+Sitter+and+a+Mathematica+package+for+the+numerical+computation+of+quasinormal+modes&rft.jtitle=European+physical+journal+plus&rft.au=Jansen%2C+Aron&rft.date=2017-12-01&rft.issn=2190-5444&rft.eissn=2190-5444&rft.volume=132&rft.issue=12&rft_id=info:doi/10.1140%2Fepjp%2Fi2017-11825-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjp_i2017_11825_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5444&client=summon