The complexity of approximating the complex-valued Potts model

We study the complexity of approximating the partition function of the q-state Potts model and the closely related Tutte polynomial for complex values of the underlying parameters. Apart from the classical connections with quantum computing and phase transitions in statistical physics, recent work i...

Full description

Saved in:
Bibliographic Details
Published inComputational complexity Vol. 31; no. 1
Main Authors Galanis, Andreas, Goldberg, Leslie Ann, Herrera-Poyatos, Andrés
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1016-3328
1420-8954
1420-8954
DOI10.1007/s00037-021-00218-x

Cover

Abstract We study the complexity of approximating the partition function of the q-state Potts model and the closely related Tutte polynomial for complex values of the underlying parameters. Apart from the classical connections with quantum computing and phase transitions in statistical physics, recent work in approximate counting has shown that the behaviour in the complex plane, and more precisely the location of zeros, is strongly connected with the complexity of the approximation problem, even for positive real-valued parameters. Previous work in the complex plane by Goldberg and Guo focused on q = 2, which corresponds to the case of the Ising model; for q > 2, the behaviour in the complex plane is not as well understood and most work applies only to the real-valued Tutte plane. Our main result is a complete classification of the complexity of the approximation problems for all non-real values of the parameters, by establishing #P-hardness results that apply even when restricted to planar graphs. Our techniques apply to all q ≥ 2 and further complement/refine previous results both for the Ising model and the Tutte plane, answering in particular a question raised by Bordewich, Freedman, Lovász and Welsh in the context of quantum computations.
AbstractList We study the complexity of approximating the partition function of the q-state Potts model and the closely related Tutte polynomial for complex values of the underlying parameters. Apart from the classical connections with quantum computing and phase transitions in statistical physics, recent work in approximate counting has shown that the behaviour in the complex plane, and more precisely the location of zeros, is strongly connected with the complexity of the approximation problem, even for positive real-valued parameters. Previous work in the complex plane by Goldberg and Guo focused on q = 2, which corresponds to the case of the Ising model; for q > 2, the behaviour in the complex plane is not as well understood and most work applies only to the real-valued Tutte plane. Our main result is a complete classification of the complexity of the approximation problems for all non-real values of the parameters, by establishing #P-hardness results that apply even when restricted to planar graphs. Our techniques apply to all q $$\geq$$ ≥ 2 and further complement/refine previous results both for the Ising model and the Tutte plane, answering in particular a question raised by Bordewich, Freedman, Lovász and Welsh in the context of quantum computations.
We study the complexity of approximating the partition function of the q-state Potts model and the closely related Tutte polynomial for complex values of the underlying parameters. Apart from the classical connections with quantum computing and phase transitions in statistical physics, recent work in approximate counting has shown that the behaviour in the complex plane, and more precisely the location of zeros, is strongly connected with the complexity of the approximation problem, even for positive real-valued parameters. Previous work in the complex plane by Goldberg and Guo focused on q = 2, which corresponds to the case of the Ising model; for q > 2, the behaviour in the complex plane is not as well understood and most work applies only to the real-valued Tutte plane. Our main result is a complete classification of the complexity of the approximation problems for all non-real values of the parameters, by establishing #P-hardness results that apply even when restricted to planar graphs. Our techniques apply to all q ≥ 2 and further complement/refine previous results both for the Ising model and the Tutte plane, answering in particular a question raised by Bordewich, Freedman, Lovász and Welsh in the context of quantum computations.
We study the complexity of approximating the partition function of the q-state Potts model and the closely related Tutte polynomial for complex values of the underlying parameters. Apart from the classical connections with quantum computing and phase transitions in statistical physics, recent work in approximate counting has shown that the behaviour in the complex plane, and more precisely the location of zeros, is strongly connected with the complexity of the approximation problem, even for positive real-valued parameters. Previous work in the complex plane by Goldberg and Guo focused on q = 2, which corresponds to the case of the Ising model; for q > 2, the behaviour in the complex plane is not as well understood and most work applies only to the real-valued Tutte plane. Our main result is a complete classification of the complexity of the approximation problems for all non-real values of the parameters, by establishing #P-hardness results that apply even when restricted to planar graphs. Our techniques apply to all q ≥ 2 and further complement/refine previous results both for the Ising model and the Tutte plane, answering in particular a question raised by Bordewich, Freedman, Lovász and Welsh in the context of quantum computations.
ArticleNumber 2
Author Galanis, Andreas
Herrera-Poyatos, Andrés
Goldberg, Leslie Ann
Author_xml – sequence: 1
  givenname: Andreas
  surname: Galanis
  fullname: Galanis, Andreas
  organization: Department of Computer Science, University of Oxford
– sequence: 2
  givenname: Leslie Ann
  surname: Goldberg
  fullname: Goldberg, Leslie Ann
  organization: Department of Computer Science, University of Oxford
– sequence: 3
  givenname: Andrés
  surname: Herrera-Poyatos
  fullname: Herrera-Poyatos, Andrés
  email: andres.herrerapoyatos@balliol.ox.ac.uk
  organization: Department of Computer Science, University of Oxford
BookMark eNqNkF1LwzAYhYMouE3_gFcFr6Nvkn6kN4IMv2CgF_M6pG0yO7qmJql2_97MDgZeDG_yBvI-J-ecKTptTasQuiJwQwCyWwcALMNACYZwcDycoAmJKWCeJ_FpuANJMWOUn6Opc2sAknAWT9Dd8kNFpdl0jRpqv42MjmTXWTPUG-nrdhX5wzv-kk2vqujNeO-ijalUc4HOtGycutzPGXp_fFjOn_Hi9ellfr_AJUuZx1RqonVeFABlkmUJyEIBS7OiqiiDXFaF5jmt0jIvJU8Y1VRKmvJc8VgpxjmbITbq9m0nt9-yaURng0W7FQTErgIxViBCevFbgRgCdT1SIdBnr5wXa9PbNhgVNKVxzhlNdtp03Cqtcc4q_T9p_gcqax8aM623sm6Oo_ssLvzTrpQ9uDpC_QC2HY_D
CitedBy_id crossref_primary_10_1103_PRXQuantum_4_020340
crossref_primary_10_1017_S0963548323000330
crossref_primary_10_1007_s00037_023_00247_8
crossref_primary_10_1137_21M1454043
Cites_doi 10.1137/12088330X
10.1145/3337785
10.1145/3418056
10.4086/toc.2015.v011a006
10.1090/S0025-5718-1988-0917831-4
10.1137/0212053
10.1007/978-3-319-51829-9
10.1006/jctb.2001.2057
10.1145/2371656.2371660
10.1109/FOCS.2019.00085
10.1017/S0963548305007005
10.1017/CBO9780511734885.009
10.1007/978-3-540-85521-7_4
10.1112/jlms.12286
10.1016/0040-9383(87)90003-6
10.1007/BF01213009
10.1145/3357713.3384322
10.1007/3-540-51084-2_22
10.1137/16M1101003
10.1063/1.5082552
10.1137/1.9780898719796
10.1007/s00037-012-0046-4
10.1103/PhysRev.87.404
10.1017/CBO9780511755316
10.1307/mmj/1541667626
10.1017/S0963548300000705
10.1137/S0097539704446797
10.1017/CBO9780511752506
10.1142/S0217979205032759
10.1137/18M1184485
10.1016/j.ic.2008.04.003
10.1137/1.9781611975994.11
10.1017/S0305004100027419
10.1137/0222066
10.1007/978-1-4684-6802-1
10.1007/BF01877590
10.1017/S0305004100068936
10.1007/s10955-018-2199-2
10.1006/jsco.1997.0158
10.1145/3448645
10.1007/s00037-017-0162-2
10.1017/S0963548319000105
ContentType Journal Article
Copyright The Author(s) 2022. corrected publication 2022
The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022. corrected publication 2022
– notice: The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
ADTOC
UNPAY
DOI 10.1007/s00037-021-00218-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1420-8954
ExternalDocumentID 10.1007/s00037-021-00218-x
10_1007_s00037_021_00218_x
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ABJCF
ADTOC
BGLVJ
CCPQU
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
UNPAY
ID FETCH-LOGICAL-c363t-2af1ff9bb00c57750abe0367bdd2309adbf892d6c9ca8532f2aa2689e84ee3883
IEDL.DBID UNPAY
ISSN 1016-3328
1420-8954
IngestDate Sun Oct 26 03:48:41 EDT 2025
Thu Sep 18 00:00:43 EDT 2025
Wed Oct 01 02:18:39 EDT 2025
Thu Apr 24 23:09:39 EDT 2025
Fri Feb 21 02:45:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Counting Complexity
Ising model
Tutte polynomial
68Q17 Computational difficulty of problems
Potts model
Approximate Counting
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-2af1ff9bb00c57750abe0367bdd2309adbf892d6c9ca8532f2aa2689e84ee3883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00037-021-00218-x.pdf
PQID 2624983258
PQPubID 2044003
ParticipantIDs unpaywall_primary_10_1007_s00037_021_00218_x
proquest_journals_2624983258
crossref_primary_10_1007_s00037_021_00218_x
crossref_citationtrail_10_1007_s00037_021_00218_x
springer_journals_10_1007_s00037_021_00218_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Computational complexity
PublicationTitleAbbrev comput. complex
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References A. Barvinok & G. Regts (2019). Weighted counting of solutions to sparse systems of equations. Combinatorics, Probability and Computing28(5), 696–719.
R. Kannan, A. K. Lenstra & L. Lovász (1988). Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers. Mathematics of Computation50(181), 235–250.
R. B. Potts (1952). Some generalized order-disorder transformations. Proceedings of the Cambridge Philosophical Society48, 106–109.
J. Liu, A. Sinclair & P. Srivastava (2019). A Deterministic Algorithm for Counting Colorings with 2-Delta Colors. In IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS 2019), 1380– 1404.
E. M. Stein & R. Shakarchi (2010). Complex analysis, volume 2. Princeton University Press.
M. Brin & G. Stuck (2002). Introduction to Dynamical Systems. Cambridge University Press.
K.-I Ko (1991). Complexity theory of real functions. Progress in Theoretical Computer Science. Birkh¨auser Boston, Inc., Boston, MA.
I. Stewart (2004). Galois Theory. Chapman & Hall/CRC Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 3rd edition.
C.-N. Yang & T.-D. Lee (1952). Statistical theory of equations of state and phase transitions. I. Theory of condensation. Physical Review87(3), 404.
L. A. Goldberg & M. Jerrum (2014). The complexity of computing the sign of the Tutte polynomial. SIAM Journal on Computing43(6), 1921–1952.
L. A. Goldberg & M. Jerrum (2012a). Approximating the partition function of the ferromagnetic Potts model. Journal of the ACM59(5), Art. 25, 31.
A. Harrow, S. Mehraban & M. Soleimanifar (2020). Classical algorithms, correlation decay, and complex zeros of partition functions of quantum many-body systems. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, 378–386.
D. J. A. Welsh (1993). Complexity: knots, colourings and counting, volume 186 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge.
G. Kuperberg (2015). How hard is it to approximate the Jones polynomial? Theory of Computing11, 183–219.
M. Bordewich, M. Freedman, L. Lovász & D. Welsh (2005). Approximate counting and quantum computation. Combinatorics, Probability and Computing14(5-6), 737–754.
H. Peters & G. Regts (2018). Location of zeros for the partition function of the Ising model on bounded degree graphs. Journal of the London Mathematical Society.
F. Jaeger, D. L. Vertigan & D. J. A. Welsh (1990). On the computational complexity of the Jones and Tutte polynomials. Mathematical Proceedings of the Cambridge Philosophical Society108(1), 35–53.
L. A. Goldberg & M. Jerrum (2008). Inapproximability of the Tutte polynomial. Information and Computation206(7), 908–929.
A. D. Sokal (2005). The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In Surveys in combinatorics 2005, volume 327 of London Math. Soc. Lecture Note Ser., 173–226. Cambridge Univ. Press, Cambridge.
Bill Jackson (1993). A zero-free interval for chromatic polynomials of graphs. Combinatorics, Probability and Computing2(3), 325–336. ISSN 0963-5483. URL https://doi.org/10.1017/S0963548300000705.
J. Liu, A. Sinclair & P. Srivastava (2019a). Fisher zeros and correlation decay in the Ising model. Journal of Mathematical Physics60(10), 103 304.
I. Bezáková, A. Galanis, L. A. Goldberg & D. Štefankovič (2020). Inapproximability of the independent set polynomial in the complex plane. SIAM Journal on Computing49(5), STOC18– 395–STOC18–448. ISSN 0097-5397. URL https://doi.org/10.1137/18M1184485.
J. I. Brown, C. Hickman, A. D. Sokal & D. G. Wagner (2001). On the chromatic roots of generalized theta graphs. Journal of Combinatorial Theory. Series B 83(2), 272–297.
M. Jerrum & A. Sinclair (1993). Polynomial-time approximation algorithms for the Ising model. SIAM Journal on Computing22(5), 1087–1116.
A. Brandstädt, V. B. Le & J. P. Spinrad (1999). Graph classes: a survey. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
V. Patel & G. Regts (2017). Deterministic Polynomial-Time Approximation Algorithms for Partition Functions and Graph Polynomials. SIAM Journal on Computing46(6), 1893–1919.
I. Z. Emiris, B. Mourrain & E. P. Tsigaridas (2008). Real algebraic numbers: Complexity Analysis and Experimentation. In Reliable Implementation of Real Number Algorithms: Theory and Practice, 57– 82. Springer.
L. A. Goldberg & M. Jerrum (2012b). Inapproximability of the Tutte polynomial of a planar graph. Computational Complexity21(4), 605–642.
A. Barvinok (2017). Combinatorics and Complexity of Partition Functions. Algorithms and Combinatorics. Springer International Publishing.
H. Guo, C. Liao, P. Lu & C. Zhang (2021). Zeros of Holant problems: locations and algorithms. ACM Transactions on Algorithms17(1), Art. 4, 25. ISSN 1549-6325. URL https://doi.org/10.1145/3418056.
M. B. Thistlethwaite (1987). A spanning tree expansion of the Jones polynomial. Topology26(3), 297–309.
H. Guo, J. Liu & P. Lu (2020). Zeros of Ferromagnetic 2-Spin Systems. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’20, 181–192. USA.
O. J. Heilmann & E. H. Lieb (1972). Theory of monomer-dimer systems. Communications in Mathematical Physics25(3), 190–232.
E. H. Lieb & A. D. Sokal (1981). A general Lee-Yang theorem for one-component and multicomponent ferromagnets. Communications in Mathematical Physics80(2), 153–179.
J. Liu, A. Sinclair & P. Srivastava (2019b). The Ising partition function: Zeros and deterministic approximation. Journal of Statistical Physics174(2), 287–315.
D. Vertigan (2005). The computational complexity of Tutte invariants for planar graphs. SIAM Journal on Computing35(3), 690–712.
R. J. Bradford & J. H. Davenport (1989). Effective tests for cyclotomic polynomials. In Symbolic and algebraic computation, volume 358 of Lecture Notes in Comput. Sci., 244–251. Springer, Berlin.
L. A. Goldberg & H. Guo (2017). The complexity of approximating complex-valued Ising and Tutte partition functions. Computational Complexity26(4), 765–833.
C. K. Yap (2000). Fundamental problems of algorithmic algebra. Oxford University Press, New York.
I. Bena, M. Droz & A. Lipowski (2005). Statistical mechanics of equilibrium and nonequilibrium phase transitions: the Yang–Lee formalism. International Journal of Modern Physics B 19(29), 4269–4329.
I. Bezáková, A. Galanis, L. A. Goldberg & D. Štefankovič (2021). The complexity of approximating the matching polynomial in the complex plane. ACM Transactions on Computation Theory13(2), Art. 13, 37. ISSN 1942-3454. URL https://doi.org/10.1145/3448645.
H. Peters & G. Regts (2019). On a Conjecture of Sokal Concerning Roots of the Independence Polynomial. Michigan Mathematical Journal68(1), 33–55.
J. S. Provan & M. O. Ball (1983). The complexity of counting cuts and of computing the probability that a graph is connected. SIAM Journal on Computing12(4), 777–788.
A. W. Strzeboński (1997). Computing in the field of complex algebraic numbers. Journal of Symbolic Computation24(6), 647–656.
M. Waldschmidt (2000). Diophantine approximation on linear algebraic groups, volume 326 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin. Transcendence properties of the exponential function in several variables.
L. A. Goldberg & M. Jerrum (2019). Approximating Pairwise Correlations in the IsingModel. ACM Transactions on Computation Theory11(4), 23.
218_CR11
218_CR33
218_CR10
218_CR32
218_CR13
218_CR35
218_CR12
218_CR34
218_CR31
218_CR30
218_CR19
218_CR18
218_CR15
218_CR37
218_CR14
218_CR36
218_CR17
218_CR39
218_CR16
218_CR38
218_CR9
218_CR7
218_CR8
218_CR5
218_CR6
218_CR22
218_CR44
218_CR21
218_CR43
218_CR24
218_CR46
218_CR23
218_CR45
218_CR40
218_CR20
218_CR42
218_CR41
218_CR3
218_CR4
218_CR29
218_CR1
218_CR2
218_CR26
218_CR25
218_CR28
218_CR27
References_xml – reference: O. J. Heilmann & E. H. Lieb (1972). Theory of monomer-dimer systems. Communications in Mathematical Physics25(3), 190–232.
– reference: A. W. Strzeboński (1997). Computing in the field of complex algebraic numbers. Journal of Symbolic Computation24(6), 647–656.
– reference: R. J. Bradford & J. H. Davenport (1989). Effective tests for cyclotomic polynomials. In Symbolic and algebraic computation, volume 358 of Lecture Notes in Comput. Sci., 244–251. Springer, Berlin.
– reference: M. Waldschmidt (2000). Diophantine approximation on linear algebraic groups, volume 326 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin. Transcendence properties of the exponential function in several variables.
– reference: J. S. Provan & M. O. Ball (1983). The complexity of counting cuts and of computing the probability that a graph is connected. SIAM Journal on Computing12(4), 777–788.
– reference: L. A. Goldberg & M. Jerrum (2019). Approximating Pairwise Correlations in the IsingModel. ACM Transactions on Computation Theory11(4), 23.
– reference: M. Bordewich, M. Freedman, L. Lovász & D. Welsh (2005). Approximate counting and quantum computation. Combinatorics, Probability and Computing14(5-6), 737–754.
– reference: K.-I Ko (1991). Complexity theory of real functions. Progress in Theoretical Computer Science. Birkh¨auser Boston, Inc., Boston, MA.
– reference: E. M. Stein & R. Shakarchi (2010). Complex analysis, volume 2. Princeton University Press.
– reference: L. A. Goldberg & M. Jerrum (2012b). Inapproximability of the Tutte polynomial of a planar graph. Computational Complexity21(4), 605–642.
– reference: R. B. Potts (1952). Some generalized order-disorder transformations. Proceedings of the Cambridge Philosophical Society48, 106–109.
– reference: H. Peters & G. Regts (2019). On a Conjecture of Sokal Concerning Roots of the Independence Polynomial. Michigan Mathematical Journal68(1), 33–55.
– reference: I. Stewart (2004). Galois Theory. Chapman & Hall/CRC Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 3rd edition.
– reference: J. Liu, A. Sinclair & P. Srivastava (2019). A Deterministic Algorithm for Counting Colorings with 2-Delta Colors. In IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS 2019), 1380– 1404.
– reference: D. J. A. Welsh (1993). Complexity: knots, colourings and counting, volume 186 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge.
– reference: Bill Jackson (1993). A zero-free interval for chromatic polynomials of graphs. Combinatorics, Probability and Computing2(3), 325–336. ISSN 0963-5483. URL https://doi.org/10.1017/S0963548300000705.
– reference: J. Liu, A. Sinclair & P. Srivastava (2019a). Fisher zeros and correlation decay in the Ising model. Journal of Mathematical Physics60(10), 103 304.
– reference: M. Brin & G. Stuck (2002). Introduction to Dynamical Systems. Cambridge University Press.
– reference: D. Vertigan (2005). The computational complexity of Tutte invariants for planar graphs. SIAM Journal on Computing35(3), 690–712.
– reference: I. Z. Emiris, B. Mourrain & E. P. Tsigaridas (2008). Real algebraic numbers: Complexity Analysis and Experimentation. In Reliable Implementation of Real Number Algorithms: Theory and Practice, 57– 82. Springer.
– reference: I. Bezáková, A. Galanis, L. A. Goldberg & D. Štefankovič (2021). The complexity of approximating the matching polynomial in the complex plane. ACM Transactions on Computation Theory13(2), Art. 13, 37. ISSN 1942-3454. URL https://doi.org/10.1145/3448645.
– reference: A. Brandstädt, V. B. Le & J. P. Spinrad (1999). Graph classes: a survey. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
– reference: J. Liu, A. Sinclair & P. Srivastava (2019b). The Ising partition function: Zeros and deterministic approximation. Journal of Statistical Physics174(2), 287–315.
– reference: A. D. Sokal (2005). The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In Surveys in combinatorics 2005, volume 327 of London Math. Soc. Lecture Note Ser., 173–226. Cambridge Univ. Press, Cambridge.
– reference: J. I. Brown, C. Hickman, A. D. Sokal & D. G. Wagner (2001). On the chromatic roots of generalized theta graphs. Journal of Combinatorial Theory. Series B 83(2), 272–297.
– reference: M. Jerrum & A. Sinclair (1993). Polynomial-time approximation algorithms for the Ising model. SIAM Journal on Computing22(5), 1087–1116.
– reference: M. B. Thistlethwaite (1987). A spanning tree expansion of the Jones polynomial. Topology26(3), 297–309.
– reference: A. Harrow, S. Mehraban & M. Soleimanifar (2020). Classical algorithms, correlation decay, and complex zeros of partition functions of quantum many-body systems. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, 378–386.
– reference: F. Jaeger, D. L. Vertigan & D. J. A. Welsh (1990). On the computational complexity of the Jones and Tutte polynomials. Mathematical Proceedings of the Cambridge Philosophical Society108(1), 35–53.
– reference: R. Kannan, A. K. Lenstra & L. Lovász (1988). Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers. Mathematics of Computation50(181), 235–250.
– reference: C.-N. Yang & T.-D. Lee (1952). Statistical theory of equations of state and phase transitions. I. Theory of condensation. Physical Review87(3), 404.
– reference: G. Kuperberg (2015). How hard is it to approximate the Jones polynomial? Theory of Computing11, 183–219.
– reference: I. Bezáková, A. Galanis, L. A. Goldberg & D. Štefankovič (2020). Inapproximability of the independent set polynomial in the complex plane. SIAM Journal on Computing49(5), STOC18– 395–STOC18–448. ISSN 0097-5397. URL https://doi.org/10.1137/18M1184485.
– reference: A. Barvinok (2017). Combinatorics and Complexity of Partition Functions. Algorithms and Combinatorics. Springer International Publishing.
– reference: E. H. Lieb & A. D. Sokal (1981). A general Lee-Yang theorem for one-component and multicomponent ferromagnets. Communications in Mathematical Physics80(2), 153–179.
– reference: H. Peters & G. Regts (2018). Location of zeros for the partition function of the Ising model on bounded degree graphs. Journal of the London Mathematical Society.
– reference: L. A. Goldberg & M. Jerrum (2014). The complexity of computing the sign of the Tutte polynomial. SIAM Journal on Computing43(6), 1921–1952.
– reference: C. K. Yap (2000). Fundamental problems of algorithmic algebra. Oxford University Press, New York.
– reference: V. Patel & G. Regts (2017). Deterministic Polynomial-Time Approximation Algorithms for Partition Functions and Graph Polynomials. SIAM Journal on Computing46(6), 1893–1919.
– reference: H. Guo, C. Liao, P. Lu & C. Zhang (2021). Zeros of Holant problems: locations and algorithms. ACM Transactions on Algorithms17(1), Art. 4, 25. ISSN 1549-6325. URL https://doi.org/10.1145/3418056.
– reference: I. Bena, M. Droz & A. Lipowski (2005). Statistical mechanics of equilibrium and nonequilibrium phase transitions: the Yang–Lee formalism. International Journal of Modern Physics B 19(29), 4269–4329.
– reference: A. Barvinok & G. Regts (2019). Weighted counting of solutions to sparse systems of equations. Combinatorics, Probability and Computing28(5), 696–719.
– reference: L. A. Goldberg & M. Jerrum (2012a). Approximating the partition function of the ferromagnetic Potts model. Journal of the ACM59(5), Art. 25, 31.
– reference: L. A. Goldberg & H. Guo (2017). The complexity of approximating complex-valued Ising and Tutte partition functions. Computational Complexity26(4), 765–833.
– reference: H. Guo, J. Liu & P. Lu (2020). Zeros of Ferromagnetic 2-Spin Systems. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’20, 181–192. USA.
– reference: L. A. Goldberg & M. Jerrum (2008). Inapproximability of the Tutte polynomial. Information and Computation206(7), 908–929.
– ident: 218_CR16
  doi: 10.1137/12088330X
– ident: 218_CR17
  doi: 10.1145/3337785
– ident: 218_CR18
  doi: 10.1145/3418056
– ident: 218_CR27
  doi: 10.4086/toc.2015.v011a006
– ident: 218_CR25
  doi: 10.1090/S0025-5718-1988-0917831-4
– ident: 218_CR36
  doi: 10.1137/0212053
– ident: 218_CR46
– ident: 218_CR1
  doi: 10.1007/978-3-319-51829-9
– ident: 218_CR10
  doi: 10.1006/jctb.2001.2057
– ident: 218_CR14
  doi: 10.1145/2371656.2371660
– ident: 218_CR29
  doi: 10.1109/FOCS.2019.00085
– ident: 218_CR6
  doi: 10.1017/S0963548305007005
– ident: 218_CR37
  doi: 10.1017/CBO9780511734885.009
– ident: 218_CR38
– ident: 218_CR11
  doi: 10.1007/978-3-540-85521-7_4
– ident: 218_CR33
  doi: 10.1112/jlms.12286
– ident: 218_CR41
  doi: 10.1016/0040-9383(87)90003-6
– ident: 218_CR28
  doi: 10.1007/BF01213009
– ident: 218_CR20
  doi: 10.1145/3357713.3384322
– ident: 218_CR7
  doi: 10.1007/3-540-51084-2_22
– ident: 218_CR32
  doi: 10.1137/16M1101003
– ident: 218_CR30
  doi: 10.1063/1.5082552
– ident: 218_CR8
  doi: 10.1137/1.9780898719796
– ident: 218_CR15
  doi: 10.1007/s00037-012-0046-4
– ident: 218_CR45
  doi: 10.1103/PhysRev.87.404
– ident: 218_CR9
  doi: 10.1017/CBO9780511755316
– ident: 218_CR34
  doi: 10.1307/mmj/1541667626
– ident: 218_CR22
  doi: 10.1017/S0963548300000705
– ident: 218_CR42
  doi: 10.1137/S0097539704446797
– ident: 218_CR44
  doi: 10.1017/CBO9780511752506
– ident: 218_CR3
  doi: 10.1142/S0217979205032759
– ident: 218_CR4
  doi: 10.1137/18M1184485
– ident: 218_CR13
  doi: 10.1016/j.ic.2008.04.003
– ident: 218_CR19
  doi: 10.1137/1.9781611975994.11
– ident: 218_CR35
  doi: 10.1017/S0305004100027419
– ident: 218_CR39
– ident: 218_CR24
  doi: 10.1137/0222066
– ident: 218_CR26
  doi: 10.1007/978-1-4684-6802-1
– ident: 218_CR21
  doi: 10.1007/BF01877590
– ident: 218_CR23
  doi: 10.1017/S0305004100068936
– ident: 218_CR43
– ident: 218_CR31
  doi: 10.1007/s10955-018-2199-2
– ident: 218_CR40
  doi: 10.1006/jsco.1997.0158
– ident: 218_CR5
  doi: 10.1145/3448645
– ident: 218_CR12
  doi: 10.1007/s00037-017-0162-2
– ident: 218_CR2
  doi: 10.1017/S0963548319000105
SSID ssj0015834
Score 2.3208544
Snippet We study the complexity of approximating the partition function of the q-state Potts model and the closely related Tutte polynomial for complex values of the...
We study the complexity of approximating the partition function of the q-state Potts model and the closely related Tutte polynomial for complex values of the...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithm Analysis and Problem Complexity
Approximation
Complexity
Computational Mathematics and Numerical Analysis
Computer Science
Ising model
Mathematical models
Parameters
Partitions (mathematics)
Phase transitions
Polynomials
Quantum computing
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT8IwEL4YeFAeRFEjiqYPvkmNdFtpX0yIQYkG44Mk-rR0XWeMZBAZEf313so21Bgiz-1uW3vtfe3dfQdwgjZRq0i2qJZGUjdgikqmNBWGI3gOmXTbab5z_473Bu7No_eYJYVN8mj33CVpd-oi2c1ypdA0pMAaJorIsWz5tkpQ7lw_3XYL74En5t5khDPUcZjIkmX-lvLTIC1QZuEYrcD6NB6rj3c1HH6zPVdVGORfPQ85eT2bJsGZ_vxF6Ljqb23BZgZGSWeuPduwZuIaVPNCDyRb9zWo9Aty18kOXKBqERuKbmaI4ckoIpaZfPaS9oifSbJopymZuAnJ_ShJJsSW3dmFwVX34bJHszIMVDvcSShTUSuKZIALVHttRBgqMGj32kEY4vlFqjCIhGQh11IrNP4sYkoxLqQRrjGOEM4elOJRbPaBcE_jxiy0MG7bVYLL6NzRaYUZHqK487AOrXwufJ1xlKelMoZ-wa5sh8vHkfLtcPmzOpwWz4znDB1LezfyKfaz1TrxGcdDKG5tnqhDM5-lRfMyac1CNf7x8oPVpB_CBkuTLeydTwNKydvUHCEESoLjTOO_AG_o-ig
  priority: 102
  providerName: Springer Nature
Title The complexity of approximating the complex-valued Potts model
URI https://link.springer.com/article/10.1007/s00037-021-00218-x
https://www.proquest.com/docview/2624983258
https://link.springer.com/content/pdf/10.1007/s00037-021-00218-x.pdf
UnpaywallVersion publishedVersion
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1420-8954
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015834
  issn: 1420-8954
  databaseCode: AFBBN
  dateStart: 19910301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1420-8954
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015834
  issn: 1420-8954
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1420-8954
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015834
  issn: 1420-8954
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH4q7YFxGBvbtI5S5bAbuBAnce0LUil0aBMVByrBKXL8A02r0mpNtW5_Pc9ukm4IoU27JAc7jmw_-33Pfu97AB9RJyppRUiUMILEGZVEUKkINwzBs6Yi7rt456sxu5zEn2-T2wacV7Ew3tu9upJcxzQ4lqa8OJ5re1wHvnneFOLcC7ySIqseFm9BiyWIyJvQmoyvB3f-ojNkJIp8itUwRkuJiyQuY2eebuhP_bQBnfU96Q5sL_O5_PlDTqe_qaLRLpiqE2sPlG-9ZZH11K9H_I7_28tX8LLEqsFgLVyvoWHyPdi5qoleF2_gFMUs8G7pZoV4PpjZwLOUr766Gvl9UGzKiSMWNzq4nhXFIvApeN7CZHRxM7wkZUoGoiIWFYRKG1orMlysKukj2pCZQR3Yz7RGW0ZInVkuqGZKKIlAgFoqJWVcGB4bE3EevYNmPsvNewhYonCT5oqbuB9LzoQ9iZTLNsM0Nnei2xBWE5Gqkq_cpc2YpjXTsh-fFIcm9eOTrtpwWH8zX7N1PFu7U81vWq7cRUoZGqS4zSW8DUfVFG2Kn2vtqJaLv_j5h3-rvg8vqAu88Oc_HWgW35fmAOFQkXWhNRidnY3d-9Pdl4subA3ZEJ8TOuiWK-EBKigELQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED5EH6YP_piK06l58M0FXNpmyYswxDF1Gz5ssLeSpqkIoxuuw_nfe8naTkFEn5Ne4C7JfendfQdwhT5Rq0Q2qZZGUj9iikqmNBWGI3iOmfRbtt65P-Ddkf84DsZ5Udi8yHYvQpLupi6L3RxXCrUpBc4xUUSOW5bAyjLmj1i7jB0EYhVLRjBDPY-JvFTmZxnf3dEaY5Zh0R2oLNKZ-nhXk8kXz9PZh90cMpL2ysYHsGHSKuwV7RhIfjqrsNMvKVjnh3CLG4C4hHGzRKRNpglx_OHLVzsjfSHZepxaym8Tk-dpls2Ja45zBKPO_fCuS_NmCVR73MsoU0kzSWSEx0gHLcQBKjLonVpRHOMrQ6o4SoRkMddSK3TRLGFKMS6kEb4xnhDeMWym09ScAOGBxutTaGH8lq8El8mNp20fGB6juJu4Bs1CZ6HOmcRtQ4tJWHIgOz2HqOLQ6Tlc1uC6_Ga24tH4dXa9MEWYn6l5yDg-FfECCkQNGoV51sO_SWuUJvzD4qf_k34Jle6w3wt7D4OnM9hmtjzC_aWpw2b2tjDnCFqy6MLt0U9PuN_f
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EQd2Db3F95uBNg27aZpOLIKuLbzwoeCtpHiIs3cWtuP57J9m2qyCi56ZTmEnyfelkvgHYR0zUyskW1dJKGmdMUcmUpsJyJM-Gybjt651v7_jFY3z1lDx9qeIPt92rlOS4psGrNOXF0cC4o7rwLeimUH-9IIAURRY5EyO6-R4GHd6p8wiJGOeVkdjQKGKiLJv52cZ3aJrwzTpF2oC5t3ygPt5Vr_cFhbpLsFDSR3I6jvcyTNl8BRar1gykXKkr0Lit5ViHq3CCk4GEy-N2hKyb9B0JWuKjFz8ifybF5Dn18t_WkPt-UQxJaJSzBo_d84fOBS0bJ1Ad8aigTLmWczLDJaWTNnIClVlEqnZmDJ44pDKZE5IZrqVWCNfMMaUYF9KK2NpIiGgdpvN-bjeA8ETjViq0sHE7VoJLdxxp3xOGGzR3bJrQqnyW6lJV3De36KW1HnLwc4ouToOf01ETDup3BmNNjV9Hb1ehSMv1NUwZx2MjbkaJaMJhFZ7J49-sHdYh_MPHN_9nfQ9m78-66c3l3fUWzDNfKRF-2GzDdPH6ZneQvxTZbpiin1PR5AU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHGAH3ojxUg_cIIOmbZZckBAPIaRNHJgEpyrNAyGmbmKdGPx63KztACEE4hw3URIn_tzYnwH20SYqaYVPlDCChAmVRFCpCDcMwbOmImzl-c7tDrvqhtd30d0MnJe5MC7avXySnOQ05CxNaXY00PaoSnxzvCkkDy9wRoqMm9g8C3MsQkReg7lu5-b03j10-owEgSux6ofoKXERhUXuzPcdfbZPU9BZvZPWYX6UDuTri-z1PpiiyyUw5SQmEShPzVGWNNXbF37H_85yGRYLrOqdTpRrBWZMugr1dkX0OlyDE1Qzz4WlmzHiea9vPcdSPn7MJdIHL5u2k5xY3Gjvpp9lQ8-V4FmH7uXF7dkVKUoyEBWwICNUWt9akeBhVVEL0YZMDNrAVqI1-jJC6sRyQTVTQkkEAtRSKSnjwvDQmIDzYANqaT81m-CxSOElzRU3YSuUnAl7HKi82gzT2N2xboBfbkSsCr7yvGxGL66Ylt36xLg0sVufeNyAg-qbwYSt40fpnXJ_4-LkDmPK0CHFay7iDTgst2ja_FNvh5Ve_GLwrb-Jb8MCzRMv3P-fHahlzyOzi3AoS_YKbX8HAHL_SA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+complexity+of+approximating+the+complex-valued+Potts+model&rft.jtitle=Computational+complexity&rft.au=Galanis%2C+Andreas&rft.au=Goldberg%2C+Leslie+Ann&rft.au=Herrera-Poyatos%2C+Andr%C3%A9s&rft.date=2022-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1016-3328&rft.eissn=1420-8954&rft.volume=31&rft.issue=1&rft_id=info:doi/10.1007%2Fs00037-021-00218-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-3328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-3328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-3328&client=summon