Optimized Algorithms and Hardware Implementation of Median Filter for Image Processing
Image processing algorithms are essential for clarifying the image and improving the ability to recognize distinct characteristics of the image. The field of digital image processing is widespread in several research and technology applications. In many of these applications, the existence of impuls...
Saved in:
| Published in | Circuits, systems, and signal processing Vol. 42; no. 9; pp. 5545 - 5558 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.09.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-081X 1531-5878 1531-5878 |
| DOI | 10.1007/s00034-023-02370-x |
Cover
| Abstract | Image processing algorithms are essential for clarifying the image and improving the ability to recognize distinct characteristics of the image. The field of digital image processing is widespread in several research and technology applications. In many of these applications, the existence of impulsive noise in the obtained images is one of the most frequent problems. The median filter is a strong method to remove the impulsive noise; it effectively eliminates salt and pepper noise from the image. The main target of this paper is to investigate efficient median filter units to be connected to a general-purpose processor (GPP) for FPGA-based embedded systems. The paper exposes three novel techniques, two of them specially for median filtering techniques and the third one is used to get the maximum number of any 9 elements array. The proposed algorithms are inspired by the Median Of Median (MOM) algorithm. The first two techniques are tested for filtering
3
×
3
image windows and optimized for producing the expected result in high accuracy, short time, and reduced number of comparisons. The last technique is tested for a 9 elements array for extracting the maximum number in same high efficiency manner. Furthermore, the three proposed techniques are implemented leveraging the advantage of the parallel processing and the FPGA flexible resources to satisfy the real-time processing constraints. A comparison between the first two proposed filtering units and their counterparts in the literature is included. The comparison reveals the superiority of the first technique in terms of accuracy with fewer comparators than previously published techniques. Besides, the paper illustrates how the concept beyond the proposed techniques can be used to perform the maximum pooling for convolution neural networks. |
|---|---|
| AbstractList | Image processing algorithms are essential for clarifying the image and improving the ability to recognize distinct characteristics of the image. The field of digital image processing is widespread in several research and technology applications. In many of these applications, the existence of impulsive noise in the obtained images is one of the most frequent problems. The median filter is a strong method to remove the impulsive noise; it effectively eliminates salt and pepper noise from the image. The main target of this paper is to investigate efficient median filter units to be connected to a general-purpose processor (GPP) for FPGA-based embedded systems. The paper exposes three novel techniques, two of them specially for median filtering techniques and the third one is used to get the maximum number of any 9 elements array. The proposed algorithms are inspired by the Median Of Median (MOM) algorithm. The first two techniques are tested for filtering 3×3 image windows and optimized for producing the expected result in high accuracy, short time, and reduced number of comparisons. The last technique is tested for a 9 elements array for extracting the maximum number in same high efficiency manner. Furthermore, the three proposed techniques are implemented leveraging the advantage of the parallel processing and the FPGA flexible resources to satisfy the real-time processing constraints. A comparison between the first two proposed filtering units and their counterparts in the literature is included. The comparison reveals the superiority of the first technique in terms of accuracy with fewer comparators than previously published techniques. Besides, the paper illustrates how the concept beyond the proposed techniques can be used to perform the maximum pooling for convolution neural networks. Image processing algorithms are essential for clarifying the image and improving the ability to recognize distinct characteristics of the image. The field of digital image processing is widespread in several research and technology applications. In many of these applications, the existence of impulsive noise in the obtained images is one of the most frequent problems. The median filter is a strong method to remove the impulsive noise; it effectively eliminates salt and pepper noise from the image. The main target of this paper is to investigate efficient median filter units to be connected to a general-purpose processor (GPP) for FPGA-based embedded systems. The paper exposes three novel techniques, two of them specially for median filtering techniques and the third one is used to get the maximum number of any 9 elements array. The proposed algorithms are inspired by the Median Of Median (MOM) algorithm. The first two techniques are tested for filtering $$3 \times 3$$ 3 × 3 image windows and optimized for producing the expected result in high accuracy, short time, and reduced number of comparisons. The last technique is tested for a 9 elements array for extracting the maximum number in same high efficiency manner. Furthermore, the three proposed techniques are implemented leveraging the advantage of the parallel processing and the FPGA flexible resources to satisfy the real-time processing constraints. A comparison between the first two proposed filtering units and their counterparts in the literature is included. The comparison reveals the superiority of the first technique in terms of accuracy with fewer comparators than previously published techniques. Besides, the paper illustrates how the concept beyond the proposed techniques can be used to perform the maximum pooling for convolution neural networks. Image processing algorithms are essential for clarifying the image and improving the ability to recognize distinct characteristics of the image. The field of digital image processing is widespread in several research and technology applications. In many of these applications, the existence of impulsive noise in the obtained images is one of the most frequent problems. The median filter is a strong method to remove the impulsive noise; it effectively eliminates salt and pepper noise from the image. The main target of this paper is to investigate efficient median filter units to be connected to a general-purpose processor (GPP) for FPGA-based embedded systems. The paper exposes three novel techniques, two of them specially for median filtering techniques and the third one is used to get the maximum number of any 9 elements array. The proposed algorithms are inspired by the Median Of Median (MOM) algorithm. The first two techniques are tested for filtering 3 × 3 image windows and optimized for producing the expected result in high accuracy, short time, and reduced number of comparisons. The last technique is tested for a 9 elements array for extracting the maximum number in same high efficiency manner. Furthermore, the three proposed techniques are implemented leveraging the advantage of the parallel processing and the FPGA flexible resources to satisfy the real-time processing constraints. A comparison between the first two proposed filtering units and their counterparts in the literature is included. The comparison reveals the superiority of the first technique in terms of accuracy with fewer comparators than previously published techniques. Besides, the paper illustrates how the concept beyond the proposed techniques can be used to perform the maximum pooling for convolution neural networks. |
| Author | Elashker, N. E. Mahmoud, Mervat M. A. Draz, H. H. |
| Author_xml | – sequence: 1 givenname: H. H. orcidid: 0000-0001-9721-8206 surname: Draz fullname: Draz, H. H. email: hdraz@eri.sci.eg organization: Microelectronics Department, Electronics Research Institute, Adjunct Assistant Professor at the Communications and Electronics Department, Faculty of Engineering, Cairo University – sequence: 2 givenname: N. E. surname: Elashker fullname: Elashker, N. E. organization: Microelectronics Department, Electronics Research Institute, Adjunct Assistant Professor at the Electrical Engineering Department, The British University in Egypt – sequence: 3 givenname: Mervat M. A. surname: Mahmoud fullname: Mahmoud, Mervat M. A. organization: Microelectronics Department, Electronics Research Institute, Adjunct Assistant Professor at the Electrical Engineering Department, The British University in Egypt |
| BookMark | eNqNkE9LAzEQxYNUsK1-AU8Bz6uTZLt_jqVYW6jUg4q3kO7O1pTdZE221Prp3boFwUPxMMxh3pt58xuQnrEGCblmcMsA4jsPACIMgItDxRB8npE-GwkWjJI46ZE-8DgJIGFvF2Tg_QaApWHK--R1WTe60l-Y03G5tk4375WnyuR0ply-Uw7pvKpLrNA0qtHWUFvQR8y1MnSqywYdLaxrNWqN9MnZDL3XZn1JzgtVerw69iF5md4_T2bBYvkwn4wXQSYi0QQMVbgKVQqjFSsizlYY8SLJcqGSUczDlYjaQY4KcoCQsQiimKdFjCpnmEVxJIZEdHu3plb7nSpLWTtdKbeXDOQBjezQyBaL_EEjP1vXTeeqnf3Yom_kxm6daYNKnoSChwJS3qqSTpU5673DQma6Y9A4pcvTB_gf679SHX_xrdis0f2mOuH6Bi0Dl6A |
| CitedBy_id | crossref_primary_10_1038_s41598_024_80053_6 crossref_primary_10_1016_j_envc_2024_101025 crossref_primary_10_1007_s10470_024_02261_4 crossref_primary_10_3390_rs17020295 crossref_primary_10_3390_agriengineering6030183 crossref_primary_10_3390_sym16121584 |
| Cites_doi | 10.1109/TCYB.2013.2278548 10.1002/spe.4380231105 10.1145/2345396.2345428 10.1109/ICIP.2010.5651855 10.1016/S0022-0000(73)80033-9 10.13053/cys-23-1-2999 10.1016/j.neucom.2021.02.010 10.1016/j.inffus.2019.09.003 10.1017/S0963548302005138 10.1109/ICICCT.2018.8473025 10.1007/s11042-022-12574-z 10.1002/0471667196.ess6023 10.1016/j.neunet.2014.06.007 10.1007/s11042-021-10958-1 10.1017/S0962492912000062 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7SP 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W ADTOC UNPAY |
| DOI | 10.1007/s00034-023-02370-x |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Engineering Database (Proquest) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic DELNET Engineering & Technology Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1531-5878 |
| EndPage | 5558 |
| ExternalDocumentID | 10.1007/s00034-023-02370-x 10_1007_s00034_023_02370_x |
| GrantInformation_xml | – fundername: Electronics Research Institute |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29B 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 88I 8AO 8FE 8FG 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHQN ABJCF ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c363t-1ea4b4a905b1f621be62f8cd3a85724b365b1dea0d00411606729f7ead1ec6763 |
| IEDL.DBID | BENPR |
| ISSN | 0278-081X 1531-5878 |
| IngestDate | Tue Aug 19 20:55:59 EDT 2025 Sat Aug 16 17:11:50 EDT 2025 Wed Oct 01 01:31:42 EDT 2025 Thu Apr 24 22:57:39 EDT 2025 Fri Feb 21 02:42:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Median of medians Embedded systems Image de-noising FPGA Median filter |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-1ea4b4a905b1f621be62f8cd3a85724b365b1dea0d00411606729f7ead1ec6763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9721-8206 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00034-023-02370-x.pdf |
| PQID | 2843243092 |
| PQPubID | 30136 |
| PageCount | 14 |
| ParticipantIDs | unpaywall_primary_10_1007_s00034_023_02370_x proquest_journals_2843243092 crossref_citationtrail_10_1007_s00034_023_02370_x crossref_primary_10_1007_s00034_023_02370_x springer_journals_10_1007_s00034_023_02370_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230900 2023-09-00 20230901 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Cambridge |
| PublicationSubtitle | CSSP |
| PublicationTitle | Circuits, systems, and signal processing |
| PublicationTitleAbbrev | Circuits Syst Signal Process |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Ben JmaaYBen AtitallahRDuvivierDBen JemaaMA comparative study of sorting algorithms with FPGA acceleration by high level synthesisComputación y Sistemas201923121310.13053/cys-23-1-2999 ShaoLYanRLiXLiuYFrom heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithmsIEEE Trans. Cybern.20134471001101310.1109/TCYB.2013.2278548 BentleyJLMcIlroyMDEngineering a sort functionSoftw Pract Exp199323111249126510.1002/spe.4380231105 LiangLDengSGueguenLWeiMWuXQinJConvolutional neural network with median layers for denoising salt-and-pepper contaminationsNeurocomputing2021442263510.1016/j.neucom.2021.02.010 CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20224CambridgeMIT Press1503.68002 BlumMFloydRWPrattVRivestRLTarjanRETime bounds for selectionJ. Comput. Syst. Sci.19737444846132991610.1016/S0022-0000(73)80033-90278.68033 RasheedAHFPGA-based optimized systolic design for median filtering algorithmsInt. J. Appl. Eng. Res.201712241610016113 YangH-YWangX-YNiuP-PLiuY-CImage denoising using nonsubsampled shearlet transform and twin support vector machinesNeural Netw.20145715216510.1016/j.neunet.2014.06.007 A. Alexandrescu, Fast deterministic selection, in Leibniz International Proceedings in Informatics (LIPIcs) (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik), pp. 24:1–24:19 M. Goyani, M. Chharchhodawala, B. Mendapara, Min-max selection sort algorithm–improved version of selection sort. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 6 (2013) S. Sadangi, P. Priyanka, FPGA implementation of parallel sorting mechanism for turbo decoding in lte system, in 2018 2nd International Conference on Inventive Communication and Computational Technologies (ICICCT), pp. 359–362 (2018) R. Sedgewick, Algorithms in java, parts 1-4. 768 LebrunMColomMBuadesAMorelJ-MSecrets of image denoising cuisineActa Numer201221475291638510.1017/S09624929120000621260.94016 SharmaNSohiPJSGargBAryaKA novel multilayer decision based iterative filter for removal of salt and pepper noiseMultimedia Tools Appl.20218017265312654510.1007/s11042-021-10958-1 S. Maurya, I. Gupta, FPGA based hardware implementation of median filtering and morphological image processing algorithm. Int. J. Eng. Res. Technol.3 (2014) C. Priyanka, Median filter algorithm implementation on FPGA for restoration of retina images. Int. J. Innov. Sci. Eng. Technol.3 (2016) H.A. David, H.N. Nagaraja, Order statistics, in Encyclopedia of Statistical Sciences (2004) GonzalezRWoodsRImage processingDigit. Image Process200721 GoyalBDograAAgrawalSSohiBSharmaAImage denoising review: From classical to state-of-the-art approachesInf. Fusion20205522024410.1016/j.inffus.2019.09.003 K.S. Raju, P. Phukan, G. Baurah, An FPGA implementation of a fast 2-dimensional median filter, in National Conference on Recent Advances in Communication, Control and Computing Technology, RACCCT, pp. 144–147 (2012) N. Bindal, B. Garg, Novel three stage range sensitive filter for denoising high density salt and pepper noise. Multimedia Tools Appl. 1–16 (2022) B. Graham, Fractional max-pooling. Comput. Vis. Pattern Recognit. (2014) M.A. Vega-Rodríguez, J.M. Sánchez-Pérez, J.A. Gómez-Pulido, An FPGA-based implementation for median filter meeting the real-time requirements of automated visual inspection systems, in Proc. 10th Mediterranean Conf. Control and Automation (2002) A. Rauh, G.R. Arce, A fast weighted median algorithm based on quickselect, in 2010 IEEE International Conference on Image Processing, pp. 105–108 (2010) HwangH-KTsaiT-HQuickselect and the dickman functionComb. Probab. Comput.2002114353371191872210.1017/S09635483020051381008.68044 EricAFPGA implementation of median filter using an improved algorithm for image processingInt. J. Innov. Res. Sci. Technol.20151122530 2370_CR7 M Lebrun (2370_CR14) 2012; 21 2370_CR21 2370_CR20 2370_CR4 2370_CR25 AH Rasheed (2370_CR19) 2017; 12 2370_CR22 L Shao (2370_CR23) 2013; 44 H-Y Yang (2370_CR26) 2014; 57 R Gonzalez (2370_CR9) 2007; 2 Y Ben Jmaa (2370_CR2) 2019; 23 L Liang (2370_CR15) 2021; 442 TH Cormen (2370_CR6) 2022 2370_CR12 B Goyal (2370_CR10) 2020; 55 2370_CR11 2370_CR18 2370_CR17 2370_CR16 N Sharma (2370_CR24) 2021; 80 H-K Hwang (2370_CR13) 2002; 11 JL Bentley (2370_CR3) 1993; 23 A Eric (2370_CR8) 2015; 1 M Blum (2370_CR5) 1973; 7 2370_CR1 |
| References_xml | – reference: K.S. Raju, P. Phukan, G. Baurah, An FPGA implementation of a fast 2-dimensional median filter, in National Conference on Recent Advances in Communication, Control and Computing Technology, RACCCT, pp. 144–147 (2012) – reference: H.A. David, H.N. Nagaraja, Order statistics, in Encyclopedia of Statistical Sciences (2004) – reference: CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20224CambridgeMIT Press1503.68002 – reference: HwangH-KTsaiT-HQuickselect and the dickman functionComb. Probab. Comput.2002114353371191872210.1017/S09635483020051381008.68044 – reference: N. Bindal, B. Garg, Novel three stage range sensitive filter for denoising high density salt and pepper noise. Multimedia Tools Appl. 1–16 (2022) – reference: BlumMFloydRWPrattVRivestRLTarjanRETime bounds for selectionJ. Comput. Syst. Sci.19737444846132991610.1016/S0022-0000(73)80033-90278.68033 – reference: S. Maurya, I. Gupta, FPGA based hardware implementation of median filtering and morphological image processing algorithm. Int. J. Eng. Res. Technol.3 (2014) – reference: YangH-YWangX-YNiuP-PLiuY-CImage denoising using nonsubsampled shearlet transform and twin support vector machinesNeural Netw.20145715216510.1016/j.neunet.2014.06.007 – reference: LebrunMColomMBuadesAMorelJ-MSecrets of image denoising cuisineActa Numer201221475291638510.1017/S09624929120000621260.94016 – reference: C. Priyanka, Median filter algorithm implementation on FPGA for restoration of retina images. Int. J. Innov. Sci. Eng. Technol.3 (2016) – reference: LiangLDengSGueguenLWeiMWuXQinJConvolutional neural network with median layers for denoising salt-and-pepper contaminationsNeurocomputing2021442263510.1016/j.neucom.2021.02.010 – reference: RasheedAHFPGA-based optimized systolic design for median filtering algorithmsInt. J. Appl. Eng. Res.201712241610016113 – reference: A. Alexandrescu, Fast deterministic selection, in Leibniz International Proceedings in Informatics (LIPIcs) (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik), pp. 24:1–24:19 – reference: M. Goyani, M. Chharchhodawala, B. Mendapara, Min-max selection sort algorithm–improved version of selection sort. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 6 (2013) – reference: S. Sadangi, P. Priyanka, FPGA implementation of parallel sorting mechanism for turbo decoding in lte system, in 2018 2nd International Conference on Inventive Communication and Computational Technologies (ICICCT), pp. 359–362 (2018) – reference: Ben JmaaYBen AtitallahRDuvivierDBen JemaaMA comparative study of sorting algorithms with FPGA acceleration by high level synthesisComputación y Sistemas201923121310.13053/cys-23-1-2999 – reference: GonzalezRWoodsRImage processingDigit. Image Process200721 – reference: EricAFPGA implementation of median filter using an improved algorithm for image processingInt. J. Innov. Res. Sci. Technol.20151122530 – reference: ShaoLYanRLiXLiuYFrom heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithmsIEEE Trans. Cybern.20134471001101310.1109/TCYB.2013.2278548 – reference: BentleyJLMcIlroyMDEngineering a sort functionSoftw Pract Exp199323111249126510.1002/spe.4380231105 – reference: A. Rauh, G.R. Arce, A fast weighted median algorithm based on quickselect, in 2010 IEEE International Conference on Image Processing, pp. 105–108 (2010) – reference: GoyalBDograAAgrawalSSohiBSharmaAImage denoising review: From classical to state-of-the-art approachesInf. Fusion20205522024410.1016/j.inffus.2019.09.003 – reference: R. Sedgewick, Algorithms in java, parts 1-4. 768 – reference: SharmaNSohiPJSGargBAryaKA novel multilayer decision based iterative filter for removal of salt and pepper noiseMultimedia Tools Appl.20218017265312654510.1007/s11042-021-10958-1 – reference: M.A. Vega-Rodríguez, J.M. Sánchez-Pérez, J.A. Gómez-Pulido, An FPGA-based implementation for median filter meeting the real-time requirements of automated visual inspection systems, in Proc. 10th Mediterranean Conf. Control and Automation (2002) – reference: B. Graham, Fractional max-pooling. Comput. Vis. Pattern Recognit. (2014) – volume: 44 start-page: 1001 issue: 7 year: 2013 ident: 2370_CR23 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2278548 – ident: 2370_CR11 – volume: 23 start-page: 1249 issue: 11 year: 1993 ident: 2370_CR3 publication-title: Softw Pract Exp doi: 10.1002/spe.4380231105 – ident: 2370_CR16 – ident: 2370_CR18 doi: 10.1145/2345396.2345428 – ident: 2370_CR20 doi: 10.1109/ICIP.2010.5651855 – volume: 7 start-page: 448 issue: 4 year: 1973 ident: 2370_CR5 publication-title: J. Comput. Syst. Sci. doi: 10.1016/S0022-0000(73)80033-9 – volume: 23 start-page: 213 issue: 1 year: 2019 ident: 2370_CR2 publication-title: Computación y Sistemas doi: 10.13053/cys-23-1-2999 – volume: 442 start-page: 26 year: 2021 ident: 2370_CR15 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.02.010 – volume: 55 start-page: 220 year: 2020 ident: 2370_CR10 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.09.003 – volume: 11 start-page: 353 issue: 4 year: 2002 ident: 2370_CR13 publication-title: Comb. Probab. Comput. doi: 10.1017/S0963548302005138 – ident: 2370_CR21 doi: 10.1109/ICICCT.2018.8473025 – ident: 2370_CR4 doi: 10.1007/s11042-022-12574-z – volume: 12 start-page: 16100 issue: 24 year: 2017 ident: 2370_CR19 publication-title: Int. J. Appl. Eng. Res. – volume: 1 start-page: 25 issue: 12 year: 2015 ident: 2370_CR8 publication-title: Int. J. Innov. Res. Sci. Technol. – ident: 2370_CR25 – ident: 2370_CR12 – volume: 2 start-page: 1 year: 2007 ident: 2370_CR9 publication-title: Digit. Image Process – ident: 2370_CR1 – ident: 2370_CR7 doi: 10.1002/0471667196.ess6023 – volume-title: Introduction to Algorithms year: 2022 ident: 2370_CR6 – volume: 57 start-page: 152 year: 2014 ident: 2370_CR26 publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.06.007 – ident: 2370_CR17 – volume: 80 start-page: 26531 issue: 17 year: 2021 ident: 2370_CR24 publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-021-10958-1 – ident: 2370_CR22 – volume: 21 start-page: 475 year: 2012 ident: 2370_CR14 publication-title: Acta Numer doi: 10.1017/S0962492912000062 |
| SSID | ssj0019492 |
| Score | 2.388037 |
| Snippet | Image processing algorithms are essential for clarifying the image and improving the ability to recognize distinct characteristics of the image. The field of... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5545 |
| SubjectTerms | Algorithms Artificial neural networks Circuits and Systems Digital imaging Electrical Engineering Electronics and Microelectronics Embedded systems Engineering Field programmable gate arrays Image filters Image processing Instrumentation Microprocessors Parallel processing Signal,Image and Speech Processing |
| SummonAdditionalLinks | – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yD7qD-InTKTl4c4G2SdP2OIZjCOrFyW4lX9XB1o19MPWv9yXruiky9NBTkld4L8n7lV_f7yF046lY6SRkJDGaEhYxSQSlmkiuYiEAMCjXteThkXe67L4X9gqZHFsL84O_t2KfHmUEMot9Io8AXtyFJMUdMctbJWOQMNcA2RJpBNJcryiQ-d3G9yS0RpYlGVpFe_N8LD4WYjDYyDftQ3RQAEXcXEb2CO2Y_BhVN-QDT9DLE5z3Yf_TaNwcvI7gM_9tOMUi19jy8QsxMdiJ_w6L-qIcjzJsmRmR43bf0uQYICvMgTsFFxUDYPgUddt3z60OKfokEEU5nRHfCCaZSLxQ-hkPfGl4kEEIqIjDKGCSchjQRnjaqmv53LKvSRbBHvKN4nDBnKFKPsrNOcKxl1DfcKXsQsuoxZorCCB8NUVaSlpD_spxqSpExG0vi0Fayh87Z6fg6NQ5O32vodtyzXgpobF1dn0Vj7Q4TtMUcigAP-olQQ01VjFaD2-z1ijj-IeXX_zP-iXaD9yusr-c1VFlNpmbK8AoM3ntNucX0SXaSQ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BOSAOuywPbVeAfNgbuMR14iTHCqgQEuweKCqnyK9ARZtWJRUsv37HefEQQqz2kJPtiTyeeL54PN8A_PR0pE0c-DS2hlM_9BWVnBuqhI6kRMCgi6ol5xfidOCfDYPhEhzXuTDFbfc6JFnmNDiWpiw_nJn0sEl8K3hVKPob94Qefexg8zKsiAAReQtWBhe_e9fF8YojkI3YsKRNZTSIwqjKnXlf0Gv_9Aw6mzjpGqwuspn88yDH4xeuqP8VbD2J8gbKXWeRq45-esPv-L-zXIcvFVYlvdK4vsGSzTZg7QWD4SZc_cItZzJ6sob0xjfT-Si_ndwTmRnirgQ8yLklBf_wpEpxysg0JS44JDPSH7lIPUHUjH1wWyNV0gIK3oJB_-Ty6JRWpRqo5oLnlFnpK1_GXqBYKrpMWdFN0Qq4jIKw6ysusMFY6RlH8MWECwDHaYhmzKwWuMdtQyubZvY7kMiLObNCazfQBfUiIzTaEP64hUYp3gZWL1CiKx5zV05jnDQMzIXeEtRZUugteWzDfjNmVrJ4fNh7p173pPqi7xN044g9uRd323BQL91z80fSDhp7-cTLf_xb9x1o5fOF3UVklKu9yvD_Ak8mBQ4 priority: 102 providerName: Unpaywall |
| Title | Optimized Algorithms and Hardware Implementation of Median Filter for Image Processing |
| URI | https://link.springer.com/article/10.1007/s00034-023-02370-x https://www.proquest.com/docview/2843243092 https://link.springer.com/content/pdf/10.1007/s00034-023-02370-x.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1531-5878 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0019492 issn: 0278-081X databaseCode: AMVHM dateStart: 20110201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1531-5878 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0019492 issn: 0278-081X databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1531-5878 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0019492 issn: 0278-081X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1531-5878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019492 issn: 0278-081X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1531-5878 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019492 issn: 0278-081X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB61yQF6QAVaNaVEe-iNrrC9zto-VMhESSsqQoUISk_WvlIiJU5oUyXw65ndrp32EnGwD_uUd9YzY3873wCcBipVOuvENDOa0TiJJRWMaSq5SoVAh0G5rCVfB_xyGH8ZdUY7MKhiYeyxykonOkWt58r-I_-IahRtPwuy6NPiN7VZoyy6WqXQED61gj53FGO70IwsM1YDmp97g-vvNa6QxS5NsoXbKBrDkQ-jccF0jquFog2zVxLQ9XNTtfE_a8h0D148lAvxZyWm0ydWqb8Pr7w7SfJH-b-GHVO-gb0nJINv4ec31AqzyV-jST69xUda_prdE1FqYlH7lbgzxFEEz3wUUknmY2LxG1GS_sSC6QQdW2yDmof4uAIc-ACG_d6P7iX12RSoYpwtaWhELGORBR0ZjnkUSsOjMQqKibSTRLFkHCu0EYG2HFwhtxhtNk5wp4VGcVRDh9Ao56U5ApIGGQsNV8p2tLhbqrlCMeO3VaKlZC0Iq4UrlKcatxkvpkVNkuwWu8CFLtxiF-sWfKj7LB6JNra2PqnkUfiX7r7YbJEWnFUy2lRvG-2sluN_TH68ffJ38DJyu8geRDuBxvLuwbxHz2Up27Cb9i_a0Mwvbq56bb85sbTLu3gfRjmWDQfX-c0_vAztiQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROFAOiL7UAC17aE9lVdu7WdsHhGghCgXSqoIqN7OvFKTECSQo0B_Hb-vssnboJeqFg0_2ruWZ2ZlZfzvfAHyIdKZN3uQ0t4ZRnnJFJWOGKqEzKTFh0L5ryUlHtM_4t26zuwD3VS2MO1ZZ-UTvqM1Qu3_kn9GNYuxnUZ7sjq6o6xrl0NWqhYYMrRXMjqcYC4UdR_Zuilu48c7hPur7Y5K0Dk6_tmnoMkA1E2xCYyu54jKPmiruiSRWViQ9_AAms2aacMUE3jBWRsZxU8XCYZd5L0UNxFYLXJ447zNY4oznuPlb-nLQ-fGzxjFy7tsyO3iPYvDthrIdX7znuWEoxkx3pRG9_Tc0zvLdGqJdgeWbciTvprLffxQFW2uwGtJXsvdgby9gwZYvYeURqeEr-PUdvdDg8o81ZK__G0U4uRiMiSwNcacEpvLaEk9JPAhVTyUZ9ojDi2RJWpcOvCeYSOMz6OlIqGPAiV_D2ZPI9Q0slsPSvgWSRTmLrdDaDXQ4X2aERrPCvVxqlGINiCvBFTpQm7sOG_2iJmX2wi5Q0IUXdnHbgE_1mNEDscfcpzcrfRRhkY-LmUk2YLvS0ez2vNm2az3-x8vX5798C5bbpyfHxfFh52gDnifeotwhuE1YnFzf2HeYNU3U-2CaBM6fejX8BQ1OJDQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RkFo4VH2qaaHdAz2VFbbXWduHCqGCgUJpD6XKzd2XC1LipCQowE_rr-vMxnboJeqFg0_r3bVmZmdmPTPfAGwGJjU268Y8c1bwOIk1V0JYrqVJlUKHwfiuJV9O5eFZ_LnX7S3Bn6YWhtIqG53oFbUdGvpHvo1qFG2_CLJou6zTIr7t5Tuj35w6SFGktWmnMRORY3czxevb-OPRHvL6fRTl-98_HfK6wwA3QooJD52KdayyoKvDUkahdjIq8eOFSrtJFGshccA6FVjCpQolxS2zMkHqh85IPJq47gNYSQjFnarU84M2gpHFviEzBfY4mt1eXbDjy_Y8KgxHa0lPEvDrf43i3NNtg7Nr8OiqGqmbqer379i__Ak8rh1XtjuTtKew5KpnsHYHzvA5_PiK-mdwcess2-3_QoJNzgdjpirLKD9gqi4d82DEg7reqWLDklGkSFUsv6CwPUMXGt9BHcfqCgZc-AWc3QtVX8JyNazcK2BpkInQSWNoIkX4UisNChTe4hKrtehA2BCuMDWoOfXW6BctHLMndoGELjyxi-sOfGjnjGaQHgvfXm_4UdTHe1zMhbEDWw2P5sOLVttq-fgfm79evPk7eIhnoDg5Oj1-A6uRFyjKfluH5cnlldtAd2mi33q5ZPDzvg_CX_fbIc4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BOSAOuywPbVeAfNgbuMR14iTHCqgQEuweKCqnyK9ARZtWJRUsv37HefEQQqz2kJPtiTyeeL54PN8A_PR0pE0c-DS2hlM_9BWVnBuqhI6kRMCgi6ol5xfidOCfDYPhEhzXuTDFbfc6JFnmNDiWpiw_nJn0sEl8K3hVKPob94Qefexg8zKsiAAReQtWBhe_e9fF8YojkI3YsKRNZTSIwqjKnXlf0Gv_9Aw6mzjpGqwuspn88yDH4xeuqP8VbD2J8gbKXWeRq45-esPv-L-zXIcvFVYlvdK4vsGSzTZg7QWD4SZc_cItZzJ6sob0xjfT-Si_ndwTmRnirgQ8yLklBf_wpEpxysg0JS44JDPSH7lIPUHUjH1wWyNV0gIK3oJB_-Ty6JRWpRqo5oLnlFnpK1_GXqBYKrpMWdFN0Qq4jIKw6ysusMFY6RlH8MWECwDHaYhmzKwWuMdtQyubZvY7kMiLObNCazfQBfUiIzTaEP64hUYp3gZWL1CiKx5zV05jnDQMzIXeEtRZUugteWzDfjNmVrJ4fNh7p173pPqi7xN044g9uRd323BQL91z80fSDhp7-cTLf_xb9x1o5fOF3UVklKu9yvD_Ak8mBQ4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Algorithms+and+Hardware+Implementation+of+Median+Filter+for+Image+Processing&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Draz%2C+H.+H.&rft.au=Elashker%2C+N.+E.&rft.au=Mahmoud%2C+Mervat+M.+A.&rft.date=2023-09-01&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=42&rft.issue=9&rft.spage=5545&rft.epage=5558&rft_id=info:doi/10.1007%2Fs00034-023-02370-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00034_023_02370_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon |