Optimized Algorithms and Hardware Implementation of Median Filter for Image Processing

Image processing algorithms are essential for clarifying the image and improving the ability to recognize distinct characteristics of the image. The field of digital image processing is widespread in several research and technology applications. In many of these applications, the existence of impuls...

Full description

Saved in:
Bibliographic Details
Published inCircuits, systems, and signal processing Vol. 42; no. 9; pp. 5545 - 5558
Main Authors Draz, H. H., Elashker, N. E., Mahmoud, Mervat M. A.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0278-081X
1531-5878
1531-5878
DOI10.1007/s00034-023-02370-x

Cover

Abstract Image processing algorithms are essential for clarifying the image and improving the ability to recognize distinct characteristics of the image. The field of digital image processing is widespread in several research and technology applications. In many of these applications, the existence of impulsive noise in the obtained images is one of the most frequent problems. The median filter is a strong method to remove the impulsive noise; it effectively eliminates salt and pepper noise from the image. The main target of this paper is to investigate efficient median filter units to be connected to a general-purpose processor (GPP) for FPGA-based embedded systems. The paper exposes three novel techniques, two of them specially for median filtering techniques and the third one is used to get the maximum number of any 9 elements array. The proposed algorithms are inspired by the Median Of Median (MOM) algorithm. The first two techniques are tested for filtering 3 × 3 image windows and optimized for producing the expected result in high accuracy, short time, and reduced number of comparisons. The last technique is tested for a 9 elements array for extracting the maximum number in same high efficiency manner. Furthermore, the three proposed techniques are implemented leveraging the advantage of the parallel processing and the FPGA flexible resources to satisfy the real-time processing constraints. A comparison between the first two proposed filtering units and their counterparts in the literature is included. The comparison reveals the superiority of the first technique in terms of accuracy with fewer comparators than previously published techniques. Besides, the paper illustrates how the concept beyond the proposed techniques can be used to perform the maximum pooling for convolution neural networks.
AbstractList Image processing algorithms are essential for clarifying the image and improving the ability to recognize distinct characteristics of the image. The field of digital image processing is widespread in several research and technology applications. In many of these applications, the existence of impulsive noise in the obtained images is one of the most frequent problems. The median filter is a strong method to remove the impulsive noise; it effectively eliminates salt and pepper noise from the image. The main target of this paper is to investigate efficient median filter units to be connected to a general-purpose processor (GPP) for FPGA-based embedded systems. The paper exposes three novel techniques, two of them specially for median filtering techniques and the third one is used to get the maximum number of any 9 elements array. The proposed algorithms are inspired by the Median Of Median (MOM) algorithm. The first two techniques are tested for filtering 3×3 image windows and optimized for producing the expected result in high accuracy, short time, and reduced number of comparisons. The last technique is tested for a 9 elements array for extracting the maximum number in same high efficiency manner. Furthermore, the three proposed techniques are implemented leveraging the advantage of the parallel processing and the FPGA flexible resources to satisfy the real-time processing constraints. A comparison between the first two proposed filtering units and their counterparts in the literature is included. The comparison reveals the superiority of the first technique in terms of accuracy with fewer comparators than previously published techniques. Besides, the paper illustrates how the concept beyond the proposed techniques can be used to perform the maximum pooling for convolution neural networks.
Image processing algorithms are essential for clarifying the image and improving the ability to recognize distinct characteristics of the image. The field of digital image processing is widespread in several research and technology applications. In many of these applications, the existence of impulsive noise in the obtained images is one of the most frequent problems. The median filter is a strong method to remove the impulsive noise; it effectively eliminates salt and pepper noise from the image. The main target of this paper is to investigate efficient median filter units to be connected to a general-purpose processor (GPP) for FPGA-based embedded systems. The paper exposes three novel techniques, two of them specially for median filtering techniques and the third one is used to get the maximum number of any 9 elements array. The proposed algorithms are inspired by the Median Of Median (MOM) algorithm. The first two techniques are tested for filtering $$3 \times 3$$ 3 × 3 image windows and optimized for producing the expected result in high accuracy, short time, and reduced number of comparisons. The last technique is tested for a 9 elements array for extracting the maximum number in same high efficiency manner. Furthermore, the three proposed techniques are implemented leveraging the advantage of the parallel processing and the FPGA flexible resources to satisfy the real-time processing constraints. A comparison between the first two proposed filtering units and their counterparts in the literature is included. The comparison reveals the superiority of the first technique in terms of accuracy with fewer comparators than previously published techniques. Besides, the paper illustrates how the concept beyond the proposed techniques can be used to perform the maximum pooling for convolution neural networks.
Image processing algorithms are essential for clarifying the image and improving the ability to recognize distinct characteristics of the image. The field of digital image processing is widespread in several research and technology applications. In many of these applications, the existence of impulsive noise in the obtained images is one of the most frequent problems. The median filter is a strong method to remove the impulsive noise; it effectively eliminates salt and pepper noise from the image. The main target of this paper is to investigate efficient median filter units to be connected to a general-purpose processor (GPP) for FPGA-based embedded systems. The paper exposes three novel techniques, two of them specially for median filtering techniques and the third one is used to get the maximum number of any 9 elements array. The proposed algorithms are inspired by the Median Of Median (MOM) algorithm. The first two techniques are tested for filtering 3 × 3 image windows and optimized for producing the expected result in high accuracy, short time, and reduced number of comparisons. The last technique is tested for a 9 elements array for extracting the maximum number in same high efficiency manner. Furthermore, the three proposed techniques are implemented leveraging the advantage of the parallel processing and the FPGA flexible resources to satisfy the real-time processing constraints. A comparison between the first two proposed filtering units and their counterparts in the literature is included. The comparison reveals the superiority of the first technique in terms of accuracy with fewer comparators than previously published techniques. Besides, the paper illustrates how the concept beyond the proposed techniques can be used to perform the maximum pooling for convolution neural networks.
Author Elashker, N. E.
Mahmoud, Mervat M. A.
Draz, H. H.
Author_xml – sequence: 1
  givenname: H. H.
  orcidid: 0000-0001-9721-8206
  surname: Draz
  fullname: Draz, H. H.
  email: hdraz@eri.sci.eg
  organization: Microelectronics Department, Electronics Research Institute, Adjunct Assistant Professor at the Communications and Electronics Department, Faculty of Engineering, Cairo University
– sequence: 2
  givenname: N. E.
  surname: Elashker
  fullname: Elashker, N. E.
  organization: Microelectronics Department, Electronics Research Institute, Adjunct Assistant Professor at the Electrical Engineering Department, The British University in Egypt
– sequence: 3
  givenname: Mervat M. A.
  surname: Mahmoud
  fullname: Mahmoud, Mervat M. A.
  organization: Microelectronics Department, Electronics Research Institute, Adjunct Assistant Professor at the Electrical Engineering Department, The British University in Egypt
BookMark eNqNkE9LAzEQxYNUsK1-AU8Bz6uTZLt_jqVYW6jUg4q3kO7O1pTdZE221Prp3boFwUPxMMxh3pt58xuQnrEGCblmcMsA4jsPACIMgItDxRB8npE-GwkWjJI46ZE-8DgJIGFvF2Tg_QaApWHK--R1WTe60l-Y03G5tk4375WnyuR0ply-Uw7pvKpLrNA0qtHWUFvQR8y1MnSqywYdLaxrNWqN9MnZDL3XZn1JzgtVerw69iF5md4_T2bBYvkwn4wXQSYi0QQMVbgKVQqjFSsizlYY8SLJcqGSUczDlYjaQY4KcoCQsQiimKdFjCpnmEVxJIZEdHu3plb7nSpLWTtdKbeXDOQBjezQyBaL_EEjP1vXTeeqnf3Yom_kxm6daYNKnoSChwJS3qqSTpU5673DQma6Y9A4pcvTB_gf679SHX_xrdis0f2mOuH6Bi0Dl6A
CitedBy_id crossref_primary_10_1038_s41598_024_80053_6
crossref_primary_10_1016_j_envc_2024_101025
crossref_primary_10_1007_s10470_024_02261_4
crossref_primary_10_3390_rs17020295
crossref_primary_10_3390_agriengineering6030183
crossref_primary_10_3390_sym16121584
Cites_doi 10.1109/TCYB.2013.2278548
10.1002/spe.4380231105
10.1145/2345396.2345428
10.1109/ICIP.2010.5651855
10.1016/S0022-0000(73)80033-9
10.13053/cys-23-1-2999
10.1016/j.neucom.2021.02.010
10.1016/j.inffus.2019.09.003
10.1017/S0963548302005138
10.1109/ICICCT.2018.8473025
10.1007/s11042-022-12574-z
10.1002/0471667196.ess6023
10.1016/j.neunet.2014.06.007
10.1007/s11042-021-10958-1
10.1017/S0962492912000062
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7SP
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
ADTOC
UNPAY
DOI 10.1007/s00034-023-02370-x
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database (Proquest)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1531-5878
EndPage 5558
ExternalDocumentID 10.1007/s00034-023-02370-x
10_1007_s00034_023_02370_x
GrantInformation_xml – fundername: Electronics Research Institute
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29B
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
88I
8AO
8FE
8FG
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c363t-1ea4b4a905b1f621be62f8cd3a85724b365b1dea0d00411606729f7ead1ec6763
IEDL.DBID BENPR
ISSN 0278-081X
1531-5878
IngestDate Tue Aug 19 20:55:59 EDT 2025
Sat Aug 16 17:11:50 EDT 2025
Wed Oct 01 01:31:42 EDT 2025
Thu Apr 24 22:57:39 EDT 2025
Fri Feb 21 02:42:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Median of medians
Embedded systems
Image de-noising
FPGA
Median filter
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-1ea4b4a905b1f621be62f8cd3a85724b365b1dea0d00411606729f7ead1ec6763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9721-8206
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00034-023-02370-x.pdf
PQID 2843243092
PQPubID 30136
PageCount 14
ParticipantIDs unpaywall_primary_10_1007_s00034_023_02370_x
proquest_journals_2843243092
crossref_citationtrail_10_1007_s00034_023_02370_x
crossref_primary_10_1007_s00034_023_02370_x
springer_journals_10_1007_s00034_023_02370_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230900
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Cambridge
PublicationSubtitle CSSP
PublicationTitle Circuits, systems, and signal processing
PublicationTitleAbbrev Circuits Syst Signal Process
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Ben JmaaYBen AtitallahRDuvivierDBen JemaaMA comparative study of sorting algorithms with FPGA acceleration by high level synthesisComputación y Sistemas201923121310.13053/cys-23-1-2999
ShaoLYanRLiXLiuYFrom heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithmsIEEE Trans. Cybern.20134471001101310.1109/TCYB.2013.2278548
BentleyJLMcIlroyMDEngineering a sort functionSoftw Pract Exp199323111249126510.1002/spe.4380231105
LiangLDengSGueguenLWeiMWuXQinJConvolutional neural network with median layers for denoising salt-and-pepper contaminationsNeurocomputing2021442263510.1016/j.neucom.2021.02.010
CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20224CambridgeMIT Press1503.68002
BlumMFloydRWPrattVRivestRLTarjanRETime bounds for selectionJ. Comput. Syst. Sci.19737444846132991610.1016/S0022-0000(73)80033-90278.68033
RasheedAHFPGA-based optimized systolic design for median filtering algorithmsInt. J. Appl. Eng. Res.201712241610016113
YangH-YWangX-YNiuP-PLiuY-CImage denoising using nonsubsampled shearlet transform and twin support vector machinesNeural Netw.20145715216510.1016/j.neunet.2014.06.007
A. Alexandrescu, Fast deterministic selection, in Leibniz International Proceedings in Informatics (LIPIcs) (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik), pp. 24:1–24:19
M. Goyani, M. Chharchhodawala, B. Mendapara, Min-max selection sort algorithm–improved version of selection sort. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 6 (2013)
S. Sadangi, P. Priyanka, FPGA implementation of parallel sorting mechanism for turbo decoding in lte system, in 2018 2nd International Conference on Inventive Communication and Computational Technologies (ICICCT), pp. 359–362 (2018)
R. Sedgewick, Algorithms in java, parts 1-4. 768
LebrunMColomMBuadesAMorelJ-MSecrets of image denoising cuisineActa Numer201221475291638510.1017/S09624929120000621260.94016
SharmaNSohiPJSGargBAryaKA novel multilayer decision based iterative filter for removal of salt and pepper noiseMultimedia Tools Appl.20218017265312654510.1007/s11042-021-10958-1
S. Maurya, I. Gupta, FPGA based hardware implementation of median filtering and morphological image processing algorithm. Int. J. Eng. Res. Technol.3 (2014)
C. Priyanka, Median filter algorithm implementation on FPGA for restoration of retina images. Int. J. Innov. Sci. Eng. Technol.3 (2016)
H.A. David, H.N. Nagaraja, Order statistics, in Encyclopedia of Statistical Sciences (2004)
GonzalezRWoodsRImage processingDigit. Image Process200721
GoyalBDograAAgrawalSSohiBSharmaAImage denoising review: From classical to state-of-the-art approachesInf. Fusion20205522024410.1016/j.inffus.2019.09.003
K.S. Raju, P. Phukan, G. Baurah, An FPGA implementation of a fast 2-dimensional median filter, in National Conference on Recent Advances in Communication, Control and Computing Technology, RACCCT, pp. 144–147 (2012)
N. Bindal, B. Garg, Novel three stage range sensitive filter for denoising high density salt and pepper noise. Multimedia Tools Appl. 1–16 (2022)
B. Graham, Fractional max-pooling. Comput. Vis. Pattern Recognit. (2014)
M.A. Vega-Rodríguez, J.M. Sánchez-Pérez, J.A. Gómez-Pulido, An FPGA-based implementation for median filter meeting the real-time requirements of automated visual inspection systems, in Proc. 10th Mediterranean Conf. Control and Automation (2002)
A. Rauh, G.R. Arce, A fast weighted median algorithm based on quickselect, in 2010 IEEE International Conference on Image Processing, pp. 105–108 (2010)
HwangH-KTsaiT-HQuickselect and the dickman functionComb. Probab. Comput.2002114353371191872210.1017/S09635483020051381008.68044
EricAFPGA implementation of median filter using an improved algorithm for image processingInt. J. Innov. Res. Sci. Technol.20151122530
2370_CR7
M Lebrun (2370_CR14) 2012; 21
2370_CR21
2370_CR20
2370_CR4
2370_CR25
AH Rasheed (2370_CR19) 2017; 12
2370_CR22
L Shao (2370_CR23) 2013; 44
H-Y Yang (2370_CR26) 2014; 57
R Gonzalez (2370_CR9) 2007; 2
Y Ben Jmaa (2370_CR2) 2019; 23
L Liang (2370_CR15) 2021; 442
TH Cormen (2370_CR6) 2022
2370_CR12
B Goyal (2370_CR10) 2020; 55
2370_CR11
2370_CR18
2370_CR17
2370_CR16
N Sharma (2370_CR24) 2021; 80
H-K Hwang (2370_CR13) 2002; 11
JL Bentley (2370_CR3) 1993; 23
A Eric (2370_CR8) 2015; 1
M Blum (2370_CR5) 1973; 7
2370_CR1
References_xml – reference: K.S. Raju, P. Phukan, G. Baurah, An FPGA implementation of a fast 2-dimensional median filter, in National Conference on Recent Advances in Communication, Control and Computing Technology, RACCCT, pp. 144–147 (2012)
– reference: H.A. David, H.N. Nagaraja, Order statistics, in Encyclopedia of Statistical Sciences (2004)
– reference: CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20224CambridgeMIT Press1503.68002
– reference: HwangH-KTsaiT-HQuickselect and the dickman functionComb. Probab. Comput.2002114353371191872210.1017/S09635483020051381008.68044
– reference: N. Bindal, B. Garg, Novel three stage range sensitive filter for denoising high density salt and pepper noise. Multimedia Tools Appl. 1–16 (2022)
– reference: BlumMFloydRWPrattVRivestRLTarjanRETime bounds for selectionJ. Comput. Syst. Sci.19737444846132991610.1016/S0022-0000(73)80033-90278.68033
– reference: S. Maurya, I. Gupta, FPGA based hardware implementation of median filtering and morphological image processing algorithm. Int. J. Eng. Res. Technol.3 (2014)
– reference: YangH-YWangX-YNiuP-PLiuY-CImage denoising using nonsubsampled shearlet transform and twin support vector machinesNeural Netw.20145715216510.1016/j.neunet.2014.06.007
– reference: LebrunMColomMBuadesAMorelJ-MSecrets of image denoising cuisineActa Numer201221475291638510.1017/S09624929120000621260.94016
– reference: C. Priyanka, Median filter algorithm implementation on FPGA for restoration of retina images. Int. J. Innov. Sci. Eng. Technol.3 (2016)
– reference: LiangLDengSGueguenLWeiMWuXQinJConvolutional neural network with median layers for denoising salt-and-pepper contaminationsNeurocomputing2021442263510.1016/j.neucom.2021.02.010
– reference: RasheedAHFPGA-based optimized systolic design for median filtering algorithmsInt. J. Appl. Eng. Res.201712241610016113
– reference: A. Alexandrescu, Fast deterministic selection, in Leibniz International Proceedings in Informatics (LIPIcs) (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik), pp. 24:1–24:19
– reference: M. Goyani, M. Chharchhodawala, B. Mendapara, Min-max selection sort algorithm–improved version of selection sort. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 6 (2013)
– reference: S. Sadangi, P. Priyanka, FPGA implementation of parallel sorting mechanism for turbo decoding in lte system, in 2018 2nd International Conference on Inventive Communication and Computational Technologies (ICICCT), pp. 359–362 (2018)
– reference: Ben JmaaYBen AtitallahRDuvivierDBen JemaaMA comparative study of sorting algorithms with FPGA acceleration by high level synthesisComputación y Sistemas201923121310.13053/cys-23-1-2999
– reference: GonzalezRWoodsRImage processingDigit. Image Process200721
– reference: EricAFPGA implementation of median filter using an improved algorithm for image processingInt. J. Innov. Res. Sci. Technol.20151122530
– reference: ShaoLYanRLiXLiuYFrom heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithmsIEEE Trans. Cybern.20134471001101310.1109/TCYB.2013.2278548
– reference: BentleyJLMcIlroyMDEngineering a sort functionSoftw Pract Exp199323111249126510.1002/spe.4380231105
– reference: A. Rauh, G.R. Arce, A fast weighted median algorithm based on quickselect, in 2010 IEEE International Conference on Image Processing, pp. 105–108 (2010)
– reference: GoyalBDograAAgrawalSSohiBSharmaAImage denoising review: From classical to state-of-the-art approachesInf. Fusion20205522024410.1016/j.inffus.2019.09.003
– reference: R. Sedgewick, Algorithms in java, parts 1-4. 768
– reference: SharmaNSohiPJSGargBAryaKA novel multilayer decision based iterative filter for removal of salt and pepper noiseMultimedia Tools Appl.20218017265312654510.1007/s11042-021-10958-1
– reference: M.A. Vega-Rodríguez, J.M. Sánchez-Pérez, J.A. Gómez-Pulido, An FPGA-based implementation for median filter meeting the real-time requirements of automated visual inspection systems, in Proc. 10th Mediterranean Conf. Control and Automation (2002)
– reference: B. Graham, Fractional max-pooling. Comput. Vis. Pattern Recognit. (2014)
– volume: 44
  start-page: 1001
  issue: 7
  year: 2013
  ident: 2370_CR23
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2278548
– ident: 2370_CR11
– volume: 23
  start-page: 1249
  issue: 11
  year: 1993
  ident: 2370_CR3
  publication-title: Softw Pract Exp
  doi: 10.1002/spe.4380231105
– ident: 2370_CR16
– ident: 2370_CR18
  doi: 10.1145/2345396.2345428
– ident: 2370_CR20
  doi: 10.1109/ICIP.2010.5651855
– volume: 7
  start-page: 448
  issue: 4
  year: 1973
  ident: 2370_CR5
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/S0022-0000(73)80033-9
– volume: 23
  start-page: 213
  issue: 1
  year: 2019
  ident: 2370_CR2
  publication-title: Computación y Sistemas
  doi: 10.13053/cys-23-1-2999
– volume: 442
  start-page: 26
  year: 2021
  ident: 2370_CR15
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.02.010
– volume: 55
  start-page: 220
  year: 2020
  ident: 2370_CR10
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.09.003
– volume: 11
  start-page: 353
  issue: 4
  year: 2002
  ident: 2370_CR13
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548302005138
– ident: 2370_CR21
  doi: 10.1109/ICICCT.2018.8473025
– ident: 2370_CR4
  doi: 10.1007/s11042-022-12574-z
– volume: 12
  start-page: 16100
  issue: 24
  year: 2017
  ident: 2370_CR19
  publication-title: Int. J. Appl. Eng. Res.
– volume: 1
  start-page: 25
  issue: 12
  year: 2015
  ident: 2370_CR8
  publication-title: Int. J. Innov. Res. Sci. Technol.
– ident: 2370_CR25
– ident: 2370_CR12
– volume: 2
  start-page: 1
  year: 2007
  ident: 2370_CR9
  publication-title: Digit. Image Process
– ident: 2370_CR1
– ident: 2370_CR7
  doi: 10.1002/0471667196.ess6023
– volume-title: Introduction to Algorithms
  year: 2022
  ident: 2370_CR6
– volume: 57
  start-page: 152
  year: 2014
  ident: 2370_CR26
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.06.007
– ident: 2370_CR17
– volume: 80
  start-page: 26531
  issue: 17
  year: 2021
  ident: 2370_CR24
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-021-10958-1
– ident: 2370_CR22
– volume: 21
  start-page: 475
  year: 2012
  ident: 2370_CR14
  publication-title: Acta Numer
  doi: 10.1017/S0962492912000062
SSID ssj0019492
Score 2.388037
Snippet Image processing algorithms are essential for clarifying the image and improving the ability to recognize distinct characteristics of the image. The field of...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5545
SubjectTerms Algorithms
Artificial neural networks
Circuits and Systems
Digital imaging
Electrical Engineering
Electronics and Microelectronics
Embedded systems
Engineering
Field programmable gate arrays
Image filters
Image processing
Instrumentation
Microprocessors
Parallel processing
Signal,Image and Speech Processing
SummonAdditionalLinks – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yD7qD-InTKTl4c4G2SdP2OIZjCOrFyW4lX9XB1o19MPWv9yXruiky9NBTkld4L8n7lV_f7yF046lY6SRkJDGaEhYxSQSlmkiuYiEAMCjXteThkXe67L4X9gqZHFsL84O_t2KfHmUEMot9Io8AXtyFJMUdMctbJWOQMNcA2RJpBNJcryiQ-d3G9yS0RpYlGVpFe_N8LD4WYjDYyDftQ3RQAEXcXEb2CO2Y_BhVN-QDT9DLE5z3Yf_TaNwcvI7gM_9tOMUi19jy8QsxMdiJ_w6L-qIcjzJsmRmR43bf0uQYICvMgTsFFxUDYPgUddt3z60OKfokEEU5nRHfCCaZSLxQ-hkPfGl4kEEIqIjDKGCSchjQRnjaqmv53LKvSRbBHvKN4nDBnKFKPsrNOcKxl1DfcKXsQsuoxZorCCB8NUVaSlpD_spxqSpExG0vi0Fayh87Z6fg6NQ5O32vodtyzXgpobF1dn0Vj7Q4TtMUcigAP-olQQ01VjFaD2-z1ijj-IeXX_zP-iXaD9yusr-c1VFlNpmbK8AoM3ntNucX0SXaSQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BOSAOuywPbVeAfNgbuMR14iTHCqgQEuweKCqnyK9ARZtWJRUsv37HefEQQqz2kJPtiTyeeL54PN8A_PR0pE0c-DS2hlM_9BWVnBuqhI6kRMCgi6ol5xfidOCfDYPhEhzXuTDFbfc6JFnmNDiWpiw_nJn0sEl8K3hVKPob94Qefexg8zKsiAAReQtWBhe_e9fF8YojkI3YsKRNZTSIwqjKnXlf0Gv_9Aw6mzjpGqwuspn88yDH4xeuqP8VbD2J8gbKXWeRq45-esPv-L-zXIcvFVYlvdK4vsGSzTZg7QWD4SZc_cItZzJ6sob0xjfT-Si_ndwTmRnirgQ8yLklBf_wpEpxysg0JS44JDPSH7lIPUHUjH1wWyNV0gIK3oJB_-Ty6JRWpRqo5oLnlFnpK1_GXqBYKrpMWdFN0Qq4jIKw6ysusMFY6RlH8MWECwDHaYhmzKwWuMdtQyubZvY7kMiLObNCazfQBfUiIzTaEP64hUYp3gZWL1CiKx5zV05jnDQMzIXeEtRZUugteWzDfjNmVrJ4fNh7p173pPqi7xN044g9uRd323BQL91z80fSDhp7-cTLf_xb9x1o5fOF3UVklKu9yvD_Ak8mBQ4
  priority: 102
  providerName: Unpaywall
Title Optimized Algorithms and Hardware Implementation of Median Filter for Image Processing
URI https://link.springer.com/article/10.1007/s00034-023-02370-x
https://www.proquest.com/docview/2843243092
https://link.springer.com/content/pdf/10.1007/s00034-023-02370-x.pdf
UnpaywallVersion publishedVersion
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: AMVHM
  dateStart: 20110201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1531-5878
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB61yQF6QAVaNaVEe-iNrrC9zto-VMhESSsqQoUISk_WvlIiJU5oUyXw65ndrp32EnGwD_uUd9YzY3873wCcBipVOuvENDOa0TiJJRWMaSq5SoVAh0G5rCVfB_xyGH8ZdUY7MKhiYeyxykonOkWt58r-I_-IahRtPwuy6NPiN7VZoyy6WqXQED61gj53FGO70IwsM1YDmp97g-vvNa6QxS5NsoXbKBrDkQ-jccF0jquFog2zVxLQ9XNTtfE_a8h0D148lAvxZyWm0ydWqb8Pr7w7SfJH-b-GHVO-gb0nJINv4ec31AqzyV-jST69xUda_prdE1FqYlH7lbgzxFEEz3wUUknmY2LxG1GS_sSC6QQdW2yDmof4uAIc-ACG_d6P7iX12RSoYpwtaWhELGORBR0ZjnkUSsOjMQqKibSTRLFkHCu0EYG2HFwhtxhtNk5wp4VGcVRDh9Ao56U5ApIGGQsNV8p2tLhbqrlCMeO3VaKlZC0Iq4UrlKcatxkvpkVNkuwWu8CFLtxiF-sWfKj7LB6JNra2PqnkUfiX7r7YbJEWnFUy2lRvG-2sluN_TH68ffJ38DJyu8geRDuBxvLuwbxHz2Up27Cb9i_a0Mwvbq56bb85sbTLu3gfRjmWDQfX-c0_vAztiQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROFAOiL7UAC17aE9lVdu7WdsHhGghCgXSqoIqN7OvFKTECSQo0B_Hb-vssnboJeqFg0_2ruWZ2ZlZfzvfAHyIdKZN3uQ0t4ZRnnJFJWOGKqEzKTFh0L5ryUlHtM_4t26zuwD3VS2MO1ZZ-UTvqM1Qu3_kn9GNYuxnUZ7sjq6o6xrl0NWqhYYMrRXMjqcYC4UdR_Zuilu48c7hPur7Y5K0Dk6_tmnoMkA1E2xCYyu54jKPmiruiSRWViQ9_AAms2aacMUE3jBWRsZxU8XCYZd5L0UNxFYLXJ447zNY4oznuPlb-nLQ-fGzxjFy7tsyO3iPYvDthrIdX7znuWEoxkx3pRG9_Tc0zvLdGqJdgeWbciTvprLffxQFW2uwGtJXsvdgby9gwZYvYeURqeEr-PUdvdDg8o81ZK__G0U4uRiMiSwNcacEpvLaEk9JPAhVTyUZ9ojDi2RJWpcOvCeYSOMz6OlIqGPAiV_D2ZPI9Q0slsPSvgWSRTmLrdDaDXQ4X2aERrPCvVxqlGINiCvBFTpQm7sOG_2iJmX2wi5Q0IUXdnHbgE_1mNEDscfcpzcrfRRhkY-LmUk2YLvS0ez2vNm2az3-x8vX5798C5bbpyfHxfFh52gDnifeotwhuE1YnFzf2HeYNU3U-2CaBM6fejX8BQ1OJDQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RkFo4VH2qaaHdAz2VFbbXWduHCqGCgUJpD6XKzd2XC1LipCQowE_rr-vMxnboJeqFg0_r3bVmZmdmPTPfAGwGJjU268Y8c1bwOIk1V0JYrqVJlUKHwfiuJV9O5eFZ_LnX7S3Bn6YWhtIqG53oFbUdGvpHvo1qFG2_CLJou6zTIr7t5Tuj35w6SFGktWmnMRORY3czxevb-OPRHvL6fRTl-98_HfK6wwA3QooJD52KdayyoKvDUkahdjIq8eOFSrtJFGshccA6FVjCpQolxS2zMkHqh85IPJq47gNYSQjFnarU84M2gpHFviEzBfY4mt1eXbDjy_Y8KgxHa0lPEvDrf43i3NNtg7Nr8OiqGqmbqer379i__Ak8rh1XtjuTtKew5KpnsHYHzvA5_PiK-mdwcess2-3_QoJNzgdjpirLKD9gqi4d82DEg7reqWLDklGkSFUsv6CwPUMXGt9BHcfqCgZc-AWc3QtVX8JyNazcK2BpkInQSWNoIkX4UisNChTe4hKrtehA2BCuMDWoOfXW6BctHLMndoGELjyxi-sOfGjnjGaQHgvfXm_4UdTHe1zMhbEDWw2P5sOLVttq-fgfm79evPk7eIhnoDg5Oj1-A6uRFyjKfluH5cnlldtAd2mi33q5ZPDzvg_CX_fbIc4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BOSAOuywPbVeAfNgbuMR14iTHCqgQEuweKCqnyK9ARZtWJRUsv37HefEQQqz2kJPtiTyeeL54PN8A_PR0pE0c-DS2hlM_9BWVnBuqhI6kRMCgi6ol5xfidOCfDYPhEhzXuTDFbfc6JFnmNDiWpiw_nJn0sEl8K3hVKPob94Qefexg8zKsiAAReQtWBhe_e9fF8YojkI3YsKRNZTSIwqjKnXlf0Gv_9Aw6mzjpGqwuspn88yDH4xeuqP8VbD2J8gbKXWeRq45-esPv-L-zXIcvFVYlvdK4vsGSzTZg7QWD4SZc_cItZzJ6sob0xjfT-Si_ndwTmRnirgQ8yLklBf_wpEpxysg0JS44JDPSH7lIPUHUjH1wWyNV0gIK3oJB_-Ty6JRWpRqo5oLnlFnpK1_GXqBYKrpMWdFN0Qq4jIKw6ysusMFY6RlH8MWECwDHaYhmzKwWuMdtQyubZvY7kMiLObNCazfQBfUiIzTaEP64hUYp3gZWL1CiKx5zV05jnDQMzIXeEtRZUugteWzDfjNmVrJ4fNh7p173pPqi7xN044g9uRd323BQL91z80fSDhp7-cTLf_xb9x1o5fOF3UVklKu9yvD_Ak8mBQ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Algorithms+and+Hardware+Implementation+of+Median+Filter+for+Image+Processing&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Draz%2C+H.+H.&rft.au=Elashker%2C+N.+E.&rft.au=Mahmoud%2C+Mervat+M.+A.&rft.date=2023-09-01&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=42&rft.issue=9&rft.spage=5545&rft.epage=5558&rft_id=info:doi/10.1007%2Fs00034-023-02370-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00034_023_02370_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon