Real-coded Genetic Algorithm for system identification and tuning of a modified Model Reference Adaptive Controller for a hybrid tank system
Modeling and controlling of level process is one of the most common problems in the process industry. As the level process is nonlinear, Model Reference Adaptive Control (MRAC) strategy is employed in this paper. To design an MRAC with equally good transient and steady state performance is a challen...
Saved in:
Published in | Applied mathematical modelling Vol. 37; no. 6; pp. 3829 - 3847 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.03.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0307-904X |
DOI | 10.1016/j.apm.2012.08.019 |
Cover
Abstract | Modeling and controlling of level process is one of the most common problems in the process industry. As the level process is nonlinear, Model Reference Adaptive Control (MRAC) strategy is employed in this paper. To design an MRAC with equally good transient and steady state performance is a challenging task. The main objective of this paper is to design an MRAC with very good steady-state and transient performance for a nonlinear process such as the hybrid tank process. A modification to the MRAC scheme is proposed in this study. Real-coded Genetic Algorithm (RGA) is used to tune off-line the controller parameters. Three different versions of MRAC and also a Proportional Integral Derivative (PID) controller are employed, and their performances are compared by using MATLAB. Input–output data of a coupled tank setup of the hybrid tank process are obtained by using Lab VIEW and a system identification procedure is carried out. The accuracy of the resultant model is further improved by parameter tuning using RGA. The simulation results shows that the proposed controller gives better transient performance than the well-designed PID controller or the MRAC does; while giving equally good steady-state performance. It is concluded that the proposed controllers can be used to achieve very good transient and steady state performance during the control of any nonlinear process. |
---|---|
AbstractList | Modeling and controlling of level process is one of the most common problems in the process industry. As the level process is nonlinear, Model Reference Adaptive Control (MRAC) strategy is employed in this paper. To design an MRAC with equally good transient and steady state performance is a challenging task. The main objective of this paper is to design an MRAC with very good steady-state and transient performance for a nonlinear process such as the hybrid tank process. A modification to the MRAC scheme is proposed in this study. Real-coded Genetic Algorithm (RGA) is used to tune off-line the controller parameters. Three different versions of MRAC and also a Proportional Integral Derivative (PID) controller are employed, and their performances are compared by using MATLAB. Inputaoutput data of a coupled tank setup of the hybrid tank process are obtained by using Lab VIEW and a system identification procedure is carried out. The accuracy of the resultant model is further improved by parameter tuning using RGA. The simulation results shows that the proposed controller gives better transient performance than the well-designed PID controller or the MRAC does; while giving equally good steady-state performance. It is concluded that the proposed controllers can be used to achieve very good transient and steady state performance during the control of any nonlinear process. Modeling and controlling of level process is one of the most common problems in the process industry. As the level process is nonlinear, Model Reference Adaptive Control (MRAC) strategy is employed in this paper. To design an MRAC with equally good transient and steady state performance is a challenging task. The main objective of this paper is to design an MRAC with very good steady-state and transient performance for a nonlinear process such as the hybrid tank process. A modification to the MRAC scheme is proposed in this study. Real-coded Genetic Algorithm (RGA) is used to tune off-line the controller parameters. Three different versions of MRAC and also a Proportional Integral Derivative (PID) controller are employed, and their performances are compared by using MATLAB. Input-output data of a coupled tank setup of the hybrid tank process are obtained by using Lab VIEW and a system identification procedure is carried out. The accuracy of the resultant model is further improved by parameter tuning using RGA. The simulation results shows that the proposed controller gives better transient performance than the well-designed PID controller or the MRAC does; while giving equally good steady-state performance. It is concluded that the proposed controllers can be used to achieve very good transient and steady state performance during the control of any nonlinear process. |
Author | Radhakrishnan, T.K. Devaraj, D. Asan Mohideen, K. Saravanakumar, G. Valarmathi, K. |
Author_xml | – sequence: 1 givenname: K. surname: Asan Mohideen fullname: Asan Mohideen, K. email: asan4uall@gmail.com organization: Kalasalingam University, Anandnagar, Krishnankoil, Virudhunagar District, Tamil Nadu 626 126, India – sequence: 2 givenname: G. surname: Saravanakumar fullname: Saravanakumar, G. email: saravana.control@gmail.com organization: Kalasalingam University, Anandnagar, Krishnankoil, Virudhunagar District, Tamil Nadu 626 126, India – sequence: 3 givenname: K. surname: Valarmathi fullname: Valarmathi, K. email: krvalarmathi@yahoo.co.in organization: Kalasalingam University, Anandnagar, Krishnankoil, Virudhunagar District, Tamil Nadu 626 126, India – sequence: 4 givenname: D. surname: Devaraj fullname: Devaraj, D. email: deva230@yahoo.com organization: Kalasalingam University, Anandnagar, Krishnankoil, Virudhunagar District, Tamil Nadu 626 126, India – sequence: 5 givenname: T.K. surname: Radhakrishnan fullname: Radhakrishnan, T.K. email: radha@nitt.edu organization: National Institute of Technology, Thiruchirappalli, Tamil Nadu 620 015, India |
BookMark | eNqFkc1OJCEYRVloMv49wOxYzqZKKCiqOq46nRk10ZgYTWZHaPhQWgp6gDbpd_ChpW1Xs9AVIdxzSO49RgchBkDoJyUtJVScr1q1ntqO0K4lY0vo7AAdEUaGZkb43x_oOOcVIaSvtyP0dg_KNzoaMPgSAhSn8dw_xeTK84RtTDhvc4EJOwOhOOu0Ki4GrILBZRNceMLRYoWnaOpjldxWlcf3YCFB0IDnRq2LewW8iKGk6D2kD63Cz9tlctWiwsvnJ6fo0Cqf4ezzPEGPf34_LK6am7vL68X8ptFMsNJQQ4QwfOy0snxQjAgtRCf4YEegMANB1cDMsBw7zriinailjAMDtbSUE0vZCfq1965T_LeBXOTksgbvVYC4yZL2lPGRcd59H2W0F33H-6FGh31Up5hzAiu1Kx9tlaScl5TI3TxyJes8cjePJKOs81SS_keuk5tU2n7JXOwZqEW9Okgya7dr3LgEukgT3Rf0O2URrVA |
CitedBy_id | crossref_primary_10_1007_s12190_014_0853_7 crossref_primary_10_32628_IJSRSET1841124 crossref_primary_10_1016_j_jfranklin_2014_09_014 crossref_primary_10_1109_JPHOT_2021_3113924 crossref_primary_10_1016_j_jksues_2019_02_005 crossref_primary_10_1515_ijcre_2018_0199 crossref_primary_10_1007_s13369_017_2928_x crossref_primary_10_1109_TMECH_2017_2739122 crossref_primary_10_1016_j_apm_2016_05_019 crossref_primary_10_1007_s11071_015_2252_5 crossref_primary_10_1016_j_ijepes_2014_05_017 crossref_primary_10_1177_0959651813520149 crossref_primary_10_1016_j_mechatronics_2017_08_001 crossref_primary_10_21597_jist_819389 crossref_primary_10_4316_AECE_2015_01004 crossref_primary_10_32604_iasc_2023_030047 crossref_primary_10_17485_ijst_2017_v10i31_113893 crossref_primary_10_1371_journal_pone_0188527 crossref_primary_10_1016_j_isatra_2018_08_011 crossref_primary_10_1177_0954406215597955 crossref_primary_10_1177_0959651815595569 crossref_primary_10_3390_pr11123350 crossref_primary_10_1155_2014_351973 crossref_primary_10_1007_s40435_021_00806_3 crossref_primary_10_1515_ijcre_2018_0145 crossref_primary_10_1016_j_ijhydene_2019_11_238 crossref_primary_10_5772_56697 crossref_primary_10_1007_s42417_019_00090_8 crossref_primary_10_1049_ccs2_12058 crossref_primary_10_1080_09540091_2014_924902 crossref_primary_10_3390_electronics9071104 |
Cites_doi | 10.1016/S0165-0114(96)00022-X 10.1109/91.797977 10.1016/j.compchemeng.2008.01.010 10.1109/TAC.2010.2042983 10.1109/ACC.2000.879256 10.1109/9.100934 10.1109/21.179842 10.1109/TIE.2004.825229 10.1049/iet-epa:20070056 10.1049/ip-d.1980.0047 10.1109/41.633479 10.1016/j.apm.2008.11.006 10.1016/j.eswa.2010.09.118 10.1016/j.apm.2005.11.024 10.1504/IJCAET.2011.042354 10.1109/TIM.2007.895674 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Inc. |
Copyright_xml | – notice: 2012 Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7SP 7TB FR3 |
DOI | 10.1016/j.apm.2012.08.019 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EndPage | 3847 |
ExternalDocumentID | 10_1016_j_apm_2012_08_019 S0307904X12004891 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AAOAW AAQFI AAXUO ABAOU ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSW SSZ T5K TN5 WH7 ZMT ~02 ~G- AALRI AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABJNI ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB G-2 HZ~ MVM R2- SEW SSH WUQ XJT XPP 7SC 8FD ACLOT EFKBS JQ2 L7M L~C L~D ~HD 7SP 7TB FR3 |
ID | FETCH-LOGICAL-c363t-1d066d482caf47a306c662647f8e1e9e61a73d7b82434a126016873eabf140f13 |
IEDL.DBID | IXB |
ISSN | 0307-904X |
IngestDate | Sat Sep 27 18:23:54 EDT 2025 Sun Sep 28 08:27:46 EDT 2025 Tue Jul 01 05:16:23 EDT 2025 Thu Apr 24 22:56:38 EDT 2025 Fri Feb 23 02:30:55 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Nonlinear process control System identification Model Reference Adaptive Control Realcoded Genetic Algorithm |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-1d066d482caf47a306c662647f8e1e9e61a73d7b82434a126016873eabf140f13 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0307904X12004891 |
PQID | 1315652457 |
PQPubID | 23500 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1513483442 proquest_miscellaneous_1315652457 crossref_citationtrail_10_1016_j_apm_2012_08_019 crossref_primary_10_1016_j_apm_2012_08_019 elsevier_sciencedirect_doi_10_1016_j_apm_2012_08_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-15 |
PublicationDateYYYYMMDD | 2013-03-15 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Applied mathematical modelling |
PublicationYear | 2013 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | F. Lin, R.D. Brandt, G. Saikalis, Self-tuning of PID controllers by adaptive interaction, in: Proceedings of the 2000 American Control Conference ACC IEEE Cat No00CH36334, American Autom. Control Council. vol. 5, 2000, pp. 3676–3681. Stephanopoulos (b0120) 1984 Jain, Sivakumaran, Radhakrishnan (b0095) 2011; 38 Rajasekaran, Vijayalakshmi Pai (b0130) 2003 M. Brown, C.J. Harris, Adaptive neurofuzzy systems for difficult modeling and control problems, in: IEE Colloquium on Advances in Neural Networks for Control and Systems, 1994, pp. 8–10. Miller, Davison (b0090) 1991; AC-36 Valarmathi, Devaraj, Radhakrishnan (b0030) 2009; 33 Boroomand (b0045) 2009 Valarmathi, Kanmani, Devaraj, Radhakrishnan (b0115) 2011; 3 Daniel, Miller, Naghmeh (b0080) 2010; 55 Billings (b0020) 1980; 127 Goldberg (b0125) 1989 Graham, Goodwin (b0060) 1991; 36 Rodriguez Vasquez, Rivas Perez, Sotomayor Moriano, Peran Gonzalez (b0135) 2008; 32 Chao, Teng (b0105) 1997; 87 Datta, Ioannou (b0085) 1994; AC-39 Åström, Hagglund (b0005) 1994 Liu, Hsu (b0070) 2007; 1 Besharati Rad, Lo, Tsang (b0015) 1997; 44 Kristinsson, Dumont (b0035) 1992; 22 Aström, Wittenmark (b0055) 1989 Tsai (b0065) 2004; 51 Hu, Mann (b0110) 1999; 7 Ljung (b0010) 1999 Kamalasadan (b0075) 2007; 56 Chang (b0100) 2007; 31 Jiang, Wang (b0040) 2000; 17 Kamalasadan (10.1016/j.apm.2012.08.019_b0075) 2007; 56 Kristinsson (10.1016/j.apm.2012.08.019_b0035) 1992; 22 Boroomand (10.1016/j.apm.2012.08.019_b0045) 2009 Valarmathi (10.1016/j.apm.2012.08.019_b0115) 2011; 3 10.1016/j.apm.2012.08.019_b0025 Goldberg (10.1016/j.apm.2012.08.019_b0125) 1989 Liu (10.1016/j.apm.2012.08.019_b0070) 2007; 1 Åström (10.1016/j.apm.2012.08.019_b0005) 1994 Aström (10.1016/j.apm.2012.08.019_b0055) 1989 Graham (10.1016/j.apm.2012.08.019_b0060) 1991; 36 Chang (10.1016/j.apm.2012.08.019_b0100) 2007; 31 Stephanopoulos (10.1016/j.apm.2012.08.019_b0120) 1984 Daniel (10.1016/j.apm.2012.08.019_b0080) 2010; 55 Hu (10.1016/j.apm.2012.08.019_b0110) 1999; 7 Datta (10.1016/j.apm.2012.08.019_b0085) 1994; AC-39 Jiang (10.1016/j.apm.2012.08.019_b0040) 2000; 17 Rodriguez Vasquez (10.1016/j.apm.2012.08.019_b0135) 2008; 32 Valarmathi (10.1016/j.apm.2012.08.019_b0030) 2009; 33 Chao (10.1016/j.apm.2012.08.019_b0105) 1997; 87 Ljung (10.1016/j.apm.2012.08.019_b0010) 1999 Miller (10.1016/j.apm.2012.08.019_b0090) 1991; AC-36 Billings (10.1016/j.apm.2012.08.019_b0020) 1980; 127 Jain (10.1016/j.apm.2012.08.019_b0095) 2011; 38 Rajasekaran (10.1016/j.apm.2012.08.019_b0130) 2003 10.1016/j.apm.2012.08.019_b0050 Tsai (10.1016/j.apm.2012.08.019_b0065) 2004; 51 Besharati Rad (10.1016/j.apm.2012.08.019_b0015) 1997; 44 |
References_xml | – year: 1984 ident: b0120 article-title: Chemical Process Control: An Introduction to Theory and Practice – volume: AC-39 start-page: 2370 year: 1994 end-page: 2387 ident: b0085 article-title: Performance analysis and improvement in model reference adaptive control publication-title: IEEE Trans. – volume: AC-36 start-page: 66 year: 1991 end-page: 81 ident: b0090 article-title: An adaptive controller which provides an arbitrarily good transient and steady-state response publication-title: IEEE Trans. – reference: F. Lin, R.D. Brandt, G. Saikalis, Self-tuning of PID controllers by adaptive interaction, in: Proceedings of the 2000 American Control Conference ACC IEEE Cat No00CH36334, American Autom. Control Council. vol. 5, 2000, pp. 3676–3681. – reference: M. Brown, C.J. Harris, Adaptive neurofuzzy systems for difficult modeling and control problems, in: IEE Colloquium on Advances in Neural Networks for Control and Systems, 1994, pp. 8–10. – volume: 3 start-page: 443 year: 2011 end-page: 457 ident: b0115 article-title: Swarm intelligence based system identification and controller tuning publication-title: Int. J. Comput. Aid. Eng. Technol. – start-page: 2185 year: 2009 end-page: 2189 ident: b0045 article-title: On-line nonlinear systems identification of coupled tanks via fractional differential neural networks publication-title: Control Decision Conf. – volume: 32 start-page: 2839 year: 2008 end-page: 2848 ident: b0135 article-title: System identification of steam pressure in a fire-tube boiler publication-title: Comput. Chem. Eng. – volume: 55 start-page: 2014 year: 2010 end-page: 2029 ident: b0080 article-title: Model reference adaptive control using simultaneous probing, estimation, and control publication-title: IEEE Trans. Automat. Control – volume: 36 start-page: 1254 year: 1991 end-page: 1263 ident: b0060 article-title: Continuous time stochastic model reference adaptive control publication-title: IEEE Trans. Automat. Control – volume: 87 start-page: 141 year: 1997 end-page: 154 ident: b0105 article-title: A PD-like self-tuning fuzzy controller without steady-state error publication-title: Fuzzy sets and Systems – volume: 56 start-page: 1786 year: 2007 end-page: 1796 ident: b0075 article-title: A neural network parallel adaptive controller for dynamic system control publication-title: IEEE Trans. Instrum. Measure. – volume: 38 start-page: 4466 year: 2011 end-page: 4476 ident: b0095 article-title: Design of self-tuning fuzzy controllers for nonlinear systems publication-title: Expert Syst. Appl. – year: 1989 ident: b0055 article-title: Adaptive Control – volume: 31 start-page: 541 year: 2007 end-page: 550 ident: b0100 article-title: Nonlinear system identification and control using a real-coded genetic algorithm publication-title: Appl. Math. Model. – volume: 7 start-page: 521 year: 1999 end-page: 539 ident: b0110 article-title: New methodology for analytical and optimal design of fuzzy PID controllers publication-title: Fuzzy Syst. IEEE – volume: 44 start-page: 717 year: 1997 end-page: 725 ident: b0015 article-title: Self-tuning PID controller using Newton–Raphson search method publication-title: IEEE Trans. Ind. Electron. – year: 1999 ident: b0010 article-title: System Identification: Theory for the User – volume: 1 start-page: 815 year: 2007 end-page: 824 ident: b0070 article-title: Adaptive Controller design for a synchronous reluctance motor drive system with direct torque control publication-title: IET Electric Power Appl. – volume: 17 start-page: 150 year: 2000 end-page: 152 ident: b0040 article-title: Parameter estimation of nonlinear system based on genetic algorithm publication-title: Control Theory Appl. – year: 1994 ident: b0005 publication-title: PID controllers: theory, design, and tuning – volume: 33 start-page: 3392 year: 2009 end-page: 3401 ident: b0030 article-title: Real-coded genetic algorithm for system identification and controller tuning publication-title: Appl. Math. Model. – volume: 22 start-page: 1033 year: 1992 end-page: 1046 ident: b0035 article-title: System identification and control using genetic algorithms publication-title: IEEE Trans. Syst. Man Cybernet. – volume: 51 start-page: 330 year: 2004 end-page: 339 ident: b0065 article-title: Model reference adaptive predictive control for a variable frequency oil cooling machine publication-title: IEEE Trans. Ind. Electron. – year: 1989 ident: b0125 article-title: Genetic Algorithms in Search Optimization and Machine Learning – volume: 127 start-page: 272 year: 1980 end-page: 285 ident: b0020 article-title: Identification of Nonlinear systems, a survey publication-title: Proc. IEEE Part D – year: 2003 ident: b0130 publication-title: Neural networks, Fuzzy logic, and Genetic Algorithms Synthesis and Applications – volume: 87 start-page: 141 year: 1997 ident: 10.1016/j.apm.2012.08.019_b0105 article-title: A PD-like self-tuning fuzzy controller without steady-state error publication-title: Fuzzy sets and Systems doi: 10.1016/S0165-0114(96)00022-X – volume: 7 start-page: 521 issue: 5 year: 1999 ident: 10.1016/j.apm.2012.08.019_b0110 article-title: New methodology for analytical and optimal design of fuzzy PID controllers publication-title: Fuzzy Syst. IEEE doi: 10.1109/91.797977 – volume: 32 start-page: 2839 year: 2008 ident: 10.1016/j.apm.2012.08.019_b0135 article-title: System identification of steam pressure in a fire-tube boiler publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2008.01.010 – volume: 55 start-page: 2014 issue: 9 year: 2010 ident: 10.1016/j.apm.2012.08.019_b0080 article-title: Model reference adaptive control using simultaneous probing, estimation, and control publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2010.2042983 – ident: 10.1016/j.apm.2012.08.019_b0050 doi: 10.1109/ACC.2000.879256 – volume: 36 start-page: 1254 issue: 11 year: 1991 ident: 10.1016/j.apm.2012.08.019_b0060 article-title: Continuous time stochastic model reference adaptive control publication-title: IEEE Trans. Automat. Control doi: 10.1109/9.100934 – volume: 22 start-page: 1033 issue: 5 year: 1992 ident: 10.1016/j.apm.2012.08.019_b0035 article-title: System identification and control using genetic algorithms publication-title: IEEE Trans. Syst. Man Cybernet. doi: 10.1109/21.179842 – ident: 10.1016/j.apm.2012.08.019_b0025 – volume: 51 start-page: 330 issue: 2 year: 2004 ident: 10.1016/j.apm.2012.08.019_b0065 article-title: Model reference adaptive predictive control for a variable frequency oil cooling machine publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2004.825229 – start-page: 2185 year: 2009 ident: 10.1016/j.apm.2012.08.019_b0045 article-title: On-line nonlinear systems identification of coupled tanks via fractional differential neural networks publication-title: Control Decision Conf. – volume: 1 start-page: 815 issue: 5 year: 2007 ident: 10.1016/j.apm.2012.08.019_b0070 article-title: Adaptive Controller design for a synchronous reluctance motor drive system with direct torque control publication-title: IET Electric Power Appl. doi: 10.1049/iet-epa:20070056 – volume: AC-39 start-page: 2370 issue: 12 year: 1994 ident: 10.1016/j.apm.2012.08.019_b0085 article-title: Performance analysis and improvement in model reference adaptive control publication-title: IEEE Trans. – volume: 17 start-page: 150 issue: 1 year: 2000 ident: 10.1016/j.apm.2012.08.019_b0040 article-title: Parameter estimation of nonlinear system based on genetic algorithm publication-title: Control Theory Appl. – year: 1994 ident: 10.1016/j.apm.2012.08.019_b0005 – volume: 127 start-page: 272 year: 1980 ident: 10.1016/j.apm.2012.08.019_b0020 article-title: Identification of Nonlinear systems, a survey publication-title: Proc. IEEE Part D doi: 10.1049/ip-d.1980.0047 – volume: 44 start-page: 717 year: 1997 ident: 10.1016/j.apm.2012.08.019_b0015 article-title: Self-tuning PID controller using Newton–Raphson search method publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/41.633479 – volume: 33 start-page: 3392 year: 2009 ident: 10.1016/j.apm.2012.08.019_b0030 article-title: Real-coded genetic algorithm for system identification and controller tuning publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2008.11.006 – volume: AC-36 start-page: 66 issue: 1 year: 1991 ident: 10.1016/j.apm.2012.08.019_b0090 article-title: An adaptive controller which provides an arbitrarily good transient and steady-state response publication-title: IEEE Trans. – year: 1989 ident: 10.1016/j.apm.2012.08.019_b0125 – volume: 38 start-page: 4466 year: 2011 ident: 10.1016/j.apm.2012.08.019_b0095 article-title: Design of self-tuning fuzzy controllers for nonlinear systems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.09.118 – year: 1999 ident: 10.1016/j.apm.2012.08.019_b0010 – year: 1989 ident: 10.1016/j.apm.2012.08.019_b0055 – volume: 31 start-page: 541 year: 2007 ident: 10.1016/j.apm.2012.08.019_b0100 article-title: Nonlinear system identification and control using a real-coded genetic algorithm publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2005.11.024 – volume: 3 start-page: 443 year: 2011 ident: 10.1016/j.apm.2012.08.019_b0115 article-title: Swarm intelligence based system identification and controller tuning publication-title: Int. J. Comput. Aid. Eng. Technol. doi: 10.1504/IJCAET.2011.042354 – year: 1984 ident: 10.1016/j.apm.2012.08.019_b0120 – volume: 56 start-page: 1786 issue: 5 year: 2007 ident: 10.1016/j.apm.2012.08.019_b0075 article-title: A neural network parallel adaptive controller for dynamic system control publication-title: IEEE Trans. Instrum. Measure. doi: 10.1109/TIM.2007.895674 – year: 2003 ident: 10.1016/j.apm.2012.08.019_b0130 |
SSID | ssj0005904 |
Score | 2.287137 |
Snippet | Modeling and controlling of level process is one of the most common problems in the process industry. As the level process is nonlinear, Model Reference... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3829 |
SubjectTerms | Genetic algorithms Mathematical models Matlab Model Reference Adaptive Control Nonlinear process control Nonlinearity Proportional integral derivative Realcoded Genetic Algorithm System identification Tanks Tuning |
Title | Real-coded Genetic Algorithm for system identification and tuning of a modified Model Reference Adaptive Controller for a hybrid tank system |
URI | https://dx.doi.org/10.1016/j.apm.2012.08.019 https://www.proquest.com/docview/1315652457 https://www.proquest.com/docview/1513483442 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKe4FD1RYQbenKSJyQ0o1jO3aO21WrBUQPQKW9WU5s04Vtsmp3D730F_RHM-MkW4HQHrg6_og89njGnveGkPcsOJfqUCU6U-CgVCKHLeVlEqQvVKUc4yEGyF7mkyvxaSqnW2TcY2EwrLLT_a1Oj9q6Kxl2szlczGbDb7g8i1RMGQpaRwQ7okoRxDc9ewrzKFLRkyFi7f5lM8Z42QWC0fE6UJ9Gsp1_n01_ael49Fzskd3OZqSj9rf2yZavD8iLL2vC1buX5PErGHwJ4tMdRSZpKKWj-Y8GXP_rGwqGKW0pm-nMdeFBUSLU1o4uV3g3QptALb1pHHyETjBH2pyuaWjpyNkFakY6bmPb5_42dmvp9T2CvigYmb-6QV6Rq4vz7-NJ0iVaSCqe82XCHBgeTuisskEoC15ElYOjI1TQnvnC58wq7lSpM8GFZZGFTCvubRnAPwuMvybbdVP7N4RaXzoeZJn61AulUyucylIFjo51Vpb5IUn7KTZVx0KOyTDmpg83-2lAKgalYjBBJisOyYd1k0VLwbGpsujlZv5YRwaOiE3N3vUyNrC_8NHE1r5Z3RnGwcOVmZBqQx3JOF7Kiuzo_4Y_Js-zmGaDJ0y-JdvL25U_AWNnWQ7Is9MHNiA7o4-fJ5eDuLZ_A0uZAJk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHGgPFdBWpQ8wUk-VwsaxHTvH1Qq0lMehBWlvlhPbZemSrGD30Et_QX90Z5xkVapqD706fkSe8XhmPPMNIR9ZcC7VoUp0psBAqUQOR8rLJEhfqEo5xkMMkL3Kxzfi80RONsioz4XBsMpO9rcyPUrrrmXQ7eZgPp0OviJ7FqmYMCS0xgz2LYFlDoCpj3_-EedRpKJHQ8Tu_dNmDPKyc8xGR3-gPo5oO_--nP4S0_HuOd0hLzqlkQ7b_9olG77eI88vV4irjy_Jry-g8SWYoO4oQklDKx3OvjVg-9_eU9BMaYvZTKeuiw-KJKG2dnSxROcIbQK19L5x8BEmwSJpM7rCoaVDZ-coGumoDW6f-Yc4raW3PzDri4KW-b1b5BW5OT25Ho2TrtJCUvGcLxLmQPNwQmeVDUJZMCOqHCwdoYL2zBc-Z1Zxp0qdCS4sizBkWnFvywAGWmD8Ndmsm9q_IdT60vEgy9SnXiidWuFUliqwdKyzssz3Sdpvsak6GHKshjEzfbzZnQGqGKSKwQqZrNgnn1ZD5i0Gx7rOoqebecJIBu6IdcOOehobOGD4amJr3ywfDeNg4spMSLWmj2QcvbIie_t_yx-S7fH15YW5OLs6f0eeZbHmBk-YfE82Fw9L_wE0n0V5EDn7N_mWARo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-coded+Genetic+Algorithm+for+system+identification+and+tuning+of+a+modified+Model+Reference+Adaptive+Controller+for+a+hybrid+tank+system&rft.jtitle=Applied+mathematical+modelling&rft.au=Asan+Mohideen%2C+K.&rft.au=Saravanakumar%2C+G.&rft.au=Valarmathi%2C+K.&rft.au=Devaraj%2C+D.&rft.date=2013-03-15&rft.issn=0307-904X&rft.volume=37&rft.issue=6&rft.spage=3829&rft.epage=3847&rft_id=info:doi/10.1016%2Fj.apm.2012.08.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2012_08_019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |