Real-coded Genetic Algorithm for system identification and tuning of a modified Model Reference Adaptive Controller for a hybrid tank system

Modeling and controlling of level process is one of the most common problems in the process industry. As the level process is nonlinear, Model Reference Adaptive Control (MRAC) strategy is employed in this paper. To design an MRAC with equally good transient and steady state performance is a challen...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematical modelling Vol. 37; no. 6; pp. 3829 - 3847
Main Authors Asan Mohideen, K., Saravanakumar, G., Valarmathi, K., Devaraj, D., Radhakrishnan, T.K.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.03.2013
Subjects
Online AccessGet full text
ISSN0307-904X
DOI10.1016/j.apm.2012.08.019

Cover

Abstract Modeling and controlling of level process is one of the most common problems in the process industry. As the level process is nonlinear, Model Reference Adaptive Control (MRAC) strategy is employed in this paper. To design an MRAC with equally good transient and steady state performance is a challenging task. The main objective of this paper is to design an MRAC with very good steady-state and transient performance for a nonlinear process such as the hybrid tank process. A modification to the MRAC scheme is proposed in this study. Real-coded Genetic Algorithm (RGA) is used to tune off-line the controller parameters. Three different versions of MRAC and also a Proportional Integral Derivative (PID) controller are employed, and their performances are compared by using MATLAB. Input–output data of a coupled tank setup of the hybrid tank process are obtained by using Lab VIEW and a system identification procedure is carried out. The accuracy of the resultant model is further improved by parameter tuning using RGA. The simulation results shows that the proposed controller gives better transient performance than the well-designed PID controller or the MRAC does; while giving equally good steady-state performance. It is concluded that the proposed controllers can be used to achieve very good transient and steady state performance during the control of any nonlinear process.
AbstractList Modeling and controlling of level process is one of the most common problems in the process industry. As the level process is nonlinear, Model Reference Adaptive Control (MRAC) strategy is employed in this paper. To design an MRAC with equally good transient and steady state performance is a challenging task. The main objective of this paper is to design an MRAC with very good steady-state and transient performance for a nonlinear process such as the hybrid tank process. A modification to the MRAC scheme is proposed in this study. Real-coded Genetic Algorithm (RGA) is used to tune off-line the controller parameters. Three different versions of MRAC and also a Proportional Integral Derivative (PID) controller are employed, and their performances are compared by using MATLAB. Inputaoutput data of a coupled tank setup of the hybrid tank process are obtained by using Lab VIEW and a system identification procedure is carried out. The accuracy of the resultant model is further improved by parameter tuning using RGA. The simulation results shows that the proposed controller gives better transient performance than the well-designed PID controller or the MRAC does; while giving equally good steady-state performance. It is concluded that the proposed controllers can be used to achieve very good transient and steady state performance during the control of any nonlinear process.
Modeling and controlling of level process is one of the most common problems in the process industry. As the level process is nonlinear, Model Reference Adaptive Control (MRAC) strategy is employed in this paper. To design an MRAC with equally good transient and steady state performance is a challenging task. The main objective of this paper is to design an MRAC with very good steady-state and transient performance for a nonlinear process such as the hybrid tank process. A modification to the MRAC scheme is proposed in this study. Real-coded Genetic Algorithm (RGA) is used to tune off-line the controller parameters. Three different versions of MRAC and also a Proportional Integral Derivative (PID) controller are employed, and their performances are compared by using MATLAB. Input-output data of a coupled tank setup of the hybrid tank process are obtained by using Lab VIEW and a system identification procedure is carried out. The accuracy of the resultant model is further improved by parameter tuning using RGA. The simulation results shows that the proposed controller gives better transient performance than the well-designed PID controller or the MRAC does; while giving equally good steady-state performance. It is concluded that the proposed controllers can be used to achieve very good transient and steady state performance during the control of any nonlinear process.
Author Radhakrishnan, T.K.
Devaraj, D.
Asan Mohideen, K.
Saravanakumar, G.
Valarmathi, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Asan Mohideen
  fullname: Asan Mohideen, K.
  email: asan4uall@gmail.com
  organization: Kalasalingam University, Anandnagar, Krishnankoil, Virudhunagar District, Tamil Nadu 626 126, India
– sequence: 2
  givenname: G.
  surname: Saravanakumar
  fullname: Saravanakumar, G.
  email: saravana.control@gmail.com
  organization: Kalasalingam University, Anandnagar, Krishnankoil, Virudhunagar District, Tamil Nadu 626 126, India
– sequence: 3
  givenname: K.
  surname: Valarmathi
  fullname: Valarmathi, K.
  email: krvalarmathi@yahoo.co.in
  organization: Kalasalingam University, Anandnagar, Krishnankoil, Virudhunagar District, Tamil Nadu 626 126, India
– sequence: 4
  givenname: D.
  surname: Devaraj
  fullname: Devaraj, D.
  email: deva230@yahoo.com
  organization: Kalasalingam University, Anandnagar, Krishnankoil, Virudhunagar District, Tamil Nadu 626 126, India
– sequence: 5
  givenname: T.K.
  surname: Radhakrishnan
  fullname: Radhakrishnan, T.K.
  email: radha@nitt.edu
  organization: National Institute of Technology, Thiruchirappalli, Tamil Nadu 620 015, India
BookMark eNqFkc1OJCEYRVloMv49wOxYzqZKKCiqOq46nRk10ZgYTWZHaPhQWgp6gDbpd_ChpW1Xs9AVIdxzSO49RgchBkDoJyUtJVScr1q1ntqO0K4lY0vo7AAdEUaGZkb43x_oOOcVIaSvtyP0dg_KNzoaMPgSAhSn8dw_xeTK84RtTDhvc4EJOwOhOOu0Ki4GrILBZRNceMLRYoWnaOpjldxWlcf3YCFB0IDnRq2LewW8iKGk6D2kD63Cz9tlctWiwsvnJ6fo0Cqf4ezzPEGPf34_LK6am7vL68X8ptFMsNJQQ4QwfOy0snxQjAgtRCf4YEegMANB1cDMsBw7zriinailjAMDtbSUE0vZCfq1965T_LeBXOTksgbvVYC4yZL2lPGRcd59H2W0F33H-6FGh31Up5hzAiu1Kx9tlaScl5TI3TxyJes8cjePJKOs81SS_keuk5tU2n7JXOwZqEW9Okgya7dr3LgEukgT3Rf0O2URrVA
CitedBy_id crossref_primary_10_1007_s12190_014_0853_7
crossref_primary_10_32628_IJSRSET1841124
crossref_primary_10_1016_j_jfranklin_2014_09_014
crossref_primary_10_1109_JPHOT_2021_3113924
crossref_primary_10_1016_j_jksues_2019_02_005
crossref_primary_10_1515_ijcre_2018_0199
crossref_primary_10_1007_s13369_017_2928_x
crossref_primary_10_1109_TMECH_2017_2739122
crossref_primary_10_1016_j_apm_2016_05_019
crossref_primary_10_1007_s11071_015_2252_5
crossref_primary_10_1016_j_ijepes_2014_05_017
crossref_primary_10_1177_0959651813520149
crossref_primary_10_1016_j_mechatronics_2017_08_001
crossref_primary_10_21597_jist_819389
crossref_primary_10_4316_AECE_2015_01004
crossref_primary_10_32604_iasc_2023_030047
crossref_primary_10_17485_ijst_2017_v10i31_113893
crossref_primary_10_1371_journal_pone_0188527
crossref_primary_10_1016_j_isatra_2018_08_011
crossref_primary_10_1177_0954406215597955
crossref_primary_10_1177_0959651815595569
crossref_primary_10_3390_pr11123350
crossref_primary_10_1155_2014_351973
crossref_primary_10_1007_s40435_021_00806_3
crossref_primary_10_1515_ijcre_2018_0145
crossref_primary_10_1016_j_ijhydene_2019_11_238
crossref_primary_10_5772_56697
crossref_primary_10_1007_s42417_019_00090_8
crossref_primary_10_1049_ccs2_12058
crossref_primary_10_1080_09540091_2014_924902
crossref_primary_10_3390_electronics9071104
Cites_doi 10.1016/S0165-0114(96)00022-X
10.1109/91.797977
10.1016/j.compchemeng.2008.01.010
10.1109/TAC.2010.2042983
10.1109/ACC.2000.879256
10.1109/9.100934
10.1109/21.179842
10.1109/TIE.2004.825229
10.1049/iet-epa:20070056
10.1049/ip-d.1980.0047
10.1109/41.633479
10.1016/j.apm.2008.11.006
10.1016/j.eswa.2010.09.118
10.1016/j.apm.2005.11.024
10.1504/IJCAET.2011.042354
10.1109/TIM.2007.895674
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Copyright_xml – notice: 2012 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7SP
7TB
FR3
DOI 10.1016/j.apm.2012.08.019
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 3847
ExternalDocumentID 10_1016_j_apm_2012_08_019
S0307904X12004891
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AAOAW
AAQFI
AAXUO
ABAOU
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
ZMT
~02
~G-
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABJNI
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
G-2
HZ~
MVM
R2-
SEW
SSH
WUQ
XJT
XPP
7SC
8FD
ACLOT
EFKBS
JQ2
L7M
L~C
L~D
~HD
7SP
7TB
FR3
ID FETCH-LOGICAL-c363t-1d066d482caf47a306c662647f8e1e9e61a73d7b82434a126016873eabf140f13
IEDL.DBID IXB
ISSN 0307-904X
IngestDate Sat Sep 27 18:23:54 EDT 2025
Sun Sep 28 08:27:46 EDT 2025
Tue Jul 01 05:16:23 EDT 2025
Thu Apr 24 22:56:38 EDT 2025
Fri Feb 23 02:30:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Nonlinear process control
System identification
Model Reference Adaptive Control
Realcoded Genetic Algorithm
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-1d066d482caf47a306c662647f8e1e9e61a73d7b82434a126016873eabf140f13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0307904X12004891
PQID 1315652457
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_1513483442
proquest_miscellaneous_1315652457
crossref_citationtrail_10_1016_j_apm_2012_08_019
crossref_primary_10_1016_j_apm_2012_08_019
elsevier_sciencedirect_doi_10_1016_j_apm_2012_08_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-15
PublicationDateYYYYMMDD 2013-03-15
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied mathematical modelling
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References F. Lin, R.D. Brandt, G. Saikalis, Self-tuning of PID controllers by adaptive interaction, in: Proceedings of the 2000 American Control Conference ACC IEEE Cat No00CH36334, American Autom. Control Council. vol. 5, 2000, pp. 3676–3681.
Stephanopoulos (b0120) 1984
Jain, Sivakumaran, Radhakrishnan (b0095) 2011; 38
Rajasekaran, Vijayalakshmi Pai (b0130) 2003
M. Brown, C.J. Harris, Adaptive neurofuzzy systems for difficult modeling and control problems, in: IEE Colloquium on Advances in Neural Networks for Control and Systems, 1994, pp. 8–10.
Miller, Davison (b0090) 1991; AC-36
Valarmathi, Devaraj, Radhakrishnan (b0030) 2009; 33
Boroomand (b0045) 2009
Valarmathi, Kanmani, Devaraj, Radhakrishnan (b0115) 2011; 3
Daniel, Miller, Naghmeh (b0080) 2010; 55
Billings (b0020) 1980; 127
Goldberg (b0125) 1989
Graham, Goodwin (b0060) 1991; 36
Rodriguez Vasquez, Rivas Perez, Sotomayor Moriano, Peran Gonzalez (b0135) 2008; 32
Chao, Teng (b0105) 1997; 87
Datta, Ioannou (b0085) 1994; AC-39
Åström, Hagglund (b0005) 1994
Liu, Hsu (b0070) 2007; 1
Besharati Rad, Lo, Tsang (b0015) 1997; 44
Kristinsson, Dumont (b0035) 1992; 22
Aström, Wittenmark (b0055) 1989
Tsai (b0065) 2004; 51
Hu, Mann (b0110) 1999; 7
Ljung (b0010) 1999
Kamalasadan (b0075) 2007; 56
Chang (b0100) 2007; 31
Jiang, Wang (b0040) 2000; 17
Kamalasadan (10.1016/j.apm.2012.08.019_b0075) 2007; 56
Kristinsson (10.1016/j.apm.2012.08.019_b0035) 1992; 22
Boroomand (10.1016/j.apm.2012.08.019_b0045) 2009
Valarmathi (10.1016/j.apm.2012.08.019_b0115) 2011; 3
10.1016/j.apm.2012.08.019_b0025
Goldberg (10.1016/j.apm.2012.08.019_b0125) 1989
Liu (10.1016/j.apm.2012.08.019_b0070) 2007; 1
Åström (10.1016/j.apm.2012.08.019_b0005) 1994
Aström (10.1016/j.apm.2012.08.019_b0055) 1989
Graham (10.1016/j.apm.2012.08.019_b0060) 1991; 36
Chang (10.1016/j.apm.2012.08.019_b0100) 2007; 31
Stephanopoulos (10.1016/j.apm.2012.08.019_b0120) 1984
Daniel (10.1016/j.apm.2012.08.019_b0080) 2010; 55
Hu (10.1016/j.apm.2012.08.019_b0110) 1999; 7
Datta (10.1016/j.apm.2012.08.019_b0085) 1994; AC-39
Jiang (10.1016/j.apm.2012.08.019_b0040) 2000; 17
Rodriguez Vasquez (10.1016/j.apm.2012.08.019_b0135) 2008; 32
Valarmathi (10.1016/j.apm.2012.08.019_b0030) 2009; 33
Chao (10.1016/j.apm.2012.08.019_b0105) 1997; 87
Ljung (10.1016/j.apm.2012.08.019_b0010) 1999
Miller (10.1016/j.apm.2012.08.019_b0090) 1991; AC-36
Billings (10.1016/j.apm.2012.08.019_b0020) 1980; 127
Jain (10.1016/j.apm.2012.08.019_b0095) 2011; 38
Rajasekaran (10.1016/j.apm.2012.08.019_b0130) 2003
10.1016/j.apm.2012.08.019_b0050
Tsai (10.1016/j.apm.2012.08.019_b0065) 2004; 51
Besharati Rad (10.1016/j.apm.2012.08.019_b0015) 1997; 44
References_xml – year: 1984
  ident: b0120
  article-title: Chemical Process Control: An Introduction to Theory and Practice
– volume: AC-39
  start-page: 2370
  year: 1994
  end-page: 2387
  ident: b0085
  article-title: Performance analysis and improvement in model reference adaptive control
  publication-title: IEEE Trans.
– volume: AC-36
  start-page: 66
  year: 1991
  end-page: 81
  ident: b0090
  article-title: An adaptive controller which provides an arbitrarily good transient and steady-state response
  publication-title: IEEE Trans.
– reference: F. Lin, R.D. Brandt, G. Saikalis, Self-tuning of PID controllers by adaptive interaction, in: Proceedings of the 2000 American Control Conference ACC IEEE Cat No00CH36334, American Autom. Control Council. vol. 5, 2000, pp. 3676–3681.
– reference: M. Brown, C.J. Harris, Adaptive neurofuzzy systems for difficult modeling and control problems, in: IEE Colloquium on Advances in Neural Networks for Control and Systems, 1994, pp. 8–10.
– volume: 3
  start-page: 443
  year: 2011
  end-page: 457
  ident: b0115
  article-title: Swarm intelligence based system identification and controller tuning
  publication-title: Int. J. Comput. Aid. Eng. Technol.
– start-page: 2185
  year: 2009
  end-page: 2189
  ident: b0045
  article-title: On-line nonlinear systems identification of coupled tanks via fractional differential neural networks
  publication-title: Control Decision Conf.
– volume: 32
  start-page: 2839
  year: 2008
  end-page: 2848
  ident: b0135
  article-title: System identification of steam pressure in a fire-tube boiler
  publication-title: Comput. Chem. Eng.
– volume: 55
  start-page: 2014
  year: 2010
  end-page: 2029
  ident: b0080
  article-title: Model reference adaptive control using simultaneous probing, estimation, and control
  publication-title: IEEE Trans. Automat. Control
– volume: 36
  start-page: 1254
  year: 1991
  end-page: 1263
  ident: b0060
  article-title: Continuous time stochastic model reference adaptive control
  publication-title: IEEE Trans. Automat. Control
– volume: 87
  start-page: 141
  year: 1997
  end-page: 154
  ident: b0105
  article-title: A PD-like self-tuning fuzzy controller without steady-state error
  publication-title: Fuzzy sets and Systems
– volume: 56
  start-page: 1786
  year: 2007
  end-page: 1796
  ident: b0075
  article-title: A neural network parallel adaptive controller for dynamic system control
  publication-title: IEEE Trans. Instrum. Measure.
– volume: 38
  start-page: 4466
  year: 2011
  end-page: 4476
  ident: b0095
  article-title: Design of self-tuning fuzzy controllers for nonlinear systems
  publication-title: Expert Syst. Appl.
– year: 1989
  ident: b0055
  article-title: Adaptive Control
– volume: 31
  start-page: 541
  year: 2007
  end-page: 550
  ident: b0100
  article-title: Nonlinear system identification and control using a real-coded genetic algorithm
  publication-title: Appl. Math. Model.
– volume: 7
  start-page: 521
  year: 1999
  end-page: 539
  ident: b0110
  article-title: New methodology for analytical and optimal design of fuzzy PID controllers
  publication-title: Fuzzy Syst. IEEE
– volume: 44
  start-page: 717
  year: 1997
  end-page: 725
  ident: b0015
  article-title: Self-tuning PID controller using Newton–Raphson search method
  publication-title: IEEE Trans. Ind. Electron.
– year: 1999
  ident: b0010
  article-title: System Identification: Theory for the User
– volume: 1
  start-page: 815
  year: 2007
  end-page: 824
  ident: b0070
  article-title: Adaptive Controller design for a synchronous reluctance motor drive system with direct torque control
  publication-title: IET Electric Power Appl.
– volume: 17
  start-page: 150
  year: 2000
  end-page: 152
  ident: b0040
  article-title: Parameter estimation of nonlinear system based on genetic algorithm
  publication-title: Control Theory Appl.
– year: 1994
  ident: b0005
  publication-title: PID controllers: theory, design, and tuning
– volume: 33
  start-page: 3392
  year: 2009
  end-page: 3401
  ident: b0030
  article-title: Real-coded genetic algorithm for system identification and controller tuning
  publication-title: Appl. Math. Model.
– volume: 22
  start-page: 1033
  year: 1992
  end-page: 1046
  ident: b0035
  article-title: System identification and control using genetic algorithms
  publication-title: IEEE Trans. Syst. Man Cybernet.
– volume: 51
  start-page: 330
  year: 2004
  end-page: 339
  ident: b0065
  article-title: Model reference adaptive predictive control for a variable frequency oil cooling machine
  publication-title: IEEE Trans. Ind. Electron.
– year: 1989
  ident: b0125
  article-title: Genetic Algorithms in Search Optimization and Machine Learning
– volume: 127
  start-page: 272
  year: 1980
  end-page: 285
  ident: b0020
  article-title: Identification of Nonlinear systems, a survey
  publication-title: Proc. IEEE Part D
– year: 2003
  ident: b0130
  publication-title: Neural networks, Fuzzy logic, and Genetic Algorithms Synthesis and Applications
– volume: 87
  start-page: 141
  year: 1997
  ident: 10.1016/j.apm.2012.08.019_b0105
  article-title: A PD-like self-tuning fuzzy controller without steady-state error
  publication-title: Fuzzy sets and Systems
  doi: 10.1016/S0165-0114(96)00022-X
– volume: 7
  start-page: 521
  issue: 5
  year: 1999
  ident: 10.1016/j.apm.2012.08.019_b0110
  article-title: New methodology for analytical and optimal design of fuzzy PID controllers
  publication-title: Fuzzy Syst. IEEE
  doi: 10.1109/91.797977
– volume: 32
  start-page: 2839
  year: 2008
  ident: 10.1016/j.apm.2012.08.019_b0135
  article-title: System identification of steam pressure in a fire-tube boiler
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2008.01.010
– volume: 55
  start-page: 2014
  issue: 9
  year: 2010
  ident: 10.1016/j.apm.2012.08.019_b0080
  article-title: Model reference adaptive control using simultaneous probing, estimation, and control
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2010.2042983
– ident: 10.1016/j.apm.2012.08.019_b0050
  doi: 10.1109/ACC.2000.879256
– volume: 36
  start-page: 1254
  issue: 11
  year: 1991
  ident: 10.1016/j.apm.2012.08.019_b0060
  article-title: Continuous time stochastic model reference adaptive control
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.100934
– volume: 22
  start-page: 1033
  issue: 5
  year: 1992
  ident: 10.1016/j.apm.2012.08.019_b0035
  article-title: System identification and control using genetic algorithms
  publication-title: IEEE Trans. Syst. Man Cybernet.
  doi: 10.1109/21.179842
– ident: 10.1016/j.apm.2012.08.019_b0025
– volume: 51
  start-page: 330
  issue: 2
  year: 2004
  ident: 10.1016/j.apm.2012.08.019_b0065
  article-title: Model reference adaptive predictive control for a variable frequency oil cooling machine
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2004.825229
– start-page: 2185
  year: 2009
  ident: 10.1016/j.apm.2012.08.019_b0045
  article-title: On-line nonlinear systems identification of coupled tanks via fractional differential neural networks
  publication-title: Control Decision Conf.
– volume: 1
  start-page: 815
  issue: 5
  year: 2007
  ident: 10.1016/j.apm.2012.08.019_b0070
  article-title: Adaptive Controller design for a synchronous reluctance motor drive system with direct torque control
  publication-title: IET Electric Power Appl.
  doi: 10.1049/iet-epa:20070056
– volume: AC-39
  start-page: 2370
  issue: 12
  year: 1994
  ident: 10.1016/j.apm.2012.08.019_b0085
  article-title: Performance analysis and improvement in model reference adaptive control
  publication-title: IEEE Trans.
– volume: 17
  start-page: 150
  issue: 1
  year: 2000
  ident: 10.1016/j.apm.2012.08.019_b0040
  article-title: Parameter estimation of nonlinear system based on genetic algorithm
  publication-title: Control Theory Appl.
– year: 1994
  ident: 10.1016/j.apm.2012.08.019_b0005
– volume: 127
  start-page: 272
  year: 1980
  ident: 10.1016/j.apm.2012.08.019_b0020
  article-title: Identification of Nonlinear systems, a survey
  publication-title: Proc. IEEE Part D
  doi: 10.1049/ip-d.1980.0047
– volume: 44
  start-page: 717
  year: 1997
  ident: 10.1016/j.apm.2012.08.019_b0015
  article-title: Self-tuning PID controller using Newton–Raphson search method
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/41.633479
– volume: 33
  start-page: 3392
  year: 2009
  ident: 10.1016/j.apm.2012.08.019_b0030
  article-title: Real-coded genetic algorithm for system identification and controller tuning
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2008.11.006
– volume: AC-36
  start-page: 66
  issue: 1
  year: 1991
  ident: 10.1016/j.apm.2012.08.019_b0090
  article-title: An adaptive controller which provides an arbitrarily good transient and steady-state response
  publication-title: IEEE Trans.
– year: 1989
  ident: 10.1016/j.apm.2012.08.019_b0125
– volume: 38
  start-page: 4466
  year: 2011
  ident: 10.1016/j.apm.2012.08.019_b0095
  article-title: Design of self-tuning fuzzy controllers for nonlinear systems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.09.118
– year: 1999
  ident: 10.1016/j.apm.2012.08.019_b0010
– year: 1989
  ident: 10.1016/j.apm.2012.08.019_b0055
– volume: 31
  start-page: 541
  year: 2007
  ident: 10.1016/j.apm.2012.08.019_b0100
  article-title: Nonlinear system identification and control using a real-coded genetic algorithm
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2005.11.024
– volume: 3
  start-page: 443
  year: 2011
  ident: 10.1016/j.apm.2012.08.019_b0115
  article-title: Swarm intelligence based system identification and controller tuning
  publication-title: Int. J. Comput. Aid. Eng. Technol.
  doi: 10.1504/IJCAET.2011.042354
– year: 1984
  ident: 10.1016/j.apm.2012.08.019_b0120
– volume: 56
  start-page: 1786
  issue: 5
  year: 2007
  ident: 10.1016/j.apm.2012.08.019_b0075
  article-title: A neural network parallel adaptive controller for dynamic system control
  publication-title: IEEE Trans. Instrum. Measure.
  doi: 10.1109/TIM.2007.895674
– year: 2003
  ident: 10.1016/j.apm.2012.08.019_b0130
SSID ssj0005904
Score 2.287137
Snippet Modeling and controlling of level process is one of the most common problems in the process industry. As the level process is nonlinear, Model Reference...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3829
SubjectTerms Genetic algorithms
Mathematical models
Matlab
Model Reference Adaptive Control
Nonlinear process control
Nonlinearity
Proportional integral derivative
Realcoded Genetic Algorithm
System identification
Tanks
Tuning
Title Real-coded Genetic Algorithm for system identification and tuning of a modified Model Reference Adaptive Controller for a hybrid tank system
URI https://dx.doi.org/10.1016/j.apm.2012.08.019
https://www.proquest.com/docview/1315652457
https://www.proquest.com/docview/1513483442
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKe4FD1RYQbenKSJyQ0o1jO3aO21WrBUQPQKW9WU5s04Vtsmp3D730F_RHM-MkW4HQHrg6_og89njGnveGkPcsOJfqUCU6U-CgVCKHLeVlEqQvVKUc4yEGyF7mkyvxaSqnW2TcY2EwrLLT_a1Oj9q6Kxl2szlczGbDb7g8i1RMGQpaRwQ7okoRxDc9ewrzKFLRkyFi7f5lM8Z42QWC0fE6UJ9Gsp1_n01_ael49Fzskd3OZqSj9rf2yZavD8iLL2vC1buX5PErGHwJ4tMdRSZpKKWj-Y8GXP_rGwqGKW0pm-nMdeFBUSLU1o4uV3g3QptALb1pHHyETjBH2pyuaWjpyNkFakY6bmPb5_42dmvp9T2CvigYmb-6QV6Rq4vz7-NJ0iVaSCqe82XCHBgeTuisskEoC15ElYOjI1TQnvnC58wq7lSpM8GFZZGFTCvubRnAPwuMvybbdVP7N4RaXzoeZJn61AulUyucylIFjo51Vpb5IUn7KTZVx0KOyTDmpg83-2lAKgalYjBBJisOyYd1k0VLwbGpsujlZv5YRwaOiE3N3vUyNrC_8NHE1r5Z3RnGwcOVmZBqQx3JOF7Kiuzo_4Y_Js-zmGaDJ0y-JdvL25U_AWNnWQ7Is9MHNiA7o4-fJ5eDuLZ_A0uZAJk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHGgPFdBWpQ8wUk-VwsaxHTvH1Qq0lMehBWlvlhPbZemSrGD30Et_QX90Z5xkVapqD706fkSe8XhmPPMNIR9ZcC7VoUp0psBAqUQOR8rLJEhfqEo5xkMMkL3Kxzfi80RONsioz4XBsMpO9rcyPUrrrmXQ7eZgPp0OviJ7FqmYMCS0xgz2LYFlDoCpj3_-EedRpKJHQ8Tu_dNmDPKyc8xGR3-gPo5oO_--nP4S0_HuOd0hLzqlkQ7b_9olG77eI88vV4irjy_Jry-g8SWYoO4oQklDKx3OvjVg-9_eU9BMaYvZTKeuiw-KJKG2dnSxROcIbQK19L5x8BEmwSJpM7rCoaVDZ-coGumoDW6f-Yc4raW3PzDri4KW-b1b5BW5OT25Ho2TrtJCUvGcLxLmQPNwQmeVDUJZMCOqHCwdoYL2zBc-Z1Zxp0qdCS4sizBkWnFvywAGWmD8Ndmsm9q_IdT60vEgy9SnXiidWuFUliqwdKyzssz3Sdpvsak6GHKshjEzfbzZnQGqGKSKwQqZrNgnn1ZD5i0Gx7rOoqebecJIBu6IdcOOehobOGD4amJr3ywfDeNg4spMSLWmj2QcvbIie_t_yx-S7fH15YW5OLs6f0eeZbHmBk-YfE82Fw9L_wE0n0V5EDn7N_mWARo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-coded+Genetic+Algorithm+for+system+identification+and+tuning+of+a+modified+Model+Reference+Adaptive+Controller+for+a+hybrid+tank+system&rft.jtitle=Applied+mathematical+modelling&rft.au=Asan+Mohideen%2C+K.&rft.au=Saravanakumar%2C+G.&rft.au=Valarmathi%2C+K.&rft.au=Devaraj%2C+D.&rft.date=2013-03-15&rft.issn=0307-904X&rft.volume=37&rft.issue=6&rft.spage=3829&rft.epage=3847&rft_id=info:doi/10.1016%2Fj.apm.2012.08.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2012_08_019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon