The relative importance of model type and input features for water supply forecasting in snow-dominated basins of the southwestern US
This study focuses on five watersheds in the southwestern United States, where April–July (AMJJ) water supply forecasts (WSFs) inform water management. Climate change has altered long-relied-upon relationships between April 1st snow water equivalent (SWE) and AMJJ water supply, threatening the skill...
Saved in:
Published in | Journal of hydrology. Regional studies Vol. 60; p. 102548 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2025
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2214-5818 2214-5818 |
DOI | 10.1016/j.ejrh.2025.102548 |
Cover
Abstract | This study focuses on five watersheds in the southwestern United States, where April–July (AMJJ) water supply forecasts (WSFs) inform water management. Climate change has altered long-relied-upon relationships between April 1st snow water equivalent (SWE) and AMJJ water supply, threatening the skill of traditional forecasting approaches.
This work evaluates how the interaction between model type (e.g., multiple linear regression, random forest) and feature selection influences AMJJ WSF skill. Five machine learning model types are applied in each basin. A new wrapper-based feature selection method identifies the Best Feature Set—selected from a broad pool of station-based, meteorological, and climatological features—for each basin–model type combination. Results show that the most important features vary by both basin and model type, and that model types perform similarly when each is trained on its respective Best Feature Set.
April 1st SWE is most important in highly snow-dominated basins, while April 1st precipitation accumulation becomes more important in less snow-dominated systems. Station-based features from multiple lag times are consistently selected, suggesting that earlier observations provide additional predictive value. Among meteorological and climatological features, specific humidity and the Atlantic Multidecadal Oscillation are frequently selected across basins and model types, indicating broad predictive utility. Overall, results suggest that feature selection has a greater influence on forecast skill than model type choice.
[Display omitted]
•Feature importance varies by both basin and model type for AMJJ WSFs.•Feature selection influences forecast skill more than model type choice.•SWE is important in highly snow-dominated basins; PA in less snow-dominated basins.•Meteorological and climate features improve skill across basins and model types. |
---|---|
AbstractList | This study focuses on five watersheds in the southwestern United States, where April–July (AMJJ) water supply forecasts (WSFs) inform water management. Climate change has altered long-relied-upon relationships between April 1st snow water equivalent (SWE) and AMJJ water supply, threatening the skill of traditional forecasting approaches.
This work evaluates how the interaction between model type (e.g., multiple linear regression, random forest) and feature selection influences AMJJ WSF skill. Five machine learning model types are applied in each basin. A new wrapper-based feature selection method identifies the Best Feature Set—selected from a broad pool of station-based, meteorological, and climatological features—for each basin–model type combination. Results show that the most important features vary by both basin and model type, and that model types perform similarly when each is trained on its respective Best Feature Set.
April 1st SWE is most important in highly snow-dominated basins, while April 1st precipitation accumulation becomes more important in less snow-dominated systems. Station-based features from multiple lag times are consistently selected, suggesting that earlier observations provide additional predictive value. Among meteorological and climatological features, specific humidity and the Atlantic Multidecadal Oscillation are frequently selected across basins and model types, indicating broad predictive utility. Overall, results suggest that feature selection has a greater influence on forecast skill than model type choice.
[Display omitted]
•Feature importance varies by both basin and model type for AMJJ WSFs.•Feature selection influences forecast skill more than model type choice.•SWE is important in highly snow-dominated basins; PA in less snow-dominated basins.•Meteorological and climate features improve skill across basins and model types. Study region: This study focuses on five watersheds in the southwestern United States, where April–July (AMJJ) water supply forecasts (WSFs) inform water management. Climate change has altered long-relied-upon relationships between April 1st snow water equivalent (SWE) and AMJJ water supply, threatening the skill of traditional forecasting approaches. Study focus: This work evaluates how the interaction between model type (e.g., multiple linear regression, random forest) and feature selection influences AMJJ WSF skill. Five machine learning model types are applied in each basin. A new wrapper-based feature selection method identifies the Best Feature Set—selected from a broad pool of station-based, meteorological, and climatological features—for each basin–model type combination. Results show that the most important features vary by both basin and model type, and that model types perform similarly when each is trained on its respective Best Feature Set. New hydrologic insights: April 1st SWE is most important in highly snow-dominated basins, while April 1st precipitation accumulation becomes more important in less snow-dominated systems. Station-based features from multiple lag times are consistently selected, suggesting that earlier observations provide additional predictive value. Among meteorological and climatological features, specific humidity and the Atlantic Multidecadal Oscillation are frequently selected across basins and model types, indicating broad predictive utility. Overall, results suggest that feature selection has a greater influence on forecast skill than model type choice. |
ArticleNumber | 102548 |
Author | Kasprzyk, Joseph Walker, Sydney D. Zagona, Edith Livneh, Ben Pernat, Madeline R. |
Author_xml | – sequence: 1 givenname: Madeline R. orcidid: 0000-0003-2814-3428 surname: Pernat fullname: Pernat, Madeline R. email: madeline.pernat@colorado.edu organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA – sequence: 2 givenname: Joseph orcidid: 0000-0002-6344-6478 surname: Kasprzyk fullname: Kasprzyk, Joseph email: joseph.kasprzyk@colorado.edu organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA – sequence: 3 givenname: Edith orcidid: 0000-0003-1333-0589 surname: Zagona fullname: Zagona, Edith email: edith.zagona@colorado.edu organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA – sequence: 4 givenname: Sydney D. surname: Walker fullname: Walker, Sydney D. email: sydney.walker@colorado.edu organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA – sequence: 5 givenname: Ben orcidid: 0000-0001-5445-2473 surname: Livneh fullname: Livneh, Ben email: ben.livneh@colorado.edu organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA |
BookMark | eNp9kU1qHDEQhUVwILbjC2SlC_RYP91qNWQTjO0YDFnEXgv9VHvU9EiNpPEwB_C9rc6YkFVWJR71virVu0BnIQZA6BslG0qouJ42MKXthhHWVYF1rfyEzhmjbdNJKs_-eX9BVzlPhBAqezkIco7enraAE8y6-FfAfrfEVHSwgOOId9HBjMtxAayDwz4s-4JH0GWfIOMxJnzQBRLO-2WZj6sAVufiw0vtxTnEQ-Pizofa5LDR2Ye8YkudmOO-bA-Qqz3g599f0edRzxmuPuoler67fbr52Tz-un-4-fHYWC54aaglgzCil45oAKYZ54y0ggKXwjFphOWEGm3cAHbsQAzd2BFrZcs5tAYEv0QPJ66LelJL8judjipqr_4IMb0onYq3MyhiXLeSe9YOLQcwTuvesJFxNzDa28piJ5ZNMecE418eJWrNRU1qzUWtuahTLtX0_WSC-stXD0ll66He2_l6vFLX8P-zvwO2e5rz |
Cites_doi | 10.1007/s11269-019-02273-0 10.1175/BAMS-D-22-0146.1 10.3390/w15040620 10.1111/1752-1688.13007 10.1038/s43247-022-00532-4 10.1109/MIPRO.2015.7160458 10.1186/1758-2946-6-10 10.3389/fbinf.2022.927312 10.1175/1520-0442(2003)16<1249:AQEOEI>2.0.CO;2 10.1016/j.jhydrol.2022.128599 10.1111/1752-1688.12746 10.1126/science.222.4629.1195 10.1002/2016GL069690 10.3390/w14244029 10.1007/s10994-018-5748-7 10.3390/rs13061097 10.1016/j.jhydrol.2025.133465 10.1175/WCAS-D-18-0130.1 10.1038/nature04141 10.1029/2010WR009278 10.3390/su14138209 10.1111/j.1752-1688.2012.00641.x 10.1007/s11269-021-03016-w 10.1029/2008WR006855 10.1002/2017GL072524 10.1023/A:1022627411411 10.4296/cwrj3501001 10.1109/ACCESS.2019.2936989 10.6029/smartcr.2014.03.007 10.1073/pnas.0912391107 10.1007/s11269-022-03410-y 10.1002/2017GL073551 10.5194/hess-20-2611-2016 10.1109/ICDM.2002.1183917 10.3390/geosciences11030128 10.1175/JCLI-D-21-0603.1 10.3389/fenvs.2022.754597 10.1175/1525-7541(2004)005<0896:EOOWUS>2.0.CO;2 10.1007/s12145-020-00450-z 10.5194/hess-26-4013-2022 10.1016/j.jhydrol.2018.07.004 10.3390/w15061147 10.1016/j.jhydrol.2019.123981 10.5194/hess-28-1711-2024 10.1002/2017GL076043 10.3390/hydrology9120226 10.1038/s41558-020-0754-8 10.1029/97JC01736 10.1007/s42979-021-00592-x 10.3390/w15142572 10.1126/science.aay9187 10.1038/s43247-023-00751-3 10.1029/2005WR004381 10.1016/j.jhydrol.2022.127445 10.1016/j.jhydrol.2011.10.039 10.1023/A:1014217317898 10.1186/1471-2105-7-91 10.1029/2012WR011949 10.1073/pnas.0306738101 10.1002/jgrd.50326 10.1016/j.jenvman.2021.112625 10.1214/09-SS054 10.1016/S0004-3702(97)00043-X 10.1016/j.jhydrol.2016.03.017 10.1111/1752-1688.13147 10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2 10.1016/j.jclepro.2024.140715 10.1016/j.jhydrol.2023.129480 10.1016/j.catena.2019.104421 10.5194/adgeo-45-201-2018 10.1175/JHM-D-21-0229.1 10.1002/hyp.14619 10.1023/A:1010933404324 10.5194/hess-25-2997-2021 10.1029/2000WR900305 10.1007/s10994-006-6226-1 10.3390/w11071399 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.ejrh.2025.102548 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2214-5818 |
ExternalDocumentID | oai_doaj_org_article_0bd561e3724943eebdaa7b2f23d9217c 10_1016_j_ejrh_2025_102548 S2214581825003738 |
GroupedDBID | 0R~ 4.4 457 5VS 6I. AAEDT AAEDW AAFTH AAHBH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ KQ8 M41 M~E O9- OK1 RIG ROL SSZ AAYXX CITATION |
ID | FETCH-LOGICAL-c363t-1c096b678d0aee2a23320461e386d28b6c301babd9ecf5e695f50cc8433e4be63 |
IEDL.DBID | DOA |
ISSN | 2214-5818 |
IngestDate | Wed Aug 27 01:31:28 EDT 2025 Thu Jul 31 00:36:40 EDT 2025 Sat Aug 23 17:12:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Feature selection ERT SVR FFS MLR Southwestern United States PDO SWE WIND NSE WY AMO ENSO Seasonal forecasting Nested cross-validation WSF SOI Water supply forecasting PCA PA Climate change AMJJ CV RF SNOTEL RRMSE TMP Machine learning SEFS SPFH NAO PCR |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-1c096b678d0aee2a23320461e386d28b6c301babd9ecf5e695f50cc8433e4be63 |
ORCID | 0000-0001-5445-2473 0000-0003-2814-3428 0000-0002-6344-6478 0000-0003-1333-0589 |
OpenAccessLink | https://doaj.org/article/0bd561e3724943eebdaa7b2f23d9217c |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0bd561e3724943eebdaa7b2f23d9217c crossref_primary_10_1016_j_ejrh_2025_102548 elsevier_sciencedirect_doi_10_1016_j_ejrh_2025_102548 |
PublicationCentury | 2000 |
PublicationDate | August 2025 2025-08-00 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hydrology. Regional studies |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Modi, P.A., Small, E.E., Kasprzyk, J., Livneh, B., 2022. Investigating the Role of Snow Water Equivalent on Streamflow Predictability during Drought. Page, Dilling (bib71) 2019; 11 Papacharalampous, Tyralis (bib72) 2018; 45 Balson, Ward (bib7) 2022; 36 Sánchez-Maroño, Alonso-Betanzos, Tombilla-Sanromán (bib84) 2007 Akbarian, Saghafian, Golian (bib3) 2023; 620 Pagano, Garen, Sorooshian (bib70) 2004; 5 Barlow, Nigam, Berbery (bib8) 2001; 14 Nevo, Morin, Gerzi Rosenthal, Metzger, Barshai, Weitzner, Voloshin, Kratzert, Elidan, Dror, Begelman, Nearing, Shalev, Noga, Shavitt, Yuklea, Royz, Giladi, Peled Levi, Reich, Gilon, Maor, Timnat, Shechter, Anisimov, Gigi, Levin, Moshe, Ben-Haim, Hassidim, Matias (bib67) 2022; 26 Kundzewicz, Szwed, Pińskwar (bib49) 2019; 11 Sengupta, A., Singh, B., DeFlorio, M.J., Raymond, C., Robertson, A.W., Zeng, X., Waliser, D.E., Jones, J., 2022. Advances in Subseasonal to Seasonal Prediction Relevant to Water Management in the Western United States. Szczepanek, R., 2022. Daily Streamflow Forecasting in Mountainous Catchment Using XGBoost, LightGBM and CatBoost. Hydrology. Harpold, Brooks, Rajagopal, Heidbuchel, Jardine, Stielstra (bib34) 2012; 48 Cawley, G.C., Talbot, N.L.C., 2010. On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation 29. Weekaew, Ditthakit, Pham, Kittiphattanabawon, Linh (bib98) 2022; 14 Coleman, Budikova (bib20) 2013; 118 Tsamardinos, Borboudakis, Katsogridakis, Pratikakis, Christophides (bib93) 2019; 108 Whitfield, Moore, Fleming, Zawadzki (bib100) 2010; 35 Mahesh (bib57) 2019 Adnan, Liang, Trajkovic, Zounemat-Kermani, Li, Kisi (bib1) 2019; 577 Zakaria, Shabri (bib104) 2012; 6 . Cayan, Das, Pierce, Barnett, Tyree, Gershunov (bib17) 2010; 107 Zhao, C., Geng, X., Zhang, W., Qi, L., 2022. Atlantic Multidecadal Oscillation Modulates ENSO Atmospheric Anomaly Amplitude in the Tropical Pacific. Fleming, S.W., 2021. New River Forecast Model Integrates Artificial Intelligence to Support Better Water Management in the West [WWW Document]. Farmers.gov. URL Pudjihartono, Fadason, Kempa-Liehr, O’Sullivan (bib77) 2022; 2 Hurrell, Kushnir, Ottersen, Visbeck (bib39) 2003 Ahmed, Sayed, Abdoulhalik, Moutari, Oyedele (bib2) 2024; 441 Wanner, Brönnimann, Casty, Gyalistras, Luterbacher, Schmutz, Stephenson, Xoplaki (bib97) 2001; 22 Huang, B., Thorne, P.W., Banzon, V.F., Boyer, T., Chepurin, G., Lawrimore, J.H., Menne, M.J., Smith, T.M., Vose, R.S., Zhang, H.M., 2017. NOAA Extended Reconstructed Sea Surface Temperature (ERSST) (Version 5). Tongal, Booij (bib91) 2018; 564 Fleming, Garen (bib27) 2022; 58 Jović, A., Brkić, K., Bogunović, N., 2015. A review of feature selection methods with applications, in: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Presented at the 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205. (accessed 2.27.23). Hanley, D.E., Bourassa, M.A., O’Brien, J.J., Smith, S.R., Spade, E.R., 2003. A Quantitative Evaluation of ENSO Indices. Sarker (bib85) 2021; 2 Barnett, Adam, Lettenmaier (bib9) 2005; 438 Gottfried, Neary, Ffolliott (bib31) 2002 Levine, McPhaden, Frierson (bib51) 2017; 44 Yue, Wang, Zhang, Yang (bib103) 2025; 660 Bishay, Bjarke, Modi, Pflug, Livneh (bib11) 2023; 15 Molina, L.C., Belanche, L., Nebot, A., 2002. Feature selection algorithms: a survey and experimental evaluation, in: 2002 IEEE International Conference on Data Mining, 2002. Proceedings. Presented at the 2002 IEEE International Conference on Data Mining, 2002. Proceedings., pp. 306–313. Liang, Chen, Fang, Kaldybayev (bib54) 2023; 49 Arlot, Celisse (bib4) 2010; 4 Norel, Kałczyński, Pińskwar, Krawiec, Kundzewicz (bib69) 2021; 11 Varma, Simon (bib95) 2006; 7 Hale, Jennings, Musselman, Livneh, Molotch (bib32) 2023; 4 Reis, da Silva, Fernandes Filho, Moreira, Veloso, Fraga, Pinheiro (bib82) 2021; 290 Bossert, P., Martinez, M., Duffy, D., Pavón, J., Casey, C., Klise, G., McGann, J., 2004. The Rio Jemez Background Papers on the Adjudication Proceeding and Water Rights Issues. McCabe, Palecki, Betancourt (bib58) 2004; 101 Kamalov, Elnaffar, Cherukuri, Jonnalagadda (bib43) 2024 Mosaffa, Sadeghi, Mallakpour, Naghdyzadegan Jahromi, Pourghasemi (bib63) 2022 Raschka, S., 2020. Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. Heddam (bib35) 2021 West, Quinn, Horswell (bib99) 2022; 10 Li, Wrzesien, Durand, Adam, Lettenmaier (bib53) 2017; 44 Rice, Bales, Painter, Dozier (bib83) 2011; 47 Broxton, van Leeuwen, Svoma, Walter, Biederman (bib14) 2023; 59 Bureau of Reclamation, 2021. Water Availability: Monitoring and Forecasting, Knowledge Stream. Singh, Kumar, Ali, Al-Ansari, Vishwakarma, Kushwaha, Panda, Sagar, Mirzania, Elbeltagi, Kuriqi, Heddam (bib88) 2022; 14 Sprenger, Carroll, Marchetti, Bern, Beria, Brown, Newman, Beutler, Williams (bib89) 2024; 28 Lima, Cannon, Hsieh (bib55) 2016; 537 Xu, Chen, Zhang, Xiong, Chen (bib102) 2022; 614 Duan, Maskey, Chaffe, Luo, He, Wu, Hou (bib23) 2021; 13 Hunsaker, Whitaker, Bales (bib38) 2012; 48 Xia, Mitchell, Ek, Sheffield, Cosgrove, Wood, Luo, Alonge, Wei, Meng, Livneh, Lettenmaier, Koren, Duan, Mo, Fan, Mocko (bib101) 2012; 117 Neilson, Strong, Horsburgh (bib66) 2021 Element Water Consulting, WaterDM, 2015. Municipal Water Efficiency Plan Town of Carbondale, Colorado. City of Sedona, 2013. Sedona Community Plan. USDA Forest Service, n.d. Your Watersheds [WWW Document]. S. Juan Natl. For. - Resour. Manag. URL Drucker, Burges, Kaufman, Smola, Vapnik (bib22) 1996 Li, Qian, Yang, Dang, Hong (bib52) 2023; 37 NCAR Climate Analysis Section, Update regularly.Hurrell North Atlantic Oscillation (NAO) Index (PC-based). Patel, Hardaha, Seetpal, Madankar (bib73) 2016; 2 Clark, Serreze, McCabe (bib19) 2001; 37 Helms, D., Phillips, S.E., Reich, P.F., 2008. The History of Snow Survey and Water Supply Forecasting: Interviews with U.S. Department of Agriculture Pioneers. U.S. Department of Agriculture. Livneh, Badger (bib56) 2020; 10 Barnhart, Molotch, Livneh, Harpold, Knowles, Schneider (bib10) 2016; 43 Kumar, Kedam, Sharma, Mehta, Caloiero (bib48) 2023; 15 National Weather Service, 1951. (Stand Tahiti - Stand Darwin) Sea Level Pressure. Krstajic, Buturovic, Leahy, Thomas (bib46) 2014; 6 (accessed 2.19.23). Shortridge, Guikema, Zaitchik (bib87) 2016; 20 Kalra, Ahmad (bib42) 2009; 45 Badyalina, Shabri (bib5) 2013 Farmer, Kiang, Feaster, Eng (bib25) 2019 Nguyen, Le, Anh, Kim, Bae (bib68) 2022; 606 Geurts, Ernst, Wehenkel (bib29) 2006; 63 Lehner, Wood, Llewellyn, Blatchford, Goodbody, Pappenberger (bib50) 2017; 44 Pham, Luo, Finley (bib75) 2021; 25 Kumar (bib47) 2014; 4 Moghaddam, Rahmati, Panahi, Tiefenbacher, Darabi, Haghizadeh, Haghighi, Nalivan, Tien Bui (bib61) 2020; 187 Fleming, Goodbody (bib28) 2019; 7 Rasouli, Hsieh, Cannon (bib81) 2012; 414–415 Poul, Shourian, Ebrahimi (bib76) 2019; 33 Qian, Zhao, Yang, Li, Wang, Bai (bib78) 2022; 36 Tootle, Piechota, Singh (bib92) 2005; 41 Kohavi, John (bib45) 1997; 97 Breiman (bib13) 2001; 45 Milly, Dunne (bib59) 2020; 367 Kaplan, Cane, Kushnir, Clement, Blumenthal, Rajagopalan (bib44) 1998; 103 Baker, Wood, Rajagopalan (bib6) 2019; 55 Rasmusson, Wallace (bib80) 1983; 222 Cortes, Vapnik (bib21) 1995; 20 Ghobadi, Kang (bib30) 2023; 15 Hussain, Khan (bib40) 2020; 13 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib74) 2011; 12 Wahl, Zorita, Diaz, Hoell (bib96) 2022; 3 West (10.1016/j.ejrh.2025.102548_bib99) 2022; 10 Pagano (10.1016/j.ejrh.2025.102548_bib70) 2004; 5 Neilson (10.1016/j.ejrh.2025.102548_bib66) 2021 Ahmed (10.1016/j.ejrh.2025.102548_bib2) 2024; 441 Poul (10.1016/j.ejrh.2025.102548_bib76) 2019; 33 Nguyen (10.1016/j.ejrh.2025.102548_bib68) 2022; 606 Kamalov (10.1016/j.ejrh.2025.102548_bib43) 2024 10.1016/j.ejrh.2025.102548_bib64 10.1016/j.ejrh.2025.102548_bib105 10.1016/j.ejrh.2025.102548_bib65 10.1016/j.ejrh.2025.102548_bib62 10.1016/j.ejrh.2025.102548_bib60 Pham (10.1016/j.ejrh.2025.102548_bib75) 2021; 25 Sarker (10.1016/j.ejrh.2025.102548_bib85) 2021; 2 Kohavi (10.1016/j.ejrh.2025.102548_bib45) 1997; 97 Zakaria (10.1016/j.ejrh.2025.102548_bib104) 2012; 6 Levine (10.1016/j.ejrh.2025.102548_bib51) 2017; 44 Krstajic (10.1016/j.ejrh.2025.102548_bib46) 2014; 6 Xu (10.1016/j.ejrh.2025.102548_bib102) 2022; 614 10.1016/j.ejrh.2025.102548_bib26 Hurrell (10.1016/j.ejrh.2025.102548_bib39) 2003 Norel (10.1016/j.ejrh.2025.102548_bib69) 2021; 11 10.1016/j.ejrh.2025.102548_bib36 10.1016/j.ejrh.2025.102548_bib33 Pedregosa (10.1016/j.ejrh.2025.102548_bib74) 2011; 12 Rice (10.1016/j.ejrh.2025.102548_bib83) 2011; 47 Adnan (10.1016/j.ejrh.2025.102548_bib1) 2019; 577 Arlot (10.1016/j.ejrh.2025.102548_bib4) 2010; 4 Weekaew (10.1016/j.ejrh.2025.102548_bib98) 2022; 14 Xia (10.1016/j.ejrh.2025.102548_bib101) 2012; 117 Kalra (10.1016/j.ejrh.2025.102548_bib42) 2009; 45 Farmer (10.1016/j.ejrh.2025.102548_bib25) 2019 Sprenger (10.1016/j.ejrh.2025.102548_bib89) 2024; 28 Ghobadi (10.1016/j.ejrh.2025.102548_bib30) 2023; 15 Tsamardinos (10.1016/j.ejrh.2025.102548_bib93) 2019; 108 Cayan (10.1016/j.ejrh.2025.102548_bib17) 2010; 107 Baker (10.1016/j.ejrh.2025.102548_bib6) 2019; 55 10.1016/j.ejrh.2025.102548_bib37 Wanner (10.1016/j.ejrh.2025.102548_bib97) 2001; 22 Mahesh (10.1016/j.ejrh.2025.102548_bib57) 2019 McCabe (10.1016/j.ejrh.2025.102548_bib58) 2004; 101 10.1016/j.ejrh.2025.102548_bib41 Papacharalampous (10.1016/j.ejrh.2025.102548_bib72) 2018; 45 Page (10.1016/j.ejrh.2025.102548_bib71) 2019; 11 Li (10.1016/j.ejrh.2025.102548_bib52) 2023; 37 Tootle (10.1016/j.ejrh.2025.102548_bib92) 2005; 41 Pudjihartono (10.1016/j.ejrh.2025.102548_bib77) 2022; 2 Barlow (10.1016/j.ejrh.2025.102548_bib8) 2001; 14 Heddam (10.1016/j.ejrh.2025.102548_bib35) 2021 Liang (10.1016/j.ejrh.2025.102548_bib54) 2023; 49 Rasmusson (10.1016/j.ejrh.2025.102548_bib80) 1983; 222 Reis (10.1016/j.ejrh.2025.102548_bib82) 2021; 290 Fleming (10.1016/j.ejrh.2025.102548_bib28) 2019; 7 Balson (10.1016/j.ejrh.2025.102548_bib7) 2022; 36 Duan (10.1016/j.ejrh.2025.102548_bib23) 2021; 13 Bishay (10.1016/j.ejrh.2025.102548_bib11) 2023; 15 10.1016/j.ejrh.2025.102548_bib12 Hale (10.1016/j.ejrh.2025.102548_bib32) 2023; 4 Harpold (10.1016/j.ejrh.2025.102548_bib34) 2012; 48 Badyalina (10.1016/j.ejrh.2025.102548_bib5) 2013 Breiman (10.1016/j.ejrh.2025.102548_bib13) 2001; 45 Milly (10.1016/j.ejrh.2025.102548_bib59) 2020; 367 Sánchez-Maroño (10.1016/j.ejrh.2025.102548_bib84) 2007 10.1016/j.ejrh.2025.102548_bib94 10.1016/j.ejrh.2025.102548_bib90 Akbarian (10.1016/j.ejrh.2025.102548_bib3) 2023; 620 Clark (10.1016/j.ejrh.2025.102548_bib19) 2001; 37 Hunsaker (10.1016/j.ejrh.2025.102548_bib38) 2012; 48 Yue (10.1016/j.ejrh.2025.102548_bib103) 2025; 660 10.1016/j.ejrh.2025.102548_bib18 10.1016/j.ejrh.2025.102548_bib15 Lehner (10.1016/j.ejrh.2025.102548_bib50) 2017; 44 Barnett (10.1016/j.ejrh.2025.102548_bib9) 2005; 438 10.1016/j.ejrh.2025.102548_bib16 10.1016/j.ejrh.2025.102548_bib24 Mosaffa (10.1016/j.ejrh.2025.102548_bib63) 2022 Livneh (10.1016/j.ejrh.2025.102548_bib56) 2020; 10 Geurts (10.1016/j.ejrh.2025.102548_bib29) 2006; 63 Tongal (10.1016/j.ejrh.2025.102548_bib91) 2018; 564 Hussain (10.1016/j.ejrh.2025.102548_bib40) 2020; 13 Kumar (10.1016/j.ejrh.2025.102548_bib48) 2023; 15 Kundzewicz (10.1016/j.ejrh.2025.102548_bib49) 2019; 11 Whitfield (10.1016/j.ejrh.2025.102548_bib100) 2010; 35 Gottfried (10.1016/j.ejrh.2025.102548_bib31) 2002 Singh (10.1016/j.ejrh.2025.102548_bib88) 2022; 14 10.1016/j.ejrh.2025.102548_bib79 Varma (10.1016/j.ejrh.2025.102548_bib95) 2006; 7 Barnhart (10.1016/j.ejrh.2025.102548_bib10) 2016; 43 Li (10.1016/j.ejrh.2025.102548_bib53) 2017; 44 Moghaddam (10.1016/j.ejrh.2025.102548_bib61) 2020; 187 Drucker (10.1016/j.ejrh.2025.102548_bib22) 1996 Qian (10.1016/j.ejrh.2025.102548_bib78) 2022; 36 Kumar (10.1016/j.ejrh.2025.102548_bib47) 2014; 4 Lima (10.1016/j.ejrh.2025.102548_bib55) 2016; 537 Nevo (10.1016/j.ejrh.2025.102548_bib67) 2022; 26 Fleming (10.1016/j.ejrh.2025.102548_bib27) 2022; 58 Rasouli (10.1016/j.ejrh.2025.102548_bib81) 2012; 414–415 Wahl (10.1016/j.ejrh.2025.102548_bib96) 2022; 3 Broxton (10.1016/j.ejrh.2025.102548_bib14) 2023; 59 Kaplan (10.1016/j.ejrh.2025.102548_bib44) 1998; 103 10.1016/j.ejrh.2025.102548_bib86 Cortes (10.1016/j.ejrh.2025.102548_bib21) 1995; 20 Patel (10.1016/j.ejrh.2025.102548_bib73) 2016; 2 Shortridge (10.1016/j.ejrh.2025.102548_bib87) 2016; 20 Coleman (10.1016/j.ejrh.2025.102548_bib20) 2013; 118 |
References_xml | – start-page: 178 year: 2007 end-page: 187 ident: bib84 article-title: Filter methods for feature selection – a comparative study publication-title: Intelligent Data Engineering and Automated Learning - IDEAL 2007 – volume: 49 year: 2023 ident: bib54 article-title: Machine learning method is an alternative for the hydrological model in an alpine catchment in the Tianshan region, Central Asia publication-title: J. Hydrol. Reg. Stud. – volume: 14 start-page: 2105 year: 2001 end-page: 2128 ident: bib8 article-title: ENSO, Pacific Decadal Variability, and U.S. Summertime Precipitation, Drought, and Stream Flow publication-title: J. Clim. – volume: 45 year: 2009 ident: bib42 article-title: Using oceanic-atmospheric oscillations for long lead time streamflow forecasting: streamflow forecast using oceanic-atmospheric oscillations publication-title: Water Resour. Res. – volume: 36 year: 2022 ident: bib7 article-title: A machine learning approach to water quality forecasts and sensor network expansion: case study in the Wabash River Basin, United States publication-title: Hydrol. Process – reference: Fleming, S.W., 2021. New River Forecast Model Integrates Artificial Intelligence to Support Better Water Management in the West [WWW Document]. Farmers.gov. URL – volume: 33 start-page: 2907 year: 2019 end-page: 2923 ident: bib76 article-title: A comparative study of MLR, KNN, ANN and ANFIS models with wavelet transform in monthly stream flow prediction publication-title: Water Resour. Manag – start-page: 585 year: 2022 end-page: 591 ident: bib63 article-title: Chapter 43 - Application of machine learning algorithms in hydrology publication-title: Computers in Earth and Environmental Sciences – volume: 35 start-page: 1 year: 2010 end-page: 28 ident: bib100 article-title: Pacific decadal oscillation and the hydroclimatology of Western Canada—review and prospects publication-title: Can. Water Resour. J. – reference: Szczepanek, R., 2022. Daily Streamflow Forecasting in Mountainous Catchment Using XGBoost, LightGBM and CatBoost. Hydrology. – volume: 97 start-page: 273 year: 1997 end-page: 324 ident: bib45 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. – volume: 25 start-page: 2997 year: 2021 end-page: 3015 ident: bib75 article-title: Evaluation of random forests for short-term daily streamflow forecasting in rainfall- and snowmelt-driven watersheds publication-title: Hydrol. Earth Syst. Sci. – volume: 414–415 start-page: 284 year: 2012 end-page: 293 ident: bib81 article-title: Daily streamflow forecasting by machine learning methods with weather and climate inputs publication-title: J. Hydrol. – volume: 441 year: 2024 ident: bib2 article-title: Applications of machine learning to water resources management: a review of present status and future opportunities publication-title: J. Clean. Prod. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib21 article-title: Support-vector networks publication-title: Mach. Learn – volume: 15 start-page: 620 year: 2023 ident: bib30 article-title: Application of machine learning in water resources management: a systematic literature review publication-title: Water – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib74 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 660 year: 2025 ident: bib103 article-title: A machine learning-based water supply forecasting model to quantify the impact of snow water equivalent on seasonal streamflow variability over the western U.S publication-title: J. Hydrol. – volume: 37 start-page: 741 year: 2001 end-page: 757 ident: bib19 article-title: Historical effects of El Nino and La Nina events on the seasonal evolution of the montane snowpack in the Columbia and Colorado River Basins publication-title: Water Resour. Res. – reference: Huang, B., Thorne, P.W., Banzon, V.F., Boyer, T., Chepurin, G., Lawrimore, J.H., Menne, M.J., Smith, T.M., Vose, R.S., Zhang, H.M., 2017. NOAA Extended Reconstructed Sea Surface Temperature (ERSST) (Version 5). – reference: Element Water Consulting, WaterDM, 2015. Municipal Water Efficiency Plan Town of Carbondale, Colorado. – volume: 564 start-page: 266 year: 2018 end-page: 282 ident: bib91 article-title: Simulation and forecasting of streamflows using machine learning models coupled with base flow separation publication-title: J. Hydrol. – start-page: 1 year: 2003 end-page: 35 ident: bib39 article-title: An Overview of the North Atlantic Oscillation publication-title: The North Atlantic Oscillation: Climatic Significance and Environmental Impact – volume: 11 start-page: 851 year: 2019 end-page: 862 ident: bib71 article-title: The critical role of communities of practice and peer learning in scaling hydroclimatic information adoption publication-title: Weather Clim. Soc. – reference: Jović, A., Brkić, K., Bogunović, N., 2015. A review of feature selection methods with applications, in: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Presented at the 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205. – year: 2019 ident: bib25 article-title: Regionalization of surface-water statistics using multiple linear regression (USGS Numbered Series No. 4-A12) publication-title: Regionalization of surface-water statistics using multiple linear regression, Techniques and Methods – volume: 290 year: 2021 ident: bib82 article-title: Effect of environmental covariable selection in the hydrological modeling using machine learning models to predict daily streamflow publication-title: J. Environ. Manag. – reference: Hanley, D.E., Bourassa, M.A., O’Brien, J.J., Smith, S.R., Spade, E.R., 2003. A Quantitative Evaluation of ENSO Indices. – volume: 103 start-page: 18567 year: 1998 end-page: 18589 ident: bib44 article-title: Analyses of global sea surface temperature 1856–1991 publication-title: J. Geophys. Res. Oceans – volume: 614 year: 2022 ident: bib102 article-title: A framework of integrating heterogeneous data sources for monthly streamflow prediction using a state-of-the-art deep learning model publication-title: J. Hydrol. – volume: 14 start-page: 8209 year: 2022 ident: bib88 article-title: An integrated statistical-machine learning approach for runoff prediction publication-title: Sustainability – volume: 577 year: 2019 ident: bib1 article-title: Daily streamflow prediction using optimally pruned extreme learning machine publication-title: J. Hydrol. – year: 2021 ident: bib66 article-title: State of the Logan River Watershed – year: 2002 ident: bib31 article-title: Snowpack-runoff relationships for mid-elevation snowpacks on the Workman Creek watersheds of Central Arizona (No. RMRS-RP-33) publication-title: U.S. Department of Agriculture, Forest Service – volume: 537 start-page: 431 year: 2016 end-page: 443 ident: bib55 article-title: Forecasting daily streamflow using online sequential extreme learning machines publication-title: J. Hydrol. – reference: Bossert, P., Martinez, M., Duffy, D., Pavón, J., Casey, C., Klise, G., McGann, J., 2004. The Rio Jemez Background Papers on the Adjudication Proceeding and Water Rights Issues. – volume: 4 start-page: 1 year: 2023 end-page: 11 ident: bib32 article-title: Recent decreases in snow water storage in western North America publication-title: Commun. Earth Environ. – volume: 45 start-page: 201 year: 2018 end-page: 208 ident: bib72 article-title: Evaluation of random forests and Prophet for daily streamflow forecasting publication-title: Adv. Geosci. – volume: 2 start-page: 160 year: 2021 ident: bib85 article-title: Machine learning: algorithms, real-world applications and research directions publication-title: SN Comput. Sci. – reference: Bureau of Reclamation, 2021. Water Availability: Monitoring and Forecasting, Knowledge Stream. – volume: 367 start-page: 1252 year: 2020 end-page: 1255 ident: bib59 article-title: Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation publication-title: Science – volume: 26 start-page: 4013 year: 2022 end-page: 4032 ident: bib67 article-title: Flood forecasting with machine learning models in an operational framework publication-title: Hydrol. Earth Syst. Sci. – volume: 47 year: 2011 ident: bib83 article-title: Snow water equivalent along elevation gradients in the Merced and Tuolumne River basins of the Sierra Nevada publication-title: Water Resour. Res. – volume: 44 start-page: 6163 year: 2017 end-page: 6172 ident: bib53 article-title: How much runoff originates as snow in the western United States, and how will that change in the future? publication-title: Geophys. Res. Lett. – volume: 11 start-page: 128 year: 2021 ident: bib69 article-title: Climate variability indices—a guided tour publication-title: Geosciences – volume: 118 start-page: 4181 year: 2013 end-page: 4193 ident: bib20 article-title: Eastern U.S. summer streamflow during extreme phases of the North Atlantic oscillation publication-title: J. Geophys. Res. Atmospheres – volume: 4 start-page: 40 year: 2010 end-page: 79 ident: bib4 article-title: A survey of cross-validation procedures for model selection publication-title: Stat. Surv. – volume: 48 year: 2012 ident: bib34 article-title: Changes in snowpack accumulation and ablation in the intermountain west publication-title: Water Resour. Res. – volume: 58 start-page: 517 year: 2022 end-page: 524 ident: bib27 article-title: Simplified cross-validation in principal component regression (PCR) and PCR-like machine learning for water supply forecasting publication-title: JAWRA J. Am. Water Resour. Assoc. – volume: 7 start-page: 91 year: 2006 ident: bib95 article-title: Bias in error estimation when using cross-validation for model selection publication-title: BMC Bioinforma. – reference: Cawley, G.C., Talbot, N.L.C., 2010. On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation 29. – start-page: 44 year: 2024 end-page: 54 ident: bib43 article-title: Forward feature selection: empirical analysis publication-title: J. Intell. Syst. Internet Things – volume: 44 start-page: 3877 year: 2017 end-page: 3886 ident: bib51 article-title: The impact of the AMO on multidecadal ENSO variability publication-title: Geophys. Res. Lett. – volume: 15 start-page: 1147 year: 2023 ident: bib11 article-title: Can Remotely Sensed Snow Disappearance Explain Seasonal Water Supply? publication-title: Water – volume: 28 start-page: 1711 year: 2024 end-page: 1723 ident: bib89 article-title: Stream water sourcing from high-elevation snowpack inferred from stable isotopes of water: a novel application of d-excess values publication-title: Hydrol. Earth Syst. Sci. – volume: 107 start-page: 21271 year: 2010 end-page: 21276 ident: bib17 article-title: Future dryness in the southwest US and the hydrology of the early 21st century drought publication-title: Proc. Natl. Acad. Sci. – volume: 59 start-page: 1493 year: 2023 end-page: 1510 ident: bib14 article-title: Subseasonal to seasonal streamflow forecasting in a semiarid watershed publication-title: JAWRA J. Am. Water Resour. Assoc. – volume: 7 start-page: 119943 year: 2019 end-page: 119964 ident: bib28 article-title: A machine learning metasystem for robust probabilistic nonlinear regression-based forecasting of seasonal water availability in the US West publication-title: IEEE Access – volume: 101 start-page: 4136 year: 2004 end-page: 4141 ident: bib58 article-title: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States publication-title: Proc. Natl. Acad. Sci. – volume: 3 start-page: 1 year: 2022 end-page: 14 ident: bib96 article-title: Southwestern United States drought of the 21st century presages drier conditions into the future publication-title: Commun. Earth Environ. – reference: USDA Forest Service, n.d. Your Watersheds [WWW Document]. S. Juan Natl. For. - Resour. Manag. URL – year: 2019 ident: bib57 article-title: Machine Learning Algorithms -A Review publication-title: International Journal Science Research (IJSR) – reference: (accessed 2.27.23). – volume: 2 year: 2022 ident: bib77 article-title: A review of feature selection methods for machine learning-based disease risk prediction publication-title: Front. Bioinforma. – volume: 438 start-page: 303 year: 2005 end-page: 309 ident: bib9 article-title: Potential impacts of a warming climate on water availability in snow-dominated regions publication-title: Nature – volume: 108 start-page: 149 year: 2019 end-page: 202 ident: bib93 article-title: A greedy feature selection algorithm for Big Data of high dimensionality publication-title: Mach. Learn – year: 1996 ident: bib22 article-title: Support Vector Regression Machines publication-title: Advances in Neural Information Processing Systems – volume: 606 year: 2022 ident: bib68 article-title: Hourly streamflow forecasting using a Bayesian additive regression tree model hybridized with a genetic algorithm publication-title: J. Hydrol. – volume: 117 year: 2012 ident: bib101 article-title: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products publication-title: J. Geophys. Res. – volume: 13 start-page: 1097 year: 2021 ident: bib23 article-title: Recent advancement in remote sensing technology for hydrology analysis and water resources management publication-title: Remote Sens – reference: City of Sedona, 2013. Sedona Community Plan. – volume: 6 start-page: 10 year: 2014 ident: bib46 article-title: Cross-validation pitfalls when selecting and assessing regression and classification models publication-title: J. Chemin.. – volume: 63 start-page: 3 year: 2006 end-page: 42 ident: bib29 article-title: Extremely randomized trees publication-title: Mach. Learn – volume: 222 start-page: 1195 year: 1983 end-page: 1202 ident: bib80 article-title: Meteorological aspects of the el nino/southern oscillation publication-title: Science – volume: 187 year: 2020 ident: bib61 article-title: The effect of sample size on different machine learning models for groundwater potential mapping in mountain bedrock aquifers publication-title: CATENA – reference: National Weather Service, 1951. (Stand Tahiti - Stand Darwin) Sea Level Pressure. – volume: 4 year: 2014 ident: bib47 article-title: Feature selection: a literature review publication-title: Smart Comput. Rev. – volume: 620 year: 2023 ident: bib3 article-title: Monthly streamflow forecasting by machine learning methods using dynamic weather prediction model outputs over Iran publication-title: J. Hydrol. – volume: 5 start-page: 896 year: 2004 end-page: 909 ident: bib70 article-title: Evaluation of Official Western U.S. Seasonal Water Supply Outlooks, 1922–2002 publication-title: J. Hydrometeorol. – volume: 10 start-page: 452 year: 2020 end-page: 458 ident: bib56 article-title: Drought less predictable under declining future snowpack publication-title: Nat. Clim. Change – volume: 48 start-page: 667 year: 2012 end-page: 678 ident: bib38 article-title: Snowmelt runoff and water yield along elevation and temperature gradients in California’s southern Sierra Nevada publication-title: J. Am. Water Resour. Assoc. JAWRA – volume: 36 start-page: 1141 year: 2022 end-page: 1157 ident: bib78 article-title: A new estimation method for copula parameters for multivariate hydrological frequency analysis with small sample sizes publication-title: Water Resour. Manag – volume: 20 start-page: 2611 year: 2016 end-page: 2628 ident: bib87 article-title: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds publication-title: Hydrol. Earth Syst. Sci. – volume: 2 start-page: 1 year: 2016 end-page: 5 ident: bib73 article-title: Multiple linear regression model for stream flow estimation of Wainganga River publication-title: Am. J. Water Sci. Eng. – volume: 14 start-page: 4029 year: 2022 ident: bib98 article-title: Comparative study of coupling models of feature selection methods and machine learning techniques for predicting monthly reservoir inflow publication-title: Water – reference: Raschka, S., 2020. Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. – volume: 13 start-page: 939 year: 2020 end-page: 949 ident: bib40 article-title: Machine learning techniques for monthly river flow forecasting of Hunza River, Pakistan publication-title: Earth Sci. Inf. – start-page: 89 year: 2021 end-page: 107 ident: bib35 article-title: Intelligent Data Analytics Approaches for Predicting Dissolved Oxygen Concentration in River: Extremely Randomized Tree Versus Random Forest, MLPNN and MLR publication-title: Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation: Theory and Practice of Hazard Mitigation – volume: 6 start-page: 3003 year: 2012 end-page: 3014 ident: bib104 article-title: Streamow forecasting at ungaged sites using support vector machines publication-title: Appl. Math. Sci. – volume: 55 start-page: 1024 year: 2019 end-page: 1037 ident: bib6 article-title: Developing subseasonal to seasonal climate forecast products for hydrology and water management publication-title: JAWRA J. Am. Water Resour. Assoc. – volume: 43 start-page: 8006 year: 2016 end-page: 8016 ident: bib10 article-title: Snowmelt rate dictates streamflow publication-title: Geophys. Res. Lett. – reference: Zhao, C., Geng, X., Zhang, W., Qi, L., 2022. Atlantic Multidecadal Oscillation Modulates ENSO Atmospheric Anomaly Amplitude in the Tropical Pacific. – reference: Molina, L.C., Belanche, L., Nebot, A., 2002. Feature selection algorithms: a survey and experimental evaluation, in: 2002 IEEE International Conference on Data Mining, 2002. Proceedings. Presented at the 2002 IEEE International Conference on Data Mining, 2002. Proceedings., pp. 306–313. – reference: NCAR Climate Analysis Section, Update regularly.Hurrell North Atlantic Oscillation (NAO) Index (PC-based). – volume: 22 start-page: 321 year: 2001 end-page: 381 ident: bib97 article-title: North Atlantic oscillation – concepts and studies publication-title: Surv. Geophys – volume: 10 year: 2022 ident: bib99 article-title: The influence of the North Atlantic oscillation and East Atlantic pattern on drought in British Catchments publication-title: Front. Environ. Sci. – reference: Modi, P.A., Small, E.E., Kasprzyk, J., Livneh, B., 2022. Investigating the Role of Snow Water Equivalent on Streamflow Predictability during Drought. – reference: (accessed 2.19.23). – volume: 44 start-page: 12,208 year: 2017 end-page: 12,217 ident: bib50 article-title: Mitigating the impacts of climate nonstationarity on seasonal streamflow predictability in the U.S. Southwest publication-title: Geophys. Res. Lett. – volume: 41 year: 2005 ident: bib92 article-title: Coupled oceanic-atmospheric variability and U.S. streamflow: oceanic-atmospheric variability and U.S. streamflow publication-title: Water Resour. Res. – reference: Sengupta, A., Singh, B., DeFlorio, M.J., Raymond, C., Robertson, A.W., Zeng, X., Waliser, D.E., Jones, J., 2022. Advances in Subseasonal to Seasonal Prediction Relevant to Water Management in the Western United States. – reference: . – volume: 11 start-page: 1399 year: 2019 ident: bib49 article-title: Climate variability and floods—a global review publication-title: Water – start-page: 67 year: 2013 end-page: 75 ident: bib5 article-title: Streamflow forecasting at ungauged sites using multiple linear regression publication-title: Mat. Malays. J. Ind. Appl. Math. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib13 article-title: Random forest publication-title: Mach. Learn – volume: 15 start-page: 2572 year: 2023 ident: bib48 article-title: Advanced machine learning techniques to improve hydrological prediction: a comparative analysis of streamflow prediction models publication-title: Water – reference: Helms, D., Phillips, S.E., Reich, P.F., 2008. The History of Snow Survey and Water Supply Forecasting: Interviews with U.S. Department of Agriculture Pioneers. U.S. Department of Agriculture. – volume: 37 start-page: 1055 year: 2023 end-page: 1082 ident: bib52 article-title: Parameter estimation for univariate hydrological distribution using improved bootstrap with small samples publication-title: Water Resour. Manag – ident: 10.1016/j.ejrh.2025.102548_bib36 – ident: 10.1016/j.ejrh.2025.102548_bib65 – volume: 33 start-page: 2907 year: 2019 ident: 10.1016/j.ejrh.2025.102548_bib76 article-title: A comparative study of MLR, KNN, ANN and ANFIS models with wavelet transform in monthly stream flow prediction publication-title: Water Resour. Manag doi: 10.1007/s11269-019-02273-0 – ident: 10.1016/j.ejrh.2025.102548_bib86 doi: 10.1175/BAMS-D-22-0146.1 – ident: 10.1016/j.ejrh.2025.102548_bib94 – volume: 15 start-page: 620 year: 2023 ident: 10.1016/j.ejrh.2025.102548_bib30 article-title: Application of machine learning in water resources management: a systematic literature review publication-title: Water doi: 10.3390/w15040620 – volume: 58 start-page: 517 year: 2022 ident: 10.1016/j.ejrh.2025.102548_bib27 article-title: Simplified cross-validation in principal component regression (PCR) and PCR-like machine learning for water supply forecasting publication-title: JAWRA J. Am. Water Resour. Assoc. doi: 10.1111/1752-1688.13007 – volume: 3 start-page: 1 year: 2022 ident: 10.1016/j.ejrh.2025.102548_bib96 article-title: Southwestern United States drought of the 21st century presages drier conditions into the future publication-title: Commun. Earth Environ. doi: 10.1038/s43247-022-00532-4 – ident: 10.1016/j.ejrh.2025.102548_bib16 – ident: 10.1016/j.ejrh.2025.102548_bib41 doi: 10.1109/MIPRO.2015.7160458 – ident: 10.1016/j.ejrh.2025.102548_bib79 – volume: 6 start-page: 10 year: 2014 ident: 10.1016/j.ejrh.2025.102548_bib46 article-title: Cross-validation pitfalls when selecting and assessing regression and classification models publication-title: J. Chemin.. doi: 10.1186/1758-2946-6-10 – volume: 2 year: 2022 ident: 10.1016/j.ejrh.2025.102548_bib77 article-title: A review of feature selection methods for machine learning-based disease risk prediction publication-title: Front. Bioinforma. doi: 10.3389/fbinf.2022.927312 – ident: 10.1016/j.ejrh.2025.102548_bib33 doi: 10.1175/1520-0442(2003)16<1249:AQEOEI>2.0.CO;2 – start-page: 178 year: 2007 ident: 10.1016/j.ejrh.2025.102548_bib84 article-title: Filter methods for feature selection – a comparative study – volume: 614 year: 2022 ident: 10.1016/j.ejrh.2025.102548_bib102 article-title: A framework of integrating heterogeneous data sources for monthly streamflow prediction using a state-of-the-art deep learning model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128599 – volume: 55 start-page: 1024 year: 2019 ident: 10.1016/j.ejrh.2025.102548_bib6 article-title: Developing subseasonal to seasonal climate forecast products for hydrology and water management publication-title: JAWRA J. Am. Water Resour. Assoc. doi: 10.1111/1752-1688.12746 – volume: 222 start-page: 1195 year: 1983 ident: 10.1016/j.ejrh.2025.102548_bib80 article-title: Meteorological aspects of the el nino/southern oscillation publication-title: Science doi: 10.1126/science.222.4629.1195 – volume: 43 start-page: 8006 year: 2016 ident: 10.1016/j.ejrh.2025.102548_bib10 article-title: Snowmelt rate dictates streamflow publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL069690 – volume: 14 start-page: 4029 year: 2022 ident: 10.1016/j.ejrh.2025.102548_bib98 article-title: Comparative study of coupling models of feature selection methods and machine learning techniques for predicting monthly reservoir inflow publication-title: Water doi: 10.3390/w14244029 – volume: 108 start-page: 149 year: 2019 ident: 10.1016/j.ejrh.2025.102548_bib93 article-title: A greedy feature selection algorithm for Big Data of high dimensionality publication-title: Mach. Learn doi: 10.1007/s10994-018-5748-7 – volume: 13 start-page: 1097 year: 2021 ident: 10.1016/j.ejrh.2025.102548_bib23 article-title: Recent advancement in remote sensing technology for hydrology analysis and water resources management publication-title: Remote Sens doi: 10.3390/rs13061097 – volume: 660 year: 2025 ident: 10.1016/j.ejrh.2025.102548_bib103 article-title: A machine learning-based water supply forecasting model to quantify the impact of snow water equivalent on seasonal streamflow variability over the western U.S publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2025.133465 – volume: 11 start-page: 851 year: 2019 ident: 10.1016/j.ejrh.2025.102548_bib71 article-title: The critical role of communities of practice and peer learning in scaling hydroclimatic information adoption publication-title: Weather Clim. Soc. doi: 10.1175/WCAS-D-18-0130.1 – volume: 438 start-page: 303 year: 2005 ident: 10.1016/j.ejrh.2025.102548_bib9 article-title: Potential impacts of a warming climate on water availability in snow-dominated regions publication-title: Nature doi: 10.1038/nature04141 – volume: 47 year: 2011 ident: 10.1016/j.ejrh.2025.102548_bib83 article-title: Snow water equivalent along elevation gradients in the Merced and Tuolumne River basins of the Sierra Nevada publication-title: Water Resour. Res. doi: 10.1029/2010WR009278 – volume: 14 start-page: 8209 year: 2022 ident: 10.1016/j.ejrh.2025.102548_bib88 article-title: An integrated statistical-machine learning approach for runoff prediction publication-title: Sustainability doi: 10.3390/su14138209 – volume: 48 start-page: 667 year: 2012 ident: 10.1016/j.ejrh.2025.102548_bib38 article-title: Snowmelt runoff and water yield along elevation and temperature gradients in California’s southern Sierra Nevada publication-title: J. Am. Water Resour. Assoc. JAWRA doi: 10.1111/j.1752-1688.2012.00641.x – volume: 36 start-page: 1141 year: 2022 ident: 10.1016/j.ejrh.2025.102548_bib78 article-title: A new estimation method for copula parameters for multivariate hydrological frequency analysis with small sample sizes publication-title: Water Resour. Manag doi: 10.1007/s11269-021-03016-w – volume: 45 year: 2009 ident: 10.1016/j.ejrh.2025.102548_bib42 article-title: Using oceanic-atmospheric oscillations for long lead time streamflow forecasting: streamflow forecast using oceanic-atmospheric oscillations publication-title: Water Resour. Res. doi: 10.1029/2008WR006855 – volume: 44 start-page: 3877 year: 2017 ident: 10.1016/j.ejrh.2025.102548_bib51 article-title: The impact of the AMO on multidecadal ENSO variability publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL072524 – start-page: 585 year: 2022 ident: 10.1016/j.ejrh.2025.102548_bib63 article-title: Chapter 43 - Application of machine learning algorithms in hydrology – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.ejrh.2025.102548_bib21 article-title: Support-vector networks publication-title: Mach. Learn doi: 10.1023/A:1022627411411 – volume: 35 start-page: 1 year: 2010 ident: 10.1016/j.ejrh.2025.102548_bib100 article-title: Pacific decadal oscillation and the hydroclimatology of Western Canada—review and prospects publication-title: Can. Water Resour. J. doi: 10.4296/cwrj3501001 – volume: 7 start-page: 119943 year: 2019 ident: 10.1016/j.ejrh.2025.102548_bib28 article-title: A machine learning metasystem for robust probabilistic nonlinear regression-based forecasting of seasonal water availability in the US West publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2936989 – year: 1996 ident: 10.1016/j.ejrh.2025.102548_bib22 article-title: Support Vector Regression Machines – volume: 4 year: 2014 ident: 10.1016/j.ejrh.2025.102548_bib47 article-title: Feature selection: a literature review publication-title: Smart Comput. Rev. doi: 10.6029/smartcr.2014.03.007 – start-page: 67 year: 2013 ident: 10.1016/j.ejrh.2025.102548_bib5 article-title: Streamflow forecasting at ungauged sites using multiple linear regression publication-title: Mat. Malays. J. Ind. Appl. Math. – volume: 107 start-page: 21271 year: 2010 ident: 10.1016/j.ejrh.2025.102548_bib17 article-title: Future dryness in the southwest US and the hydrology of the early 21st century drought publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0912391107 – volume: 37 start-page: 1055 year: 2023 ident: 10.1016/j.ejrh.2025.102548_bib52 article-title: Parameter estimation for univariate hydrological distribution using improved bootstrap with small samples publication-title: Water Resour. Manag doi: 10.1007/s11269-022-03410-y – volume: 44 start-page: 6163 year: 2017 ident: 10.1016/j.ejrh.2025.102548_bib53 article-title: How much runoff originates as snow in the western United States, and how will that change in the future? publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL073551 – volume: 20 start-page: 2611 year: 2016 ident: 10.1016/j.ejrh.2025.102548_bib87 article-title: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-2611-2016 – ident: 10.1016/j.ejrh.2025.102548_bib62 doi: 10.1109/ICDM.2002.1183917 – volume: 11 start-page: 128 year: 2021 ident: 10.1016/j.ejrh.2025.102548_bib69 article-title: Climate variability indices—a guided tour publication-title: Geosciences doi: 10.3390/geosciences11030128 – ident: 10.1016/j.ejrh.2025.102548_bib105 doi: 10.1175/JCLI-D-21-0603.1 – start-page: 89 year: 2021 ident: 10.1016/j.ejrh.2025.102548_bib35 article-title: Intelligent Data Analytics Approaches for Predicting Dissolved Oxygen Concentration in River: Extremely Randomized Tree Versus Random Forest, MLPNN and MLR – volume: 10 year: 2022 ident: 10.1016/j.ejrh.2025.102548_bib99 article-title: The influence of the North Atlantic oscillation and East Atlantic pattern on drought in British Catchments publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2022.754597 – volume: 6 start-page: 3003 year: 2012 ident: 10.1016/j.ejrh.2025.102548_bib104 article-title: Streamow forecasting at ungaged sites using support vector machines publication-title: Appl. Math. Sci. – volume: 5 start-page: 896 year: 2004 ident: 10.1016/j.ejrh.2025.102548_bib70 article-title: Evaluation of Official Western U.S. Seasonal Water Supply Outlooks, 1922–2002 publication-title: J. Hydrometeorol. doi: 10.1175/1525-7541(2004)005<0896:EOOWUS>2.0.CO;2 – volume: 117 year: 2012 ident: 10.1016/j.ejrh.2025.102548_bib101 article-title: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products publication-title: J. Geophys. Res. – volume: 13 start-page: 939 year: 2020 ident: 10.1016/j.ejrh.2025.102548_bib40 article-title: Machine learning techniques for monthly river flow forecasting of Hunza River, Pakistan publication-title: Earth Sci. Inf. doi: 10.1007/s12145-020-00450-z – volume: 26 start-page: 4013 year: 2022 ident: 10.1016/j.ejrh.2025.102548_bib67 article-title: Flood forecasting with machine learning models in an operational framework publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-26-4013-2022 – volume: 564 start-page: 266 year: 2018 ident: 10.1016/j.ejrh.2025.102548_bib91 article-title: Simulation and forecasting of streamflows using machine learning models coupled with base flow separation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.07.004 – volume: 15 start-page: 1147 year: 2023 ident: 10.1016/j.ejrh.2025.102548_bib11 article-title: Can Remotely Sensed Snow Disappearance Explain Seasonal Water Supply? publication-title: Water doi: 10.3390/w15061147 – volume: 577 year: 2019 ident: 10.1016/j.ejrh.2025.102548_bib1 article-title: Daily streamflow prediction using optimally pruned extreme learning machine publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.123981 – volume: 28 start-page: 1711 year: 2024 ident: 10.1016/j.ejrh.2025.102548_bib89 article-title: Stream water sourcing from high-elevation snowpack inferred from stable isotopes of water: a novel application of d-excess values publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-28-1711-2024 – ident: 10.1016/j.ejrh.2025.102548_bib37 – ident: 10.1016/j.ejrh.2025.102548_bib64 – volume: 2 start-page: 1 year: 2016 ident: 10.1016/j.ejrh.2025.102548_bib73 article-title: Multiple linear regression model for stream flow estimation of Wainganga River publication-title: Am. J. Water Sci. Eng. – volume: 44 start-page: 12,208 year: 2017 ident: 10.1016/j.ejrh.2025.102548_bib50 article-title: Mitigating the impacts of climate nonstationarity on seasonal streamflow predictability in the U.S. Southwest publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL076043 – ident: 10.1016/j.ejrh.2025.102548_bib26 – start-page: 1 year: 2003 ident: 10.1016/j.ejrh.2025.102548_bib39 article-title: An Overview of the North Atlantic Oscillation – year: 2021 ident: 10.1016/j.ejrh.2025.102548_bib66 – year: 2002 ident: 10.1016/j.ejrh.2025.102548_bib31 article-title: Snowpack-runoff relationships for mid-elevation snowpacks on the Workman Creek watersheds of Central Arizona (No. RMRS-RP-33) – ident: 10.1016/j.ejrh.2025.102548_bib90 doi: 10.3390/hydrology9120226 – volume: 10 start-page: 452 year: 2020 ident: 10.1016/j.ejrh.2025.102548_bib56 article-title: Drought less predictable under declining future snowpack publication-title: Nat. Clim. Change doi: 10.1038/s41558-020-0754-8 – ident: 10.1016/j.ejrh.2025.102548_bib12 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.ejrh.2025.102548_bib74 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – start-page: 44 year: 2024 ident: 10.1016/j.ejrh.2025.102548_bib43 article-title: Forward feature selection: empirical analysis publication-title: J. Intell. Syst. Internet Things – volume: 103 start-page: 18567 year: 1998 ident: 10.1016/j.ejrh.2025.102548_bib44 article-title: Analyses of global sea surface temperature 1856–1991 publication-title: J. Geophys. Res. Oceans doi: 10.1029/97JC01736 – ident: 10.1016/j.ejrh.2025.102548_bib15 – volume: 2 start-page: 160 year: 2021 ident: 10.1016/j.ejrh.2025.102548_bib85 article-title: Machine learning: algorithms, real-world applications and research directions publication-title: SN Comput. Sci. doi: 10.1007/s42979-021-00592-x – volume: 15 start-page: 2572 year: 2023 ident: 10.1016/j.ejrh.2025.102548_bib48 article-title: Advanced machine learning techniques to improve hydrological prediction: a comparative analysis of streamflow prediction models publication-title: Water doi: 10.3390/w15142572 – volume: 367 start-page: 1252 year: 2020 ident: 10.1016/j.ejrh.2025.102548_bib59 article-title: Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation publication-title: Science doi: 10.1126/science.aay9187 – volume: 4 start-page: 1 year: 2023 ident: 10.1016/j.ejrh.2025.102548_bib32 article-title: Recent decreases in snow water storage in western North America publication-title: Commun. Earth Environ. doi: 10.1038/s43247-023-00751-3 – volume: 41 year: 2005 ident: 10.1016/j.ejrh.2025.102548_bib92 article-title: Coupled oceanic-atmospheric variability and U.S. streamflow: oceanic-atmospheric variability and U.S. streamflow publication-title: Water Resour. Res. doi: 10.1029/2005WR004381 – volume: 606 year: 2022 ident: 10.1016/j.ejrh.2025.102548_bib68 article-title: Hourly streamflow forecasting using a Bayesian additive regression tree model hybridized with a genetic algorithm publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.127445 – volume: 414–415 start-page: 284 year: 2012 ident: 10.1016/j.ejrh.2025.102548_bib81 article-title: Daily streamflow forecasting by machine learning methods with weather and climate inputs publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.10.039 – volume: 22 start-page: 321 year: 2001 ident: 10.1016/j.ejrh.2025.102548_bib97 article-title: North Atlantic oscillation – concepts and studies publication-title: Surv. Geophys doi: 10.1023/A:1014217317898 – volume: 49 year: 2023 ident: 10.1016/j.ejrh.2025.102548_bib54 article-title: Machine learning method is an alternative for the hydrological model in an alpine catchment in the Tianshan region, Central Asia publication-title: J. Hydrol. Reg. Stud. – volume: 7 start-page: 91 year: 2006 ident: 10.1016/j.ejrh.2025.102548_bib95 article-title: Bias in error estimation when using cross-validation for model selection publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-7-91 – volume: 48 year: 2012 ident: 10.1016/j.ejrh.2025.102548_bib34 article-title: Changes in snowpack accumulation and ablation in the intermountain west publication-title: Water Resour. Res. doi: 10.1029/2012WR011949 – volume: 101 start-page: 4136 year: 2004 ident: 10.1016/j.ejrh.2025.102548_bib58 article-title: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0306738101 – volume: 118 start-page: 4181 year: 2013 ident: 10.1016/j.ejrh.2025.102548_bib20 article-title: Eastern U.S. summer streamflow during extreme phases of the North Atlantic oscillation publication-title: J. Geophys. Res. Atmospheres doi: 10.1002/jgrd.50326 – volume: 290 year: 2021 ident: 10.1016/j.ejrh.2025.102548_bib82 article-title: Effect of environmental covariable selection in the hydrological modeling using machine learning models to predict daily streamflow publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112625 – year: 2019 ident: 10.1016/j.ejrh.2025.102548_bib57 article-title: Machine Learning Algorithms -A Review publication-title: International Journal Science Research (IJSR) – volume: 4 start-page: 40 year: 2010 ident: 10.1016/j.ejrh.2025.102548_bib4 article-title: A survey of cross-validation procedures for model selection publication-title: Stat. Surv. doi: 10.1214/09-SS054 – ident: 10.1016/j.ejrh.2025.102548_bib18 – volume: 97 start-page: 273 year: 1997 ident: 10.1016/j.ejrh.2025.102548_bib45 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00043-X – volume: 537 start-page: 431 year: 2016 ident: 10.1016/j.ejrh.2025.102548_bib55 article-title: Forecasting daily streamflow using online sequential extreme learning machines publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.03.017 – volume: 59 start-page: 1493 year: 2023 ident: 10.1016/j.ejrh.2025.102548_bib14 article-title: Subseasonal to seasonal streamflow forecasting in a semiarid watershed publication-title: JAWRA J. Am. Water Resour. Assoc. doi: 10.1111/1752-1688.13147 – year: 2019 ident: 10.1016/j.ejrh.2025.102548_bib25 article-title: Regionalization of surface-water statistics using multiple linear regression (USGS Numbered Series No. 4-A12) – volume: 14 start-page: 2105 year: 2001 ident: 10.1016/j.ejrh.2025.102548_bib8 article-title: ENSO, Pacific Decadal Variability, and U.S. Summertime Precipitation, Drought, and Stream Flow publication-title: J. Clim. doi: 10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2 – volume: 441 year: 2024 ident: 10.1016/j.ejrh.2025.102548_bib2 article-title: Applications of machine learning to water resources management: a review of present status and future opportunities publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2024.140715 – volume: 620 year: 2023 ident: 10.1016/j.ejrh.2025.102548_bib3 article-title: Monthly streamflow forecasting by machine learning methods using dynamic weather prediction model outputs over Iran publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.129480 – ident: 10.1016/j.ejrh.2025.102548_bib24 – volume: 187 year: 2020 ident: 10.1016/j.ejrh.2025.102548_bib61 article-title: The effect of sample size on different machine learning models for groundwater potential mapping in mountain bedrock aquifers publication-title: CATENA doi: 10.1016/j.catena.2019.104421 – volume: 45 start-page: 201 year: 2018 ident: 10.1016/j.ejrh.2025.102548_bib72 article-title: Evaluation of random forests and Prophet for daily streamflow forecasting publication-title: Adv. Geosci. doi: 10.5194/adgeo-45-201-2018 – ident: 10.1016/j.ejrh.2025.102548_bib60 doi: 10.1175/JHM-D-21-0229.1 – volume: 36 year: 2022 ident: 10.1016/j.ejrh.2025.102548_bib7 article-title: A machine learning approach to water quality forecasts and sensor network expansion: case study in the Wabash River Basin, United States publication-title: Hydrol. Process doi: 10.1002/hyp.14619 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.ejrh.2025.102548_bib13 article-title: Random forest publication-title: Mach. Learn doi: 10.1023/A:1010933404324 – volume: 25 start-page: 2997 year: 2021 ident: 10.1016/j.ejrh.2025.102548_bib75 article-title: Evaluation of random forests for short-term daily streamflow forecasting in rainfall- and snowmelt-driven watersheds publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-25-2997-2021 – volume: 37 start-page: 741 year: 2001 ident: 10.1016/j.ejrh.2025.102548_bib19 article-title: Historical effects of El Nino and La Nina events on the seasonal evolution of the montane snowpack in the Columbia and Colorado River Basins publication-title: Water Resour. Res. doi: 10.1029/2000WR900305 – volume: 63 start-page: 3 year: 2006 ident: 10.1016/j.ejrh.2025.102548_bib29 article-title: Extremely randomized trees publication-title: Mach. Learn doi: 10.1007/s10994-006-6226-1 – volume: 11 start-page: 1399 year: 2019 ident: 10.1016/j.ejrh.2025.102548_bib49 article-title: Climate variability and floods—a global review publication-title: Water doi: 10.3390/w11071399 |
SSID | ssj0001878960 |
Score | 2.3251472 |
Snippet | This study focuses on five watersheds in the southwestern United States, where April–July (AMJJ) water supply forecasts (WSFs) inform water management. Climate... Study region: This study focuses on five watersheds in the southwestern United States, where April–July (AMJJ) water supply forecasts (WSFs) inform water... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 102548 |
SubjectTerms | Climate change Feature selection Machine learning Nested cross-validation Seasonal forecasting Southwestern United States Water supply forecasting |
Title | The relative importance of model type and input features for water supply forecasting in snow-dominated basins of the southwestern US |
URI | https://dx.doi.org/10.1016/j.ejrh.2025.102548 https://doaj.org/article/0bd561e3724943eebdaa7b2f23d9217c |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2214-5818 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001878960 issn: 2214-5818 databaseCode: KQ8 dateStart: 20140701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2214-5818 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001878960 issn: 2214-5818 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2214-5818 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001878960 issn: 2214-5818 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqvcAFUQpiaUFz6A1FTeLYSY6AWFWgVkLtSr1F_hiLXYlstcmy2h_A_2YmzqKc4MIlB8uyo5lx5tkZvyfEpXa-LK2ViQ1pkRSOMFztNAG52hiFebAq47vDN7f6ell8eVAPE6kvrgmL9MDRcFep9ZTiUZa0TygkovXGlDYPufQ1wWnHX19KY5PN1HC6UpUVYfPxlkws6ML1lv8-5IrpChQL_kwy0UDYP0lIkySzeC6ejegQPsS3OhUn2L4QT0ah8u-HM_GL3Arx_slPhNWPAT2T32ATYBC1AT5TBdN6WLWPux4CDsydHRA4hT0Byy10LOR54AZ0puOyZ-oLXbvZJ37DlTEEQoGy26rteFhCiNCx0N5IqgDLu5diufh8_-k6GZUUEie17JPM0U7FUl7yqUHMTS5lzkzrKCvt88pqR-vcGutrdEGhrlVQqXNVISUWFrV8JWbtpsXXAmqpncvIK76qCEppm1nngqfFFiwZPczF-6NVm8dImNEcK8nWDfugYR800Qdz8ZEN_6cnk10PDRQCzRgCzb9CYC7U0W3NiBsiHqChVn-Z_M3_mPxcPOUhY03ghZj12x2-JZzS23dDSNLz67fqN3YJ6mI |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+relative+importance+of+model+type+and+input+features+for+water+supply+forecasting+in+snow-dominated+basins+of+the+southwestern+US&rft.jtitle=Journal+of+hydrology.+Regional+studies&rft.au=Pernat%2C+Madeline+R.&rft.au=Kasprzyk%2C+Joseph&rft.au=Zagona%2C+Edith&rft.au=Walker%2C+Sydney+D.&rft.date=2025-08-01&rft.issn=2214-5818&rft.eissn=2214-5818&rft.volume=60&rft.spage=102548&rft_id=info:doi/10.1016%2Fj.ejrh.2025.102548&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejrh_2025_102548 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5818&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5818&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5818&client=summon |