The relative importance of model type and input features for water supply forecasting in snow-dominated basins of the southwestern US

This study focuses on five watersheds in the southwestern United States, where April–July (AMJJ) water supply forecasts (WSFs) inform water management. Climate change has altered long-relied-upon relationships between April 1st snow water equivalent (SWE) and AMJJ water supply, threatening the skill...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology. Regional studies Vol. 60; p. 102548
Main Authors Pernat, Madeline R., Kasprzyk, Joseph, Zagona, Edith, Walker, Sydney D., Livneh, Ben
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2025
Elsevier
Subjects
Online AccessGet full text
ISSN2214-5818
2214-5818
DOI10.1016/j.ejrh.2025.102548

Cover

Abstract This study focuses on five watersheds in the southwestern United States, where April–July (AMJJ) water supply forecasts (WSFs) inform water management. Climate change has altered long-relied-upon relationships between April 1st snow water equivalent (SWE) and AMJJ water supply, threatening the skill of traditional forecasting approaches. This work evaluates how the interaction between model type (e.g., multiple linear regression, random forest) and feature selection influences AMJJ WSF skill. Five machine learning model types are applied in each basin. A new wrapper-based feature selection method identifies the Best Feature Set—selected from a broad pool of station-based, meteorological, and climatological features—for each basin–model type combination. Results show that the most important features vary by both basin and model type, and that model types perform similarly when each is trained on its respective Best Feature Set. April 1st SWE is most important in highly snow-dominated basins, while April 1st precipitation accumulation becomes more important in less snow-dominated systems. Station-based features from multiple lag times are consistently selected, suggesting that earlier observations provide additional predictive value. Among meteorological and climatological features, specific humidity and the Atlantic Multidecadal Oscillation are frequently selected across basins and model types, indicating broad predictive utility. Overall, results suggest that feature selection has a greater influence on forecast skill than model type choice. [Display omitted] •Feature importance varies by both basin and model type for AMJJ WSFs.•Feature selection influences forecast skill more than model type choice.•SWE is important in highly snow-dominated basins; PA in less snow-dominated basins.•Meteorological and climate features improve skill across basins and model types.
AbstractList This study focuses on five watersheds in the southwestern United States, where April–July (AMJJ) water supply forecasts (WSFs) inform water management. Climate change has altered long-relied-upon relationships between April 1st snow water equivalent (SWE) and AMJJ water supply, threatening the skill of traditional forecasting approaches. This work evaluates how the interaction between model type (e.g., multiple linear regression, random forest) and feature selection influences AMJJ WSF skill. Five machine learning model types are applied in each basin. A new wrapper-based feature selection method identifies the Best Feature Set—selected from a broad pool of station-based, meteorological, and climatological features—for each basin–model type combination. Results show that the most important features vary by both basin and model type, and that model types perform similarly when each is trained on its respective Best Feature Set. April 1st SWE is most important in highly snow-dominated basins, while April 1st precipitation accumulation becomes more important in less snow-dominated systems. Station-based features from multiple lag times are consistently selected, suggesting that earlier observations provide additional predictive value. Among meteorological and climatological features, specific humidity and the Atlantic Multidecadal Oscillation are frequently selected across basins and model types, indicating broad predictive utility. Overall, results suggest that feature selection has a greater influence on forecast skill than model type choice. [Display omitted] •Feature importance varies by both basin and model type for AMJJ WSFs.•Feature selection influences forecast skill more than model type choice.•SWE is important in highly snow-dominated basins; PA in less snow-dominated basins.•Meteorological and climate features improve skill across basins and model types.
Study region: This study focuses on five watersheds in the southwestern United States, where April–July (AMJJ) water supply forecasts (WSFs) inform water management. Climate change has altered long-relied-upon relationships between April 1st snow water equivalent (SWE) and AMJJ water supply, threatening the skill of traditional forecasting approaches. Study focus: This work evaluates how the interaction between model type (e.g., multiple linear regression, random forest) and feature selection influences AMJJ WSF skill. Five machine learning model types are applied in each basin. A new wrapper-based feature selection method identifies the Best Feature Set—selected from a broad pool of station-based, meteorological, and climatological features—for each basin–model type combination. Results show that the most important features vary by both basin and model type, and that model types perform similarly when each is trained on its respective Best Feature Set. New hydrologic insights: April 1st SWE is most important in highly snow-dominated basins, while April 1st precipitation accumulation becomes more important in less snow-dominated systems. Station-based features from multiple lag times are consistently selected, suggesting that earlier observations provide additional predictive value. Among meteorological and climatological features, specific humidity and the Atlantic Multidecadal Oscillation are frequently selected across basins and model types, indicating broad predictive utility. Overall, results suggest that feature selection has a greater influence on forecast skill than model type choice.
ArticleNumber 102548
Author Kasprzyk, Joseph
Walker, Sydney D.
Zagona, Edith
Livneh, Ben
Pernat, Madeline R.
Author_xml – sequence: 1
  givenname: Madeline R.
  orcidid: 0000-0003-2814-3428
  surname: Pernat
  fullname: Pernat, Madeline R.
  email: madeline.pernat@colorado.edu
  organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA
– sequence: 2
  givenname: Joseph
  orcidid: 0000-0002-6344-6478
  surname: Kasprzyk
  fullname: Kasprzyk, Joseph
  email: joseph.kasprzyk@colorado.edu
  organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA
– sequence: 3
  givenname: Edith
  orcidid: 0000-0003-1333-0589
  surname: Zagona
  fullname: Zagona, Edith
  email: edith.zagona@colorado.edu
  organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA
– sequence: 4
  givenname: Sydney D.
  surname: Walker
  fullname: Walker, Sydney D.
  email: sydney.walker@colorado.edu
  organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA
– sequence: 5
  givenname: Ben
  orcidid: 0000-0001-5445-2473
  surname: Livneh
  fullname: Livneh, Ben
  email: ben.livneh@colorado.edu
  organization: Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA
BookMark eNp9kU1qHDEQhUVwILbjC2SlC_RYP91qNWQTjO0YDFnEXgv9VHvU9EiNpPEwB_C9rc6YkFVWJR71virVu0BnIQZA6BslG0qouJ42MKXthhHWVYF1rfyEzhmjbdNJKs_-eX9BVzlPhBAqezkIco7enraAE8y6-FfAfrfEVHSwgOOId9HBjMtxAayDwz4s-4JH0GWfIOMxJnzQBRLO-2WZj6sAVufiw0vtxTnEQ-Pizofa5LDR2Ye8YkudmOO-bA-Qqz3g599f0edRzxmuPuoler67fbr52Tz-un-4-fHYWC54aaglgzCil45oAKYZ54y0ggKXwjFphOWEGm3cAHbsQAzd2BFrZcs5tAYEv0QPJ66LelJL8judjipqr_4IMb0onYq3MyhiXLeSe9YOLQcwTuvesJFxNzDa28piJ5ZNMecE418eJWrNRU1qzUWtuahTLtX0_WSC-stXD0ll66He2_l6vFLX8P-zvwO2e5rz
Cites_doi 10.1007/s11269-019-02273-0
10.1175/BAMS-D-22-0146.1
10.3390/w15040620
10.1111/1752-1688.13007
10.1038/s43247-022-00532-4
10.1109/MIPRO.2015.7160458
10.1186/1758-2946-6-10
10.3389/fbinf.2022.927312
10.1175/1520-0442(2003)16<1249:AQEOEI>2.0.CO;2
10.1016/j.jhydrol.2022.128599
10.1111/1752-1688.12746
10.1126/science.222.4629.1195
10.1002/2016GL069690
10.3390/w14244029
10.1007/s10994-018-5748-7
10.3390/rs13061097
10.1016/j.jhydrol.2025.133465
10.1175/WCAS-D-18-0130.1
10.1038/nature04141
10.1029/2010WR009278
10.3390/su14138209
10.1111/j.1752-1688.2012.00641.x
10.1007/s11269-021-03016-w
10.1029/2008WR006855
10.1002/2017GL072524
10.1023/A:1022627411411
10.4296/cwrj3501001
10.1109/ACCESS.2019.2936989
10.6029/smartcr.2014.03.007
10.1073/pnas.0912391107
10.1007/s11269-022-03410-y
10.1002/2017GL073551
10.5194/hess-20-2611-2016
10.1109/ICDM.2002.1183917
10.3390/geosciences11030128
10.1175/JCLI-D-21-0603.1
10.3389/fenvs.2022.754597
10.1175/1525-7541(2004)005<0896:EOOWUS>2.0.CO;2
10.1007/s12145-020-00450-z
10.5194/hess-26-4013-2022
10.1016/j.jhydrol.2018.07.004
10.3390/w15061147
10.1016/j.jhydrol.2019.123981
10.5194/hess-28-1711-2024
10.1002/2017GL076043
10.3390/hydrology9120226
10.1038/s41558-020-0754-8
10.1029/97JC01736
10.1007/s42979-021-00592-x
10.3390/w15142572
10.1126/science.aay9187
10.1038/s43247-023-00751-3
10.1029/2005WR004381
10.1016/j.jhydrol.2022.127445
10.1016/j.jhydrol.2011.10.039
10.1023/A:1014217317898
10.1186/1471-2105-7-91
10.1029/2012WR011949
10.1073/pnas.0306738101
10.1002/jgrd.50326
10.1016/j.jenvman.2021.112625
10.1214/09-SS054
10.1016/S0004-3702(97)00043-X
10.1016/j.jhydrol.2016.03.017
10.1111/1752-1688.13147
10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2
10.1016/j.jclepro.2024.140715
10.1016/j.jhydrol.2023.129480
10.1016/j.catena.2019.104421
10.5194/adgeo-45-201-2018
10.1175/JHM-D-21-0229.1
10.1002/hyp.14619
10.1023/A:1010933404324
10.5194/hess-25-2997-2021
10.1029/2000WR900305
10.1007/s10994-006-6226-1
10.3390/w11071399
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.ejrh.2025.102548
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2214-5818
ExternalDocumentID oai_doaj_org_article_0bd561e3724943eebdaa7b2f23d9217c
10_1016_j_ejrh_2025_102548
S2214581825003738
GroupedDBID 0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
KQ8
M41
M~E
O9-
OK1
RIG
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c363t-1c096b678d0aee2a23320461e386d28b6c301babd9ecf5e695f50cc8433e4be63
IEDL.DBID DOA
ISSN 2214-5818
IngestDate Wed Aug 27 01:31:28 EDT 2025
Thu Jul 31 00:36:40 EDT 2025
Sat Aug 23 17:12:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Feature selection
ERT
SVR
FFS
MLR
Southwestern United States
PDO
SWE
WIND
NSE
WY
AMO
ENSO
Seasonal forecasting
Nested cross-validation
WSF
SOI
Water supply forecasting
PCA
PA
Climate change
AMJJ
CV
RF
SNOTEL
RRMSE
TMP
Machine learning
SEFS
SPFH
NAO
PCR
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-1c096b678d0aee2a23320461e386d28b6c301babd9ecf5e695f50cc8433e4be63
ORCID 0000-0001-5445-2473
0000-0003-2814-3428
0000-0002-6344-6478
0000-0003-1333-0589
OpenAccessLink https://doaj.org/article/0bd561e3724943eebdaa7b2f23d9217c
ParticipantIDs doaj_primary_oai_doaj_org_article_0bd561e3724943eebdaa7b2f23d9217c
crossref_primary_10_1016_j_ejrh_2025_102548
elsevier_sciencedirect_doi_10_1016_j_ejrh_2025_102548
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationTitle Journal of hydrology. Regional studies
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Modi, P.A., Small, E.E., Kasprzyk, J., Livneh, B., 2022. Investigating the Role of Snow Water Equivalent on Streamflow Predictability during Drought.
Page, Dilling (bib71) 2019; 11
Papacharalampous, Tyralis (bib72) 2018; 45
Balson, Ward (bib7) 2022; 36
Sánchez-Maroño, Alonso-Betanzos, Tombilla-Sanromán (bib84) 2007
Akbarian, Saghafian, Golian (bib3) 2023; 620
Pagano, Garen, Sorooshian (bib70) 2004; 5
Barlow, Nigam, Berbery (bib8) 2001; 14
Nevo, Morin, Gerzi Rosenthal, Metzger, Barshai, Weitzner, Voloshin, Kratzert, Elidan, Dror, Begelman, Nearing, Shalev, Noga, Shavitt, Yuklea, Royz, Giladi, Peled Levi, Reich, Gilon, Maor, Timnat, Shechter, Anisimov, Gigi, Levin, Moshe, Ben-Haim, Hassidim, Matias (bib67) 2022; 26
Kundzewicz, Szwed, Pińskwar (bib49) 2019; 11
Sengupta, A., Singh, B., DeFlorio, M.J., Raymond, C., Robertson, A.W., Zeng, X., Waliser, D.E., Jones, J., 2022. Advances in Subseasonal to Seasonal Prediction Relevant to Water Management in the Western United States.
Szczepanek, R., 2022. Daily Streamflow Forecasting in Mountainous Catchment Using XGBoost, LightGBM and CatBoost. Hydrology.
Harpold, Brooks, Rajagopal, Heidbuchel, Jardine, Stielstra (bib34) 2012; 48
Cawley, G.C., Talbot, N.L.C., 2010. On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation 29.
Weekaew, Ditthakit, Pham, Kittiphattanabawon, Linh (bib98) 2022; 14
Coleman, Budikova (bib20) 2013; 118
Tsamardinos, Borboudakis, Katsogridakis, Pratikakis, Christophides (bib93) 2019; 108
Whitfield, Moore, Fleming, Zawadzki (bib100) 2010; 35
Mahesh (bib57) 2019
Adnan, Liang, Trajkovic, Zounemat-Kermani, Li, Kisi (bib1) 2019; 577
Zakaria, Shabri (bib104) 2012; 6
.
Cayan, Das, Pierce, Barnett, Tyree, Gershunov (bib17) 2010; 107
Zhao, C., Geng, X., Zhang, W., Qi, L., 2022. Atlantic Multidecadal Oscillation Modulates ENSO Atmospheric Anomaly Amplitude in the Tropical Pacific.
Fleming, S.W., 2021. New River Forecast Model Integrates Artificial Intelligence to Support Better Water Management in the West [WWW Document]. Farmers.gov. URL
Pudjihartono, Fadason, Kempa-Liehr, O’Sullivan (bib77) 2022; 2
Hurrell, Kushnir, Ottersen, Visbeck (bib39) 2003
Ahmed, Sayed, Abdoulhalik, Moutari, Oyedele (bib2) 2024; 441
Wanner, Brönnimann, Casty, Gyalistras, Luterbacher, Schmutz, Stephenson, Xoplaki (bib97) 2001; 22
Huang, B., Thorne, P.W., Banzon, V.F., Boyer, T., Chepurin, G., Lawrimore, J.H., Menne, M.J., Smith, T.M., Vose, R.S., Zhang, H.M., 2017. NOAA Extended Reconstructed Sea Surface Temperature (ERSST) (Version 5).
Tongal, Booij (bib91) 2018; 564
Fleming, Garen (bib27) 2022; 58
Jović, A., Brkić, K., Bogunović, N., 2015. A review of feature selection methods with applications, in: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Presented at the 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205.
(accessed 2.27.23).
Hanley, D.E., Bourassa, M.A., O’Brien, J.J., Smith, S.R., Spade, E.R., 2003. A Quantitative Evaluation of ENSO Indices.
Sarker (bib85) 2021; 2
Barnett, Adam, Lettenmaier (bib9) 2005; 438
Gottfried, Neary, Ffolliott (bib31) 2002
Levine, McPhaden, Frierson (bib51) 2017; 44
Yue, Wang, Zhang, Yang (bib103) 2025; 660
Bishay, Bjarke, Modi, Pflug, Livneh (bib11) 2023; 15
Molina, L.C., Belanche, L., Nebot, A., 2002. Feature selection algorithms: a survey and experimental evaluation, in: 2002 IEEE International Conference on Data Mining, 2002. Proceedings. Presented at the 2002 IEEE International Conference on Data Mining, 2002. Proceedings., pp. 306–313.
Liang, Chen, Fang, Kaldybayev (bib54) 2023; 49
Arlot, Celisse (bib4) 2010; 4
Norel, Kałczyński, Pińskwar, Krawiec, Kundzewicz (bib69) 2021; 11
Varma, Simon (bib95) 2006; 7
Hale, Jennings, Musselman, Livneh, Molotch (bib32) 2023; 4
Reis, da Silva, Fernandes Filho, Moreira, Veloso, Fraga, Pinheiro (bib82) 2021; 290
Bossert, P., Martinez, M., Duffy, D., Pavón, J., Casey, C., Klise, G., McGann, J., 2004. The Rio Jemez Background Papers on the Adjudication Proceeding and Water Rights Issues.
McCabe, Palecki, Betancourt (bib58) 2004; 101
Kamalov, Elnaffar, Cherukuri, Jonnalagadda (bib43) 2024
Mosaffa, Sadeghi, Mallakpour, Naghdyzadegan Jahromi, Pourghasemi (bib63) 2022
Raschka, S., 2020. Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning.
Heddam (bib35) 2021
West, Quinn, Horswell (bib99) 2022; 10
Li, Wrzesien, Durand, Adam, Lettenmaier (bib53) 2017; 44
Rice, Bales, Painter, Dozier (bib83) 2011; 47
Broxton, van Leeuwen, Svoma, Walter, Biederman (bib14) 2023; 59
Bureau of Reclamation, 2021. Water Availability: Monitoring and Forecasting, Knowledge Stream.
Singh, Kumar, Ali, Al-Ansari, Vishwakarma, Kushwaha, Panda, Sagar, Mirzania, Elbeltagi, Kuriqi, Heddam (bib88) 2022; 14
Sprenger, Carroll, Marchetti, Bern, Beria, Brown, Newman, Beutler, Williams (bib89) 2024; 28
Lima, Cannon, Hsieh (bib55) 2016; 537
Xu, Chen, Zhang, Xiong, Chen (bib102) 2022; 614
Duan, Maskey, Chaffe, Luo, He, Wu, Hou (bib23) 2021; 13
Hunsaker, Whitaker, Bales (bib38) 2012; 48
Xia, Mitchell, Ek, Sheffield, Cosgrove, Wood, Luo, Alonge, Wei, Meng, Livneh, Lettenmaier, Koren, Duan, Mo, Fan, Mocko (bib101) 2012; 117
Neilson, Strong, Horsburgh (bib66) 2021
Element Water Consulting, WaterDM, 2015. Municipal Water Efficiency Plan Town of Carbondale, Colorado.
City of Sedona, 2013. Sedona Community Plan.
USDA Forest Service, n.d. Your Watersheds [WWW Document]. S. Juan Natl. For. - Resour. Manag. URL
Drucker, Burges, Kaufman, Smola, Vapnik (bib22) 1996
Li, Qian, Yang, Dang, Hong (bib52) 2023; 37
NCAR Climate Analysis Section, Update regularly.Hurrell North Atlantic Oscillation (NAO) Index (PC-based).
Patel, Hardaha, Seetpal, Madankar (bib73) 2016; 2
Clark, Serreze, McCabe (bib19) 2001; 37
Helms, D., Phillips, S.E., Reich, P.F., 2008. The History of Snow Survey and Water Supply Forecasting: Interviews with U.S. Department of Agriculture Pioneers. U.S. Department of Agriculture.
Livneh, Badger (bib56) 2020; 10
Barnhart, Molotch, Livneh, Harpold, Knowles, Schneider (bib10) 2016; 43
Kumar, Kedam, Sharma, Mehta, Caloiero (bib48) 2023; 15
National Weather Service, 1951. (Stand Tahiti - Stand Darwin) Sea Level Pressure.
Krstajic, Buturovic, Leahy, Thomas (bib46) 2014; 6
(accessed 2.19.23).
Shortridge, Guikema, Zaitchik (bib87) 2016; 20
Kalra, Ahmad (bib42) 2009; 45
Badyalina, Shabri (bib5) 2013
Farmer, Kiang, Feaster, Eng (bib25) 2019
Nguyen, Le, Anh, Kim, Bae (bib68) 2022; 606
Geurts, Ernst, Wehenkel (bib29) 2006; 63
Lehner, Wood, Llewellyn, Blatchford, Goodbody, Pappenberger (bib50) 2017; 44
Pham, Luo, Finley (bib75) 2021; 25
Kumar (bib47) 2014; 4
Moghaddam, Rahmati, Panahi, Tiefenbacher, Darabi, Haghizadeh, Haghighi, Nalivan, Tien Bui (bib61) 2020; 187
Fleming, Goodbody (bib28) 2019; 7
Rasouli, Hsieh, Cannon (bib81) 2012; 414–415
Poul, Shourian, Ebrahimi (bib76) 2019; 33
Qian, Zhao, Yang, Li, Wang, Bai (bib78) 2022; 36
Tootle, Piechota, Singh (bib92) 2005; 41
Kohavi, John (bib45) 1997; 97
Breiman (bib13) 2001; 45
Milly, Dunne (bib59) 2020; 367
Kaplan, Cane, Kushnir, Clement, Blumenthal, Rajagopalan (bib44) 1998; 103
Baker, Wood, Rajagopalan (bib6) 2019; 55
Rasmusson, Wallace (bib80) 1983; 222
Cortes, Vapnik (bib21) 1995; 20
Ghobadi, Kang (bib30) 2023; 15
Hussain, Khan (bib40) 2020; 13
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib74) 2011; 12
Wahl, Zorita, Diaz, Hoell (bib96) 2022; 3
West (10.1016/j.ejrh.2025.102548_bib99) 2022; 10
Pagano (10.1016/j.ejrh.2025.102548_bib70) 2004; 5
Neilson (10.1016/j.ejrh.2025.102548_bib66) 2021
Ahmed (10.1016/j.ejrh.2025.102548_bib2) 2024; 441
Poul (10.1016/j.ejrh.2025.102548_bib76) 2019; 33
Nguyen (10.1016/j.ejrh.2025.102548_bib68) 2022; 606
Kamalov (10.1016/j.ejrh.2025.102548_bib43) 2024
10.1016/j.ejrh.2025.102548_bib64
10.1016/j.ejrh.2025.102548_bib105
10.1016/j.ejrh.2025.102548_bib65
10.1016/j.ejrh.2025.102548_bib62
10.1016/j.ejrh.2025.102548_bib60
Pham (10.1016/j.ejrh.2025.102548_bib75) 2021; 25
Sarker (10.1016/j.ejrh.2025.102548_bib85) 2021; 2
Kohavi (10.1016/j.ejrh.2025.102548_bib45) 1997; 97
Zakaria (10.1016/j.ejrh.2025.102548_bib104) 2012; 6
Levine (10.1016/j.ejrh.2025.102548_bib51) 2017; 44
Krstajic (10.1016/j.ejrh.2025.102548_bib46) 2014; 6
Xu (10.1016/j.ejrh.2025.102548_bib102) 2022; 614
10.1016/j.ejrh.2025.102548_bib26
Hurrell (10.1016/j.ejrh.2025.102548_bib39) 2003
Norel (10.1016/j.ejrh.2025.102548_bib69) 2021; 11
10.1016/j.ejrh.2025.102548_bib36
10.1016/j.ejrh.2025.102548_bib33
Pedregosa (10.1016/j.ejrh.2025.102548_bib74) 2011; 12
Rice (10.1016/j.ejrh.2025.102548_bib83) 2011; 47
Adnan (10.1016/j.ejrh.2025.102548_bib1) 2019; 577
Arlot (10.1016/j.ejrh.2025.102548_bib4) 2010; 4
Weekaew (10.1016/j.ejrh.2025.102548_bib98) 2022; 14
Xia (10.1016/j.ejrh.2025.102548_bib101) 2012; 117
Kalra (10.1016/j.ejrh.2025.102548_bib42) 2009; 45
Farmer (10.1016/j.ejrh.2025.102548_bib25) 2019
Sprenger (10.1016/j.ejrh.2025.102548_bib89) 2024; 28
Ghobadi (10.1016/j.ejrh.2025.102548_bib30) 2023; 15
Tsamardinos (10.1016/j.ejrh.2025.102548_bib93) 2019; 108
Cayan (10.1016/j.ejrh.2025.102548_bib17) 2010; 107
Baker (10.1016/j.ejrh.2025.102548_bib6) 2019; 55
10.1016/j.ejrh.2025.102548_bib37
Wanner (10.1016/j.ejrh.2025.102548_bib97) 2001; 22
Mahesh (10.1016/j.ejrh.2025.102548_bib57) 2019
McCabe (10.1016/j.ejrh.2025.102548_bib58) 2004; 101
10.1016/j.ejrh.2025.102548_bib41
Papacharalampous (10.1016/j.ejrh.2025.102548_bib72) 2018; 45
Page (10.1016/j.ejrh.2025.102548_bib71) 2019; 11
Li (10.1016/j.ejrh.2025.102548_bib52) 2023; 37
Tootle (10.1016/j.ejrh.2025.102548_bib92) 2005; 41
Pudjihartono (10.1016/j.ejrh.2025.102548_bib77) 2022; 2
Barlow (10.1016/j.ejrh.2025.102548_bib8) 2001; 14
Heddam (10.1016/j.ejrh.2025.102548_bib35) 2021
Liang (10.1016/j.ejrh.2025.102548_bib54) 2023; 49
Rasmusson (10.1016/j.ejrh.2025.102548_bib80) 1983; 222
Reis (10.1016/j.ejrh.2025.102548_bib82) 2021; 290
Fleming (10.1016/j.ejrh.2025.102548_bib28) 2019; 7
Balson (10.1016/j.ejrh.2025.102548_bib7) 2022; 36
Duan (10.1016/j.ejrh.2025.102548_bib23) 2021; 13
Bishay (10.1016/j.ejrh.2025.102548_bib11) 2023; 15
10.1016/j.ejrh.2025.102548_bib12
Hale (10.1016/j.ejrh.2025.102548_bib32) 2023; 4
Harpold (10.1016/j.ejrh.2025.102548_bib34) 2012; 48
Badyalina (10.1016/j.ejrh.2025.102548_bib5) 2013
Breiman (10.1016/j.ejrh.2025.102548_bib13) 2001; 45
Milly (10.1016/j.ejrh.2025.102548_bib59) 2020; 367
Sánchez-Maroño (10.1016/j.ejrh.2025.102548_bib84) 2007
10.1016/j.ejrh.2025.102548_bib94
10.1016/j.ejrh.2025.102548_bib90
Akbarian (10.1016/j.ejrh.2025.102548_bib3) 2023; 620
Clark (10.1016/j.ejrh.2025.102548_bib19) 2001; 37
Hunsaker (10.1016/j.ejrh.2025.102548_bib38) 2012; 48
Yue (10.1016/j.ejrh.2025.102548_bib103) 2025; 660
10.1016/j.ejrh.2025.102548_bib18
10.1016/j.ejrh.2025.102548_bib15
Lehner (10.1016/j.ejrh.2025.102548_bib50) 2017; 44
Barnett (10.1016/j.ejrh.2025.102548_bib9) 2005; 438
10.1016/j.ejrh.2025.102548_bib16
10.1016/j.ejrh.2025.102548_bib24
Mosaffa (10.1016/j.ejrh.2025.102548_bib63) 2022
Livneh (10.1016/j.ejrh.2025.102548_bib56) 2020; 10
Geurts (10.1016/j.ejrh.2025.102548_bib29) 2006; 63
Tongal (10.1016/j.ejrh.2025.102548_bib91) 2018; 564
Hussain (10.1016/j.ejrh.2025.102548_bib40) 2020; 13
Kumar (10.1016/j.ejrh.2025.102548_bib48) 2023; 15
Kundzewicz (10.1016/j.ejrh.2025.102548_bib49) 2019; 11
Whitfield (10.1016/j.ejrh.2025.102548_bib100) 2010; 35
Gottfried (10.1016/j.ejrh.2025.102548_bib31) 2002
Singh (10.1016/j.ejrh.2025.102548_bib88) 2022; 14
10.1016/j.ejrh.2025.102548_bib79
Varma (10.1016/j.ejrh.2025.102548_bib95) 2006; 7
Barnhart (10.1016/j.ejrh.2025.102548_bib10) 2016; 43
Li (10.1016/j.ejrh.2025.102548_bib53) 2017; 44
Moghaddam (10.1016/j.ejrh.2025.102548_bib61) 2020; 187
Drucker (10.1016/j.ejrh.2025.102548_bib22) 1996
Qian (10.1016/j.ejrh.2025.102548_bib78) 2022; 36
Kumar (10.1016/j.ejrh.2025.102548_bib47) 2014; 4
Lima (10.1016/j.ejrh.2025.102548_bib55) 2016; 537
Nevo (10.1016/j.ejrh.2025.102548_bib67) 2022; 26
Fleming (10.1016/j.ejrh.2025.102548_bib27) 2022; 58
Rasouli (10.1016/j.ejrh.2025.102548_bib81) 2012; 414–415
Wahl (10.1016/j.ejrh.2025.102548_bib96) 2022; 3
Broxton (10.1016/j.ejrh.2025.102548_bib14) 2023; 59
Kaplan (10.1016/j.ejrh.2025.102548_bib44) 1998; 103
10.1016/j.ejrh.2025.102548_bib86
Cortes (10.1016/j.ejrh.2025.102548_bib21) 1995; 20
Patel (10.1016/j.ejrh.2025.102548_bib73) 2016; 2
Shortridge (10.1016/j.ejrh.2025.102548_bib87) 2016; 20
Coleman (10.1016/j.ejrh.2025.102548_bib20) 2013; 118
References_xml – start-page: 178
  year: 2007
  end-page: 187
  ident: bib84
  article-title: Filter methods for feature selection – a comparative study
  publication-title: Intelligent Data Engineering and Automated Learning - IDEAL 2007
– volume: 49
  year: 2023
  ident: bib54
  article-title: Machine learning method is an alternative for the hydrological model in an alpine catchment in the Tianshan region, Central Asia
  publication-title: J. Hydrol. Reg. Stud.
– volume: 14
  start-page: 2105
  year: 2001
  end-page: 2128
  ident: bib8
  article-title: ENSO, Pacific Decadal Variability, and U.S. Summertime Precipitation, Drought, and Stream Flow
  publication-title: J. Clim.
– volume: 45
  year: 2009
  ident: bib42
  article-title: Using oceanic-atmospheric oscillations for long lead time streamflow forecasting: streamflow forecast using oceanic-atmospheric oscillations
  publication-title: Water Resour. Res.
– volume: 36
  year: 2022
  ident: bib7
  article-title: A machine learning approach to water quality forecasts and sensor network expansion: case study in the Wabash River Basin, United States
  publication-title: Hydrol. Process
– reference: Fleming, S.W., 2021. New River Forecast Model Integrates Artificial Intelligence to Support Better Water Management in the West [WWW Document]. Farmers.gov. URL
– volume: 33
  start-page: 2907
  year: 2019
  end-page: 2923
  ident: bib76
  article-title: A comparative study of MLR, KNN, ANN and ANFIS models with wavelet transform in monthly stream flow prediction
  publication-title: Water Resour. Manag
– start-page: 585
  year: 2022
  end-page: 591
  ident: bib63
  article-title: Chapter 43 - Application of machine learning algorithms in hydrology
  publication-title: Computers in Earth and Environmental Sciences
– volume: 35
  start-page: 1
  year: 2010
  end-page: 28
  ident: bib100
  article-title: Pacific decadal oscillation and the hydroclimatology of Western Canada—review and prospects
  publication-title: Can. Water Resour. J.
– reference: Szczepanek, R., 2022. Daily Streamflow Forecasting in Mountainous Catchment Using XGBoost, LightGBM and CatBoost. Hydrology.
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: bib45
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
– volume: 25
  start-page: 2997
  year: 2021
  end-page: 3015
  ident: bib75
  article-title: Evaluation of random forests for short-term daily streamflow forecasting in rainfall- and snowmelt-driven watersheds
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 414–415
  start-page: 284
  year: 2012
  end-page: 293
  ident: bib81
  article-title: Daily streamflow forecasting by machine learning methods with weather and climate inputs
  publication-title: J. Hydrol.
– volume: 441
  year: 2024
  ident: bib2
  article-title: Applications of machine learning to water resources management: a review of present status and future opportunities
  publication-title: J. Clean. Prod.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib21
  article-title: Support-vector networks
  publication-title: Mach. Learn
– volume: 15
  start-page: 620
  year: 2023
  ident: bib30
  article-title: Application of machine learning in water resources management: a systematic literature review
  publication-title: Water
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib74
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 660
  year: 2025
  ident: bib103
  article-title: A machine learning-based water supply forecasting model to quantify the impact of snow water equivalent on seasonal streamflow variability over the western U.S
  publication-title: J. Hydrol.
– volume: 37
  start-page: 741
  year: 2001
  end-page: 757
  ident: bib19
  article-title: Historical effects of El Nino and La Nina events on the seasonal evolution of the montane snowpack in the Columbia and Colorado River Basins
  publication-title: Water Resour. Res.
– reference: Huang, B., Thorne, P.W., Banzon, V.F., Boyer, T., Chepurin, G., Lawrimore, J.H., Menne, M.J., Smith, T.M., Vose, R.S., Zhang, H.M., 2017. NOAA Extended Reconstructed Sea Surface Temperature (ERSST) (Version 5).
– reference: Element Water Consulting, WaterDM, 2015. Municipal Water Efficiency Plan Town of Carbondale, Colorado.
– volume: 564
  start-page: 266
  year: 2018
  end-page: 282
  ident: bib91
  article-title: Simulation and forecasting of streamflows using machine learning models coupled with base flow separation
  publication-title: J. Hydrol.
– start-page: 1
  year: 2003
  end-page: 35
  ident: bib39
  article-title: An Overview of the North Atlantic Oscillation
  publication-title: The North Atlantic Oscillation: Climatic Significance and Environmental Impact
– volume: 11
  start-page: 851
  year: 2019
  end-page: 862
  ident: bib71
  article-title: The critical role of communities of practice and peer learning in scaling hydroclimatic information adoption
  publication-title: Weather Clim. Soc.
– reference: Jović, A., Brkić, K., Bogunović, N., 2015. A review of feature selection methods with applications, in: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Presented at the 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1200–1205.
– year: 2019
  ident: bib25
  article-title: Regionalization of surface-water statistics using multiple linear regression (USGS Numbered Series No. 4-A12)
  publication-title: Regionalization of surface-water statistics using multiple linear regression, Techniques and Methods
– volume: 290
  year: 2021
  ident: bib82
  article-title: Effect of environmental covariable selection in the hydrological modeling using machine learning models to predict daily streamflow
  publication-title: J. Environ. Manag.
– reference: Hanley, D.E., Bourassa, M.A., O’Brien, J.J., Smith, S.R., Spade, E.R., 2003. A Quantitative Evaluation of ENSO Indices.
– volume: 103
  start-page: 18567
  year: 1998
  end-page: 18589
  ident: bib44
  article-title: Analyses of global sea surface temperature 1856–1991
  publication-title: J. Geophys. Res. Oceans
– volume: 614
  year: 2022
  ident: bib102
  article-title: A framework of integrating heterogeneous data sources for monthly streamflow prediction using a state-of-the-art deep learning model
  publication-title: J. Hydrol.
– volume: 14
  start-page: 8209
  year: 2022
  ident: bib88
  article-title: An integrated statistical-machine learning approach for runoff prediction
  publication-title: Sustainability
– volume: 577
  year: 2019
  ident: bib1
  article-title: Daily streamflow prediction using optimally pruned extreme learning machine
  publication-title: J. Hydrol.
– year: 2021
  ident: bib66
  article-title: State of the Logan River Watershed
– year: 2002
  ident: bib31
  article-title: Snowpack-runoff relationships for mid-elevation snowpacks on the Workman Creek watersheds of Central Arizona (No. RMRS-RP-33)
  publication-title: U.S. Department of Agriculture, Forest Service
– volume: 537
  start-page: 431
  year: 2016
  end-page: 443
  ident: bib55
  article-title: Forecasting daily streamflow using online sequential extreme learning machines
  publication-title: J. Hydrol.
– reference: Bossert, P., Martinez, M., Duffy, D., Pavón, J., Casey, C., Klise, G., McGann, J., 2004. The Rio Jemez Background Papers on the Adjudication Proceeding and Water Rights Issues.
– volume: 4
  start-page: 1
  year: 2023
  end-page: 11
  ident: bib32
  article-title: Recent decreases in snow water storage in western North America
  publication-title: Commun. Earth Environ.
– volume: 45
  start-page: 201
  year: 2018
  end-page: 208
  ident: bib72
  article-title: Evaluation of random forests and Prophet for daily streamflow forecasting
  publication-title: Adv. Geosci.
– volume: 2
  start-page: 160
  year: 2021
  ident: bib85
  article-title: Machine learning: algorithms, real-world applications and research directions
  publication-title: SN Comput. Sci.
– reference: Bureau of Reclamation, 2021. Water Availability: Monitoring and Forecasting, Knowledge Stream.
– volume: 367
  start-page: 1252
  year: 2020
  end-page: 1255
  ident: bib59
  article-title: Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation
  publication-title: Science
– volume: 26
  start-page: 4013
  year: 2022
  end-page: 4032
  ident: bib67
  article-title: Flood forecasting with machine learning models in an operational framework
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 47
  year: 2011
  ident: bib83
  article-title: Snow water equivalent along elevation gradients in the Merced and Tuolumne River basins of the Sierra Nevada
  publication-title: Water Resour. Res.
– volume: 44
  start-page: 6163
  year: 2017
  end-page: 6172
  ident: bib53
  article-title: How much runoff originates as snow in the western United States, and how will that change in the future?
  publication-title: Geophys. Res. Lett.
– volume: 11
  start-page: 128
  year: 2021
  ident: bib69
  article-title: Climate variability indices—a guided tour
  publication-title: Geosciences
– volume: 118
  start-page: 4181
  year: 2013
  end-page: 4193
  ident: bib20
  article-title: Eastern U.S. summer streamflow during extreme phases of the North Atlantic oscillation
  publication-title: J. Geophys. Res. Atmospheres
– volume: 4
  start-page: 40
  year: 2010
  end-page: 79
  ident: bib4
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat. Surv.
– volume: 48
  year: 2012
  ident: bib34
  article-title: Changes in snowpack accumulation and ablation in the intermountain west
  publication-title: Water Resour. Res.
– volume: 58
  start-page: 517
  year: 2022
  end-page: 524
  ident: bib27
  article-title: Simplified cross-validation in principal component regression (PCR) and PCR-like machine learning for water supply forecasting
  publication-title: JAWRA J. Am. Water Resour. Assoc.
– volume: 7
  start-page: 91
  year: 2006
  ident: bib95
  article-title: Bias in error estimation when using cross-validation for model selection
  publication-title: BMC Bioinforma.
– reference: Cawley, G.C., Talbot, N.L.C., 2010. On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation 29.
– start-page: 44
  year: 2024
  end-page: 54
  ident: bib43
  article-title: Forward feature selection: empirical analysis
  publication-title: J. Intell. Syst. Internet Things
– volume: 44
  start-page: 3877
  year: 2017
  end-page: 3886
  ident: bib51
  article-title: The impact of the AMO on multidecadal ENSO variability
  publication-title: Geophys. Res. Lett.
– volume: 15
  start-page: 1147
  year: 2023
  ident: bib11
  article-title: Can Remotely Sensed Snow Disappearance Explain Seasonal Water Supply?
  publication-title: Water
– volume: 28
  start-page: 1711
  year: 2024
  end-page: 1723
  ident: bib89
  article-title: Stream water sourcing from high-elevation snowpack inferred from stable isotopes of water: a novel application of d-excess values
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 107
  start-page: 21271
  year: 2010
  end-page: 21276
  ident: bib17
  article-title: Future dryness in the southwest US and the hydrology of the early 21st century drought
  publication-title: Proc. Natl. Acad. Sci.
– volume: 59
  start-page: 1493
  year: 2023
  end-page: 1510
  ident: bib14
  article-title: Subseasonal to seasonal streamflow forecasting in a semiarid watershed
  publication-title: JAWRA J. Am. Water Resour. Assoc.
– volume: 7
  start-page: 119943
  year: 2019
  end-page: 119964
  ident: bib28
  article-title: A machine learning metasystem for robust probabilistic nonlinear regression-based forecasting of seasonal water availability in the US West
  publication-title: IEEE Access
– volume: 101
  start-page: 4136
  year: 2004
  end-page: 4141
  ident: bib58
  article-title: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States
  publication-title: Proc. Natl. Acad. Sci.
– volume: 3
  start-page: 1
  year: 2022
  end-page: 14
  ident: bib96
  article-title: Southwestern United States drought of the 21st century presages drier conditions into the future
  publication-title: Commun. Earth Environ.
– reference: USDA Forest Service, n.d. Your Watersheds [WWW Document]. S. Juan Natl. For. - Resour. Manag. URL
– year: 2019
  ident: bib57
  article-title: Machine Learning Algorithms -A Review
  publication-title: International Journal Science Research (IJSR)
– reference: (accessed 2.27.23).
– volume: 2
  year: 2022
  ident: bib77
  article-title: A review of feature selection methods for machine learning-based disease risk prediction
  publication-title: Front. Bioinforma.
– volume: 438
  start-page: 303
  year: 2005
  end-page: 309
  ident: bib9
  article-title: Potential impacts of a warming climate on water availability in snow-dominated regions
  publication-title: Nature
– volume: 108
  start-page: 149
  year: 2019
  end-page: 202
  ident: bib93
  article-title: A greedy feature selection algorithm for Big Data of high dimensionality
  publication-title: Mach. Learn
– year: 1996
  ident: bib22
  article-title: Support Vector Regression Machines
  publication-title: Advances in Neural Information Processing Systems
– volume: 606
  year: 2022
  ident: bib68
  article-title: Hourly streamflow forecasting using a Bayesian additive regression tree model hybridized with a genetic algorithm
  publication-title: J. Hydrol.
– volume: 117
  year: 2012
  ident: bib101
  article-title: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products
  publication-title: J. Geophys. Res.
– volume: 13
  start-page: 1097
  year: 2021
  ident: bib23
  article-title: Recent advancement in remote sensing technology for hydrology analysis and water resources management
  publication-title: Remote Sens
– reference: City of Sedona, 2013. Sedona Community Plan.
– volume: 6
  start-page: 10
  year: 2014
  ident: bib46
  article-title: Cross-validation pitfalls when selecting and assessing regression and classification models
  publication-title: J. Chemin..
– volume: 63
  start-page: 3
  year: 2006
  end-page: 42
  ident: bib29
  article-title: Extremely randomized trees
  publication-title: Mach. Learn
– volume: 222
  start-page: 1195
  year: 1983
  end-page: 1202
  ident: bib80
  article-title: Meteorological aspects of the el nino/southern oscillation
  publication-title: Science
– volume: 187
  year: 2020
  ident: bib61
  article-title: The effect of sample size on different machine learning models for groundwater potential mapping in mountain bedrock aquifers
  publication-title: CATENA
– reference: National Weather Service, 1951. (Stand Tahiti - Stand Darwin) Sea Level Pressure.
– volume: 4
  year: 2014
  ident: bib47
  article-title: Feature selection: a literature review
  publication-title: Smart Comput. Rev.
– volume: 620
  year: 2023
  ident: bib3
  article-title: Monthly streamflow forecasting by machine learning methods using dynamic weather prediction model outputs over Iran
  publication-title: J. Hydrol.
– volume: 5
  start-page: 896
  year: 2004
  end-page: 909
  ident: bib70
  article-title: Evaluation of Official Western U.S. Seasonal Water Supply Outlooks, 1922–2002
  publication-title: J. Hydrometeorol.
– volume: 10
  start-page: 452
  year: 2020
  end-page: 458
  ident: bib56
  article-title: Drought less predictable under declining future snowpack
  publication-title: Nat. Clim. Change
– volume: 48
  start-page: 667
  year: 2012
  end-page: 678
  ident: bib38
  article-title: Snowmelt runoff and water yield along elevation and temperature gradients in California’s southern Sierra Nevada
  publication-title: J. Am. Water Resour. Assoc. JAWRA
– volume: 36
  start-page: 1141
  year: 2022
  end-page: 1157
  ident: bib78
  article-title: A new estimation method for copula parameters for multivariate hydrological frequency analysis with small sample sizes
  publication-title: Water Resour. Manag
– volume: 20
  start-page: 2611
  year: 2016
  end-page: 2628
  ident: bib87
  article-title: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 2
  start-page: 1
  year: 2016
  end-page: 5
  ident: bib73
  article-title: Multiple linear regression model for stream flow estimation of Wainganga River
  publication-title: Am. J. Water Sci. Eng.
– volume: 14
  start-page: 4029
  year: 2022
  ident: bib98
  article-title: Comparative study of coupling models of feature selection methods and machine learning techniques for predicting monthly reservoir inflow
  publication-title: Water
– reference: Raschka, S., 2020. Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning.
– volume: 13
  start-page: 939
  year: 2020
  end-page: 949
  ident: bib40
  article-title: Machine learning techniques for monthly river flow forecasting of Hunza River, Pakistan
  publication-title: Earth Sci. Inf.
– start-page: 89
  year: 2021
  end-page: 107
  ident: bib35
  article-title: Intelligent Data Analytics Approaches for Predicting Dissolved Oxygen Concentration in River: Extremely Randomized Tree Versus Random Forest, MLPNN and MLR
  publication-title: Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation: Theory and Practice of Hazard Mitigation
– volume: 6
  start-page: 3003
  year: 2012
  end-page: 3014
  ident: bib104
  article-title: Streamow forecasting at ungaged sites using support vector machines
  publication-title: Appl. Math. Sci.
– volume: 55
  start-page: 1024
  year: 2019
  end-page: 1037
  ident: bib6
  article-title: Developing subseasonal to seasonal climate forecast products for hydrology and water management
  publication-title: JAWRA J. Am. Water Resour. Assoc.
– volume: 43
  start-page: 8006
  year: 2016
  end-page: 8016
  ident: bib10
  article-title: Snowmelt rate dictates streamflow
  publication-title: Geophys. Res. Lett.
– reference: Zhao, C., Geng, X., Zhang, W., Qi, L., 2022. Atlantic Multidecadal Oscillation Modulates ENSO Atmospheric Anomaly Amplitude in the Tropical Pacific.
– reference: Molina, L.C., Belanche, L., Nebot, A., 2002. Feature selection algorithms: a survey and experimental evaluation, in: 2002 IEEE International Conference on Data Mining, 2002. Proceedings. Presented at the 2002 IEEE International Conference on Data Mining, 2002. Proceedings., pp. 306–313.
– reference: NCAR Climate Analysis Section, Update regularly.Hurrell North Atlantic Oscillation (NAO) Index (PC-based).
– volume: 22
  start-page: 321
  year: 2001
  end-page: 381
  ident: bib97
  article-title: North Atlantic oscillation – concepts and studies
  publication-title: Surv. Geophys
– volume: 10
  year: 2022
  ident: bib99
  article-title: The influence of the North Atlantic oscillation and East Atlantic pattern on drought in British Catchments
  publication-title: Front. Environ. Sci.
– reference: Modi, P.A., Small, E.E., Kasprzyk, J., Livneh, B., 2022. Investigating the Role of Snow Water Equivalent on Streamflow Predictability during Drought.
– reference: (accessed 2.19.23).
– volume: 44
  start-page: 12,208
  year: 2017
  end-page: 12,217
  ident: bib50
  article-title: Mitigating the impacts of climate nonstationarity on seasonal streamflow predictability in the U.S. Southwest
  publication-title: Geophys. Res. Lett.
– volume: 41
  year: 2005
  ident: bib92
  article-title: Coupled oceanic-atmospheric variability and U.S. streamflow: oceanic-atmospheric variability and U.S. streamflow
  publication-title: Water Resour. Res.
– reference: Sengupta, A., Singh, B., DeFlorio, M.J., Raymond, C., Robertson, A.W., Zeng, X., Waliser, D.E., Jones, J., 2022. Advances in Subseasonal to Seasonal Prediction Relevant to Water Management in the Western United States.
– reference: .
– volume: 11
  start-page: 1399
  year: 2019
  ident: bib49
  article-title: Climate variability and floods—a global review
  publication-title: Water
– start-page: 67
  year: 2013
  end-page: 75
  ident: bib5
  article-title: Streamflow forecasting at ungauged sites using multiple linear regression
  publication-title: Mat. Malays. J. Ind. Appl. Math.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib13
  article-title: Random forest
  publication-title: Mach. Learn
– volume: 15
  start-page: 2572
  year: 2023
  ident: bib48
  article-title: Advanced machine learning techniques to improve hydrological prediction: a comparative analysis of streamflow prediction models
  publication-title: Water
– reference: Helms, D., Phillips, S.E., Reich, P.F., 2008. The History of Snow Survey and Water Supply Forecasting: Interviews with U.S. Department of Agriculture Pioneers. U.S. Department of Agriculture.
– volume: 37
  start-page: 1055
  year: 2023
  end-page: 1082
  ident: bib52
  article-title: Parameter estimation for univariate hydrological distribution using improved bootstrap with small samples
  publication-title: Water Resour. Manag
– ident: 10.1016/j.ejrh.2025.102548_bib36
– ident: 10.1016/j.ejrh.2025.102548_bib65
– volume: 33
  start-page: 2907
  year: 2019
  ident: 10.1016/j.ejrh.2025.102548_bib76
  article-title: A comparative study of MLR, KNN, ANN and ANFIS models with wavelet transform in monthly stream flow prediction
  publication-title: Water Resour. Manag
  doi: 10.1007/s11269-019-02273-0
– ident: 10.1016/j.ejrh.2025.102548_bib86
  doi: 10.1175/BAMS-D-22-0146.1
– ident: 10.1016/j.ejrh.2025.102548_bib94
– volume: 15
  start-page: 620
  year: 2023
  ident: 10.1016/j.ejrh.2025.102548_bib30
  article-title: Application of machine learning in water resources management: a systematic literature review
  publication-title: Water
  doi: 10.3390/w15040620
– volume: 58
  start-page: 517
  year: 2022
  ident: 10.1016/j.ejrh.2025.102548_bib27
  article-title: Simplified cross-validation in principal component regression (PCR) and PCR-like machine learning for water supply forecasting
  publication-title: JAWRA J. Am. Water Resour. Assoc.
  doi: 10.1111/1752-1688.13007
– volume: 3
  start-page: 1
  year: 2022
  ident: 10.1016/j.ejrh.2025.102548_bib96
  article-title: Southwestern United States drought of the 21st century presages drier conditions into the future
  publication-title: Commun. Earth Environ.
  doi: 10.1038/s43247-022-00532-4
– ident: 10.1016/j.ejrh.2025.102548_bib16
– ident: 10.1016/j.ejrh.2025.102548_bib41
  doi: 10.1109/MIPRO.2015.7160458
– ident: 10.1016/j.ejrh.2025.102548_bib79
– volume: 6
  start-page: 10
  year: 2014
  ident: 10.1016/j.ejrh.2025.102548_bib46
  article-title: Cross-validation pitfalls when selecting and assessing regression and classification models
  publication-title: J. Chemin..
  doi: 10.1186/1758-2946-6-10
– volume: 2
  year: 2022
  ident: 10.1016/j.ejrh.2025.102548_bib77
  article-title: A review of feature selection methods for machine learning-based disease risk prediction
  publication-title: Front. Bioinforma.
  doi: 10.3389/fbinf.2022.927312
– ident: 10.1016/j.ejrh.2025.102548_bib33
  doi: 10.1175/1520-0442(2003)16<1249:AQEOEI>2.0.CO;2
– start-page: 178
  year: 2007
  ident: 10.1016/j.ejrh.2025.102548_bib84
  article-title: Filter methods for feature selection – a comparative study
– volume: 614
  year: 2022
  ident: 10.1016/j.ejrh.2025.102548_bib102
  article-title: A framework of integrating heterogeneous data sources for monthly streamflow prediction using a state-of-the-art deep learning model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128599
– volume: 55
  start-page: 1024
  year: 2019
  ident: 10.1016/j.ejrh.2025.102548_bib6
  article-title: Developing subseasonal to seasonal climate forecast products for hydrology and water management
  publication-title: JAWRA J. Am. Water Resour. Assoc.
  doi: 10.1111/1752-1688.12746
– volume: 222
  start-page: 1195
  year: 1983
  ident: 10.1016/j.ejrh.2025.102548_bib80
  article-title: Meteorological aspects of the el nino/southern oscillation
  publication-title: Science
  doi: 10.1126/science.222.4629.1195
– volume: 43
  start-page: 8006
  year: 2016
  ident: 10.1016/j.ejrh.2025.102548_bib10
  article-title: Snowmelt rate dictates streamflow
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL069690
– volume: 14
  start-page: 4029
  year: 2022
  ident: 10.1016/j.ejrh.2025.102548_bib98
  article-title: Comparative study of coupling models of feature selection methods and machine learning techniques for predicting monthly reservoir inflow
  publication-title: Water
  doi: 10.3390/w14244029
– volume: 108
  start-page: 149
  year: 2019
  ident: 10.1016/j.ejrh.2025.102548_bib93
  article-title: A greedy feature selection algorithm for Big Data of high dimensionality
  publication-title: Mach. Learn
  doi: 10.1007/s10994-018-5748-7
– volume: 13
  start-page: 1097
  year: 2021
  ident: 10.1016/j.ejrh.2025.102548_bib23
  article-title: Recent advancement in remote sensing technology for hydrology analysis and water resources management
  publication-title: Remote Sens
  doi: 10.3390/rs13061097
– volume: 660
  year: 2025
  ident: 10.1016/j.ejrh.2025.102548_bib103
  article-title: A machine learning-based water supply forecasting model to quantify the impact of snow water equivalent on seasonal streamflow variability over the western U.S
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2025.133465
– volume: 11
  start-page: 851
  year: 2019
  ident: 10.1016/j.ejrh.2025.102548_bib71
  article-title: The critical role of communities of practice and peer learning in scaling hydroclimatic information adoption
  publication-title: Weather Clim. Soc.
  doi: 10.1175/WCAS-D-18-0130.1
– volume: 438
  start-page: 303
  year: 2005
  ident: 10.1016/j.ejrh.2025.102548_bib9
  article-title: Potential impacts of a warming climate on water availability in snow-dominated regions
  publication-title: Nature
  doi: 10.1038/nature04141
– volume: 47
  year: 2011
  ident: 10.1016/j.ejrh.2025.102548_bib83
  article-title: Snow water equivalent along elevation gradients in the Merced and Tuolumne River basins of the Sierra Nevada
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009278
– volume: 14
  start-page: 8209
  year: 2022
  ident: 10.1016/j.ejrh.2025.102548_bib88
  article-title: An integrated statistical-machine learning approach for runoff prediction
  publication-title: Sustainability
  doi: 10.3390/su14138209
– volume: 48
  start-page: 667
  year: 2012
  ident: 10.1016/j.ejrh.2025.102548_bib38
  article-title: Snowmelt runoff and water yield along elevation and temperature gradients in California’s southern Sierra Nevada
  publication-title: J. Am. Water Resour. Assoc. JAWRA
  doi: 10.1111/j.1752-1688.2012.00641.x
– volume: 36
  start-page: 1141
  year: 2022
  ident: 10.1016/j.ejrh.2025.102548_bib78
  article-title: A new estimation method for copula parameters for multivariate hydrological frequency analysis with small sample sizes
  publication-title: Water Resour. Manag
  doi: 10.1007/s11269-021-03016-w
– volume: 45
  year: 2009
  ident: 10.1016/j.ejrh.2025.102548_bib42
  article-title: Using oceanic-atmospheric oscillations for long lead time streamflow forecasting: streamflow forecast using oceanic-atmospheric oscillations
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR006855
– volume: 44
  start-page: 3877
  year: 2017
  ident: 10.1016/j.ejrh.2025.102548_bib51
  article-title: The impact of the AMO on multidecadal ENSO variability
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL072524
– start-page: 585
  year: 2022
  ident: 10.1016/j.ejrh.2025.102548_bib63
  article-title: Chapter 43 - Application of machine learning algorithms in hydrology
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.ejrh.2025.102548_bib21
  article-title: Support-vector networks
  publication-title: Mach. Learn
  doi: 10.1023/A:1022627411411
– volume: 35
  start-page: 1
  year: 2010
  ident: 10.1016/j.ejrh.2025.102548_bib100
  article-title: Pacific decadal oscillation and the hydroclimatology of Western Canada—review and prospects
  publication-title: Can. Water Resour. J.
  doi: 10.4296/cwrj3501001
– volume: 7
  start-page: 119943
  year: 2019
  ident: 10.1016/j.ejrh.2025.102548_bib28
  article-title: A machine learning metasystem for robust probabilistic nonlinear regression-based forecasting of seasonal water availability in the US West
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936989
– year: 1996
  ident: 10.1016/j.ejrh.2025.102548_bib22
  article-title: Support Vector Regression Machines
– volume: 4
  year: 2014
  ident: 10.1016/j.ejrh.2025.102548_bib47
  article-title: Feature selection: a literature review
  publication-title: Smart Comput. Rev.
  doi: 10.6029/smartcr.2014.03.007
– start-page: 67
  year: 2013
  ident: 10.1016/j.ejrh.2025.102548_bib5
  article-title: Streamflow forecasting at ungauged sites using multiple linear regression
  publication-title: Mat. Malays. J. Ind. Appl. Math.
– volume: 107
  start-page: 21271
  year: 2010
  ident: 10.1016/j.ejrh.2025.102548_bib17
  article-title: Future dryness in the southwest US and the hydrology of the early 21st century drought
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0912391107
– volume: 37
  start-page: 1055
  year: 2023
  ident: 10.1016/j.ejrh.2025.102548_bib52
  article-title: Parameter estimation for univariate hydrological distribution using improved bootstrap with small samples
  publication-title: Water Resour. Manag
  doi: 10.1007/s11269-022-03410-y
– volume: 44
  start-page: 6163
  year: 2017
  ident: 10.1016/j.ejrh.2025.102548_bib53
  article-title: How much runoff originates as snow in the western United States, and how will that change in the future?
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL073551
– volume: 20
  start-page: 2611
  year: 2016
  ident: 10.1016/j.ejrh.2025.102548_bib87
  article-title: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-2611-2016
– ident: 10.1016/j.ejrh.2025.102548_bib62
  doi: 10.1109/ICDM.2002.1183917
– volume: 11
  start-page: 128
  year: 2021
  ident: 10.1016/j.ejrh.2025.102548_bib69
  article-title: Climate variability indices—a guided tour
  publication-title: Geosciences
  doi: 10.3390/geosciences11030128
– ident: 10.1016/j.ejrh.2025.102548_bib105
  doi: 10.1175/JCLI-D-21-0603.1
– start-page: 89
  year: 2021
  ident: 10.1016/j.ejrh.2025.102548_bib35
  article-title: Intelligent Data Analytics Approaches for Predicting Dissolved Oxygen Concentration in River: Extremely Randomized Tree Versus Random Forest, MLPNN and MLR
– volume: 10
  year: 2022
  ident: 10.1016/j.ejrh.2025.102548_bib99
  article-title: The influence of the North Atlantic oscillation and East Atlantic pattern on drought in British Catchments
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2022.754597
– volume: 6
  start-page: 3003
  year: 2012
  ident: 10.1016/j.ejrh.2025.102548_bib104
  article-title: Streamow forecasting at ungaged sites using support vector machines
  publication-title: Appl. Math. Sci.
– volume: 5
  start-page: 896
  year: 2004
  ident: 10.1016/j.ejrh.2025.102548_bib70
  article-title: Evaluation of Official Western U.S. Seasonal Water Supply Outlooks, 1922–2002
  publication-title: J. Hydrometeorol.
  doi: 10.1175/1525-7541(2004)005<0896:EOOWUS>2.0.CO;2
– volume: 117
  year: 2012
  ident: 10.1016/j.ejrh.2025.102548_bib101
  article-title: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products
  publication-title: J. Geophys. Res.
– volume: 13
  start-page: 939
  year: 2020
  ident: 10.1016/j.ejrh.2025.102548_bib40
  article-title: Machine learning techniques for monthly river flow forecasting of Hunza River, Pakistan
  publication-title: Earth Sci. Inf.
  doi: 10.1007/s12145-020-00450-z
– volume: 26
  start-page: 4013
  year: 2022
  ident: 10.1016/j.ejrh.2025.102548_bib67
  article-title: Flood forecasting with machine learning models in an operational framework
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-26-4013-2022
– volume: 564
  start-page: 266
  year: 2018
  ident: 10.1016/j.ejrh.2025.102548_bib91
  article-title: Simulation and forecasting of streamflows using machine learning models coupled with base flow separation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.07.004
– volume: 15
  start-page: 1147
  year: 2023
  ident: 10.1016/j.ejrh.2025.102548_bib11
  article-title: Can Remotely Sensed Snow Disappearance Explain Seasonal Water Supply?
  publication-title: Water
  doi: 10.3390/w15061147
– volume: 577
  year: 2019
  ident: 10.1016/j.ejrh.2025.102548_bib1
  article-title: Daily streamflow prediction using optimally pruned extreme learning machine
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.123981
– volume: 28
  start-page: 1711
  year: 2024
  ident: 10.1016/j.ejrh.2025.102548_bib89
  article-title: Stream water sourcing from high-elevation snowpack inferred from stable isotopes of water: a novel application of d-excess values
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-28-1711-2024
– ident: 10.1016/j.ejrh.2025.102548_bib37
– ident: 10.1016/j.ejrh.2025.102548_bib64
– volume: 2
  start-page: 1
  year: 2016
  ident: 10.1016/j.ejrh.2025.102548_bib73
  article-title: Multiple linear regression model for stream flow estimation of Wainganga River
  publication-title: Am. J. Water Sci. Eng.
– volume: 44
  start-page: 12,208
  year: 2017
  ident: 10.1016/j.ejrh.2025.102548_bib50
  article-title: Mitigating the impacts of climate nonstationarity on seasonal streamflow predictability in the U.S. Southwest
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL076043
– ident: 10.1016/j.ejrh.2025.102548_bib26
– start-page: 1
  year: 2003
  ident: 10.1016/j.ejrh.2025.102548_bib39
  article-title: An Overview of the North Atlantic Oscillation
– year: 2021
  ident: 10.1016/j.ejrh.2025.102548_bib66
– year: 2002
  ident: 10.1016/j.ejrh.2025.102548_bib31
  article-title: Snowpack-runoff relationships for mid-elevation snowpacks on the Workman Creek watersheds of Central Arizona (No. RMRS-RP-33)
– ident: 10.1016/j.ejrh.2025.102548_bib90
  doi: 10.3390/hydrology9120226
– volume: 10
  start-page: 452
  year: 2020
  ident: 10.1016/j.ejrh.2025.102548_bib56
  article-title: Drought less predictable under declining future snowpack
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-020-0754-8
– ident: 10.1016/j.ejrh.2025.102548_bib12
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.ejrh.2025.102548_bib74
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– start-page: 44
  year: 2024
  ident: 10.1016/j.ejrh.2025.102548_bib43
  article-title: Forward feature selection: empirical analysis
  publication-title: J. Intell. Syst. Internet Things
– volume: 103
  start-page: 18567
  year: 1998
  ident: 10.1016/j.ejrh.2025.102548_bib44
  article-title: Analyses of global sea surface temperature 1856–1991
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/97JC01736
– ident: 10.1016/j.ejrh.2025.102548_bib15
– volume: 2
  start-page: 160
  year: 2021
  ident: 10.1016/j.ejrh.2025.102548_bib85
  article-title: Machine learning: algorithms, real-world applications and research directions
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00592-x
– volume: 15
  start-page: 2572
  year: 2023
  ident: 10.1016/j.ejrh.2025.102548_bib48
  article-title: Advanced machine learning techniques to improve hydrological prediction: a comparative analysis of streamflow prediction models
  publication-title: Water
  doi: 10.3390/w15142572
– volume: 367
  start-page: 1252
  year: 2020
  ident: 10.1016/j.ejrh.2025.102548_bib59
  article-title: Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation
  publication-title: Science
  doi: 10.1126/science.aay9187
– volume: 4
  start-page: 1
  year: 2023
  ident: 10.1016/j.ejrh.2025.102548_bib32
  article-title: Recent decreases in snow water storage in western North America
  publication-title: Commun. Earth Environ.
  doi: 10.1038/s43247-023-00751-3
– volume: 41
  year: 2005
  ident: 10.1016/j.ejrh.2025.102548_bib92
  article-title: Coupled oceanic-atmospheric variability and U.S. streamflow: oceanic-atmospheric variability and U.S. streamflow
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR004381
– volume: 606
  year: 2022
  ident: 10.1016/j.ejrh.2025.102548_bib68
  article-title: Hourly streamflow forecasting using a Bayesian additive regression tree model hybridized with a genetic algorithm
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127445
– volume: 414–415
  start-page: 284
  year: 2012
  ident: 10.1016/j.ejrh.2025.102548_bib81
  article-title: Daily streamflow forecasting by machine learning methods with weather and climate inputs
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.10.039
– volume: 22
  start-page: 321
  year: 2001
  ident: 10.1016/j.ejrh.2025.102548_bib97
  article-title: North Atlantic oscillation – concepts and studies
  publication-title: Surv. Geophys
  doi: 10.1023/A:1014217317898
– volume: 49
  year: 2023
  ident: 10.1016/j.ejrh.2025.102548_bib54
  article-title: Machine learning method is an alternative for the hydrological model in an alpine catchment in the Tianshan region, Central Asia
  publication-title: J. Hydrol. Reg. Stud.
– volume: 7
  start-page: 91
  year: 2006
  ident: 10.1016/j.ejrh.2025.102548_bib95
  article-title: Bias in error estimation when using cross-validation for model selection
  publication-title: BMC Bioinforma.
  doi: 10.1186/1471-2105-7-91
– volume: 48
  year: 2012
  ident: 10.1016/j.ejrh.2025.102548_bib34
  article-title: Changes in snowpack accumulation and ablation in the intermountain west
  publication-title: Water Resour. Res.
  doi: 10.1029/2012WR011949
– volume: 101
  start-page: 4136
  year: 2004
  ident: 10.1016/j.ejrh.2025.102548_bib58
  article-title: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0306738101
– volume: 118
  start-page: 4181
  year: 2013
  ident: 10.1016/j.ejrh.2025.102548_bib20
  article-title: Eastern U.S. summer streamflow during extreme phases of the North Atlantic oscillation
  publication-title: J. Geophys. Res. Atmospheres
  doi: 10.1002/jgrd.50326
– volume: 290
  year: 2021
  ident: 10.1016/j.ejrh.2025.102548_bib82
  article-title: Effect of environmental covariable selection in the hydrological modeling using machine learning models to predict daily streamflow
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112625
– year: 2019
  ident: 10.1016/j.ejrh.2025.102548_bib57
  article-title: Machine Learning Algorithms -A Review
  publication-title: International Journal Science Research (IJSR)
– volume: 4
  start-page: 40
  year: 2010
  ident: 10.1016/j.ejrh.2025.102548_bib4
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat. Surv.
  doi: 10.1214/09-SS054
– ident: 10.1016/j.ejrh.2025.102548_bib18
– volume: 97
  start-page: 273
  year: 1997
  ident: 10.1016/j.ejrh.2025.102548_bib45
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 537
  start-page: 431
  year: 2016
  ident: 10.1016/j.ejrh.2025.102548_bib55
  article-title: Forecasting daily streamflow using online sequential extreme learning machines
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.03.017
– volume: 59
  start-page: 1493
  year: 2023
  ident: 10.1016/j.ejrh.2025.102548_bib14
  article-title: Subseasonal to seasonal streamflow forecasting in a semiarid watershed
  publication-title: JAWRA J. Am. Water Resour. Assoc.
  doi: 10.1111/1752-1688.13147
– year: 2019
  ident: 10.1016/j.ejrh.2025.102548_bib25
  article-title: Regionalization of surface-water statistics using multiple linear regression (USGS Numbered Series No. 4-A12)
– volume: 14
  start-page: 2105
  year: 2001
  ident: 10.1016/j.ejrh.2025.102548_bib8
  article-title: ENSO, Pacific Decadal Variability, and U.S. Summertime Precipitation, Drought, and Stream Flow
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2
– volume: 441
  year: 2024
  ident: 10.1016/j.ejrh.2025.102548_bib2
  article-title: Applications of machine learning to water resources management: a review of present status and future opportunities
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2024.140715
– volume: 620
  year: 2023
  ident: 10.1016/j.ejrh.2025.102548_bib3
  article-title: Monthly streamflow forecasting by machine learning methods using dynamic weather prediction model outputs over Iran
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.129480
– ident: 10.1016/j.ejrh.2025.102548_bib24
– volume: 187
  year: 2020
  ident: 10.1016/j.ejrh.2025.102548_bib61
  article-title: The effect of sample size on different machine learning models for groundwater potential mapping in mountain bedrock aquifers
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.104421
– volume: 45
  start-page: 201
  year: 2018
  ident: 10.1016/j.ejrh.2025.102548_bib72
  article-title: Evaluation of random forests and Prophet for daily streamflow forecasting
  publication-title: Adv. Geosci.
  doi: 10.5194/adgeo-45-201-2018
– ident: 10.1016/j.ejrh.2025.102548_bib60
  doi: 10.1175/JHM-D-21-0229.1
– volume: 36
  year: 2022
  ident: 10.1016/j.ejrh.2025.102548_bib7
  article-title: A machine learning approach to water quality forecasts and sensor network expansion: case study in the Wabash River Basin, United States
  publication-title: Hydrol. Process
  doi: 10.1002/hyp.14619
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.ejrh.2025.102548_bib13
  article-title: Random forest
  publication-title: Mach. Learn
  doi: 10.1023/A:1010933404324
– volume: 25
  start-page: 2997
  year: 2021
  ident: 10.1016/j.ejrh.2025.102548_bib75
  article-title: Evaluation of random forests for short-term daily streamflow forecasting in rainfall- and snowmelt-driven watersheds
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-25-2997-2021
– volume: 37
  start-page: 741
  year: 2001
  ident: 10.1016/j.ejrh.2025.102548_bib19
  article-title: Historical effects of El Nino and La Nina events on the seasonal evolution of the montane snowpack in the Columbia and Colorado River Basins
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900305
– volume: 63
  start-page: 3
  year: 2006
  ident: 10.1016/j.ejrh.2025.102548_bib29
  article-title: Extremely randomized trees
  publication-title: Mach. Learn
  doi: 10.1007/s10994-006-6226-1
– volume: 11
  start-page: 1399
  year: 2019
  ident: 10.1016/j.ejrh.2025.102548_bib49
  article-title: Climate variability and floods—a global review
  publication-title: Water
  doi: 10.3390/w11071399
SSID ssj0001878960
Score 2.3251472
Snippet This study focuses on five watersheds in the southwestern United States, where April–July (AMJJ) water supply forecasts (WSFs) inform water management. Climate...
Study region: This study focuses on five watersheds in the southwestern United States, where April–July (AMJJ) water supply forecasts (WSFs) inform water...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 102548
SubjectTerms Climate change
Feature selection
Machine learning
Nested cross-validation
Seasonal forecasting
Southwestern United States
Water supply forecasting
Title The relative importance of model type and input features for water supply forecasting in snow-dominated basins of the southwestern US
URI https://dx.doi.org/10.1016/j.ejrh.2025.102548
https://doaj.org/article/0bd561e3724943eebdaa7b2f23d9217c
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2214-5818
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001878960
  issn: 2214-5818
  databaseCode: KQ8
  dateStart: 20140701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2214-5818
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001878960
  issn: 2214-5818
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2214-5818
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001878960
  issn: 2214-5818
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqvcAFUQpiaUFz6A1FTeLYSY6AWFWgVkLtSr1F_hiLXYlstcmy2h_A_2YmzqKc4MIlB8uyo5lx5tkZvyfEpXa-LK2ViQ1pkRSOMFztNAG52hiFebAq47vDN7f6ell8eVAPE6kvrgmL9MDRcFep9ZTiUZa0TygkovXGlDYPufQ1wWnHX19KY5PN1HC6UpUVYfPxlkws6ML1lv8-5IrpChQL_kwy0UDYP0lIkySzeC6ejegQPsS3OhUn2L4QT0ah8u-HM_GL3Arx_slPhNWPAT2T32ATYBC1AT5TBdN6WLWPux4CDsydHRA4hT0Byy10LOR54AZ0puOyZ-oLXbvZJ37DlTEEQoGy26rteFhCiNCx0N5IqgDLu5diufh8_-k6GZUUEie17JPM0U7FUl7yqUHMTS5lzkzrKCvt88pqR-vcGutrdEGhrlVQqXNVISUWFrV8JWbtpsXXAmqpncvIK76qCEppm1nngqfFFiwZPczF-6NVm8dImNEcK8nWDfugYR800Qdz8ZEN_6cnk10PDRQCzRgCzb9CYC7U0W3NiBsiHqChVn-Z_M3_mPxcPOUhY03ghZj12x2-JZzS23dDSNLz67fqN3YJ6mI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+relative+importance+of+model+type+and+input+features+for+water+supply+forecasting+in+snow-dominated+basins+of+the+southwestern+US&rft.jtitle=Journal+of+hydrology.+Regional+studies&rft.au=Pernat%2C+Madeline+R.&rft.au=Kasprzyk%2C+Joseph&rft.au=Zagona%2C+Edith&rft.au=Walker%2C+Sydney+D.&rft.date=2025-08-01&rft.issn=2214-5818&rft.eissn=2214-5818&rft.volume=60&rft.spage=102548&rft_id=info:doi/10.1016%2Fj.ejrh.2025.102548&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejrh_2025_102548
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5818&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5818&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5818&client=summon