Classification of neurodegenerative diseases using gait dynamics via deterministic learning

•We present a new method to classify neurodegenerative diseases via deterministic learning theory.•The gait system dynamics can be learned by using RBF neural networks.•The neurodegenerative diseases can be classified according to the smallest error principle.•The discriminability provided by the dy...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 317; pp. 246 - 258
Main Authors Zeng, Wei, Wang, Cong
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2015
Subjects
Online AccessGet full text
ISSN0020-0255
1872-6291
DOI10.1016/j.ins.2015.04.047

Cover

Abstract •We present a new method to classify neurodegenerative diseases via deterministic learning theory.•The gait system dynamics can be learned by using RBF neural networks.•The neurodegenerative diseases can be classified according to the smallest error principle.•The discriminability provided by the dynamics of time series features is strong.•We show good classification performance on the well-known PhysioBank database. Neurodegenerative diseases (NDDs), such as Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS), create serious gait abnormalities. They lead to altered gait rhythm and gait dynamics which can be reflected by a time series of stride-to-stride measures of footfall contact times. The temporal fluctuations in gait dynamics provide us with a non-invasive technique to evaluate the effects of neurological impairments on gait and its variations with diseases. In this paper, we present a new method using gait dynamics to classify (diagnose) NDDs via deterministic learning theory. The classification approach consists of two phases: a training phase and a classification phase. In the training phase, gait features representing gait dynamics are derived from the time series of swing intervals and stance intervals of the left and right feet. Gait dynamics underlying gait patterns of healthy controls and NDDs subjects are locally accurately approximated by radial basis function (RBF) neural networks. The obtained knowledge of approximated gait dynamics is stored in constant RBF networks. Gait patterns of healthy controls and NDDs subjects constitute a training set. In the classification phase, a bank of dynamical estimators is constructed for all the training gait patterns. Prior knowledge of gait dynamics represented by the constant RBF networks is embedded in the estimators. By comparing the set of estimators with a test NDDs gait pattern to be classified, a set of test errors are generated. The average L1 norms of the errors are taken as the classification measure between the dynamics of the training gait patterns and the dynamics of the test NDDs gait pattern according to the smallest error principle. Finally, experiments are carried out to demonstrate that the proposed method can effectively separate the gait patterns between the groups of healthy controls and neurodegenerative patients.
AbstractList Neurodegenerative diseases (NDDs), such as Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), create serious gait abnormalities. They lead to altered gait rhythm and gait dynamics which can be reflected by a time series of stride-to-stride measures of footfall contact times. The temporal fluctuations in gait dynamics provide us with a non-invasive technique to evaluate the effects of neurological impairments on gait and its variations with diseases. In this paper, we present a new method using gait dynamics to classify (diagnose) NDDs via deterministic learning theory. The classification approach consists of two phases: a training phase and a classification phase. In the training phase, gait features representing gait dynamics are derived from the time series of swing intervals and stance intervals of the left and right feet. Gait dynamics underlying gait patterns of healthy controls and NDDs subjects are locally accurately approximated by radial basis function (RBF) neural networks. The obtained knowledge of approximated gait dynamics is stored in constant RBF networks. Gait patterns of healthy controls and NDDs subjects constitute a training set. In the classification phase, a bank of dynamical estimators is constructed for all the training gait patterns. Prior knowledge of gait dynamics represented by the constant RBF networks is embedded in the estimators. By comparing the set of estimators with a test NDDs gait pattern to be classified, a set of test errors are generated. The average norms of the errors are taken as the classification measure between the dynamics of the training gait patterns and the dynamics of the test NDDs gait pattern according to the smallest error principle. Finally, experiments are carried out to demonstrate that the proposed method can effectively separate the gait patterns between the groups of healthy controls and neurodegenerative patients.
•We present a new method to classify neurodegenerative diseases via deterministic learning theory.•The gait system dynamics can be learned by using RBF neural networks.•The neurodegenerative diseases can be classified according to the smallest error principle.•The discriminability provided by the dynamics of time series features is strong.•We show good classification performance on the well-known PhysioBank database. Neurodegenerative diseases (NDDs), such as Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS), create serious gait abnormalities. They lead to altered gait rhythm and gait dynamics which can be reflected by a time series of stride-to-stride measures of footfall contact times. The temporal fluctuations in gait dynamics provide us with a non-invasive technique to evaluate the effects of neurological impairments on gait and its variations with diseases. In this paper, we present a new method using gait dynamics to classify (diagnose) NDDs via deterministic learning theory. The classification approach consists of two phases: a training phase and a classification phase. In the training phase, gait features representing gait dynamics are derived from the time series of swing intervals and stance intervals of the left and right feet. Gait dynamics underlying gait patterns of healthy controls and NDDs subjects are locally accurately approximated by radial basis function (RBF) neural networks. The obtained knowledge of approximated gait dynamics is stored in constant RBF networks. Gait patterns of healthy controls and NDDs subjects constitute a training set. In the classification phase, a bank of dynamical estimators is constructed for all the training gait patterns. Prior knowledge of gait dynamics represented by the constant RBF networks is embedded in the estimators. By comparing the set of estimators with a test NDDs gait pattern to be classified, a set of test errors are generated. The average L1 norms of the errors are taken as the classification measure between the dynamics of the training gait patterns and the dynamics of the test NDDs gait pattern according to the smallest error principle. Finally, experiments are carried out to demonstrate that the proposed method can effectively separate the gait patterns between the groups of healthy controls and neurodegenerative patients.
Author Zeng, Wei
Wang, Cong
Author_xml – sequence: 1
  givenname: Wei
  surname: Zeng
  fullname: Zeng, Wei
  email: zw0597@126.com
  organization: School of Mechanical & Electrical Engineering, Longyan University, Longyan 364012, China
– sequence: 2
  givenname: Cong
  surname: Wang
  fullname: Wang, Cong
  organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China
BookMark eNqFkE1LAzEQhoMoWD9-gLccvWxNNtnNFk9S_ALBi548hDSZLVO2Wc2kBf-9qfXkQWHgZYbnncNzwg7jGIGxCymmUsj2ajXFSNNayGYqdBlzwCayM3XV1jN5yCZC1KISddMcsxOilRAFadsJe5sPjgh79C7jGPnY8wibNAZYQoRUjlvgAQkcAfENYVzypcPMw2d0a_TEt-h4gAxpjREpo-cDuBQLeMaOejcQnP_kKXu9u32ZP1RPz_eP85unyqtW5UqaEIKBTtfa-a7vnHEge92HvtML4xvjYSEXsquV92UvIZtGeqfVQsFsBuqUXe7_vqfxYwOU7RrJwzC4COOGrOyUUVJrbf5HjRGqqVujCir3qE8jUYLevidcu_RppbA753Zli3O7c26FLrN7b351POZvsTk5HP5sXu-bUERtEZIljxA9BEzgsw0j_tH-AioIoG0
CitedBy_id crossref_primary_10_1007_s11062_018_9715_5
crossref_primary_10_3390_s23229101
crossref_primary_10_3390_app10217619
crossref_primary_10_3390_s20072006
crossref_primary_10_1016_j_knosys_2018_01_004
crossref_primary_10_1016_j_bspc_2021_103069
crossref_primary_10_1007_s00521_024_10222_1
crossref_primary_10_3390_s19184054
crossref_primary_10_1007_s00521_023_09081_z
crossref_primary_10_1007_s11517_015_1413_5
crossref_primary_10_1016_j_bspc_2023_105439
crossref_primary_10_1016_j_gaitpost_2024_07_302
crossref_primary_10_1109_TBME_2017_2779884
crossref_primary_10_1145_3603495
crossref_primary_10_1109_JBHI_2022_3205058
crossref_primary_10_1016_j_bspc_2016_08_016
crossref_primary_10_1109_ACCESS_2020_2996667
crossref_primary_10_1007_s12553_018_0274_y
crossref_primary_10_1016_j_engappai_2023_106097
crossref_primary_10_1155_2018_9831252
crossref_primary_10_1080_21678421_2024_2334836
crossref_primary_10_1007_s11571_023_09973_9
crossref_primary_10_1016_j_eswa_2024_124655
crossref_primary_10_1007_s11517_016_1546_1
crossref_primary_10_1109_TBME_2018_2829749
crossref_primary_10_1109_ACCESS_2022_3158961
crossref_primary_10_1007_s11517_025_03334_w
crossref_primary_10_1007_s13534_023_00285_9
crossref_primary_10_1016_j_measurement_2020_107579
crossref_primary_10_1080_03772063_2018_1531730
crossref_primary_10_1007_s10916_019_1384_4
crossref_primary_10_1016_j_asoc_2020_106494
crossref_primary_10_1186_s40708_021_00143_3
crossref_primary_10_1016_j_ins_2023_03_145
crossref_primary_10_2139_ssrn_4622913
crossref_primary_10_1016_j_neulet_2021_136107
crossref_primary_10_1109_ACCESS_2020_3039885
crossref_primary_10_1186_s43088_023_00427_z
crossref_primary_10_1007_s10462_019_09761_0
crossref_primary_10_1016_j_bspc_2025_107800
crossref_primary_10_1016_j_bbe_2023_04_001
crossref_primary_10_1155_2018_1869565
crossref_primary_10_1109_LSENS_2024_3384541
crossref_primary_10_1016_j_measurement_2021_109249
crossref_primary_10_1515_jmbm_2016_0015
crossref_primary_10_1007_s10462_019_09758_9
crossref_primary_10_1109_TNSRE_2017_2732448
crossref_primary_10_1007_s12652_018_0890_4
crossref_primary_10_1007_s10462_016_9526_2
crossref_primary_10_1007_s11042_023_14461_7
crossref_primary_10_1088_2057_1976_ac8c9a
crossref_primary_10_1371_journal_pone_0219114
crossref_primary_10_3390_s20143857
crossref_primary_10_1109_TCYB_2021_3056104
crossref_primary_10_1016_j_neucom_2021_06_001
crossref_primary_10_1007_s11517_024_03185_x
crossref_primary_10_1016_j_compbiomed_2020_103736
crossref_primary_10_1016_j_ijmedinf_2024_105542
crossref_primary_10_1016_j_bspc_2021_103346
crossref_primary_10_1007_s11768_016_4140_z
crossref_primary_10_3390_brainsci11070902
crossref_primary_10_1109_TMM_2021_3060280
crossref_primary_10_1016_j_cmpb_2017_04_007
Cites_doi 10.1007/BF02429870
10.1016/j.neulet.2011.10.002
10.1007/s10916-014-0147-5
10.1109/TNN.2006.889496
10.1007/s00421-006-0226-5
10.1162/neco.1991.3.2.246
10.1136/bmj.308.6943.1552
10.1016/j.neulet.2005.10.065
10.1063/1.3143035
10.1016/j.medengphy.2010.10.023
10.1152/jappl.1995.78.1.349
10.1109/72.410365
10.1088/1674-1056/17/3/021
10.1016/j.bspc.2014.11.008
10.1589/jpts.21.105
10.1016/j.bspc.2013.02.006
10.1111/j.1468-0394.2009.00479.x
10.1016/0167-9457(96)00003-6
10.1016/j.medengphy.2007.04.014
10.1109/TBME.2004.827933
10.1109/72.712182
10.1152/jappl.1997.82.1.262
10.1016/j.humov.2007.05.003
10.1016/j.measurement.2012.04.013
10.1016/j.gaitpost.2013.11.021
10.1002/cplx.20183
10.1002/1531-8257(199907)14:4<619::AID-MDS1011>3.0.CO;2-X
10.1109/TBME.2012.2227317
10.1109/TNSRE.2009.2033062
10.1142/S0218127409023640
10.1016/j.bspc.2012.04.007
10.1103/PhysRevE.67.051917
10.1007/BF00198915
10.1109/TNN.2005.860843
10.1007/s11517-009-0527-z
10.1002/mds.870130310
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7TK
DOI 10.1016/j.ins.2015.04.047
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Neurosciences Abstracts
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Neurosciences Abstracts
DatabaseTitleList Computer and Information Systems Abstracts
Neurosciences Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 258
ExternalDocumentID 10_1016_j_ins_2015_04_047
S0020025515003394
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
ZMT
~02
~G-
1OL
29I
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HLZ
HVGLF
HZ~
H~9
R2-
SBC
SDS
SEW
SSH
UHS
WUQ
YYP
ZY4
77I
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
7TK
ACLOT
~HD
ID FETCH-LOGICAL-c363t-17ddd7e8424ac8f8a7ae1f4fdf84b7c57ceb1b1823ccb7c23c1551ca43b3e99e3
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Sun Sep 28 12:17:30 EDT 2025
Fri Sep 05 13:35:03 EDT 2025
Tue Jul 01 04:16:30 EDT 2025
Thu Apr 24 23:05:16 EDT 2025
Fri Feb 23 02:23:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gait dynamics
Neurodegenerative diseases
Deterministic learning
Gait analysis
Movement disorders
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-17ddd7e8424ac8f8a7ae1f4fdf84b7c57ceb1b1823ccb7c23c1551ca43b3e99e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1770352673
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1837314447
proquest_miscellaneous_1770352673
crossref_primary_10_1016_j_ins_2015_04_047
crossref_citationtrail_10_1016_j_ins_2015_04_047
elsevier_sciencedirect_doi_10_1016_j_ins_2015_04_047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
2015-10-00
20151001
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Winters, Crago (b0190) 2000
Wang, Hill (b0175) 2007; 18
Hou, Zhuang, Ning, Yang, Huo (b0105) 2008; 17
Bear, Connors, Paradiso (b0015) 2001
Wang, Hill (b0170) 2006; 17
Daliri (b0035) 2012; 45
Wagenaar, Van Emmerik (b0160) 1996; 15
Wu, Krishnan (b0200) 2010; 18
Carletti, Fanelli, Guarino (b0020) 2006; 394
Liao, Wang, He (b0115) 2008; 30
Zhou, Obuchowski, McClish (b0210) 2002
Aziz, Arif (b0010) 2006; 98
Ebersbach, Heijmenberg, Kinderman, Trottemberg, Wissel, Poewe (b0055) 1999; 14
Wang, Hill (b0180) 2009
Dillmann, Holzhoffer, Johann, Bechtel, Graber, Massing, Spiegel, Behnke, Burmann, Louis (b0045) 2014; 39
Hausdorff, Mitchell, Firtion, Peng, Cudkowicz, Wei, Goldberger (b0090) 1997; 82
Wu, Shi (b0205) 2011; 33
Hausdorff, Cudkowicz, Firtion, Wei, Goldberger (b0085) 1998; 13
Farrell (b0060) 1998; 9
Mariani, Jiménez, Vingerhoets, Aminian (b0120) 2013; 60
Gorinevsky (b0065) 1995; 6
Collins, Stewart (b0030) 1993; 3
Sarbaz, Banaie, Pooya (b0140) 2012; 509
Scafetta, Moon, West (b0150) 2007; 12
Collins, Richmond (b0025) 1994; 71
Daliri (b0040) 2013; 8
Su, Song, Guo, Yen (b0155) 2015; 18
Guckenheimer, Holmes (b0070) 1983
Park, Sandberg (b0130) 1991; 3
Altman, Bland (b0005) 1994; 308
Wu, Krishnan (b0195) 2009; 47
Hausdorff (b0075) 2007; 26
Wang, Chen, Chen, Hill (b0165) 2009; 19
Scafetta, Marchi, West (b0145) 2009; 19
Henmi, Shiba, Saito (b0100) 2009; 21
Hausdorff, Peng, Ladin, Wei, Goldberger (b0095) 1995; 78
Khorasani, Daliri (b0110) 2014; 38
Murray, Drought, Kory (b0125) 1967; 46
Hausdorff, Alexander (b0080) 2005
West, Scafetta (b0185) 2005; 67
Zuo, Wang, Liu, Chen (b0215) 2013; 8
Dutta, Chatterjee, Munshi (b0050) 2009; 26
Salarian, Russmann, Vingerhoets, Dehollain, Blanc, Burkhard, Aminian (b0135) 2004; 51
Winters (10.1016/j.ins.2015.04.047_b0190) 2000
Scafetta (10.1016/j.ins.2015.04.047_b0145) 2009; 19
Wu (10.1016/j.ins.2015.04.047_b0195) 2009; 47
Wang (10.1016/j.ins.2015.04.047_b0180) 2009
Carletti (10.1016/j.ins.2015.04.047_b0020) 2006; 394
Wang (10.1016/j.ins.2015.04.047_b0170) 2006; 17
Hou (10.1016/j.ins.2015.04.047_b0105) 2008; 17
Wang (10.1016/j.ins.2015.04.047_b0165) 2009; 19
Liao (10.1016/j.ins.2015.04.047_b0115) 2008; 30
Altman (10.1016/j.ins.2015.04.047_b0005) 1994; 308
Collins (10.1016/j.ins.2015.04.047_b0025) 1994; 71
Park (10.1016/j.ins.2015.04.047_b0130) 1991; 3
Gorinevsky (10.1016/j.ins.2015.04.047_b0065) 1995; 6
Khorasani (10.1016/j.ins.2015.04.047_b0110) 2014; 38
Mariani (10.1016/j.ins.2015.04.047_b0120) 2013; 60
Hausdorff (10.1016/j.ins.2015.04.047_b0075) 2007; 26
Farrell (10.1016/j.ins.2015.04.047_b0060) 1998; 9
Zhou (10.1016/j.ins.2015.04.047_b0210) 2002
Salarian (10.1016/j.ins.2015.04.047_b0135) 2004; 51
Sarbaz (10.1016/j.ins.2015.04.047_b0140) 2012; 509
Su (10.1016/j.ins.2015.04.047_b0155) 2015; 18
Wang (10.1016/j.ins.2015.04.047_b0175) 2007; 18
Daliri (10.1016/j.ins.2015.04.047_b0040) 2013; 8
Hausdorff (10.1016/j.ins.2015.04.047_b0080) 2005
Zuo (10.1016/j.ins.2015.04.047_b0215) 2013; 8
Bear (10.1016/j.ins.2015.04.047_b0015) 2001
Collins (10.1016/j.ins.2015.04.047_b0030) 1993; 3
Dutta (10.1016/j.ins.2015.04.047_b0050) 2009; 26
Aziz (10.1016/j.ins.2015.04.047_b0010) 2006; 98
Hausdorff (10.1016/j.ins.2015.04.047_b0095) 1995; 78
Hausdorff (10.1016/j.ins.2015.04.047_b0090) 1997; 82
Wu (10.1016/j.ins.2015.04.047_b0200) 2010; 18
Wu (10.1016/j.ins.2015.04.047_b0205) 2011; 33
Hausdorff (10.1016/j.ins.2015.04.047_b0085) 1998; 13
Henmi (10.1016/j.ins.2015.04.047_b0100) 2009; 21
Scafetta (10.1016/j.ins.2015.04.047_b0150) 2007; 12
Guckenheimer (10.1016/j.ins.2015.04.047_b0070) 1983
Murray (10.1016/j.ins.2015.04.047_b0125) 1967; 46
Daliri (10.1016/j.ins.2015.04.047_b0035) 2012; 45
West (10.1016/j.ins.2015.04.047_b0185) 2005; 67
Dillmann (10.1016/j.ins.2015.04.047_b0045) 2014; 39
Ebersbach (10.1016/j.ins.2015.04.047_b0055) 1999; 14
Wagenaar (10.1016/j.ins.2015.04.047_b0160) 1996; 15
References_xml – volume: 17
  start-page: 852
  year: 2008
  end-page: 856
  ident: b0105
  article-title: Decrease in Hurst exponent of human gait with aging and neurodegenerative diseases
  publication-title: Chinese Phys. B
– volume: 21
  start-page: 105
  year: 2009
  end-page: 111
  ident: b0100
  article-title: Spectral analysis of gait variability of stride interval time series: comparison of young, elderly and Parkinson’s disease patients
  publication-title: J. Phys. Therapy Sci.
– volume: 15
  start-page: 161
  year: 1996
  end-page: 175
  ident: b0160
  article-title: Dynamics of movement disorders
  publication-title: Human Movement Sci.
– volume: 45
  start-page: 1729
  year: 2012
  end-page: 1734
  ident: b0035
  article-title: Automatic diagnosis of neuro-degenerative diseases using gait dynamics
  publication-title: Measurement
– year: 2002
  ident: b0210
  article-title: Statistical Methods in Diagnostic Medicine
– volume: 12
  start-page: 12
  year: 2007
  end-page: 17
  ident: b0150
  article-title: Fractal response of physiological signals to stress conditions, environmental changes and neurodegenerative diseases
  publication-title: Complexity
– volume: 3
  start-page: 246
  year: 1991
  end-page: 257
  ident: b0130
  article-title: Universal approximation using radial-basis-function networks
  publication-title: Neural Comput.
– volume: 98
  start-page: 30
  year: 2006
  end-page: 40
  ident: b0010
  article-title: Complexity analysis of stride interval time series by threshold dependent symbolic entropy
  publication-title: Eur. J. Appl. Physiol.
– volume: 8
  start-page: 66
  year: 2013
  end-page: 70
  ident: b0040
  article-title: Chi-square distance kernel of the gaits for the diagnosis of Parkinson’s disease
  publication-title: Biomed. Signal Process. Control
– year: 2009
  ident: b0180
  article-title: Deterministic Learning Theory for Identification, Recognition and Control
– year: 2000
  ident: b0190
  article-title: Biomechanics and Neural Control of Posture and Movements
– volume: 30
  start-page: 299
  year: 2008
  end-page: 310
  ident: b0115
  article-title: Multi-resolution entropy analysis of gait symmetry in neurological degenerative diseases and amyotrophic lateral sclerosis
  publication-title: Med. Eng. Phys.
– volume: 71
  start-page: 375
  year: 1994
  end-page: 385
  ident: b0025
  article-title: Hard-wired central pattern generators for quadrupedal locomotion
  publication-title: Biol. Cybernet.
– volume: 13
  start-page: 428
  year: 1998
  end-page: 437
  ident: b0085
  article-title: Gait variability and basal ganglia disorders: stride-to-stride variabilities of gait cycle timing in Parkinson’s disease and Huntington’s disease
  publication-title: Movement Disorder
– volume: 19
  start-page: 1307
  year: 2009
  end-page: 1328
  ident: b0165
  article-title: Deterministic learning of nonlinear dynamical systems
  publication-title: Int. J. Bifurcat. Chaos
– volume: 6
  start-page: 1237
  year: 1995
  end-page: 1244
  ident: b0065
  article-title: On the persistency of excitation in radial basis function network identification of nonlinear systems
  publication-title: IEEE Trans. Neural Netw.
– volume: 8
  start-page: 364
  year: 2013
  end-page: 373
  ident: b0215
  article-title: Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach
  publication-title: Biomed. Signal Process. Control
– year: 1983
  ident: b0070
  article-title: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
– volume: 18
  start-page: 617
  year: 2007
  end-page: 630
  ident: b0175
  article-title: Deterministic learning and rapid dynamical pattern recognition
  publication-title: IEEE Trans. Neural Netw.
– volume: 51
  start-page: 1434
  year: 2004
  end-page: 1443
  ident: b0135
  article-title: Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 17
  start-page: 130
  year: 2006
  end-page: 146
  ident: b0170
  article-title: Learning from neural control
  publication-title: IEEE Trans. Neural Netw.
– volume: 39
  start-page: 882
  year: 2014
  end-page: 887
  ident: b0045
  article-title: Principal component analysis of gait in Parkinson’s disease: relevance of gait velocity
  publication-title: Gait Posture
– volume: 509
  start-page: 72
  year: 2012
  end-page: 75
  ident: b0140
  article-title: Modeling the gait of normal and Parkinsonian persons for improving the diagnosis
  publication-title: Neurosci. Lett.
– volume: 26
  start-page: 555
  year: 2007
  end-page: 589
  ident: b0075
  article-title: Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking
  publication-title: Human Movement Sci.
– volume: 18
  start-page: 56
  year: 2015
  end-page: 60
  ident: b0155
  article-title: Characterizing gait asymmetry via frequency sub-band components of the ground reaction force
  publication-title: Biomed. Signal Process. Control
– volume: 82
  start-page: 262
  year: 1997
  end-page: 269
  ident: b0090
  article-title: Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease
  publication-title: J. Appl. Physiol.
– volume: 26
  start-page: 202
  year: 2009
  end-page: 217
  ident: b0050
  article-title: An automated hierarchical gait pattern identification tool employing cross-correlation-based feature extraction and recurrent neural network based classification
  publication-title: Expert Syst. Appl.
– volume: 78
  start-page: 349
  year: 1995
  end-page: 358
  ident: b0095
  article-title: Is walking a random walk? Evidence for long-range correlations in the stride interval of human gait
  publication-title: J. Appl. Physiol.
– volume: 46
  start-page: 290
  year: 1967
  end-page: 332
  ident: b0125
  article-title: Walking pattern of movement
  publication-title: Am. J. Med.
– volume: 3
  start-page: 349
  year: 1993
  end-page: 392
  ident: b0030
  article-title: Coupled nonlinear oscillators and the symmetries of animal gaits
  publication-title: J. Nonlinear Sci.
– volume: 394
  start-page: 252
  year: 2006
  end-page: 255
  ident: b0020
  article-title: A new route to non invasive diagnosis in neurodegenerative diseases?
  publication-title: Neurosci. Lett.
– volume: 67
  start-page: 051917
  year: 2005
  ident: b0185
  article-title: Nonlinear dynamical model of human gait
  publication-title: Phys. Rev. E
– volume: 18
  start-page: 150
  year: 2010
  end-page: 158
  ident: b0200
  article-title: Statistical analysis of gait rhythm in patients with Parkinson’s disease
  publication-title: IEEE Trans. Syst. Rehabil. Eng.
– volume: 19
  start-page: 026108
  year: 2009
  ident: b0145
  article-title: Understanding the complexity of human gait dynamics
  publication-title: Chaos
– year: 2005
  ident: b0080
  article-title: Gait Disorders: Evaluation and Management
– volume: 38
  start-page: 1
  year: 2014
  end-page: 6
  ident: b0110
  article-title: HMM for classification of Parkinson’s disease based on the raw gait data
  publication-title: J. Med. Syst.
– year: 2001
  ident: b0015
  article-title: Neuroscience: Exploring the Brain
– volume: 308
  start-page: 1552
  year: 1994
  ident: b0005
  article-title: Diagnostic tests 1: sensitivity and specificity
  publication-title: British Med. J.
– volume: 14
  start-page: 619
  year: 1999
  end-page: 625
  ident: b0055
  article-title: Interference of rhythmic constraint on gait in healthy subjects and patients whit early Parkinson’s disease: evidence for impaired locomotor pattern generation in early Parkinson’s disease
  publication-title: Movement Disorder
– volume: 9
  start-page: 1008
  year: 1998
  end-page: 1020
  ident: b0060
  article-title: Stability and approximator convergence in nonparametric nonlinear adaptive control
  publication-title: IEEE Trans. Neural Netw.
– volume: 60
  start-page: 155
  year: 2013
  end-page: 158
  ident: b0120
  article-title: On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 47
  start-page: 1165
  year: 2009
  end-page: 1171
  ident: b0195
  article-title: Computer-aided analysis of gait rhythm fluctuations in amyotrophic lateral sclerosis
  publication-title: Med. Biol. Eng. Comput.
– volume: 33
  start-page: 347
  year: 2011
  end-page: 355
  ident: b0205
  article-title: Analysis of altered gait cycle duration in amyotrophic lateral sclerosis based on nonparametric probability density function estimation
  publication-title: Med. Eng. Phys.
– volume: 3
  start-page: 349
  issue: 1
  year: 1993
  ident: 10.1016/j.ins.2015.04.047_b0030
  article-title: Coupled nonlinear oscillators and the symmetries of animal gaits
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/BF02429870
– volume: 509
  start-page: 72
  issue: 2
  year: 2012
  ident: 10.1016/j.ins.2015.04.047_b0140
  article-title: Modeling the gait of normal and Parkinsonian persons for improving the diagnosis
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2011.10.002
– volume: 38
  start-page: 1
  issue: 12
  year: 2014
  ident: 10.1016/j.ins.2015.04.047_b0110
  article-title: HMM for classification of Parkinson’s disease based on the raw gait data
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-014-0147-5
– volume: 18
  start-page: 617
  issue: 3
  year: 2007
  ident: 10.1016/j.ins.2015.04.047_b0175
  article-title: Deterministic learning and rapid dynamical pattern recognition
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.889496
– volume: 98
  start-page: 30
  issue: 1
  year: 2006
  ident: 10.1016/j.ins.2015.04.047_b0010
  article-title: Complexity analysis of stride interval time series by threshold dependent symbolic entropy
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-006-0226-5
– volume: 3
  start-page: 246
  issue: 2
  year: 1991
  ident: 10.1016/j.ins.2015.04.047_b0130
  article-title: Universal approximation using radial-basis-function networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.2.246
– volume: 308
  start-page: 1552
  year: 1994
  ident: 10.1016/j.ins.2015.04.047_b0005
  article-title: Diagnostic tests 1: sensitivity and specificity
  publication-title: British Med. J.
  doi: 10.1136/bmj.308.6943.1552
– volume: 394
  start-page: 252
  issue: 3
  year: 2006
  ident: 10.1016/j.ins.2015.04.047_b0020
  article-title: A new route to non invasive diagnosis in neurodegenerative diseases?
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2005.10.065
– year: 1983
  ident: 10.1016/j.ins.2015.04.047_b0070
– volume: 19
  start-page: 026108
  issue: 2
  year: 2009
  ident: 10.1016/j.ins.2015.04.047_b0145
  article-title: Understanding the complexity of human gait dynamics
  publication-title: Chaos
  doi: 10.1063/1.3143035
– year: 2009
  ident: 10.1016/j.ins.2015.04.047_b0180
– volume: 33
  start-page: 347
  issue: 3
  year: 2011
  ident: 10.1016/j.ins.2015.04.047_b0205
  article-title: Analysis of altered gait cycle duration in amyotrophic lateral sclerosis based on nonparametric probability density function estimation
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.10.023
– volume: 78
  start-page: 349
  issue: 1
  year: 1995
  ident: 10.1016/j.ins.2015.04.047_b0095
  article-title: Is walking a random walk? Evidence for long-range correlations in the stride interval of human gait
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1995.78.1.349
– year: 2005
  ident: 10.1016/j.ins.2015.04.047_b0080
– volume: 6
  start-page: 1237
  issue: 5
  year: 1995
  ident: 10.1016/j.ins.2015.04.047_b0065
  article-title: On the persistency of excitation in radial basis function network identification of nonlinear systems
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.410365
– volume: 46
  start-page: 290
  issue: 1
  year: 1967
  ident: 10.1016/j.ins.2015.04.047_b0125
  article-title: Walking pattern of movement
  publication-title: Am. J. Med.
– volume: 17
  start-page: 852
  issue: 3
  year: 2008
  ident: 10.1016/j.ins.2015.04.047_b0105
  article-title: Decrease in Hurst exponent of human gait with aging and neurodegenerative diseases
  publication-title: Chinese Phys. B
  doi: 10.1088/1674-1056/17/3/021
– volume: 18
  start-page: 56
  year: 2015
  ident: 10.1016/j.ins.2015.04.047_b0155
  article-title: Characterizing gait asymmetry via frequency sub-band components of the ground reaction force
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.11.008
– volume: 21
  start-page: 105
  issue: 2
  year: 2009
  ident: 10.1016/j.ins.2015.04.047_b0100
  article-title: Spectral analysis of gait variability of stride interval time series: comparison of young, elderly and Parkinson’s disease patients
  publication-title: J. Phys. Therapy Sci.
  doi: 10.1589/jpts.21.105
– volume: 8
  start-page: 364
  issue: 4
  year: 2013
  ident: 10.1016/j.ins.2015.04.047_b0215
  article-title: Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.02.006
– year: 2002
  ident: 10.1016/j.ins.2015.04.047_b0210
– volume: 26
  start-page: 202
  issue: 2
  year: 2009
  ident: 10.1016/j.ins.2015.04.047_b0050
  article-title: An automated hierarchical gait pattern identification tool employing cross-correlation-based feature extraction and recurrent neural network based classification
  publication-title: Expert Syst. Appl.
  doi: 10.1111/j.1468-0394.2009.00479.x
– volume: 15
  start-page: 161
  issue: 2
  year: 1996
  ident: 10.1016/j.ins.2015.04.047_b0160
  article-title: Dynamics of movement disorders
  publication-title: Human Movement Sci.
  doi: 10.1016/0167-9457(96)00003-6
– volume: 30
  start-page: 299
  issue: 3
  year: 2008
  ident: 10.1016/j.ins.2015.04.047_b0115
  article-title: Multi-resolution entropy analysis of gait symmetry in neurological degenerative diseases and amyotrophic lateral sclerosis
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2007.04.014
– volume: 51
  start-page: 1434
  issue: 8
  year: 2004
  ident: 10.1016/j.ins.2015.04.047_b0135
  article-title: Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827933
– volume: 9
  start-page: 1008
  issue: 5
  year: 1998
  ident: 10.1016/j.ins.2015.04.047_b0060
  article-title: Stability and approximator convergence in nonparametric nonlinear adaptive control
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.712182
– volume: 82
  start-page: 262
  issue: 1
  year: 1997
  ident: 10.1016/j.ins.2015.04.047_b0090
  article-title: Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1997.82.1.262
– volume: 26
  start-page: 555
  issue: 4
  year: 2007
  ident: 10.1016/j.ins.2015.04.047_b0075
  article-title: Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking
  publication-title: Human Movement Sci.
  doi: 10.1016/j.humov.2007.05.003
– volume: 45
  start-page: 1729
  issue: 7
  year: 2012
  ident: 10.1016/j.ins.2015.04.047_b0035
  article-title: Automatic diagnosis of neuro-degenerative diseases using gait dynamics
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.04.013
– volume: 39
  start-page: 882
  issue: 3
  year: 2014
  ident: 10.1016/j.ins.2015.04.047_b0045
  article-title: Principal component analysis of gait in Parkinson’s disease: relevance of gait velocity
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2013.11.021
– volume: 12
  start-page: 12
  issue: 5
  year: 2007
  ident: 10.1016/j.ins.2015.04.047_b0150
  article-title: Fractal response of physiological signals to stress conditions, environmental changes and neurodegenerative diseases
  publication-title: Complexity
  doi: 10.1002/cplx.20183
– volume: 14
  start-page: 619
  issue: 4
  year: 1999
  ident: 10.1016/j.ins.2015.04.047_b0055
  article-title: Interference of rhythmic constraint on gait in healthy subjects and patients whit early Parkinson’s disease: evidence for impaired locomotor pattern generation in early Parkinson’s disease
  publication-title: Movement Disorder
  doi: 10.1002/1531-8257(199907)14:4<619::AID-MDS1011>3.0.CO;2-X
– volume: 60
  start-page: 155
  issue: 1
  year: 2013
  ident: 10.1016/j.ins.2015.04.047_b0120
  article-title: On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2227317
– volume: 18
  start-page: 150
  issue: 2
  year: 2010
  ident: 10.1016/j.ins.2015.04.047_b0200
  article-title: Statistical analysis of gait rhythm in patients with Parkinson’s disease
  publication-title: IEEE Trans. Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2009.2033062
– volume: 19
  start-page: 1307
  issue: 4
  year: 2009
  ident: 10.1016/j.ins.2015.04.047_b0165
  article-title: Deterministic learning of nonlinear dynamical systems
  publication-title: Int. J. Bifurcat. Chaos
  doi: 10.1142/S0218127409023640
– volume: 8
  start-page: 66
  issue: 1
  year: 2013
  ident: 10.1016/j.ins.2015.04.047_b0040
  article-title: Chi-square distance kernel of the gaits for the diagnosis of Parkinson’s disease
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2012.04.007
– volume: 67
  start-page: 051917
  issue: 5
  year: 2005
  ident: 10.1016/j.ins.2015.04.047_b0185
  article-title: Nonlinear dynamical model of human gait
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.67.051917
– year: 2001
  ident: 10.1016/j.ins.2015.04.047_b0015
– year: 2000
  ident: 10.1016/j.ins.2015.04.047_b0190
– volume: 71
  start-page: 375
  issue: 5
  year: 1994
  ident: 10.1016/j.ins.2015.04.047_b0025
  article-title: Hard-wired central pattern generators for quadrupedal locomotion
  publication-title: Biol. Cybernet.
  doi: 10.1007/BF00198915
– volume: 17
  start-page: 130
  issue: 1
  year: 2006
  ident: 10.1016/j.ins.2015.04.047_b0170
  article-title: Learning from neural control
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.860843
– volume: 47
  start-page: 1165
  issue: 11
  year: 2009
  ident: 10.1016/j.ins.2015.04.047_b0195
  article-title: Computer-aided analysis of gait rhythm fluctuations in amyotrophic lateral sclerosis
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-009-0527-z
– volume: 13
  start-page: 428
  issue: 3
  year: 1998
  ident: 10.1016/j.ins.2015.04.047_b0085
  article-title: Gait variability and basal ganglia disorders: stride-to-stride variabilities of gait cycle timing in Parkinson’s disease and Huntington’s disease
  publication-title: Movement Disorder
  doi: 10.1002/mds.870130310
SSID ssj0004766
Score 2.451976
Snippet •We present a new method to classify neurodegenerative diseases via deterministic learning theory.•The gait system dynamics can be learned by using RBF neural...
Neurodegenerative diseases (NDDs), such as Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), create serious gait...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 246
SubjectTerms Classification
Constants
Deterministic learning
Dynamics
Errors
Estimators
Gait
Gait analysis
Gait dynamics
Movement disorders
Networks
Neurodegenerative diseases
Training
Title Classification of neurodegenerative diseases using gait dynamics via deterministic learning
URI https://dx.doi.org/10.1016/j.ins.2015.04.047
https://www.proquest.com/docview/1770352673
https://www.proquest.com/docview/1837314447
Volume 317
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AKRWK
  dateStart: 19681201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-iFz2ITsXPEUE8CHXtki3tUcQxFT05GHgI-WqpSDfc9Ojf7ntp6heyg1AoaZO2vCTvo--93yPkRDvQQq3WkY17aYSpkFHKYD_GmcBUR8b6Hkrp7r4_HPGbcW-8RC6bXBgMqwy8v-bpnluHK51Azc60LDHHt-s1YlBp4JkZYoIi-hes6fP3rzAPLmp_JZpJ2LvxbPoYr7JCxO6k59FOscLK37LpF5f2omewQdaDzkgv6s_aJEuuapG1b0iCLXIU8g_oKQ0JRkhwGnbuFnn0xS8xLKi-McmpR7K0rvC408j0aHDWzCgGwxe0UOWc2rpi_Yy-lYraEDvjwZ1pKDhRbJPR4OrhchiFugqRAdLPo0RYa4VLeZcrk-apEsolOc9tnnItTE8YYOAaDA9mDLThhHqVUZxp5rLMsR2yXE0qt0tolmaaa8tFVynuuiYFkds3oLC7GH-PqD0SNxSVJoCOY-2LZ9lElz1JmASJkyBjDofYI2efQ6Y14saizryZJvlj2UiQCIuGHTdTKmE7oY9EVW7yOpOJEIgQ2xdsQR8w6hkYolzs_-_1B2QVW3VM4CFZnr-8uiPQbea67Rdvm6xcXN8O7z8AQYv6MA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_S5KHdw-j6QbO1nQajDwVTJ5Ij-7GUlvQrTy0U-iD05eBSnLIk-_t3J8vbWkoeCgZjS7LNSboP393vAH4aj1qoMyZxaZYnlAqZ5Bz3Y1pISnXkfBSglG4no_G9uHrIHjpw1ubCUFhl5P0NTw_cOt45idQ8eakqyvEdBo0YVRp8ZiHWoCcy5Mld6J1eXo8n_9IjZeOyJEuJBrTOzRDmVdUE2j3IAuApFVl5Xzy9YdRB-lxswueoNrLT5su-QMfXW_DpPzDBLTiIKQjsiMUcI6I5i5t3Gx5D_UuKDGoaZiULYJbOTwP0NPE9Fv01c0bx8FM21dWCuaZo_Zz9rjRzMXwm4DuzWHNiugP3F-d3Z-MkllZILFJ_kQykc076XAyFtnmZa6n9oBSlK3NhpM2kRR5u0Pbg1uI1nki1slpww31ReL4L3XpW-z1gRV4YYZyQQ62FH9ocpe7Ios7uU_pDovuQthRVNuKOU_mLZ9UGmD0pnARFk6BSgYfsw_HfIS8N6MaqzqKdJvVq5SgUCquG_WinVOGOIjeJrv1sOVcDKQkkdiT5ij5o13O0RYX8-rHXf4f18d3tjbq5nFx_gw1qaUIE96G7-LX0B6jqLMxhXMp_ALp__Ns
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+neurodegenerative+diseases+using+gait+dynamics+via+deterministic+learning&rft.jtitle=Information+sciences&rft.au=Zeng%2C+Wei&rft.au=Wang%2C+Cong&rft.date=2015-10-01&rft.issn=0020-0255&rft.volume=317&rft.spage=246&rft.epage=258&rft_id=info:doi/10.1016%2Fj.ins.2015.04.047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2015_04_047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon