Classification of neurodegenerative diseases using gait dynamics via deterministic learning
•We present a new method to classify neurodegenerative diseases via deterministic learning theory.•The gait system dynamics can be learned by using RBF neural networks.•The neurodegenerative diseases can be classified according to the smallest error principle.•The discriminability provided by the dy...
Saved in:
Published in | Information sciences Vol. 317; pp. 246 - 258 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0020-0255 1872-6291 |
DOI | 10.1016/j.ins.2015.04.047 |
Cover
Abstract | •We present a new method to classify neurodegenerative diseases via deterministic learning theory.•The gait system dynamics can be learned by using RBF neural networks.•The neurodegenerative diseases can be classified according to the smallest error principle.•The discriminability provided by the dynamics of time series features is strong.•We show good classification performance on the well-known PhysioBank database.
Neurodegenerative diseases (NDDs), such as Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS), create serious gait abnormalities. They lead to altered gait rhythm and gait dynamics which can be reflected by a time series of stride-to-stride measures of footfall contact times. The temporal fluctuations in gait dynamics provide us with a non-invasive technique to evaluate the effects of neurological impairments on gait and its variations with diseases. In this paper, we present a new method using gait dynamics to classify (diagnose) NDDs via deterministic learning theory. The classification approach consists of two phases: a training phase and a classification phase. In the training phase, gait features representing gait dynamics are derived from the time series of swing intervals and stance intervals of the left and right feet. Gait dynamics underlying gait patterns of healthy controls and NDDs subjects are locally accurately approximated by radial basis function (RBF) neural networks. The obtained knowledge of approximated gait dynamics is stored in constant RBF networks. Gait patterns of healthy controls and NDDs subjects constitute a training set. In the classification phase, a bank of dynamical estimators is constructed for all the training gait patterns. Prior knowledge of gait dynamics represented by the constant RBF networks is embedded in the estimators. By comparing the set of estimators with a test NDDs gait pattern to be classified, a set of test errors are generated. The average L1 norms of the errors are taken as the classification measure between the dynamics of the training gait patterns and the dynamics of the test NDDs gait pattern according to the smallest error principle. Finally, experiments are carried out to demonstrate that the proposed method can effectively separate the gait patterns between the groups of healthy controls and neurodegenerative patients. |
---|---|
AbstractList | Neurodegenerative diseases (NDDs), such as Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), create serious gait abnormalities. They lead to altered gait rhythm and gait dynamics which can be reflected by a time series of stride-to-stride measures of footfall contact times. The temporal fluctuations in gait dynamics provide us with a non-invasive technique to evaluate the effects of neurological impairments on gait and its variations with diseases. In this paper, we present a new method using gait dynamics to classify (diagnose) NDDs via deterministic learning theory. The classification approach consists of two phases: a training phase and a classification phase. In the training phase, gait features representing gait dynamics are derived from the time series of swing intervals and stance intervals of the left and right feet. Gait dynamics underlying gait patterns of healthy controls and NDDs subjects are locally accurately approximated by radial basis function (RBF) neural networks. The obtained knowledge of approximated gait dynamics is stored in constant RBF networks. Gait patterns of healthy controls and NDDs subjects constitute a training set. In the classification phase, a bank of dynamical estimators is constructed for all the training gait patterns. Prior knowledge of gait dynamics represented by the constant RBF networks is embedded in the estimators. By comparing the set of estimators with a test NDDs gait pattern to be classified, a set of test errors are generated. The average norms of the errors are taken as the classification measure between the dynamics of the training gait patterns and the dynamics of the test NDDs gait pattern according to the smallest error principle. Finally, experiments are carried out to demonstrate that the proposed method can effectively separate the gait patterns between the groups of healthy controls and neurodegenerative patients. •We present a new method to classify neurodegenerative diseases via deterministic learning theory.•The gait system dynamics can be learned by using RBF neural networks.•The neurodegenerative diseases can be classified according to the smallest error principle.•The discriminability provided by the dynamics of time series features is strong.•We show good classification performance on the well-known PhysioBank database. Neurodegenerative diseases (NDDs), such as Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS), create serious gait abnormalities. They lead to altered gait rhythm and gait dynamics which can be reflected by a time series of stride-to-stride measures of footfall contact times. The temporal fluctuations in gait dynamics provide us with a non-invasive technique to evaluate the effects of neurological impairments on gait and its variations with diseases. In this paper, we present a new method using gait dynamics to classify (diagnose) NDDs via deterministic learning theory. The classification approach consists of two phases: a training phase and a classification phase. In the training phase, gait features representing gait dynamics are derived from the time series of swing intervals and stance intervals of the left and right feet. Gait dynamics underlying gait patterns of healthy controls and NDDs subjects are locally accurately approximated by radial basis function (RBF) neural networks. The obtained knowledge of approximated gait dynamics is stored in constant RBF networks. Gait patterns of healthy controls and NDDs subjects constitute a training set. In the classification phase, a bank of dynamical estimators is constructed for all the training gait patterns. Prior knowledge of gait dynamics represented by the constant RBF networks is embedded in the estimators. By comparing the set of estimators with a test NDDs gait pattern to be classified, a set of test errors are generated. The average L1 norms of the errors are taken as the classification measure between the dynamics of the training gait patterns and the dynamics of the test NDDs gait pattern according to the smallest error principle. Finally, experiments are carried out to demonstrate that the proposed method can effectively separate the gait patterns between the groups of healthy controls and neurodegenerative patients. |
Author | Zeng, Wei Wang, Cong |
Author_xml | – sequence: 1 givenname: Wei surname: Zeng fullname: Zeng, Wei email: zw0597@126.com organization: School of Mechanical & Electrical Engineering, Longyan University, Longyan 364012, China – sequence: 2 givenname: Cong surname: Wang fullname: Wang, Cong organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China |
BookMark | eNqFkE1LAzEQhoMoWD9-gLccvWxNNtnNFk9S_ALBi548hDSZLVO2Wc2kBf-9qfXkQWHgZYbnncNzwg7jGIGxCymmUsj2ajXFSNNayGYqdBlzwCayM3XV1jN5yCZC1KISddMcsxOilRAFadsJe5sPjgh79C7jGPnY8wibNAZYQoRUjlvgAQkcAfENYVzypcPMw2d0a_TEt-h4gAxpjREpo-cDuBQLeMaOejcQnP_kKXu9u32ZP1RPz_eP85unyqtW5UqaEIKBTtfa-a7vnHEge92HvtML4xvjYSEXsquV92UvIZtGeqfVQsFsBuqUXe7_vqfxYwOU7RrJwzC4COOGrOyUUVJrbf5HjRGqqVujCir3qE8jUYLevidcu_RppbA753Zli3O7c26FLrN7b351POZvsTk5HP5sXu-bUERtEZIljxA9BEzgsw0j_tH-AioIoG0 |
CitedBy_id | crossref_primary_10_1007_s11062_018_9715_5 crossref_primary_10_3390_s23229101 crossref_primary_10_3390_app10217619 crossref_primary_10_3390_s20072006 crossref_primary_10_1016_j_knosys_2018_01_004 crossref_primary_10_1016_j_bspc_2021_103069 crossref_primary_10_1007_s00521_024_10222_1 crossref_primary_10_3390_s19184054 crossref_primary_10_1007_s00521_023_09081_z crossref_primary_10_1007_s11517_015_1413_5 crossref_primary_10_1016_j_bspc_2023_105439 crossref_primary_10_1016_j_gaitpost_2024_07_302 crossref_primary_10_1109_TBME_2017_2779884 crossref_primary_10_1145_3603495 crossref_primary_10_1109_JBHI_2022_3205058 crossref_primary_10_1016_j_bspc_2016_08_016 crossref_primary_10_1109_ACCESS_2020_2996667 crossref_primary_10_1007_s12553_018_0274_y crossref_primary_10_1016_j_engappai_2023_106097 crossref_primary_10_1155_2018_9831252 crossref_primary_10_1080_21678421_2024_2334836 crossref_primary_10_1007_s11571_023_09973_9 crossref_primary_10_1016_j_eswa_2024_124655 crossref_primary_10_1007_s11517_016_1546_1 crossref_primary_10_1109_TBME_2018_2829749 crossref_primary_10_1109_ACCESS_2022_3158961 crossref_primary_10_1007_s11517_025_03334_w crossref_primary_10_1007_s13534_023_00285_9 crossref_primary_10_1016_j_measurement_2020_107579 crossref_primary_10_1080_03772063_2018_1531730 crossref_primary_10_1007_s10916_019_1384_4 crossref_primary_10_1016_j_asoc_2020_106494 crossref_primary_10_1186_s40708_021_00143_3 crossref_primary_10_1016_j_ins_2023_03_145 crossref_primary_10_2139_ssrn_4622913 crossref_primary_10_1016_j_neulet_2021_136107 crossref_primary_10_1109_ACCESS_2020_3039885 crossref_primary_10_1186_s43088_023_00427_z crossref_primary_10_1007_s10462_019_09761_0 crossref_primary_10_1016_j_bspc_2025_107800 crossref_primary_10_1016_j_bbe_2023_04_001 crossref_primary_10_1155_2018_1869565 crossref_primary_10_1109_LSENS_2024_3384541 crossref_primary_10_1016_j_measurement_2021_109249 crossref_primary_10_1515_jmbm_2016_0015 crossref_primary_10_1007_s10462_019_09758_9 crossref_primary_10_1109_TNSRE_2017_2732448 crossref_primary_10_1007_s12652_018_0890_4 crossref_primary_10_1007_s10462_016_9526_2 crossref_primary_10_1007_s11042_023_14461_7 crossref_primary_10_1088_2057_1976_ac8c9a crossref_primary_10_1371_journal_pone_0219114 crossref_primary_10_3390_s20143857 crossref_primary_10_1109_TCYB_2021_3056104 crossref_primary_10_1016_j_neucom_2021_06_001 crossref_primary_10_1007_s11517_024_03185_x crossref_primary_10_1016_j_compbiomed_2020_103736 crossref_primary_10_1016_j_ijmedinf_2024_105542 crossref_primary_10_1016_j_bspc_2021_103346 crossref_primary_10_1007_s11768_016_4140_z crossref_primary_10_3390_brainsci11070902 crossref_primary_10_1109_TMM_2021_3060280 crossref_primary_10_1016_j_cmpb_2017_04_007 |
Cites_doi | 10.1007/BF02429870 10.1016/j.neulet.2011.10.002 10.1007/s10916-014-0147-5 10.1109/TNN.2006.889496 10.1007/s00421-006-0226-5 10.1162/neco.1991.3.2.246 10.1136/bmj.308.6943.1552 10.1016/j.neulet.2005.10.065 10.1063/1.3143035 10.1016/j.medengphy.2010.10.023 10.1152/jappl.1995.78.1.349 10.1109/72.410365 10.1088/1674-1056/17/3/021 10.1016/j.bspc.2014.11.008 10.1589/jpts.21.105 10.1016/j.bspc.2013.02.006 10.1111/j.1468-0394.2009.00479.x 10.1016/0167-9457(96)00003-6 10.1016/j.medengphy.2007.04.014 10.1109/TBME.2004.827933 10.1109/72.712182 10.1152/jappl.1997.82.1.262 10.1016/j.humov.2007.05.003 10.1016/j.measurement.2012.04.013 10.1016/j.gaitpost.2013.11.021 10.1002/cplx.20183 10.1002/1531-8257(199907)14:4<619::AID-MDS1011>3.0.CO;2-X 10.1109/TBME.2012.2227317 10.1109/TNSRE.2009.2033062 10.1142/S0218127409023640 10.1016/j.bspc.2012.04.007 10.1103/PhysRevE.67.051917 10.1007/BF00198915 10.1109/TNN.2005.860843 10.1007/s11517-009-0527-z 10.1002/mds.870130310 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. |
Copyright_xml | – notice: 2015 Elsevier Inc. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7TK |
DOI | 10.1016/j.ins.2015.04.047 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Neurosciences Abstracts |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Neurosciences Abstracts |
DatabaseTitleList | Computer and Information Systems Abstracts Neurosciences Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science |
EISSN | 1872-6291 |
EndPage | 258 |
ExternalDocumentID | 10_1016_j_ins_2015_04_047 S0020025515003394 |
GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ WH7 XPP ZMT ~02 ~G- 1OL 29I AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HLZ HVGLF HZ~ H~9 R2- SBC SDS SEW SSH UHS WUQ YYP ZY4 77I 7SC 8FD EFKBS JQ2 L7M L~C L~D 7TK ACLOT ~HD |
ID | FETCH-LOGICAL-c363t-17ddd7e8424ac8f8a7ae1f4fdf84b7c57ceb1b1823ccb7c23c1551ca43b3e99e3 |
IEDL.DBID | .~1 |
ISSN | 0020-0255 |
IngestDate | Sun Sep 28 12:17:30 EDT 2025 Fri Sep 05 13:35:03 EDT 2025 Tue Jul 01 04:16:30 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 Fri Feb 23 02:23:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gait dynamics Neurodegenerative diseases Deterministic learning Gait analysis Movement disorders |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-17ddd7e8424ac8f8a7ae1f4fdf84b7c57ceb1b1823ccb7c23c1551ca43b3e99e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1770352673 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1837314447 proquest_miscellaneous_1770352673 crossref_primary_10_1016_j_ins_2015_04_047 crossref_citationtrail_10_1016_j_ins_2015_04_047 elsevier_sciencedirect_doi_10_1016_j_ins_2015_04_047 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-01 2015-10-00 20151001 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Information sciences |
PublicationYear | 2015 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Winters, Crago (b0190) 2000 Wang, Hill (b0175) 2007; 18 Hou, Zhuang, Ning, Yang, Huo (b0105) 2008; 17 Bear, Connors, Paradiso (b0015) 2001 Wang, Hill (b0170) 2006; 17 Daliri (b0035) 2012; 45 Wagenaar, Van Emmerik (b0160) 1996; 15 Wu, Krishnan (b0200) 2010; 18 Carletti, Fanelli, Guarino (b0020) 2006; 394 Liao, Wang, He (b0115) 2008; 30 Zhou, Obuchowski, McClish (b0210) 2002 Aziz, Arif (b0010) 2006; 98 Ebersbach, Heijmenberg, Kinderman, Trottemberg, Wissel, Poewe (b0055) 1999; 14 Wang, Hill (b0180) 2009 Dillmann, Holzhoffer, Johann, Bechtel, Graber, Massing, Spiegel, Behnke, Burmann, Louis (b0045) 2014; 39 Hausdorff, Mitchell, Firtion, Peng, Cudkowicz, Wei, Goldberger (b0090) 1997; 82 Wu, Shi (b0205) 2011; 33 Hausdorff, Cudkowicz, Firtion, Wei, Goldberger (b0085) 1998; 13 Farrell (b0060) 1998; 9 Mariani, Jiménez, Vingerhoets, Aminian (b0120) 2013; 60 Gorinevsky (b0065) 1995; 6 Collins, Stewart (b0030) 1993; 3 Sarbaz, Banaie, Pooya (b0140) 2012; 509 Scafetta, Moon, West (b0150) 2007; 12 Collins, Richmond (b0025) 1994; 71 Daliri (b0040) 2013; 8 Su, Song, Guo, Yen (b0155) 2015; 18 Guckenheimer, Holmes (b0070) 1983 Park, Sandberg (b0130) 1991; 3 Altman, Bland (b0005) 1994; 308 Wu, Krishnan (b0195) 2009; 47 Hausdorff (b0075) 2007; 26 Wang, Chen, Chen, Hill (b0165) 2009; 19 Scafetta, Marchi, West (b0145) 2009; 19 Henmi, Shiba, Saito (b0100) 2009; 21 Hausdorff, Peng, Ladin, Wei, Goldberger (b0095) 1995; 78 Khorasani, Daliri (b0110) 2014; 38 Murray, Drought, Kory (b0125) 1967; 46 Hausdorff, Alexander (b0080) 2005 West, Scafetta (b0185) 2005; 67 Zuo, Wang, Liu, Chen (b0215) 2013; 8 Dutta, Chatterjee, Munshi (b0050) 2009; 26 Salarian, Russmann, Vingerhoets, Dehollain, Blanc, Burkhard, Aminian (b0135) 2004; 51 Winters (10.1016/j.ins.2015.04.047_b0190) 2000 Scafetta (10.1016/j.ins.2015.04.047_b0145) 2009; 19 Wu (10.1016/j.ins.2015.04.047_b0195) 2009; 47 Wang (10.1016/j.ins.2015.04.047_b0180) 2009 Carletti (10.1016/j.ins.2015.04.047_b0020) 2006; 394 Wang (10.1016/j.ins.2015.04.047_b0170) 2006; 17 Hou (10.1016/j.ins.2015.04.047_b0105) 2008; 17 Wang (10.1016/j.ins.2015.04.047_b0165) 2009; 19 Liao (10.1016/j.ins.2015.04.047_b0115) 2008; 30 Altman (10.1016/j.ins.2015.04.047_b0005) 1994; 308 Collins (10.1016/j.ins.2015.04.047_b0025) 1994; 71 Park (10.1016/j.ins.2015.04.047_b0130) 1991; 3 Gorinevsky (10.1016/j.ins.2015.04.047_b0065) 1995; 6 Khorasani (10.1016/j.ins.2015.04.047_b0110) 2014; 38 Mariani (10.1016/j.ins.2015.04.047_b0120) 2013; 60 Hausdorff (10.1016/j.ins.2015.04.047_b0075) 2007; 26 Farrell (10.1016/j.ins.2015.04.047_b0060) 1998; 9 Zhou (10.1016/j.ins.2015.04.047_b0210) 2002 Salarian (10.1016/j.ins.2015.04.047_b0135) 2004; 51 Sarbaz (10.1016/j.ins.2015.04.047_b0140) 2012; 509 Su (10.1016/j.ins.2015.04.047_b0155) 2015; 18 Wang (10.1016/j.ins.2015.04.047_b0175) 2007; 18 Daliri (10.1016/j.ins.2015.04.047_b0040) 2013; 8 Hausdorff (10.1016/j.ins.2015.04.047_b0080) 2005 Zuo (10.1016/j.ins.2015.04.047_b0215) 2013; 8 Bear (10.1016/j.ins.2015.04.047_b0015) 2001 Collins (10.1016/j.ins.2015.04.047_b0030) 1993; 3 Dutta (10.1016/j.ins.2015.04.047_b0050) 2009; 26 Aziz (10.1016/j.ins.2015.04.047_b0010) 2006; 98 Hausdorff (10.1016/j.ins.2015.04.047_b0095) 1995; 78 Hausdorff (10.1016/j.ins.2015.04.047_b0090) 1997; 82 Wu (10.1016/j.ins.2015.04.047_b0200) 2010; 18 Wu (10.1016/j.ins.2015.04.047_b0205) 2011; 33 Hausdorff (10.1016/j.ins.2015.04.047_b0085) 1998; 13 Henmi (10.1016/j.ins.2015.04.047_b0100) 2009; 21 Scafetta (10.1016/j.ins.2015.04.047_b0150) 2007; 12 Guckenheimer (10.1016/j.ins.2015.04.047_b0070) 1983 Murray (10.1016/j.ins.2015.04.047_b0125) 1967; 46 Daliri (10.1016/j.ins.2015.04.047_b0035) 2012; 45 West (10.1016/j.ins.2015.04.047_b0185) 2005; 67 Dillmann (10.1016/j.ins.2015.04.047_b0045) 2014; 39 Ebersbach (10.1016/j.ins.2015.04.047_b0055) 1999; 14 Wagenaar (10.1016/j.ins.2015.04.047_b0160) 1996; 15 |
References_xml | – volume: 17 start-page: 852 year: 2008 end-page: 856 ident: b0105 article-title: Decrease in Hurst exponent of human gait with aging and neurodegenerative diseases publication-title: Chinese Phys. B – volume: 21 start-page: 105 year: 2009 end-page: 111 ident: b0100 article-title: Spectral analysis of gait variability of stride interval time series: comparison of young, elderly and Parkinson’s disease patients publication-title: J. Phys. Therapy Sci. – volume: 15 start-page: 161 year: 1996 end-page: 175 ident: b0160 article-title: Dynamics of movement disorders publication-title: Human Movement Sci. – volume: 45 start-page: 1729 year: 2012 end-page: 1734 ident: b0035 article-title: Automatic diagnosis of neuro-degenerative diseases using gait dynamics publication-title: Measurement – year: 2002 ident: b0210 article-title: Statistical Methods in Diagnostic Medicine – volume: 12 start-page: 12 year: 2007 end-page: 17 ident: b0150 article-title: Fractal response of physiological signals to stress conditions, environmental changes and neurodegenerative diseases publication-title: Complexity – volume: 3 start-page: 246 year: 1991 end-page: 257 ident: b0130 article-title: Universal approximation using radial-basis-function networks publication-title: Neural Comput. – volume: 98 start-page: 30 year: 2006 end-page: 40 ident: b0010 article-title: Complexity analysis of stride interval time series by threshold dependent symbolic entropy publication-title: Eur. J. Appl. Physiol. – volume: 8 start-page: 66 year: 2013 end-page: 70 ident: b0040 article-title: Chi-square distance kernel of the gaits for the diagnosis of Parkinson’s disease publication-title: Biomed. Signal Process. Control – year: 2009 ident: b0180 article-title: Deterministic Learning Theory for Identification, Recognition and Control – year: 2000 ident: b0190 article-title: Biomechanics and Neural Control of Posture and Movements – volume: 30 start-page: 299 year: 2008 end-page: 310 ident: b0115 article-title: Multi-resolution entropy analysis of gait symmetry in neurological degenerative diseases and amyotrophic lateral sclerosis publication-title: Med. Eng. Phys. – volume: 71 start-page: 375 year: 1994 end-page: 385 ident: b0025 article-title: Hard-wired central pattern generators for quadrupedal locomotion publication-title: Biol. Cybernet. – volume: 13 start-page: 428 year: 1998 end-page: 437 ident: b0085 article-title: Gait variability and basal ganglia disorders: stride-to-stride variabilities of gait cycle timing in Parkinson’s disease and Huntington’s disease publication-title: Movement Disorder – volume: 19 start-page: 1307 year: 2009 end-page: 1328 ident: b0165 article-title: Deterministic learning of nonlinear dynamical systems publication-title: Int. J. Bifurcat. Chaos – volume: 6 start-page: 1237 year: 1995 end-page: 1244 ident: b0065 article-title: On the persistency of excitation in radial basis function network identification of nonlinear systems publication-title: IEEE Trans. Neural Netw. – volume: 8 start-page: 364 year: 2013 end-page: 373 ident: b0215 article-title: Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach publication-title: Biomed. Signal Process. Control – year: 1983 ident: b0070 article-title: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields – volume: 18 start-page: 617 year: 2007 end-page: 630 ident: b0175 article-title: Deterministic learning and rapid dynamical pattern recognition publication-title: IEEE Trans. Neural Netw. – volume: 51 start-page: 1434 year: 2004 end-page: 1443 ident: b0135 article-title: Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring publication-title: IEEE Trans. Biomed. Eng. – volume: 17 start-page: 130 year: 2006 end-page: 146 ident: b0170 article-title: Learning from neural control publication-title: IEEE Trans. Neural Netw. – volume: 39 start-page: 882 year: 2014 end-page: 887 ident: b0045 article-title: Principal component analysis of gait in Parkinson’s disease: relevance of gait velocity publication-title: Gait Posture – volume: 509 start-page: 72 year: 2012 end-page: 75 ident: b0140 article-title: Modeling the gait of normal and Parkinsonian persons for improving the diagnosis publication-title: Neurosci. Lett. – volume: 26 start-page: 555 year: 2007 end-page: 589 ident: b0075 article-title: Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking publication-title: Human Movement Sci. – volume: 18 start-page: 56 year: 2015 end-page: 60 ident: b0155 article-title: Characterizing gait asymmetry via frequency sub-band components of the ground reaction force publication-title: Biomed. Signal Process. Control – volume: 82 start-page: 262 year: 1997 end-page: 269 ident: b0090 article-title: Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease publication-title: J. Appl. Physiol. – volume: 26 start-page: 202 year: 2009 end-page: 217 ident: b0050 article-title: An automated hierarchical gait pattern identification tool employing cross-correlation-based feature extraction and recurrent neural network based classification publication-title: Expert Syst. Appl. – volume: 78 start-page: 349 year: 1995 end-page: 358 ident: b0095 article-title: Is walking a random walk? Evidence for long-range correlations in the stride interval of human gait publication-title: J. Appl. Physiol. – volume: 46 start-page: 290 year: 1967 end-page: 332 ident: b0125 article-title: Walking pattern of movement publication-title: Am. J. Med. – volume: 3 start-page: 349 year: 1993 end-page: 392 ident: b0030 article-title: Coupled nonlinear oscillators and the symmetries of animal gaits publication-title: J. Nonlinear Sci. – volume: 394 start-page: 252 year: 2006 end-page: 255 ident: b0020 article-title: A new route to non invasive diagnosis in neurodegenerative diseases? publication-title: Neurosci. Lett. – volume: 67 start-page: 051917 year: 2005 ident: b0185 article-title: Nonlinear dynamical model of human gait publication-title: Phys. Rev. E – volume: 18 start-page: 150 year: 2010 end-page: 158 ident: b0200 article-title: Statistical analysis of gait rhythm in patients with Parkinson’s disease publication-title: IEEE Trans. Syst. Rehabil. Eng. – volume: 19 start-page: 026108 year: 2009 ident: b0145 article-title: Understanding the complexity of human gait dynamics publication-title: Chaos – year: 2005 ident: b0080 article-title: Gait Disorders: Evaluation and Management – volume: 38 start-page: 1 year: 2014 end-page: 6 ident: b0110 article-title: HMM for classification of Parkinson’s disease based on the raw gait data publication-title: J. Med. Syst. – year: 2001 ident: b0015 article-title: Neuroscience: Exploring the Brain – volume: 308 start-page: 1552 year: 1994 ident: b0005 article-title: Diagnostic tests 1: sensitivity and specificity publication-title: British Med. J. – volume: 14 start-page: 619 year: 1999 end-page: 625 ident: b0055 article-title: Interference of rhythmic constraint on gait in healthy subjects and patients whit early Parkinson’s disease: evidence for impaired locomotor pattern generation in early Parkinson’s disease publication-title: Movement Disorder – volume: 9 start-page: 1008 year: 1998 end-page: 1020 ident: b0060 article-title: Stability and approximator convergence in nonparametric nonlinear adaptive control publication-title: IEEE Trans. Neural Netw. – volume: 60 start-page: 155 year: 2013 end-page: 158 ident: b0120 article-title: On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease publication-title: IEEE Trans. Biomed. Eng. – volume: 47 start-page: 1165 year: 2009 end-page: 1171 ident: b0195 article-title: Computer-aided analysis of gait rhythm fluctuations in amyotrophic lateral sclerosis publication-title: Med. Biol. Eng. Comput. – volume: 33 start-page: 347 year: 2011 end-page: 355 ident: b0205 article-title: Analysis of altered gait cycle duration in amyotrophic lateral sclerosis based on nonparametric probability density function estimation publication-title: Med. Eng. Phys. – volume: 3 start-page: 349 issue: 1 year: 1993 ident: 10.1016/j.ins.2015.04.047_b0030 article-title: Coupled nonlinear oscillators and the symmetries of animal gaits publication-title: J. Nonlinear Sci. doi: 10.1007/BF02429870 – volume: 509 start-page: 72 issue: 2 year: 2012 ident: 10.1016/j.ins.2015.04.047_b0140 article-title: Modeling the gait of normal and Parkinsonian persons for improving the diagnosis publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2011.10.002 – volume: 38 start-page: 1 issue: 12 year: 2014 ident: 10.1016/j.ins.2015.04.047_b0110 article-title: HMM for classification of Parkinson’s disease based on the raw gait data publication-title: J. Med. Syst. doi: 10.1007/s10916-014-0147-5 – volume: 18 start-page: 617 issue: 3 year: 2007 ident: 10.1016/j.ins.2015.04.047_b0175 article-title: Deterministic learning and rapid dynamical pattern recognition publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.889496 – volume: 98 start-page: 30 issue: 1 year: 2006 ident: 10.1016/j.ins.2015.04.047_b0010 article-title: Complexity analysis of stride interval time series by threshold dependent symbolic entropy publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-006-0226-5 – volume: 3 start-page: 246 issue: 2 year: 1991 ident: 10.1016/j.ins.2015.04.047_b0130 article-title: Universal approximation using radial-basis-function networks publication-title: Neural Comput. doi: 10.1162/neco.1991.3.2.246 – volume: 308 start-page: 1552 year: 1994 ident: 10.1016/j.ins.2015.04.047_b0005 article-title: Diagnostic tests 1: sensitivity and specificity publication-title: British Med. J. doi: 10.1136/bmj.308.6943.1552 – volume: 394 start-page: 252 issue: 3 year: 2006 ident: 10.1016/j.ins.2015.04.047_b0020 article-title: A new route to non invasive diagnosis in neurodegenerative diseases? publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2005.10.065 – year: 1983 ident: 10.1016/j.ins.2015.04.047_b0070 – volume: 19 start-page: 026108 issue: 2 year: 2009 ident: 10.1016/j.ins.2015.04.047_b0145 article-title: Understanding the complexity of human gait dynamics publication-title: Chaos doi: 10.1063/1.3143035 – year: 2009 ident: 10.1016/j.ins.2015.04.047_b0180 – volume: 33 start-page: 347 issue: 3 year: 2011 ident: 10.1016/j.ins.2015.04.047_b0205 article-title: Analysis of altered gait cycle duration in amyotrophic lateral sclerosis based on nonparametric probability density function estimation publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.10.023 – volume: 78 start-page: 349 issue: 1 year: 1995 ident: 10.1016/j.ins.2015.04.047_b0095 article-title: Is walking a random walk? Evidence for long-range correlations in the stride interval of human gait publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1995.78.1.349 – year: 2005 ident: 10.1016/j.ins.2015.04.047_b0080 – volume: 6 start-page: 1237 issue: 5 year: 1995 ident: 10.1016/j.ins.2015.04.047_b0065 article-title: On the persistency of excitation in radial basis function network identification of nonlinear systems publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.410365 – volume: 46 start-page: 290 issue: 1 year: 1967 ident: 10.1016/j.ins.2015.04.047_b0125 article-title: Walking pattern of movement publication-title: Am. J. Med. – volume: 17 start-page: 852 issue: 3 year: 2008 ident: 10.1016/j.ins.2015.04.047_b0105 article-title: Decrease in Hurst exponent of human gait with aging and neurodegenerative diseases publication-title: Chinese Phys. B doi: 10.1088/1674-1056/17/3/021 – volume: 18 start-page: 56 year: 2015 ident: 10.1016/j.ins.2015.04.047_b0155 article-title: Characterizing gait asymmetry via frequency sub-band components of the ground reaction force publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.11.008 – volume: 21 start-page: 105 issue: 2 year: 2009 ident: 10.1016/j.ins.2015.04.047_b0100 article-title: Spectral analysis of gait variability of stride interval time series: comparison of young, elderly and Parkinson’s disease patients publication-title: J. Phys. Therapy Sci. doi: 10.1589/jpts.21.105 – volume: 8 start-page: 364 issue: 4 year: 2013 ident: 10.1016/j.ins.2015.04.047_b0215 article-title: Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.02.006 – year: 2002 ident: 10.1016/j.ins.2015.04.047_b0210 – volume: 26 start-page: 202 issue: 2 year: 2009 ident: 10.1016/j.ins.2015.04.047_b0050 article-title: An automated hierarchical gait pattern identification tool employing cross-correlation-based feature extraction and recurrent neural network based classification publication-title: Expert Syst. Appl. doi: 10.1111/j.1468-0394.2009.00479.x – volume: 15 start-page: 161 issue: 2 year: 1996 ident: 10.1016/j.ins.2015.04.047_b0160 article-title: Dynamics of movement disorders publication-title: Human Movement Sci. doi: 10.1016/0167-9457(96)00003-6 – volume: 30 start-page: 299 issue: 3 year: 2008 ident: 10.1016/j.ins.2015.04.047_b0115 article-title: Multi-resolution entropy analysis of gait symmetry in neurological degenerative diseases and amyotrophic lateral sclerosis publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2007.04.014 – volume: 51 start-page: 1434 issue: 8 year: 2004 ident: 10.1016/j.ins.2015.04.047_b0135 article-title: Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827933 – volume: 9 start-page: 1008 issue: 5 year: 1998 ident: 10.1016/j.ins.2015.04.047_b0060 article-title: Stability and approximator convergence in nonparametric nonlinear adaptive control publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.712182 – volume: 82 start-page: 262 issue: 1 year: 1997 ident: 10.1016/j.ins.2015.04.047_b0090 article-title: Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1997.82.1.262 – volume: 26 start-page: 555 issue: 4 year: 2007 ident: 10.1016/j.ins.2015.04.047_b0075 article-title: Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking publication-title: Human Movement Sci. doi: 10.1016/j.humov.2007.05.003 – volume: 45 start-page: 1729 issue: 7 year: 2012 ident: 10.1016/j.ins.2015.04.047_b0035 article-title: Automatic diagnosis of neuro-degenerative diseases using gait dynamics publication-title: Measurement doi: 10.1016/j.measurement.2012.04.013 – volume: 39 start-page: 882 issue: 3 year: 2014 ident: 10.1016/j.ins.2015.04.047_b0045 article-title: Principal component analysis of gait in Parkinson’s disease: relevance of gait velocity publication-title: Gait Posture doi: 10.1016/j.gaitpost.2013.11.021 – volume: 12 start-page: 12 issue: 5 year: 2007 ident: 10.1016/j.ins.2015.04.047_b0150 article-title: Fractal response of physiological signals to stress conditions, environmental changes and neurodegenerative diseases publication-title: Complexity doi: 10.1002/cplx.20183 – volume: 14 start-page: 619 issue: 4 year: 1999 ident: 10.1016/j.ins.2015.04.047_b0055 article-title: Interference of rhythmic constraint on gait in healthy subjects and patients whit early Parkinson’s disease: evidence for impaired locomotor pattern generation in early Parkinson’s disease publication-title: Movement Disorder doi: 10.1002/1531-8257(199907)14:4<619::AID-MDS1011>3.0.CO;2-X – volume: 60 start-page: 155 issue: 1 year: 2013 ident: 10.1016/j.ins.2015.04.047_b0120 article-title: On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2227317 – volume: 18 start-page: 150 issue: 2 year: 2010 ident: 10.1016/j.ins.2015.04.047_b0200 article-title: Statistical analysis of gait rhythm in patients with Parkinson’s disease publication-title: IEEE Trans. Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2009.2033062 – volume: 19 start-page: 1307 issue: 4 year: 2009 ident: 10.1016/j.ins.2015.04.047_b0165 article-title: Deterministic learning of nonlinear dynamical systems publication-title: Int. J. Bifurcat. Chaos doi: 10.1142/S0218127409023640 – volume: 8 start-page: 66 issue: 1 year: 2013 ident: 10.1016/j.ins.2015.04.047_b0040 article-title: Chi-square distance kernel of the gaits for the diagnosis of Parkinson’s disease publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2012.04.007 – volume: 67 start-page: 051917 issue: 5 year: 2005 ident: 10.1016/j.ins.2015.04.047_b0185 article-title: Nonlinear dynamical model of human gait publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.67.051917 – year: 2001 ident: 10.1016/j.ins.2015.04.047_b0015 – year: 2000 ident: 10.1016/j.ins.2015.04.047_b0190 – volume: 71 start-page: 375 issue: 5 year: 1994 ident: 10.1016/j.ins.2015.04.047_b0025 article-title: Hard-wired central pattern generators for quadrupedal locomotion publication-title: Biol. Cybernet. doi: 10.1007/BF00198915 – volume: 17 start-page: 130 issue: 1 year: 2006 ident: 10.1016/j.ins.2015.04.047_b0170 article-title: Learning from neural control publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2005.860843 – volume: 47 start-page: 1165 issue: 11 year: 2009 ident: 10.1016/j.ins.2015.04.047_b0195 article-title: Computer-aided analysis of gait rhythm fluctuations in amyotrophic lateral sclerosis publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-009-0527-z – volume: 13 start-page: 428 issue: 3 year: 1998 ident: 10.1016/j.ins.2015.04.047_b0085 article-title: Gait variability and basal ganglia disorders: stride-to-stride variabilities of gait cycle timing in Parkinson’s disease and Huntington’s disease publication-title: Movement Disorder doi: 10.1002/mds.870130310 |
SSID | ssj0004766 |
Score | 2.451976 |
Snippet | •We present a new method to classify neurodegenerative diseases via deterministic learning theory.•The gait system dynamics can be learned by using RBF neural... Neurodegenerative diseases (NDDs), such as Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), create serious gait... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 246 |
SubjectTerms | Classification Constants Deterministic learning Dynamics Errors Estimators Gait Gait analysis Gait dynamics Movement disorders Networks Neurodegenerative diseases Training |
Title | Classification of neurodegenerative diseases using gait dynamics via deterministic learning |
URI | https://dx.doi.org/10.1016/j.ins.2015.04.047 https://www.proquest.com/docview/1770352673 https://www.proquest.com/docview/1837314447 |
Volume | 317 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AKRWK dateStart: 19681201 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-iFz2ITsXPEUE8CHXtki3tUcQxFT05GHgI-WqpSDfc9Ojf7ntp6heyg1AoaZO2vCTvo--93yPkRDvQQq3WkY17aYSpkFHKYD_GmcBUR8b6Hkrp7r4_HPGbcW-8RC6bXBgMqwy8v-bpnluHK51Azc60LDHHt-s1YlBp4JkZYoIi-hes6fP3rzAPLmp_JZpJ2LvxbPoYr7JCxO6k59FOscLK37LpF5f2omewQdaDzkgv6s_aJEuuapG1b0iCLXIU8g_oKQ0JRkhwGnbuFnn0xS8xLKi-McmpR7K0rvC408j0aHDWzCgGwxe0UOWc2rpi_Yy-lYraEDvjwZ1pKDhRbJPR4OrhchiFugqRAdLPo0RYa4VLeZcrk-apEsolOc9tnnItTE8YYOAaDA9mDLThhHqVUZxp5rLMsR2yXE0qt0tolmaaa8tFVynuuiYFkds3oLC7GH-PqD0SNxSVJoCOY-2LZ9lElz1JmASJkyBjDofYI2efQ6Y14saizryZJvlj2UiQCIuGHTdTKmE7oY9EVW7yOpOJEIgQ2xdsQR8w6hkYolzs_-_1B2QVW3VM4CFZnr-8uiPQbea67Rdvm6xcXN8O7z8AQYv6MA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_S5KHdw-j6QbO1nQajDwVTJ5Ij-7GUlvQrTy0U-iD05eBSnLIk-_t3J8vbWkoeCgZjS7LNSboP393vAH4aj1qoMyZxaZYnlAqZ5Bz3Y1pISnXkfBSglG4no_G9uHrIHjpw1ubCUFhl5P0NTw_cOt45idQ8eakqyvEdBo0YVRp8ZiHWoCcy5Mld6J1eXo8n_9IjZeOyJEuJBrTOzRDmVdUE2j3IAuApFVl5Xzy9YdRB-lxswueoNrLT5su-QMfXW_DpPzDBLTiIKQjsiMUcI6I5i5t3Gx5D_UuKDGoaZiULYJbOTwP0NPE9Fv01c0bx8FM21dWCuaZo_Zz9rjRzMXwm4DuzWHNiugP3F-d3Z-MkllZILFJ_kQykc076XAyFtnmZa6n9oBSlK3NhpM2kRR5u0Pbg1uI1nki1slpww31ReL4L3XpW-z1gRV4YYZyQQ62FH9ocpe7Ios7uU_pDovuQthRVNuKOU_mLZ9UGmD0pnARFk6BSgYfsw_HfIS8N6MaqzqKdJvVq5SgUCquG_WinVOGOIjeJrv1sOVcDKQkkdiT5ij5o13O0RYX8-rHXf4f18d3tjbq5nFx_gw1qaUIE96G7-LX0B6jqLMxhXMp_ALp__Ns |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+neurodegenerative+diseases+using+gait+dynamics+via+deterministic+learning&rft.jtitle=Information+sciences&rft.au=Zeng%2C+Wei&rft.au=Wang%2C+Cong&rft.date=2015-10-01&rft.issn=0020-0255&rft.volume=317&rft.spage=246&rft.epage=258&rft_id=info:doi/10.1016%2Fj.ins.2015.04.047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2015_04_047 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |