Stiff-PDEs and Physics-Informed Neural Networks

In recent years, physics-informed neural networks (PINN) have been used to solve stiff-PDEs mostly in the 1D and 2D spatial domain. PINNs still experience issues solving 3D problems, especially, problems with conflicting boundary conditions at adjacent edges and corners. These problems have disconti...

Full description

Saved in:
Bibliographic Details
Published inArchives of computational methods in engineering Vol. 30; no. 5; pp. 2929 - 2958
Main Authors Sharma, Prakhar, Evans, Llion, Tindall, Michelle, Nithiarasu, Perumal
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1134-3060
1886-1784
1886-1784
DOI10.1007/s11831-023-09890-4

Cover

Abstract In recent years, physics-informed neural networks (PINN) have been used to solve stiff-PDEs mostly in the 1D and 2D spatial domain. PINNs still experience issues solving 3D problems, especially, problems with conflicting boundary conditions at adjacent edges and corners. These problems have discontinuous solutions at edges and corners that are difficult to learn for neural networks with a continuous activation function. In this review paper, we have investigated various PINN frameworks that are designed to solve stiff-PDEs. We took two heat conduction problems (2D and 3D) with a discontinuous solution at corners as test cases. We investigated these problems with a number of PINN frameworks, discussed and analysed the results against the FEM solution. It appears that PINNs provide a more general platform for parameterisation compared to conventional solvers. Thus, we have investigated the 2D heat conduction problem with parametric conductivity and geometry separately. We also discuss the challenges associated with PINNs and identify areas for further investigation.
AbstractList In recent years, physics-informed neural networks (PINN) have been used to solve stiff-PDEs mostly in the 1D and 2D spatial domain. PINNs still experience issues solving 3D problems, especially, problems with conflicting boundary conditions at adjacent edges and corners. These problems have discontinuous solutions at edges and corners that are difficult to learn for neural networks with a continuous activation function. In this review paper, we have investigated various PINN frameworks that are designed to solve stiff-PDEs. We took two heat conduction problems (2D and 3D) with a discontinuous solution at corners as test cases. We investigated these problems with a number of PINN frameworks, discussed and analysed the results against the FEM solution. It appears that PINNs provide a more general platform for parameterisation compared to conventional solvers. Thus, we have investigated the 2D heat conduction problem with parametric conductivity and geometry separately. We also discuss the challenges associated with PINNs and identify areas for further investigation.
Author Sharma, Prakhar
Evans, Llion
Nithiarasu, Perumal
Tindall, Michelle
Author_xml – sequence: 1
  givenname: Prakhar
  orcidid: 0000-0002-7635-1857
  surname: Sharma
  fullname: Sharma, Prakhar
  email: prakhars962@gmail.com
  organization: Faculty of Science and Engineering, Swansea University, Zienkiewicz Institute for Modelling, Data and AI, Swansea University, Bay Campus
– sequence: 2
  givenname: Llion
  surname: Evans
  fullname: Evans, Llion
  organization: Faculty of Science and Engineering, Swansea University, Culham Science Centre, United Kingdom Atomic Energy Authority, Zienkiewicz Institute for Modelling, Data and AI, Swansea University, Bay Campus
– sequence: 3
  givenname: Michelle
  surname: Tindall
  fullname: Tindall, Michelle
  organization: Fusion Technology Facilities, United Kingdom Atomic Energy Authority
– sequence: 4
  givenname: Perumal
  surname: Nithiarasu
  fullname: Nithiarasu, Perumal
  organization: Faculty of Science and Engineering, Swansea University, Zienkiewicz Institute for Modelling, Data and AI, Swansea University, Bay Campus
BookMark eNqNj8FKAzEQhoNUsK2-gKeC59iZZJtNjlKrFooW1HPI7mZ16zZbk11K395oC4KH4mnm8H8z_zcgPdc4S8glwjUCpOOAKDlSYJyCkgpockL6KKWgmMqkF3fkCeUg4IwMQlgBTBKlWJ-Mn9uqLOnydhZGxhWj5fsuVHmgc1c2fm2L0aPtvKnjaLeN_wjn5LQ0dbAXhzkkr3ezl-kDXTzdz6c3C5pzwVuKImFZCUWCnIHgCvLMTAqVcZNJMFwyWyIDKJiKAalSFNbmskDMVGqsKPiQ8P3dzm3MbmvqWm98tTZ-pxH0t7PeO-vorH-cdRKpqz218c1nZ0OrV03nXSyqOZsIkUpM0piS-1TumxC8LXVetaatGtd6U9XHH7A_6L9aHVxCDLs3639bHaG-AIkYhzs
CitedBy_id crossref_primary_10_1080_10407790_2023_2264489
crossref_primary_10_1016_j_advwatres_2023_104564
crossref_primary_10_1063_5_0218611
crossref_primary_10_1016_j_jcp_2023_112349
crossref_primary_10_1063_5_0226562
crossref_primary_10_1088_1873_7005_adb32e
crossref_primary_10_1063_5_0233607
crossref_primary_10_1109_ACCESS_2024_3482711
Cites_doi 10.1137/19M1260141
10.1016/j.cma.2021.114502
10.1016/j.jcp.2019.109020
10.23919/CCC52363.2021.9550487
10.1016/j.jcp.2019.109136
10.1109/MSP.2017.2743240
10.1007/s40305-020-00309-6
10.1038/s42256-021-00302-5
10.1002/qre.1924
10.1063/5.0086649
10.2139/ssrn.4086448
10.1007/s41965-019-00023-0
10.1016/j.jcp.2021.110296
10.1137/070709359
10.1137/S0895479895283409
10.1007/BF01386213
10.1016/j.jcp.2021.110768
10.1016/j.sigpro.2016.08.025
10.1016/j.cma.2022.115852
10.1016/j.cma.2020.113552
10.1007/978-3-540-68942-3_4
10.1137/17M1120762
10.1109/CVPR.2017.632
10.1007/978-3-030-77977-1_36
10.1137/0905013
10.1017/jfm.2018.872
10.1002/widm.1305
10.1109/CVPR.2017.19
10.1002/nme.7176
10.1007/978-94-009-0369-2_5
10.1016/j.neunet.2017.12.012
10.1088/1757-899X/495/1/012003
10.1063/5.0055600
10.1016/j.neucom.2014.11.058
10.1111/j.1749-6632.1960.tb42846.x
10.1016/j.cma.2021.113938
10.1137/21M1397908
10.3390/info11040193
10.1111/mice.12685
10.7551/mitpress/11301.001.0001
10.1109/CVPR.2005.212
10.2139/ssrn.4280307
10.1016/j.cma.2021.114333
10.1016/j.neucom.2021.06.015
10.1016/0038-0121(96)00010-9
10.1016/j.ijheatfluidflow.2022.109002
10.1007/s00033-022-01767-z
10.1126/sciadv.abi8605
10.1016/S0927-0507(06)13012-1
10.1137/19M1274067
10.1007/s10586-021-03240-4
10.1006/jcph.1995.1209
10.1137/22M1477751
10.1109/ICICCS48265.2020.9120874
10.1109/CVPR.2018.00917
10.4208/cicp.OA-2020-0086
10.1137/18M1229845
10.1214/aos/1176350842
10.1137/20M1318043
10.1007/978-1-4842-2766-4_8
10.1109/72.392253
10.1162/neco_a_{0}1199
10.1016/0021-9991(90)90007-N
10.1016/j.cma.2022.114823
10.1016/j.jcp.2021.110698
10.1109/72.712178
10.1090/S0025-5718-01-01307-2
10.1038/s41598-022-19157-w
10.1109/72.870037
10.1145/3483595
10.1103/PhysRevResearch.4.023210
10.1016/j.amc.2006.05.068
10.1016/j.jcp.2018.08.029
10.1007/s40745-020-00253-5
10.1016/j.jcp.2018.10.045
10.1145/1596519.1596520
10.1007/978-1-4757-3071-5_3
10.1073/pnas.1922210117
10.1007/s11277-017-5224-x
10.1029/JC094iC05p06177
10.1016/0041-5553(67)90144-9
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8AL
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
ADTOC
UNPAY
DOI 10.1007/s11831-023-09890-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1886-1784
EndPage 2958
ExternalDocumentID 10.1007/s11831-023-09890-4
10_1007_s11831_023_09890_4
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/T517987/1; EP/R012091/1
  funderid: http://dx.doi.org/10.13039/501100000266
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
K60
K6V
K6~
K7-
KDC
KOV
L6V
LLZTM
M0C
M0N
M4Y
M7S
MA-
MK~
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JZLTJ
7XB
8AL
8FK
JQ2
L.-
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ADHKG
ADTOC
AGQPQ
PUEGO
UNPAY
ID FETCH-LOGICAL-c363t-1642bf0d413206390cba5d9b3ab80a382ef1200d2913289716eec8d11b97ae6d3
IEDL.DBID C6C
ISSN 1134-3060
1886-1784
IngestDate Wed Oct 01 16:51:33 EDT 2025
Mon Oct 06 18:36:48 EDT 2025
Wed Oct 01 04:56:07 EDT 2025
Thu Apr 24 23:11:57 EDT 2025
Fri Feb 21 02:43:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-1642bf0d413206390cba5d9b3ab80a382ef1200d2913289716eec8d11b97ae6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7635-1857
OpenAccessLink https://doi.org/10.1007/s11831-023-09890-4
PQID 3256678147
PQPubID 1486352
PageCount 30
ParticipantIDs unpaywall_primary_10_1007_s11831_023_09890_4
proquest_journals_3256678147
crossref_citationtrail_10_1007_s11831_023_09890_4
crossref_primary_10_1007_s11831_023_09890_4
springer_journals_10_1007_s11831_023_09890_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle State of the Art Reviews
PublicationTitle Archives of computational methods in engineering
PublicationTitleAbbrev Arch Computat Methods Eng
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Lu L, Pestourie R, Johnson SG, Romano G (2022) Multifidelity deep neural operators for efficient learning of partial differential equations with application to fast inverse design of nanoscale heat transport. Technical Report arXiv:2204.06684
Guibas J, Mardani M, Li Z, Tao A, Anandkumar A, Catanzaro B (2022) Adaptive Fourier neural operators: efficient token mixers for transformers. Technical Report. arXiv:2111.13587
Wang T-C, Liu M-Y, Zhu J-Y, Tao A, Kautz J, Catanzaro B (2018) High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp 8798–8807
Kingma DP, Ba J (2017) Adam: a method for stochastic optimization. Technical Report. arXiv arXiv:1412.6980
Lu L, Pestourie R, Yao W, Wang Z, Verdugo F, Johnson SG (2021a) Physics-informed neural networks with hard constraints for inverse design. SIAM J Sci Comput 43(6):B1105–B1132. ISSN 1064-8275. https://doi.org/10.1137/21M1397908
Arzani A, Wang J-X, D’Souza RM (2021) Uncovering near-wall blood flow from sparse data with physics-informed neural networks. Phys Fluids 33(7):071905. ISSN 1070-6631. https://doi.org/10.1063/5.0055600
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017b) Attention is all you need. In: Advances in neural information processing systems, vol 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
Shi S, Liu D, Zhao Z (2021) Non-Fourier heat conduction based on self-adaptive weight physics-informed neural networks. In: 2021 40th Chinese control conference (CCC), pp 8451–8456. ISSN 1934-1768. https://doi.org/10.23919/CCC52363.2021.9550487
WangSWangHPerdikarisPLearning the solution operator of parametric partial differential equations with physics-informed DeepONetsSci Adv2021740eabi860510.1126/sciadv.abi8605
Srivastava RK, Greff K, Schmidhuber J (2015) Training very deep networks. In: Advances in neural information processing systems, vol 8. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2015/hash/215a71a12769b056c3c32e7299f1c5ed-Abstract.html
Isola P, Zhu J-Y, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp 1125–1134
Elfwing S, Uchibe E, Doya K (2017) Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Technical Report. arXiv arXiv:1702.03118
HammersleyJMonte Carlo methods2013SingaporeSpringer
Ketkar N (2017) Stochastic gradient descent. In: Ketkar N (ed) Deep learning with Python: a hands-on introduction. Apress, Berkeley, pp 113–132. ISBN 978-1-4842-2766-4. https://doi.org/10.1007/978-1-4842-2766-4_8
Chen T, Chen H (1995) Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Trans Neural Netw 6(4):911–917. ISSN 1941-0093. https://doi.org/10.1109/72.392253
Partial differential equation toolbox (R2022a). https://uk.mathworks.com/products/pde.html
Cao S (2021) Choose a transformer: Fourier or Galerkin. In: Advances in neural information processing systems, 2021, vol 34. Curran Associates, Inc., pp 24924–24940. https://proceedings.neurips.cc/paper/2021/hash/d0921d442ee91b896ad95059d13df618-Abstract.html
Zhang D, Guo L, Karniadakis GE (2020) Learning in modal space: solving time-dependent stochastic PDEs using physics-informed neural networks. SIAM J Sci Comput 42(2):A639–A665. ISSN 1064-8275. https://doi.org/10.1137/19M1260141
Mathias R (1996) A chain rule for matrix functions and applications. SIAM J Matrix Anal Appl 17(3):610–620. ISBN: 0895-4798
Andonie R (2019) Hyperparameter optimization in learning systems. J Membr Comput 1(4):279–291. ISSN 2523-8914. https://doi.org/10.1007/s41965-019-00023-0
Gopakumar V, Pamela S, Samaddar D (2022) Loss landscape engineering via data regulation on PINNs. Technical Report. arXiv arXiv:2205.07843
Hammersley JM (1960) Monte Carlo methods for solving multivariable problems. Ann NY Acad Sci 86(3):844–874. ISSN 1749-6632. https://doi.org/10.1111/j.1749-6632.1960.tb42846.x
Raissi M, Perdikaris P, Karniadakis GE (2019b) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2018.10.045
Lee H, Kang IS (1990) Neural algorithm for solving differential equations. J Comput Phys 91(1):110–131. ISSN 0021-9991. https://doi.org/10.1016/0021-9991(90)90007-N
Yu J, Lu L, Meng X, Karniadakis GE (2022) Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems. Comput Methods Appl Mech Eng 393:114823. ISSN 0045-7825. https://doi.org/10.1016/j.cma.2022.114823
Li Z, Zheng H, Kovachki N, Jin D, Chen H, Liu B, Azizzadenesheli K, Anandkumar A (2021) Physics-informed neural operator for learning partial differential equations. arXiv preprint arXiv:2111.03794
Lagaris IE, Likas AC, Papageorgiou DG (2000) Neural-network methods for boundary value problems with irregular boundaries. IEEE Trans Neural Netw 11(5):1041–1049. ISSN 1941-0093. https://doi.org/10.1109/72.870037
Freedman D (2009) Statistical models: theory and practice. Cambridge University Press. ISBN 978-0-521-11243-7. Google-Books-ID 4N3KOEitRe8C
Raissi M, Perdikaris P, Karniadakis GE (2018) Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM J Sci Comput. https://doi.org/10.1137/17M1120762
Gao H, Zahr MJ, Wang J-X (2022) Physics-informed graph neural Galerkin networks: a unified framework for solving PDE-governed forward and inverse problems. Comput Methods Appl Mech Eng 390:114502. ISSN 0045-7825. https://doi.org/10.1016/j.cma.2021.114502
Lemieux C (2006) Chapter 12: quasi-random number techniques. In: Henderson SG, Nelson BL (eds) Handbooks in operations research and management science. Simulation, vol 13. Elsevier, pp 351–379. https://doi.org/10.1016/S0927-0507(06)13012-1
Barros CDT, Mendonça MRF, Vieira AB, Ziviani A (2021) A survey on embedding dynamic graphs. ACM Comput Surv 55(1):1–37. ISSN: 0360-0300
Xiang Z, Peng W, Zhou W, Yao W (2022) Hybrid finite difference with the physics-informed neural network for solving PDE in complex geometries. arXiv:2202.07926 [physics]
Xu C, Cao TB, Yuan Y, Meschke G (2022) Transfer learning based physics-informed neural networks for solving inverse problems in tunneling. Technical Report. arXiv arXiv:2205.07731
Malek A, Shekari Beidokhti R (2006) Numerical solution for high order differential equations using a hybrid neural network-optimization method. Appl Math Comput 183(1):260–271. ISSN 0096-3003. https://doi.org/10.1016/j.amc.2006.05.068
Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA (2017) Deep reinforcement learning: a brief survey. IEEE Signal Process Mag 34(6):26–38. ISSN 1558-0792. https://doi.org/10.1109/MSP.2017.2743240
Faure H, Lemieux C (2009) Generalized Halton sequences in 2008: a comparative study. ACM Trans Model Comput Simul 19(4):15:1–15:31. ISSN 1049-3301. https://doi.org/10.1145/1596519.1596520
Schiassi E, Leake C, De Florio M, Johnston H, Furfaro R, Mortari D (2020) Extreme theory of functional connections: a physics-informed neural network method for solving parametric differential equations. Technical Report. arXiv arXiv:2005.10632
Raschka S, Patterson J, Nolet C (2020) Machine learning in Python: main developments and technology trends in data science, machine learning, and artificial intelligence. Information 11(4):193. ISSN 2078-2489. https://doi.org/10.3390/info11040193
Sukumar N, Srivastava A (2022) Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. Comput Methods Appl Mech Eng 389:114333. ISSN 0045-7825. https://doi.org/10.1016/j.cma.2021.114333
Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, Shi W (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp 4681–4690
Morokoff WJ, Caflisch RE (1995) Quasi-Monte Carlo integration. J Comput Phys 122(2):218–230. ISSN 0021-9991. https://doi.org/10.1006/jcph.1995.1209
Raissi M, Wang Z, Triantafyllou MS, Karniadakis GE (2019a) Deep learning of vortex-induced vibrations. J Fluid Mech 861:119–137. ISSN 0022-1120, 1469-7645. https://doi.org/10.1017/jfm.2018.872
Jagtap AD, Kawaguchi K, Karniadakis GE (2020) Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J Comput Phys 404:109136. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2019.109136
Tan HH, Lim KH (2019) Review of second-order optimization techniques in artificial neural networks backpropagation. IOP Conf Ser Mater Sci Eng 495:012003. ISSN 1757-899X. https://doi.org/10.1088/1757-899X/495/1/012003
Mao Z, Lu L, Marxen O, Zaki TA, Karniadakis GE (2021) DeepM&Mnet for hypersonics: predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network approximation of operators. J Comput Phys 447:110698. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2021.110698
Chan T, Zhu W (2005) Level set based shape prior segmentation. In: 2005 IEEE Computer Society conference on computer vision and pattern recognition (CVPR’05), vol 2, pp 1164–1170. ISSN 1063-6919. https://doi.org/10.1109/CVPR.2005.212
Sun R-Y (2020) Optimization for deep learning: an overview. J Oper Res Soc China 8(2):249–294. ISSN 2194-6698. https://doi.org/10.1007/s40305-020-00309-6
Fang B, Yang E, Xie F (2020) Symbolic techniques for deep learning: challenges and opportunities. arXiv preprint arXiv:2010.02727
Zubov K, McCarthy Z, Ma Y, Calisto F, Pagliarino V, Azeglio S, Bottero L, Luján E, Sulzer V, Bharambe A, Vinchhi N, Balakrishnan K, Upadhyay D
9890_CR19
9890_CR20
9890_CR21
9890_CR26
9890_CR27
9890_CR28
9890_CR29
9890_CR22
9890_CR23
9890_CR24
9890_CR25
9890_CR30
9890_CR31
9890_CR32
9890_CR37
9890_CR38
9890_CR39
9890_CR33
9890_CR34
9890_CR35
9890_CR36
9890_CR40
9890_CR41
9890_CR42
9890_CR43
9890_CR48
9890_CR49
9890_CR44
9890_CR45
9890_CR46
9890_CR47
9890_CR51
9890_CR52
9890_CR53
9890_CR54
9890_CR50
9890_CR59
9890_CR55
9890_CR56
9890_CR57
9890_CR58
9890_CR102
9890_CR101
9890_CR100
9890_CR106
9890_CR105
9890_CR104
9890_CR103
9890_CR62
9890_CR63
9890_CR64
9890_CR65
9890_CR60
9890_CR61
9890_CR66
9890_CR67
9890_CR68
9890_CR69
9890_CR112
9890_CR111
9890_CR110
9890_CR73
9890_CR74
9890_CR109
9890_CR75
9890_CR108
9890_CR76
9890_CR107
9890_CR70
9890_CR71
9890_CR72
9890_CR77
9890_CR78
9890_CR79
9890_CR4
9890_CR5
9890_CR6
9890_CR7
9890_CR1
9890_CR2
9890_CR3
9890_CR84
9890_CR85
9890_CR86
9890_CR87
9890_CR80
9890_CR81
9890_CR82
9890_CR83
S Wang (9890_CR94) 2021; 7
9890_CR88
9890_CR89
9890_CR90
9890_CR95
9890_CR96
9890_CR97
9890_CR10
9890_CR98
9890_CR8
9890_CR9
9890_CR92
9890_CR93
9890_CR15
9890_CR16
9890_CR17
9890_CR18
9890_CR11
9890_CR99
9890_CR12
9890_CR13
9890_CR14
J Hammersley (9890_CR91) 2013
References_xml – reference: Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017b) Attention is all you need. In: Advances in neural information processing systems, vol 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
– reference: Xu C, Cao TB, Yuan Y, Meschke G (2022) Transfer learning based physics-informed neural networks for solving inverse problems in tunneling. Technical Report. arXiv arXiv:2205.07731
– reference: Raissi M, Wang Z, Triantafyllou MS, Karniadakis GE (2019a) Deep learning of vortex-induced vibrations. J Fluid Mech 861:119–137. ISSN 0022-1120, 1469-7645. https://doi.org/10.1017/jfm.2018.872
– reference: Wang S, Yu X, Perdikaris P (2022a) When and why PINNs fail to train: a neural tangent kernel perspective. J Comput Phys 449:110768. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2021.110768
– reference: Davenport JH, Siret Y, Tournier É (1993) Computer algebra systems and algorithms for algebraic computation. Academic Press Professional, Inc. ISBN 0-12-204232-8
– reference: Srivastava RK, Greff K, Schmidhuber J (2015) Training very deep networks. In: Advances in neural information processing systems, vol 8. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2015/hash/215a71a12769b056c3c32e7299f1c5ed-Abstract.html
– reference: Lu L, Jin P, Pang G, Zhang Z, Karniadakis GE (2021c) Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat Mach Intell 3(3):218–229. ISSN 2522-5839. https://doi.org/10.1038/s42256-021-00302-5
– reference: Lee H, Kang IS (1990) Neural algorithm for solving differential equations. J Comput Phys 91(1):110–131. ISSN 0021-9991. https://doi.org/10.1016/0021-9991(90)90007-N
– reference: Margossian CC (2019) A review of automatic differentiation and its efficient implementation. WIREs Data Min Knowl Discov 9(4):e1305. ISSN 1942-4795. https://doi.org/10.1002/widm.1305
– reference: Diaconis P, Shahshahani M (1984) On nonlinear functions of linear combinations. SIAM J Sci Stat Comput 5(1):175–191. ISSN 0196-5204. https://doi.org/10.1137/0905013
– reference: Abueidda DW, Koric S, Guleryuz E, Sobh NA (2022) Enhanced physics-informed neural networks for hyperelasticity. Technical Report. arXiv:2205.14148
– reference: Raissi M, Perdikaris P, Karniadakis GE (2019b) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2018.10.045
– reference: Morokoff WJ, Caflisch RE (1995) Quasi-Monte Carlo integration. J Comput Phys 122(2):218–230. ISSN 0021-9991. https://doi.org/10.1006/jcph.1995.1209
– reference: Faure H, Lemieux C (2009) Generalized Halton sequences in 2008: a comparative study. ACM Trans Model Comput Simul 19(4):15:1–15:31. ISSN 1049-3301. https://doi.org/10.1145/1596519.1596520
– reference: Thacker WC (1989) The role of the Hessian matrix in fitting models to measurements. J Geophys Res Oceans 94(C5):6177–6196. ISSN 2156-2202. https://doi.org/10.1029/JC094iC05p06177
– reference: Barros CDT, Mendonça MRF, Vieira AB, Ziviani A (2021) A survey on embedding dynamic graphs. ACM Comput Surv 55(1):1–37. ISSN: 0360-0300
– reference: Lu L, Dao M, Kumar P, Ramamurty U, Karniadakis GE, Suresh S (2020) Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proc Natl Acad Sci USA 117(13):7052–7062. https://doi.org/10.1073/pnas.1922210117
– reference: Jin P, Meng S, Lu L (2022) MIONet: learning multiple-input operators via tensor product. Technical Report. arXiv:2202.06137
– reference: Lu L, Meng X, Mao Z, Karniadakis GE (2021b) DeepXDE: a deep learning library for solving differential equations. SIAM Rev 63(1):208–228. ISSN 0036-1445. https://doi.org/10.1137/19M1274067
– reference: Yu Y, Si X, Hu C, Zhang J (2019) A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput 31(7):1235–1270. ISSN 0899-7667. https://doi.org/10.1162/neco_a_{0}1199
– reference: Meng X, Karniadakis GE (2020) A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems. J Comput Phys 401:109020. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2019.109020
– reference: Robert CP, Casella G (1999) Monte Carlo integration. In: Robert CP, Casella G (eds) Monte Carlo statistical methods, Springer texts in statistics. Springer, New York, pp 71–138. ISBN 978-1-4757-3071-5. https://doi.org/10.1007/978-1-4757-3071-5_3
– reference: Raissi M, Perdikaris P, Karniadakis GE (2018) Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM J Sci Comput. https://doi.org/10.1137/17M1120762
– reference: Jagtap AD, Kawaguchi K, Karniadakis GE (2020) Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J Comput Phys 404:109136. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2019.109136
– reference: Hennigh O, Narasimhan S, Nabian MA, Subramaniam A, Tangsali K, Fang Z, Rietmann M, Byeon W, Choudhry S (2021) NVIDIA SimNetTM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{TM}$$\end{document}: an AI-accelerated multi-physics simulation framework. In: Paszynski M, Kranzlmüller D, Krzhizhanovskaya VV, Dongarra JJ, Sloot PMA (eds) Computational science—ICCS 2021, Lecture notes in computer science, 2021. Springer, Cham, pp 447–461. ISBN 978-3-030-77977-1. https://doi.org/10.1007/978-3-030-77977-1_36
– reference: Isola P, Zhu J-Y, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp 1125–1134
– reference: Lagaris IE, Likas AC, Papageorgiou DG (2000) Neural-network methods for boundary value problems with irregular boundaries. IEEE Trans Neural Netw 11(5):1041–1049. ISSN 1941-0093. https://doi.org/10.1109/72.870037
– reference: Tancik M, Srinivasan P, Mildenhall B, Fridovich-Keil S, Raghavan N, Singhal U, Ramamoorthi R, Barron J, Ng R (2020) Fourier features let networks learn high frequency functions in low dimensional domains. In: Advances in neural information processing systems, 2020, vol 33. Curran Associates, Inc., pp 7537–7547. https://proceedings.neurips.cc/paper/2020/hash/55053683268957697aa39fba6f231c68-Abstract.html
– reference: Shaw JEH (1988) A quasirandom approach to integration in Bayesian statistics. Ann Stat 16(2):895–914. ISSN 0090-5364. https://www.jstor.org/stable/2241763
– reference: Zapf B, Haubner J, Kuchta M, Ringstad G, Eide PK, Mardal K-A (2022) Investigating molecular transport in the human brain from MRI with physics-informed neural networks. Technical Report. arXiv arXiv:2205.02592
– reference: Stiff differential equations. https://uk.mathworks.com/company/newsletters/articles/stiff-differential-equations.html
– reference: Trehan D (2020) Non-convex optimization: a review. In: 2020 4th International conference on intelligent computing and control systems (ICICCS), pp 418–423. https://doi.org/10.1109/ICICCS48265.2020.9120874
– reference: Yu J, Lu L, Meng X, Karniadakis GE (2022) Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems. Comput Methods Appl Mech Eng 393:114823. ISSN 0045-7825. https://doi.org/10.1016/j.cma.2022.114823
– reference: Kingma DP, Ba J (2017) Adam: a method for stochastic optimization. Technical Report. arXiv arXiv:1412.6980
– reference: Molnar C (2020) Interpretable machine learning. Lulu.com. ISBN 0-244-76852-8
– reference: Joe S, Kuo FY (2008) Constructing Sobol sequences with better two-dimensional projections. SIAM J Sci Comput 30(5):2635–2654. ISSN 1064-8275. https://doi.org/10.1137/070709359
– reference: Sukumar N, Srivastava A (2022) Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. Comput Methods Appl Mech Eng 389:114333. ISSN 0045-7825. https://doi.org/10.1016/j.cma.2021.114333
– reference: Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9(5): 987–1000. ISSN 1941-0093. https://doi.org/10.1109/72.712178
– reference: Nabian MA, Gladstone RJ, Meidani H (2021) Efficient training of physics-informed neural networks via importance sampling. Comput Aided Civ Infrastruct Eng 36(8):962–977. ISSN 1467-8667. https://doi.org/10.1111/mice.12685
– reference: WangSWangHPerdikarisPLearning the solution operator of parametric partial differential equations with physics-informed DeepONetsSci Adv2021740eabi860510.1126/sciadv.abi8605
– reference: Mathias R (1996) A chain rule for matrix functions and applications. SIAM J Matrix Anal Appl 17(3):610–620. ISBN: 0895-4798
– reference: Ramm A, Smirnova A (2001) On stable numerical differentiation. Math Comput 70(235):1131–1153. ISSN 0025-5718, 1088-6842. https://doi.org/10.1090/S0025-5718-01-01307-2
– reference: Demo N, Strazzullo M, Rozza G (2021) An extended physics informed neural network for preliminary analysis of parametric optimal control problems. Technical Report. arXiv arXiv:2110.13530
– reference: Partial differential equation toolbox (R2022a). https://uk.mathworks.com/products/pde.html
– reference: De Florio M, Schiassi E, Furfaro R (2022b) Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos Interdiscip J Nonlinear Sci 32(6):063107. ISSN 1054-1500. https://doi.org/10.1063/5.0086649
– reference: Pang G, Lu L, Karniadakis GE (2019) fPINNs: fractional physics-informed neural networks. SIAM J Sci Comput 41(4):A2603–A2626. ISSN 1064-8275. https://doi.org/10.1137/18M1229845
– reference: Bajaj C, McLennan L, Andeen T, Roy A (2021) Robust learning of physics informed neural networks. Technical Report. arXiv arXiv:2110.13330
– reference: Aliakbari M, Mahmoudi M, Vadasz P, Arzani A (2022) Predicting high-fidelity multiphysics data from low-fidelity fluid flow and transport solvers using physics-informed neural networks. Int J Heat Fluid Flow 96:109002. ISSN 0142-727X. https://doi.org/10.1016/j.ijheatfluidflow.2022.109002
– reference: McClenny L, Braga-Neto U (2019) Self-adaptive physics-informed neural networks using a soft attention mechanism. Technical Report 68. http://ceur-ws.org/Vol-2964/article_68.pdf
– reference: Modulus user guide, release v21.06 (2021). https://developer.nvidia.com/modulus-user-guide-v2106
– reference: Raj M, Kumbhar P, Annabattula RK (2022) Physics-informed neural networks for solving thermo-mechanics problems of functionally graded material. Technical Report. arXiv arXiv:2111.10751
– reference: Ketkar N (2017) Stochastic gradient descent. In: Ketkar N (ed) Deep learning with Python: a hands-on introduction. Apress, Berkeley, pp 113–132. ISBN 978-1-4842-2766-4. https://doi.org/10.1007/978-1-4842-2766-4_8
– reference: Minsky M, Papert SA (2017) Perceptrons: an introduction to computational geometry. The MIT Press. ISBN 978-0-262-34393-0. https://doi.org/10.7551/mitpress/11301.001.0001
– reference: Haghighat E, Juanes R (2021) SciANN: a Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks. Comput Methods Appl Mech Eng 373:113552. ISSN 0045-7825. https://doi.org/10.1016/j.cma.2020.113552
– reference: Cao S (2021) Choose a transformer: Fourier or Galerkin. In: Advances in neural information processing systems, 2021, vol 34. Curran Associates, Inc., pp 24924–24940. https://proceedings.neurips.cc/paper/2021/hash/d0921d442ee91b896ad95059d13df618-Abstract.html
– reference: Sun R-Y (2020) Optimization for deep learning: an overview. J Oper Res Soc China 8(2):249–294. ISSN 2194-6698. https://doi.org/10.1007/s40305-020-00309-6
– reference: Andonie R (2019) Hyperparameter optimization in learning systems. J Membr Comput 1(4):279–291. ISSN 2523-8914. https://doi.org/10.1007/s41965-019-00023-0
– reference: Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of training recurrent neural networks. In: Proceedings of the 30th international conference on machine learning. PMLR, pp 1310–1318. ISSN 1938-7228. https://proceedings.mlr.press/v28/pascanu13.html
– reference: Schiassi E, Leake C, De Florio M, Johnston H, Furfaro R, Mortari D (2020) Extreme theory of functional connections: a physics-informed neural network method for solving parametric differential equations. Technical Report. arXiv arXiv:2005.10632
– reference: Sitzmann V, Martel J, Bergman A, Lindell D, Wetzstein G (2020) Implicit neural representations with periodic activation functions. In: Advances in neural information processing systems, 2020, vol 33. Curran Associates, Inc., pp 7462–7473. https://proceedings.neurips.cc/paper/2020/hash/53c04118df112c13a8c34b38343b9c10-Abstract.html
– reference: Lu L, Pestourie R, Johnson SG, Romano G (2022) Multifidelity deep neural operators for efficient learning of partial differential equations with application to fast inverse design of nanoscale heat transport. Technical Report arXiv:2204.06684
– reference: Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA (2017) Deep reinforcement learning: a brief survey. IEEE Signal Process Mag 34(6):26–38. ISSN 1558-0792. https://doi.org/10.1109/MSP.2017.2743240
– reference: Zubov K, McCarthy Z, Ma Y, Calisto F, Pagliarino V, Azeglio S, Bottero L, Luján E, Sulzer V, Bharambe A, Vinchhi N, Balakrishnan K, Upadhyay D, Rackauckas C (2021) NeuralPDE: automating physics-informed neural networks (PINNs) with error approximations. Technical Report. arXiv arXiv:2107.09443
– reference: Lewkowycz A (2021) How to decay your learning rate. arXiv:2103.12682 [cs]
– reference: Wang S, Teng Y, Perdikaris P (2021a) Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM J Sci Comput 43(5):A3055–A3081. ISSN 1064-8275. https://doi.org/10.1137/20M1318043
– reference: Cai S, Wang Z, Lu L, Zaki TA, Karniadakis GE (2021) DeepM&Mnet: inferring the electroconvection multiphysics fields based on operator approximation by neural networks. J Comput Phys 436:110296. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2021.110296
– reference: Gao H, Zahr MJ, Wang J-X (2022) Physics-informed graph neural Galerkin networks: a unified framework for solving PDE-governed forward and inverse problems. Comput Methods Appl Mech Eng 390:114502. ISSN 0045-7825. https://doi.org/10.1016/j.cma.2021.114502
– reference: Xiang Z, Peng W, Zhou W, Yao W (2022) Hybrid finite difference with the physics-informed neural network for solving PDE in complex geometries. arXiv:2202.07926 [physics]
– reference: Ghojogh B, Ghodsi A, Karray F, Crowley M (2021) KKT conditions, first-order and second-order optimization, and distributed optimization: tutorial and survey. arXiv:2110.01858 [cs, math]
– reference: Heger P, Full M, Hilger D, Hosters N (2022) Investigation of physics-informed deep learning for the prediction of parametric, three-dimensional flow based on boundary data. Technical Report. arXiv arXiv:2203.09204
– reference: Freedman D (2009) Statistical models: theory and practice. Cambridge University Press. ISBN 978-0-521-11243-7. Google-Books-ID 4N3KOEitRe8C
– reference: Sobol’ IM (1967) On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput Math Math Phys 7(4):86–112. ISSN 00415553. https://doi.org/10.1016/0041-5553(67)90144-9
– reference: Giles M (2008) An extended collection of matrix derivative results for forward and reverse mode automatic differentiation. Report
– reference: Mao Z, Lu L, Marxen O, Zaki TA, Karniadakis GE (2021) DeepM&Mnet for hypersonics: predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network approximation of operators. J Comput Phys 447:110698. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2021.110698
– reference: Wang Q, Ma Y, Zhao K, Tian Y (2022b) A comprehensive survey of loss functions in machine learning. Ann Data Sci 9(2):187–212. ISSN 2198-5812. https://doi.org/10.1007/s40745-020-00253-5
– reference: Lu L, Pestourie R, Yao W, Wang Z, Verdugo F, Johnson SG (2021a) Physics-informed neural networks with hard constraints for inverse design. SIAM J Sci Comput 43(6):B1105–B1132. ISSN 1064-8275. https://doi.org/10.1137/21M1397908
– reference: Fletcher R (1994) An overview of unconstrained optimization. In: Spedicato E (ed) Algorithms for continuous optimization: the state of the art, NATO ASI series. Springer, Dordrecht, pp 109–143. ISBN 978-94-009-0369-2. https://doi.org/10.1007/978-94-009-0369-2_5
– reference: Werbos P (1974) Beyond regression: new tools for prediction and analysis in the behavior science. Doctoral Dissertation, Harvard University. https://ci.nii.ac.jp/naid/10012540025/
– reference: Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017a) Attention is all you need. In: Advances in neural information processing systems, 2017, vol 30
– reference: Sirignano J, Spiliopoulos K (2018) DGM: a deep learning algorithm for solving partial differential equations. J Comput Phys 375:1339–1364. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2018.08.029
– reference: Chan T, Zhu W (2005) Level set based shape prior segmentation. In: 2005 IEEE Computer Society conference on computer vision and pattern recognition (CVPR’05), vol 2, pp 1164–1170. ISSN 1063-6919. https://doi.org/10.1109/CVPR.2005.212
– reference: Raschka S, Patterson J, Nolet C (2020) Machine learning in Python: main developments and technology trends in data science, machine learning, and artificial intelligence. Information 11(4):193. ISSN 2078-2489. https://doi.org/10.3390/info11040193
– reference: Martino L, Elvira V, Louzada F (2017) Effective sample size for importance sampling based on discrepancy measures. Signal Process 131:386–401. ISSN 0165-1684. https://doi.org/10.1016/j.sigpro.2016.08.025
– reference: HammersleyJMonte Carlo methods2013SingaporeSpringer
– reference: Lemieux C (2006) Chapter 12: quasi-random number techniques. In: Henderson SG, Nelson BL (eds) Handbooks in operations research and management science. Simulation, vol 13. Elsevier, pp 351–379. https://doi.org/10.1016/S0927-0507(06)13012-1
– reference: Wang T-C, Liu M-Y, Zhu J-Y, Tao A, Kautz J, Catanzaro B (2018) High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp 8798–8807
– reference: Rahaman N, Baratin A, Arpit D, Draxler F, Lin M, Hamprecht F, Bengio Y, Courville A (2019) On the spectral bias of neural networks. In: Proceedings of the 36th international conference on machine learning, 2019. PMLR, pp 5301–5310. ISSN 2640-3498. https://proceedings.mlr.press/v97/rahaman19a.html
– reference: Son H, Jang JW, Han WJ, Hwang HJ (2021) Sobolev training for physics informed neural networks. Technical Report. arXiv arXiv:2101.08932
– reference: De Florio M, Schiassi E, Ganapol BD, Furfaro R (2022a) Physics-Informed Neural Networks for rarefied-gas dynamics: Poiseuille flow in the BGK approximation. Z angew Math Phys 73(3):126. ISSN 1420-9039. https://doi.org/10.1007/s00033-022-01767-z
– reference: Tan HH, Lim KH (2019) Review of second-order optimization techniques in artificial neural networks backpropagation. IOP Conf Ser Mater Sci Eng 495:012003. ISSN 1757-899X. https://doi.org/10.1088/1757-899X/495/1/012003
– reference: Malek A, Shekari Beidokhti R (2006) Numerical solution for high order differential equations using a hybrid neural network-optimization method. Appl Math Comput 183(1):260–271. ISSN 0096-3003. https://doi.org/10.1016/j.amc.2006.05.068
– reference: Berrada I, Ferland JA, Michelon P (1996) A multi-objective approach to nurse scheduling with both hard and soft constraints. Socio-Econ Plan Sci 30(3):183–193. ISSN 0038-0121. https://doi.org/10.1016/0038-0121(96)00010-9
– reference: Wu Y, Feng J (2018) Development and application of artificial neural network. Wirel Pers Commun 102(2):1645–1656. ISSN 1572-834X. https://doi.org/10.1007/s11277-017-5224-x
– reference: Wang S, Wang H, Perdikaris P (2021c) On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks. Comput Methods Appl Mech Eng 384:113938. ISSN 0045-7825. https://doi.org/10.1016/j.cma.2021.113938
– reference: McClenny LD, Haile MA, Braga-Neto UM (2021) TensorDiffEq: scalable multi-GPU forward and inverse solvers for physics informed neural networks. Technical Report. arXiv arXiv:2103.16034
– reference: Halton JH (1960) On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer Math 2(1):84–90. ISSN 0945-3245. https://doi.org/10.1007/BF01386213
– reference: Guibas J, Mardani M, Li Z, Tao A, Anandkumar A, Catanzaro B (2022) Adaptive Fourier neural operators: efficient token mixers for transformers. Technical Report. arXiv:2111.13587
– reference: Zhang D, Guo L, Karniadakis GE (2020) Learning in modal space: solving time-dependent stochastic PDEs using physics-informed neural networks. SIAM J Sci Comput 42(2):A639–A665. ISSN 1064-8275. https://doi.org/10.1137/19M1260141
– reference: Rudd K, Ferrari S (2015) A constrained integration (CINT) approach to solving partial differential equations using artificial neural networks. Neurocomputing 155:277–285. ISSN 0925-2312. https://doi.org/10.1016/j.neucom.2014.11.058
– reference: Li Z, Zheng H, Kovachki N, Jin D, Chen H, Liu B, Azizzadenesheli K, Anandkumar A (2021) Physics-informed neural operator for learning partial differential equations. arXiv preprint arXiv:2111.03794
– reference: Samsami MR, Alimadad H (2020) Distributed deep reinforcement learning: an overview. Technical Report. arXiv arXiv:2011.11012
– reference: Zhao CL (2020) Solving Allen–Cahn and Cahn–Hilliard equations using the adaptive physics informed neural networks. Commun Comput Phys 29(3). https://doi.org/10.4208/cicp.OA-2020-0086
– reference: Fang B, Yang E, Xie F (2020) Symbolic techniques for deep learning: challenges and opportunities. arXiv preprint arXiv:2010.02727
– reference: Gopakumar V, Pamela S, Samaddar D (2022) Loss landscape engineering via data regulation on PINNs. Technical Report. arXiv arXiv:2205.07843
– reference: Hammersley JM (1960) Monte Carlo methods for solving multivariable problems. Ann NY Acad Sci 86(3):844–874. ISSN 1749-6632. https://doi.org/10.1111/j.1749-6632.1960.tb42846.x
– reference: Elfwing S, Uchibe E, Doya K (2017) Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Technical Report. arXiv arXiv:1702.03118
– reference: Chen T, Chen H (1995) Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Trans Neural Netw 6(4):911–917. ISSN 1941-0093. https://doi.org/10.1109/72.392253
– reference: Elshawi R, Wahab A, Barnawi A, Sakr S (2021) DLBench: a comprehensive experimental evaluation of deep learning frameworks. Clust Comput 24(3):2017–2038. ISSN 1573-7543. https://doi.org/10.1007/s10586-021-03240-4
– reference: Shi S, Liu D, Zhao Z (2021) Non-Fourier heat conduction based on self-adaptive weight physics-informed neural networks. In: 2021 40th Chinese control conference (CCC), pp 8451–8456. ISSN 1934-1768. https://doi.org/10.23919/CCC52363.2021.9550487
– reference: Viana FAC (2016) A tutorial on Latin hypercube design of experiments. Qual Reliab Eng Int 32(5):1975–1985. ISSN 1099-1638. https://doi.org/10.1002/qre.1924
– reference: Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, Shi W (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp 4681–4690
– reference: Arzani A, Wang J-X, D’Souza RM (2021) Uncovering near-wall blood flow from sparse data with physics-informed neural networks. Phys Fluids 33(7):071905. ISSN 1070-6631. https://doi.org/10.1063/5.0055600
– ident: 9890_CR93
  doi: 10.1137/19M1260141
– ident: 9890_CR111
– ident: 9890_CR21
  doi: 10.1016/j.cma.2021.114502
– ident: 9890_CR105
– ident: 9890_CR95
  doi: 10.1016/j.jcp.2019.109020
– ident: 9890_CR31
  doi: 10.23919/CCC52363.2021.9550487
– volume-title: Monte Carlo methods
  year: 2013
  ident: 9890_CR91
– ident: 9890_CR58
– ident: 9890_CR77
  doi: 10.1016/j.jcp.2019.109136
– ident: 9890_CR82
  doi: 10.1109/MSP.2017.2743240
– ident: 9890_CR33
  doi: 10.1007/s40305-020-00309-6
– ident: 9890_CR98
  doi: 10.1038/s42256-021-00302-5
– ident: 9890_CR83
  doi: 10.1002/qre.1924
– ident: 9890_CR2
  doi: 10.1063/5.0086649
– ident: 9890_CR39
  doi: 10.2139/ssrn.4086448
– ident: 9890_CR66
  doi: 10.1007/s41965-019-00023-0
– ident: 9890_CR53
– ident: 9890_CR81
– ident: 9890_CR26
– ident: 9890_CR100
  doi: 10.1016/j.jcp.2021.110296
– ident: 9890_CR89
  doi: 10.1137/070709359
– ident: 9890_CR64
  doi: 10.1137/S0895479895283409
– ident: 9890_CR20
– ident: 9890_CR86
  doi: 10.1007/BF01386213
– ident: 9890_CR43
– ident: 9890_CR32
  doi: 10.1016/j.jcp.2021.110768
– ident: 9890_CR80
  doi: 10.1016/j.sigpro.2016.08.025
– ident: 9890_CR5
  doi: 10.1016/j.cma.2022.115852
– ident: 9890_CR38
  doi: 10.1016/j.cma.2020.113552
– ident: 9890_CR63
  doi: 10.1007/978-3-540-68942-3_4
– ident: 9890_CR14
  doi: 10.1137/17M1120762
– ident: 9890_CR106
  doi: 10.1109/CVPR.2017.632
– ident: 9890_CR27
  doi: 10.1007/978-3-030-77977-1_36
– ident: 9890_CR79
– ident: 9890_CR50
  doi: 10.1137/0905013
– ident: 9890_CR15
  doi: 10.1017/jfm.2018.872
– ident: 9890_CR56
– ident: 9890_CR40
– ident: 9890_CR8
  doi: 10.1002/widm.1305
– ident: 9890_CR108
  doi: 10.1109/CVPR.2017.19
– ident: 9890_CR48
– ident: 9890_CR4
  doi: 10.1002/nme.7176
– ident: 9890_CR35
  doi: 10.1007/978-94-009-0369-2_5
– ident: 9890_CR112
  doi: 10.1016/j.neunet.2017.12.012
– ident: 9890_CR36
  doi: 10.1088/1757-899X/495/1/012003
– ident: 9890_CR68
  doi: 10.1063/5.0055600
– ident: 9890_CR34
– ident: 9890_CR13
  doi: 10.1016/j.neucom.2014.11.058
– ident: 9890_CR28
– ident: 9890_CR90
  doi: 10.1111/j.1749-6632.1960.tb42846.x
– ident: 9890_CR62
– ident: 9890_CR97
  doi: 10.1016/j.cma.2021.113938
– ident: 9890_CR51
– ident: 9890_CR16
– ident: 9890_CR109
– ident: 9890_CR7
  doi: 10.1137/21M1397908
– ident: 9890_CR65
  doi: 10.3390/info11040193
– ident: 9890_CR70
  doi: 10.1111/mice.12685
– ident: 9890_CR52
  doi: 10.7551/mitpress/11301.001.0001
– ident: 9890_CR78
  doi: 10.1109/CVPR.2005.212
– ident: 9890_CR25
– ident: 9890_CR67
  doi: 10.2139/ssrn.4280307
– ident: 9890_CR74
  doi: 10.1016/j.cma.2021.114333
– ident: 9890_CR41
  doi: 10.1016/j.neucom.2021.06.015
– ident: 9890_CR19
– ident: 9890_CR73
  doi: 10.1016/0038-0121(96)00010-9
– ident: 9890_CR42
– ident: 9890_CR3
  doi: 10.1016/j.ijheatfluidflow.2022.109002
– ident: 9890_CR110
– ident: 9890_CR1
  doi: 10.1007/s00033-022-01767-z
– volume: 7
  start-page: eabi8605
  issue: 40
  year: 2021
  ident: 9890_CR94
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abi8605
– ident: 9890_CR85
  doi: 10.1016/S0927-0507(06)13012-1
– ident: 9890_CR37
  doi: 10.1137/19M1274067
– ident: 9890_CR55
  doi: 10.1007/s10586-021-03240-4
– ident: 9890_CR104
– ident: 9890_CR60
– ident: 9890_CR72
  doi: 10.1006/jcph.1995.1209
– ident: 9890_CR99
  doi: 10.1137/22M1477751
– ident: 9890_CR46
  doi: 10.1109/ICICCS48265.2020.9120874
– ident: 9890_CR107
  doi: 10.1109/CVPR.2018.00917
– ident: 9890_CR29
  doi: 10.4208/cicp.OA-2020-0086
– ident: 9890_CR92
  doi: 10.1137/18M1229845
– ident: 9890_CR84
  doi: 10.1214/aos/1176350842
– ident: 9890_CR18
  doi: 10.1137/20M1318043
– ident: 9890_CR57
  doi: 10.1007/978-1-4842-2766-4_8
– ident: 9890_CR30
– ident: 9890_CR47
  doi: 10.1109/72.392253
– ident: 9890_CR23
  doi: 10.1162/neco_a_{0}1199
– ident: 9890_CR103
– ident: 9890_CR9
  doi: 10.1016/0021-9991(90)90007-N
– ident: 9890_CR76
  doi: 10.1016/j.cma.2022.114823
– ident: 9890_CR101
  doi: 10.1016/j.jcp.2021.110698
– ident: 9890_CR10
  doi: 10.1109/72.712178
– ident: 9890_CR59
  doi: 10.1090/S0025-5718-01-01307-2
– ident: 9890_CR6
  doi: 10.1038/s41598-022-19157-w
– ident: 9890_CR75
– ident: 9890_CR11
  doi: 10.1109/72.870037
– ident: 9890_CR69
– ident: 9890_CR44
– ident: 9890_CR61
  doi: 10.1145/3483595
– ident: 9890_CR102
  doi: 10.1103/PhysRevResearch.4.023210
– ident: 9890_CR12
  doi: 10.1016/j.amc.2006.05.068
– ident: 9890_CR22
  doi: 10.1016/j.jcp.2018.08.029
– ident: 9890_CR54
  doi: 10.1007/s40745-020-00253-5
– ident: 9890_CR17
  doi: 10.1016/j.jcp.2018.10.045
– ident: 9890_CR87
  doi: 10.1145/1596519.1596520
– ident: 9890_CR71
  doi: 10.1007/978-1-4757-3071-5_3
– ident: 9890_CR96
  doi: 10.1073/pnas.1922210117
– ident: 9890_CR45
  doi: 10.1007/s11277-017-5224-x
– ident: 9890_CR24
– ident: 9890_CR49
  doi: 10.1029/JC094iC05p06177
– ident: 9890_CR88
  doi: 10.1016/0041-5553(67)90144-9
SSID ssj0054992
Score 2.5343735
SecondaryResourceType review_article
Snippet In recent years, physics-informed neural networks (PINN) have been used to solve stiff-PDEs mostly in the 1D and 2D spatial domain. PINNs still experience...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2929
SubjectTerms Algorithms
Boundary conditions
Conduction heating
Conductive heat transfer
Corners
Engineering
Field programmable gate arrays
Hypotheses
Inverse problems
Libraries
Machine learning
Mathematical and Computational Engineering
Neural networks
Ordinary differential equations
Parameterization
Partial differential equations
Physics
Regression analysis
Review Article
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qi6gHH1WxWmUP3mxw35scRHy0FMGlqIXelmSzC0LZVneL-O-d7GZbvRTPeTKZSb5JMt8AXKqfFl7ATKLYwogrmCBMuClhrsU9m7sxK9O3PYf-cOw-TbxJA8I6FkZ9q6z3xHKjlrNY3ZFfO3g2-4qfKbidfxCVNUq9rtYpNLhOrSBvSoqxDWjZihmrCa37fjh6qfdm5QyV759qYgiWTR1GUwXToXaja207xGQUZ-_-PapW-HP5ZLoDW4tszr-_-HT661Qa7MOuhpPGXbX-B9BIsjbsaWhpaMPN27BZ_vSM80O4fi3e05SMHvu5wTNp6AJSxSVhI0XXgV2G1f_w_AjGg_7bw5DorAkkdnynIOj_2CI1pauCoxF_mLHgnmTC4YKa3KF2klpoGtJmWIEqBqkkiam0LMECnvjSOYZmNsuSEzBkQi2Pcl9QBImWEzDO0R-kaLKI2iQzO2DVAopiTSmuMltMoxUZshJqhEKNSqFGbgeulm3mFaHG2trdWu6RNq48WqlCB3r1WqyK1_XWW67XPwY_XT_4GWzbpbaoK5kuNIvPRXKOCKUQF1rtfgDfGNp2
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH3-L6ogdvmt22SdvkKK4igsuCLuipJE0K4lIX20X01zvpY1dFRPGcSUImk-RLMvMNwJH1tAgi4RLLFkaYEooIxVIimCcDX7JElOnbrvvh5ZBd3QV3c9BrYmFKb_fmS7KKabAsTVnRHeu0Owt8Q0vEa7BPiSs49sQ6WDwPC2GAiLwFC8P-4PS-zKtC7cN_FSzMeUi8iLM6dub7hj6fTzPQOf0nXYbFSTaWry9yNPpwFF2sgmkGUXmgPHYmheokb1_4Hf87yjVYqbGqc1oZ1zrMmWwDVmvc6tS7Qr4J3ZviIU3JoHeeOzLTTulVmuSkCnVCUcsAgg31K5fzfAuGF-e3Z5ekTsRAEhrSguCVylepq5mNt0ZI4yZKBlooKhV3JeW-ST1cbdoXKMAtKZUxCdeep0QkTajpNrSyp8zsgKMN9wIuQ8URd3o0ElLiFZPjLoBAUAu3DV6j_jipWcptsoxRPONXtlqJUStxqZWYteF4WmdccXT8KL3fzGpcr9c8poj8Qsv-FbXhpJmYWfFPrZ1MreEXne_-TXwPlvxy-u2rzz60iueJOUAQVKjD2sbfAfEV9ks
  priority: 102
  providerName: Unpaywall
Title Stiff-PDEs and Physics-Informed Neural Networks
URI https://link.springer.com/article/10.1007/s11831-023-09890-4
https://www.proquest.com/docview/3256678147
https://link.springer.com/content/pdf/10.1007/s11831-023-09890-4.pdf
UnpaywallVersion publishedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: ADMLS
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1886-1784
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8IPCgPfqBGFMkefJOGbd1G-4g4IBoJUUngaWn3kZiQSdyI8b_3ug1QY4i-bMnWXpO7dv3d7u5XgCuVaWF3uE4UWxixJJeESysi3DKEbQrL59nxbQ8jZzix7qb2tKDJUbUwP-L37QQBMEWH16RE5wxlWiWo4CblZIFZp7f66io3J4tsqiERButFgczvMr5vQhtkuQ6GVmF3GS_Ex7uYz7_sN_1D2C-AotbNLXsEO2Fcg4MCNGrFkkxqUP3CKHgM7af0JYrI-NZNNBEHWpbg6SckrzrCjoqMA8WO8uzv5AQmffe5NyTFmQjEpw5NCXo3poz0wFKlz4gudF8KO-CSCsl0QZkZRgZO_MDk2IApfqgw9FlgGJJ3ROgE9BTK8WscnoEWhMywmXAkQwho0A4XAr09hgsSMVnA9ToYKyV5fkEYrs6tmHsbqmOlWA8V62WK9aw6XK_7LHK6jK2tGyvde8XSSTyKIMxRRFydOrRW9ti83iattbbZHwY__5_0C9gzsxmkfsA0oJy-LcNLxCOpbEKJ9QdNqHQHs3sX7zfuaPzYzKYnXidmF59NRuPu7BPoy9Tp
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTajwMGCAKCuQB3iiVpPYSe2Hatpoq5Z21QSdtLdgx46EVKWFdJr2z-1v2zlx2vFS8bJn_5I-n3139t13AJ9tpEXUFT6xbGGEKaGIUCwjggUyCiVLRVm-7XwWjy7Z96voag_u6lwYG1ZZ34nlRa2XqX0j71DUzbHlZ-qerP4QWzXK_q7WJTSkK62geyXFmEvsmJjbG3Thit64j_v9JQyHg_m3EXFVBkhKY7om6C-EKvM1s8nEqK_9VMlIC0Wl4r6kPDRZgKKkQ4EduGVcMiblOgiU6EoTa4rzPoEDRplA5-_gbDC7-FHrAut8lf-tFgg0zn2XtlMl7-FpQlc-pMQXHNFi_6rGrb27-aJ9Do3rfCVvb-Ri8UALDl_CoTNfvdNK3l7BnsmP4IUzZT13URRH8LSMLE2L19D5uf6dZeSiPyg8mWvPNZAqDwoHWXoQnHJWxaMXb-DyUfB7C_v5MjfvwNOGBxGXseJolAa0K6RE_5PjFYFWohZ-E4IaoCR1FOa2ksYi2ZIvW1ATBDUpQU1YE75uxqwqAo-dvVs17ok7zEWyFb0mtOu92Dbvmq292a__WPz97sU_QWM0P58m0_FscgzPwlJy7HNQC_bXf6_NB7SO1uqjE0EPfj221N8DxekWTQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB60gtoHj6pYzzz4Zpfm2CS7j9KDepWCFvoWdrMJCCUWkyL-e2dztBWk6HN2Z8PsTvabzMw3ADc608L1uUk0WxihkkvCJY0Jp5ZwbUFDnrdvex56gzF9mLiTlSr-PNu9CkkWNQ2apSnJ2jMVt5eFb3gS0Q22HWJyhivRTdiieLvpHgYdr1N9i7Xzk8c79YsgODbLspnfZfy8mpZ4cxEircPOPJmJr08xna7cQv0D2Cvho3FX7PchbERJA_ZLKGmUhpo2oL7CM3gE7ZfsLY7JqNtLDZEoI0_7DFNS1CLhRE3RgWKHRU54egzjfu-1MyBlpwQSOp6TEfR5bBmbiuqCaMQcZiiFq7h0hGSmcJgdxRaag7I5DmCaNSqKQqYsS3JfRJ5yTqCWvCfRKRgqYpbLhCcZAkPL8bkQ6AMyNFNEaoqbTbAqJQVhSSOuu1lMgyUBslZsgIoNcsUGtAm3izmzgkRj7eiLSvdBaVBp4CA08zQ9l9-EVrUfy8frpLUWe_aHxc_-J_0atkfdfvB0P3w8h107P0z6D80F1LKPeXSJgCWTV_mZ_Ab_wNly
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH3-L6ogdvmt22SdvkKK4igsuCLuipJE0K4lIX20X01zvpY1dFRPGcSUImk-RLMvMNwJH1tAgi4RLLFkaYEooIxVIimCcDX7JElOnbrvvh5ZBd3QV3c9BrYmFKb_fmS7KKabAsTVnRHeu0Owt8Q0vEa7BPiSs49sQ6WDwPC2GAiLwFC8P-4PS-zKtC7cN_FSzMeUi8iLM6dub7hj6fTzPQOf0nXYbFSTaWry9yNPpwFF2sgmkGUXmgPHYmheokb1_4Hf87yjVYqbGqc1oZ1zrMmWwDVmvc6tS7Qr4J3ZviIU3JoHeeOzLTTulVmuSkCnVCUcsAgg31K5fzfAuGF-e3Z5ekTsRAEhrSguCVylepq5mNt0ZI4yZKBlooKhV3JeW-ST1cbdoXKMAtKZUxCdeep0QkTajpNrSyp8zsgKMN9wIuQ8URd3o0ElLiFZPjLoBAUAu3DV6j_jipWcptsoxRPONXtlqJUStxqZWYteF4WmdccXT8KL3fzGpcr9c8poj8Qsv-FbXhpJmYWfFPrZ1MreEXne_-TXwPlvxy-u2rzz60iueJOUAQVKjD2sbfAfEV9ks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stiff-PDEs+and+Physics-Informed+Neural+Networks&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Sharma%2C+Prakhar&rft.au=Evans%2C+Llion&rft.au=Tindall%2C+Michelle&rft.au=Nithiarasu%2C+Perumal&rft.date=2023-06-01&rft.issn=1134-3060&rft.eissn=1886-1784&rft_id=info:doi/10.1007%2Fs11831-023-09890-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11831_023_09890_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon