Efficient and accurate face detection using heterogeneous feature descriptors and feature selection

► Represent face patterns with heterogeneous and complementary feature descriptors. ► Propose PSO-Adaboost algorithm for efficient discriminative feature selection. ► Develop fast and robust face detector with a three-stage cascade classifiers. ► Reduce training time up to 20 times using the propose...

Full description

Saved in:
Bibliographic Details
Published inComputer vision and image understanding Vol. 117; no. 1; pp. 12 - 28
Main Authors Pan, Hong, Zhu, Yaping, Xia, Liangzheng
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.01.2013
Elsevier
Subjects
Online AccessGet full text
ISSN1077-3142
1090-235X
DOI10.1016/j.cviu.2012.09.003

Cover

Abstract ► Represent face patterns with heterogeneous and complementary feature descriptors. ► Propose PSO-Adaboost algorithm for efficient discriminative feature selection. ► Develop fast and robust face detector with a three-stage cascade classifiers. ► Reduce training time up to 20 times using the proposed PSO-Adaboost and cascade structure. ► Achieves the best detection rate (96.50%) at 10 false positives on CMU+MIT dataset. The performance of an efficient and accurate face detection system depends on several issues: (1) distinctive representation for face patterns; (2) effective algorithm for feature selection and classifier learning; (3) suitable framework for rapid background removal. To address the first issue, we propose to represent face patterns with a set of heterogeneous and complementary feature descriptors including the Generalized Haar-like (GH) descriptor, Multi-Block Local Binary Patterns (MB-LBP) descriptor and Speeded-Up Robust Features (SURF) descriptor. To address the second issue, Particle Swarm Optimization (PSO) algorithm is incorporated into the Adaboost framework, replacing the exhaustive search used in original Adaboost for efficient feature selection. The utilization of heterogeneous feature descriptors enriches the diversity of feature types for Adaboost learning algorithm. As a result, classification performance of the boosted ensemble classifier also improves significantly. A three-stage hierarchical classifier structure is proposed to tackle the last issue. In particular, a new stage is added to detect candidate face regions more quickly by using a large size window with a large moving step. Nonlinear support vector machine (SVM) classifiers are used instead of decision stump classifiers in the last stage to remove those remaining complex non-face patterns that cannot be rejected in the previous two stages. Combining the abovementioned effective modules, we derive the proposed Hetero-PSO-Adaboost-SVM face detector that achieves superior detection accuracy while maintaining a low training and detection complexity. Extensive experiments demonstrate the robustness and efficiency of our system by comparing it with several popular state-of-the-art algorithms on our own test set as well as the widely used CMU+MIT frontal and CMU profile face dataset.
AbstractList The performance of an efficient and accurate face detection system depends on several issues: (1) distinctive representation for face patterns; (2) effective algorithm for feature selection and classifier learning; (3) suitable framework for rapid background removal. To address the first issue, we propose to represent face patterns with a set of heterogeneous and complementary feature descriptors including the Generalized Haar-like (GH) descriptor, Multi-Block Local Binary Patterns (MB-LBP) descriptor and Speeded-Up Robust Features (SURF) descriptor. To address the second issue, Particle Swarm Optimization (PSO) algorithm is incorporated into the Adaboost framework, replacing the exhaustive search used in original Adaboost for efficient feature selection. The utilization of heterogeneous feature descriptors enriches the diversity of feature types for Adaboost learning algorithm. As a result, classification performance of the boosted ensemble classifier also improves significantly. A three-stage hierarchical classifier structure is proposed to tackle the last issue. In particular, a new stage is added to detect candidate face regions more quickly by using a large size window with a large moving step. Nonlinear support vector machine (SVM) classifiers are used instead of decision stump classifiers in the last stage to remove those remaining complex non-face patterns that cannot be rejected in the previous two stages. Combining the abovementioned effective modules, we derive the proposed Hetero-PSO-Adaboost-SVM face detector that achieves superior detection accuracy while maintaining a low training and detection complexity. Extensive experiments demonstrate the robustness and efficiency of our system by comparing it with several popular state-of-the-art algorithms on our own test set as well as the widely used CMU + MIT frontal and CMU profile face dataset.
► Represent face patterns with heterogeneous and complementary feature descriptors. ► Propose PSO-Adaboost algorithm for efficient discriminative feature selection. ► Develop fast and robust face detector with a three-stage cascade classifiers. ► Reduce training time up to 20 times using the proposed PSO-Adaboost and cascade structure. ► Achieves the best detection rate (96.50%) at 10 false positives on CMU+MIT dataset. The performance of an efficient and accurate face detection system depends on several issues: (1) distinctive representation for face patterns; (2) effective algorithm for feature selection and classifier learning; (3) suitable framework for rapid background removal. To address the first issue, we propose to represent face patterns with a set of heterogeneous and complementary feature descriptors including the Generalized Haar-like (GH) descriptor, Multi-Block Local Binary Patterns (MB-LBP) descriptor and Speeded-Up Robust Features (SURF) descriptor. To address the second issue, Particle Swarm Optimization (PSO) algorithm is incorporated into the Adaboost framework, replacing the exhaustive search used in original Adaboost for efficient feature selection. The utilization of heterogeneous feature descriptors enriches the diversity of feature types for Adaboost learning algorithm. As a result, classification performance of the boosted ensemble classifier also improves significantly. A three-stage hierarchical classifier structure is proposed to tackle the last issue. In particular, a new stage is added to detect candidate face regions more quickly by using a large size window with a large moving step. Nonlinear support vector machine (SVM) classifiers are used instead of decision stump classifiers in the last stage to remove those remaining complex non-face patterns that cannot be rejected in the previous two stages. Combining the abovementioned effective modules, we derive the proposed Hetero-PSO-Adaboost-SVM face detector that achieves superior detection accuracy while maintaining a low training and detection complexity. Extensive experiments demonstrate the robustness and efficiency of our system by comparing it with several popular state-of-the-art algorithms on our own test set as well as the widely used CMU+MIT frontal and CMU profile face dataset.
Author Zhu, Yaping
Xia, Liangzheng
Pan, Hong
Author_xml – sequence: 1
  givenname: Hong
  surname: Pan
  fullname: Pan, Hong
  email: enhpan@seu.edu.cn, mspanhong@hotmail.com
  organization: School of Automation, Southeast University, Nanjing 210096, China
– sequence: 2
  givenname: Yaping
  surname: Zhu
  fullname: Zhu, Yaping
  email: zhuyaping@cuc.edu.cn
  organization: Department of Communication Engineering, Communication University of China, Beijing 100024, China
– sequence: 3
  givenname: Liangzheng
  surname: Xia
  fullname: Xia, Liangzheng
  email: lzxia@seu.edu.cn
  organization: School of Automation, Southeast University, Nanjing 210096, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27129135$$DView record in Pascal Francis
BookMark eNp9kctKxDAUhoOM4PUFXHUjuGk9STrpFNzI4A0ENwruQubkZMxQ2zFJBd_e1pnZuJhscuH_fpIvJ2zSdi0xdsGh4MDV9arAb98XArgooC4A5AE75lBDLuT0fTKuqyqXvBRH7CTGFQDnZc2PGd4559FTmzLT2swg9sEkypxByiwlwuS7Nuujb5fZx7AP3ZJa6vqYOTKpD2MqYvDr1IX417E7j9Rs6DN26EwT6Xw7n7K3-7vX-WP-_PLwNL99zlEqmXIOUglr0UpbDcNV6GYg64WwVKrScOfMws7MVCpFSi0ElrWoKqhQ1lNZLpQ8ZVeb3nXovnqKSX_6iNQ05u_CmovZwAKUY_RyGzURTeOCadFHvQ7-04QfLSouai6nQ262yWHoYgzkNPpkxkelYHyjOejRv17p0b8e_Wuo9eB_QMU_dNe-F7rZQDR4-vYUdBw_B8n6MMjUtvP78F8kRqKJ
CODEN CVIUF4
CitedBy_id crossref_primary_10_1007_s11047_022_09912_3
crossref_primary_10_1016_j_ijleo_2015_07_178
crossref_primary_10_1016_j_asoc_2018_03_030
crossref_primary_10_1016_j_jksuci_2020_11_028
crossref_primary_10_1631_jzus_CIIP1301
crossref_primary_10_1016_j_eswa_2021_115620
crossref_primary_10_1109_ACCESS_2020_3023743
crossref_primary_10_1134_S1054661818010170
crossref_primary_10_1016_j_ijleo_2017_11_188
crossref_primary_10_1016_j_patrec_2018_04_012
crossref_primary_10_1007_s11042_015_2699_x
crossref_primary_10_19072_ijet_301087
crossref_primary_10_1142_S0218001416550223
crossref_primary_10_1016_j_eswa_2014_03_033
crossref_primary_10_1016_j_neucom_2015_07_130
crossref_primary_10_1016_j_cviu_2015_02_011
Cites_doi 10.1109/CVPR.2004.1315144
10.1006/cviu.2001.0921
10.1007/11744023_32
10.1109/ICCV.2005.129
10.1109/ICIP.2010.5653519
10.1109/CVPR.2000.855895
10.1023/B:VISI.0000029664.99615.94
10.1109/CEC.2010.5586159
10.1007/3-540-45344-X_14
10.1016/j.patcog.2005.09.016
10.1109/IJCNN.2009.5179017
10.1109/ICPR.2004.1334239
10.1109/TEVC.2007.910140
10.1109/CVPRW.2003.10057
10.1109/34.982883
10.1109/ITSIM.2008.4631734
10.1109/WIAMIS.2008.58
10.1109/ICCV.2005.246
10.1109/34.899945
10.1109/FG.2011.5771452
10.1109/TPAMI.2004.97
10.1109/CVPR.2005.177
10.1109/34.655647
10.1109/TPAMI.2006.244
10.1109/TPAMI.2002.1017623
10.1109/ICCV.2007.4409038
10.1016/j.cviu.2007.09.014
10.1109/CVPR.2004.1315141
10.1109/ICIP.2002.1038171
10.1109/CVPR.2001.990517
10.1109/TSMCA.2007.909557
10.1109/CEC.2009.4983254
10.1109/FG.2011.5771409
10.1007/s11263-006-0006-z
10.1109/CVPR.2008.4587802
10.1109/TSMCB.2005.846655
10.1109/TPAMI.2007.1181
10.1109/ICNN.1995.488968
10.1023/A:1007614523901
10.1016/j.imavis.2005.11.010
10.1109/34.655648
10.1007/978-3-540-74549-5_2
10.1109/TPAMI.2004.68
10.1214/aos/1016218223
10.1109/34.879790
10.1109/TPAMI.2007.1011
10.1109/CEC.2004.1331156
10.1109/TPAMI.2003.1201822
10.1109/34.927464
10.1109/CVPR.2003.1211407
10.1109/ICCV.2009.5459207
10.1023/B:VISI.0000013087.49260.fb
10.1109/IMVIP.2008.15
10.21236/ADA341629
10.1109/ICCV.2003.1238417
ContentType Journal Article
Copyright 2012 Elsevier Inc.
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cviu.2012.09.003
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1090-235X
EndPage 28
ExternalDocumentID 27129135
10_1016_j_cviu_2012_09_003
S1077314212001294
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HF~
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
SST
~HD
BNPGV
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c363t-10362ddcd3d7777f7cf8039b2de464a1ffabd8a5366e66b2c4927707c39534b63
IEDL.DBID .~1
ISSN 1077-3142
IngestDate Sat Sep 27 19:11:28 EDT 2025
Wed Apr 02 07:26:15 EDT 2025
Thu Apr 24 22:57:58 EDT 2025
Sat Oct 25 05:18:31 EDT 2025
Fri Feb 23 02:26:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Feature selection
Cascade classifier
Face detection
PSO
Adaboost
Automatic classification
Haar function
Binary code
Aggregate model
Efficiency
Facies
Vector support machine
Selection criterion
Swarm intelligence
Robustness
Learning algorithm
Hessian matrices
Computer vision
Data analysis
Face recognition
Hierarchical classification
Particle swarm optimization
Computational geometry
Supervised learning
Binary descriptor
Frontal
Hierarchical system
Artificial intelligence
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-10362ddcd3d7777f7cf8039b2de464a1ffabd8a5366e66b2c4927707c39534b63
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1283660046
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_1283660046
pascalfrancis_primary_27129135
crossref_citationtrail_10_1016_j_cviu_2012_09_003
crossref_primary_10_1016_j_cviu_2012_09_003
elsevier_sciencedirect_doi_10_1016_j_cviu_2012_09_003
PublicationCentury 2000
PublicationDate January 2013
2013-01-00
2013
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: January 2013
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer vision and image understanding
PublicationYear 2013
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References S.Y. Yan, S.G. Shan, X.L. Chen, W. Gao, Locally Assembled Binary (LAB) feature with feature-centric cascade for fast and accurate face detection, in: Proceedings of CVPR 2008 IEEE International Conference on Computer Vision and Pattern, 2008, pp. 1–7.
C. Huang, H.Z. Ai, Y. Li, S.H. Lao, Vector boosting for rotation invariant multi-view face detection, in: Proceedings of IEEE International Conference on Computer Vision, vol. 1, 2005, pp. 446–453.
L. Zhang, R. Chu, S. Xiang, S. Liao, S. Li, Face detection based on multi-block LBP representation, in: Proceedings of ICB 2007 International Conference on Biometrics, 2007, pp. 11–18.
Hjelmas, Low (b0010) 2002; 83
Heisele, Serre, Poggio (b0295) 2007; 74
Ahonen, Hadid, Pietikainen (b0135) 2006; 28
C. Liu, H.Y. Shum, Kullback-Leibler Boosting, in: Proceedings of CVPR 2003 IEEE International Conference on Computer Vision and Pattern, vol. 1, 2003, pp. 587–594.
R. Lienhart, J. Maydt, An extended set of Haar-like features for rapid object detection, in: Proceedings of ICIP 2002 IEEE International Conference on Image Processing, vol. 1, 2002, pp. 900–903.
Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: Proceedings of ICML 1996 International Conference on, Machine Learning, 1996, pp. 148–156.
A. Mohemmed, M. Zhang, M. Johnston, Particle swarm optimization based Adaboost for face detection, in: Proceedings of CEC 2009 IEEE Congress on, Evolutionary Computation, 2009, pp. 2494–2501.
E. Marami, A. Tefas, Using particle swarm optimization for scaling and rotation invariant face detection, in: Proceedings of CEC 2010 IEEE Congress on, Evolutionary Computation, 2010, pp. 1–7.
H. Jin, Q. Liu, H. Lu, X. Tong, Face detection using improved LBP under bayesian framework, in: Proceedings of ICIG 2004 Third International Conference on Image and Graphics, 2004, pp. 306–309.
O. Jesorsky, K. Kirchberg, R. Frischholz, Robust face detection using the hausdorff distance, in: Proceedings of the Third International Conference on Audio- and Video-Based Biometric Person Authentication, 2001, pp. 90–95.
M. Asbach, P. Hosten, M. Unger, An evaluation of local features for face detection and localization, in: Proceedings of WIAMIS 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services, 2008, pp. 32–35.
Zhang, Gao, Chen, Zhao (b0155) 2006; 24
S. Stein, G.A. Fink, A new method for combined face detection and identification using interest point descriptors, in: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, 2011, pp. 519–524.
Féraud, Bernier, Viallet, Collobert (b0265) 2001; 23
P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in: Proceedings of CVPR 2001 IEEE International Conference on Computer Vision and Pattern, vol. 1, 2001, pp. I-511–I-518.
Friedman, Hastie, Tibshirani (b0080) 2000; 28
A. Treptow, A. Zell, Combining Adaboost learning and evolutionary search to select features for real-time object detection, in: Proceedings of CEC2004 Congress on Evolutionary Computation, vol. 2, 2004, pp. 2107–2113.
Gao, Cao, Shan, Chen, Zhou, Zhang, Zhao (b0260) 2008; 38
M.T. Pham, T.J. Cham, Fast training and selection and Haar features using statistics in boosting-based face detection, in: Proceedings of ICCV 2007 11th IEEE International Conference on Computer Vision, 2007, pp. 1–7.
M.S. Bartlett, G. Littlewort, I. Fasel, J.R. Movellan, Real time face detection and facial expression recognition: Development and application to human computer interaction, in: Proceedings of CVPRW 2003 IEEE International Conference on Computer Vision and Pattern Workshop, vol. 5, 2003, pp. 139–157.
Viola, Jones (b0045) 2004; 57
Liu (b0280) 2003; 25
H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, SURF: speeded up robust features, in: Proceedings of ECCV 9th European Conference on Computer Vision, Part(1), 2006, pp. 404–417.
Rowley, Baluja, Kanade (b0025) 1998; 20
Li, Zhang (b0090) 2004; 26
Waring, Liu (b0290) 2005; 35
J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of ICNN 1995 IEEE International Conference on, Neural Networks, 1995, pp. 1942–1948.
Schapire, Singer (b0075) 1999; 37
K. Levi, Y. Weiss, Learning object detection from a small number of examples: the importance of good features, in: Proceedings of CVPR 2004 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 2, 2004, pp. 53–60.
V. Rapp, T. Senechal, K. Bailly, L. Prevost, Multiple kernel learning SVM and statistical validation for facial landmark detection, in: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, 2011, pp. 265–271.
Phillips, Hyeonjoon, Rizvi, Rauss (b0245) 2000; 22
Lowe (b0165) 2004; 60
D. Kim, R. Dahyot, Face components detection using SURF descriptors and SVMs, in: Proceedings of IMVIP’08 International Conference on Machine Vision and Image Processing, 2008, pp. 51–56.
Jang, Kim (b0210) 2008; 12
C. Huang, H.Z. Ai, B. Wu, S.H. Lao, Boosting nested cascade detector for multi-view face detection, in: Proceedings of ICPR 2004 17th International Conference on Pattern Recognition, vol. 2, 2004, pp. 415–418.
Ojala, Pietikainen, Maenpaa (b0130) 2002; 24
Z. Zin, M. Khalid, R. Yusof, Evolutionary feature selections for face detection system, in: Proceedings of ITSim 2008 International Symposium on Information Technology, 2008, pp. 1–8.
E. Osuna, R. Freund, F. Girosi, Training support vector machines: an application to face detection, in: Proceedings of CVPR 1997 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, 1997, pp. 130–136.
Garcia, Delakis (b0270) 2004; 26
H. Schneiderman, Feature-centric evaluation for efficient cascaded object detection, in: Proceedings of CVPR 2004 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 2, 2004, pp. 29–36.
H. Schneiderman, T. Kanade, A statistical method for 3D object detection applied to faces and cars, in: Proceedings of CVPR 2000 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, 2000, pp. 746–751.
M.H. Yang, D. Roth, N. Ahuja, A SNoW-based face detector, in: Proceedings of NIPS 1999 Advances in Neural Information Processing Systems, vol. 12, 2000, pp. 855–861.
X. Wang, T.X. Han, S. Yan, An HOG-LBP human detector with partial occlusion handling, in: Proceedings of ICCV 2009 12th IEEE International Conference on Computer Vision, 2009, pp. 32–39.
Bay, Ess, Tuytelaars, Van Gool (b0175) 2008; 110
H. Rowley, S. Baluja, T. Kanade, Rotation invariant neural network-based face detection, in: Proceedings of CVPR 1998 IEEE International Conference on Computer Vision and, Pattern Recognition, 1998, pp. 29–36.
Shen, Wang, Li (b0095) 2010; 6312
Wu, Brubaker, Mullin, Rehg (b0070) 2008; 30
Sung, Poggio (b0015) 1998; 20
R. Xiao, L. Zhu, H. Zhang, Boosting chain learning for object detection, in: Proceedings of ICCV 2003 9th IEEE International Conference on Computer Vision, vol. 1, 2003, pp. 709–715.
T. Mita, T. Kaneko, O. Hori, Joint Haar-like features for face detection, in: Proceedings of ICCV 2005 10th IEEE International Conference on Computer Vision, vol. 2, 2005, pp. 1619–1626.
Yang, Kreigman, Ahuja (b0005) 2002; 24
T. Sim, S. Baker, M. Bsat, The CMU Pose, Illumination, and Expression (PIE) Database of Human Face, CMU-RI-TR-01-02, 2002, pp. 1–17.
B. Wu, H.Z. Ai, C. Huang, S.H. Lao, Fast rotation invariant multi-view face detection based on real AdaBoost, in: Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004, pp. 79–84.
M. Jones, P. Viola, Fast Multi-View Face Detection, MERL, Report TR2003-96, July, 2003.
Huang, Ai, Li, Lao (b0115) 2007; 29
Wang, Wang (b0200) 2006; 39
B.J. Fernandes, G.D. Cavalcanti, T.I. Ren, A receptive field based approach for face detection, in: Proceedings of IJCNN 2009 International Joint Conference on, Neural Networks, 2009, pp. 803–810.
H. Pan, L.Z. Xia, T.Q. Nguyen, Robust object detection scheme using feature selection, in: Proceedings of ICIP 2010 IEEE International Conference on Image Processing, 2010, pp. 849–852.
N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proceedings of CVPR 2005 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, 2005, pp. 886–893.
Georghiades, Belhumeur, Kriegman (b0255) 2001; 23
10.1016/j.cviu.2012.09.003_b0085
Ojala (10.1016/j.cviu.2012.09.003_b0130) 2002; 24
10.1016/j.cviu.2012.09.003_b0240
10.1016/j.cviu.2012.09.003_b0160
10.1016/j.cviu.2012.09.003_b0040
Zhang (10.1016/j.cviu.2012.09.003_b0155) 2006; 24
Sung (10.1016/j.cviu.2012.09.003_b0015) 1998; 20
Gao (10.1016/j.cviu.2012.09.003_b0260) 2008; 38
Hjelmas (10.1016/j.cviu.2012.09.003_b0010) 2002; 83
10.1016/j.cviu.2012.09.003_b0205
10.1016/j.cviu.2012.09.003_b0125
10.1016/j.cviu.2012.09.003_b0120
10.1016/j.cviu.2012.09.003_b0285
10.1016/j.cviu.2012.09.003_b0030
10.1016/j.cviu.2012.09.003_b0195
Huang (10.1016/j.cviu.2012.09.003_b0115) 2007; 29
Phillips (10.1016/j.cviu.2012.09.003_b0245) 2000; 22
Ahonen (10.1016/j.cviu.2012.09.003_b0135) 2006; 28
10.1016/j.cviu.2012.09.003_b0150
Yang (10.1016/j.cviu.2012.09.003_b0005) 2002; 24
10.1016/j.cviu.2012.09.003_b0190
Li (10.1016/j.cviu.2012.09.003_b0090) 2004; 26
Wang (10.1016/j.cviu.2012.09.003_b0200) 2006; 39
10.1016/j.cviu.2012.09.003_b0315
10.1016/j.cviu.2012.09.003_b0235
10.1016/j.cviu.2012.09.003_b0035
10.1016/j.cviu.2012.09.003_b0310
10.1016/j.cviu.2012.09.003_b0230
Rowley (10.1016/j.cviu.2012.09.003_b0025) 1998; 20
10.1016/j.cviu.2012.09.003_b0110
10.1016/j.cviu.2012.09.003_b0275
10.1016/j.cviu.2012.09.003_b0140
10.1016/j.cviu.2012.09.003_b0020
10.1016/j.cviu.2012.09.003_b0185
Shen (10.1016/j.cviu.2012.09.003_b0095) 2010; 6312
10.1016/j.cviu.2012.09.003_b0180
10.1016/j.cviu.2012.09.003_b0060
Garcia (10.1016/j.cviu.2012.09.003_b0270) 2004; 26
Liu (10.1016/j.cviu.2012.09.003_b0280) 2003; 25
Schapire (10.1016/j.cviu.2012.09.003_b0075) 1999; 37
10.1016/j.cviu.2012.09.003_b0305
10.1016/j.cviu.2012.09.003_b0225
10.1016/j.cviu.2012.09.003_b0105
10.1016/j.cviu.2012.09.003_b0300
Bay (10.1016/j.cviu.2012.09.003_b0175) 2008; 110
Waring (10.1016/j.cviu.2012.09.003_b0290) 2005; 35
10.1016/j.cviu.2012.09.003_b0100
10.1016/j.cviu.2012.09.003_b0145
10.1016/j.cviu.2012.09.003_b0065
10.1016/j.cviu.2012.09.003_b0220
10.1016/j.cviu.2012.09.003_b0250
10.1016/j.cviu.2012.09.003_b0050
Jang (10.1016/j.cviu.2012.09.003_b0210) 2008; 12
Heisele (10.1016/j.cviu.2012.09.003_b0295) 2007; 74
10.1016/j.cviu.2012.09.003_b0170
Wu (10.1016/j.cviu.2012.09.003_b0070) 2008; 30
Friedman (10.1016/j.cviu.2012.09.003_b0080) 2000; 28
Féraud (10.1016/j.cviu.2012.09.003_b0265) 2001; 23
Viola (10.1016/j.cviu.2012.09.003_b0045) 2004; 57
Georghiades (10.1016/j.cviu.2012.09.003_b0255) 2001; 23
10.1016/j.cviu.2012.09.003_b0215
Lowe (10.1016/j.cviu.2012.09.003_b0165) 2004; 60
10.1016/j.cviu.2012.09.003_b0055
References_xml – volume: 39
  start-page: 595
  year: 2006
  end-page: 607
  ident: b0200
  article-title: Classification by evolutionary ensembles
  publication-title: Pattern Recognit.
– reference: V. Rapp, T. Senechal, K. Bailly, L. Prevost, Multiple kernel learning SVM and statistical validation for facial landmark detection, in: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, 2011, pp. 265–271.
– reference: H. Rowley, S. Baluja, T. Kanade, Rotation invariant neural network-based face detection, in: Proceedings of CVPR 1998 IEEE International Conference on Computer Vision and, Pattern Recognition, 1998, pp. 29–36.
– volume: 12
  start-page: 562
  year: 2008
  end-page: 571
  ident: b0210
  article-title: Fast and robust face detection using evolutionary pruning
  publication-title: IEEE Trans. Evol. Comput.
– reference: X. Wang, T.X. Han, S. Yan, An HOG-LBP human detector with partial occlusion handling, in: Proceedings of ICCV 2009 12th IEEE International Conference on Computer Vision, 2009, pp. 32–39.
– volume: 83
  start-page: 236
  year: 2002
  end-page: 274
  ident: b0010
  article-title: Face detection: a survey
  publication-title: Comput. Vis. Image Understand.
– reference: L. Zhang, R. Chu, S. Xiang, S. Liao, S. Li, Face detection based on multi-block LBP representation, in: Proceedings of ICB 2007 International Conference on Biometrics, 2007, pp. 11–18.
– reference: H. Pan, L.Z. Xia, T.Q. Nguyen, Robust object detection scheme using feature selection, in: Proceedings of ICIP 2010 IEEE International Conference on Image Processing, 2010, pp. 849–852.
– reference: H. Schneiderman, T. Kanade, A statistical method for 3D object detection applied to faces and cars, in: Proceedings of CVPR 2000 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, 2000, pp. 746–751.
– volume: 25
  start-page: 725
  year: 2003
  end-page: 740
  ident: b0280
  article-title: A Bayesian discriminating features method for face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 28
  start-page: 337
  year: 2000
  end-page: 407
  ident: b0080
  article-title: Additive logistic regression: a statistical view of boosting
  publication-title: Ann. Stat.
– reference: B. Wu, H.Z. Ai, C. Huang, S.H. Lao, Fast rotation invariant multi-view face detection based on real AdaBoost, in: Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004, pp. 79–84.
– volume: 6312
  start-page: 608
  year: 2010
  end-page: 621
  ident: b0095
  article-title: LACBoost and FisherBoost: optimally building cascade classifiers
  publication-title: Lect. Notes Comput. Sci., Comput. Vis. – ECCV
– volume: 60
  start-page: 91
  year: 2004
  end-page: 110
  ident: b0165
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
– reference: S.Y. Yan, S.G. Shan, X.L. Chen, W. Gao, Locally Assembled Binary (LAB) feature with feature-centric cascade for fast and accurate face detection, in: Proceedings of CVPR 2008 IEEE International Conference on Computer Vision and Pattern, 2008, pp. 1–7.
– volume: 29
  start-page: 671
  year: 2007
  end-page: 686
  ident: b0115
  article-title: High-performance rotation invariant multiview face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in: Proceedings of CVPR 2001 IEEE International Conference on Computer Vision and Pattern, vol. 1, 2001, pp. I-511–I-518.
– reference: O. Jesorsky, K. Kirchberg, R. Frischholz, Robust face detection using the hausdorff distance, in: Proceedings of the Third International Conference on Audio- and Video-Based Biometric Person Authentication, 2001, pp. 90–95.
– volume: 38
  start-page: 149
  year: 2008
  end-page: 161
  ident: b0260
  article-title: The CAS-PEAL large-scale chinese face database and baseline evaluations
  publication-title: IEEE Trans. Syst. Man Cybernet. (Part A)
– reference: Z. Zin, M. Khalid, R. Yusof, Evolutionary feature selections for face detection system, in: Proceedings of ITSim 2008 International Symposium on Information Technology, 2008, pp. 1–8.
– reference: C. Liu, H.Y. Shum, Kullback-Leibler Boosting, in: Proceedings of CVPR 2003 IEEE International Conference on Computer Vision and Pattern, vol. 1, 2003, pp. 587–594.
– reference: A. Mohemmed, M. Zhang, M. Johnston, Particle swarm optimization based Adaboost for face detection, in: Proceedings of CEC 2009 IEEE Congress on, Evolutionary Computation, 2009, pp. 2494–2501.
– volume: 35
  start-page: 467
  year: 2005
  end-page: 476
  ident: b0290
  article-title: Face detection using spectral histograms and SVMs
  publication-title: IEEE Trans. Syst. Man Cybernet. Part B: Cybernet.
– reference: C. Huang, H.Z. Ai, B. Wu, S.H. Lao, Boosting nested cascade detector for multi-view face detection, in: Proceedings of ICPR 2004 17th International Conference on Pattern Recognition, vol. 2, 2004, pp. 415–418.
– reference: M.T. Pham, T.J. Cham, Fast training and selection and Haar features using statistics in boosting-based face detection, in: Proceedings of ICCV 2007 11th IEEE International Conference on Computer Vision, 2007, pp. 1–7.
– reference: K. Levi, Y. Weiss, Learning object detection from a small number of examples: the importance of good features, in: Proceedings of CVPR 2004 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 2, 2004, pp. 53–60.
– volume: 22
  start-page: 1090
  year: 2000
  end-page: 1104
  ident: b0245
  article-title: The FERET evaluation methodology for face-recognition algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 74
  start-page: 167
  year: 2007
  end-page: 181
  ident: b0295
  article-title: A component-based framework for face detection and identification
  publication-title: Int. J. Comput. Vis.
– volume: 30
  start-page: 369
  year: 2008
  end-page: 382
  ident: b0070
  article-title: Fast asymmetric learning for cascade face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: T. Sim, S. Baker, M. Bsat, The CMU Pose, Illumination, and Expression (PIE) Database of Human Face, CMU-RI-TR-01-02, 2002, pp. 1–17.
– volume: 37
  start-page: 297
  year: 1999
  end-page: 336
  ident: b0075
  article-title: Improved boosting algorithms using confidence-rated predictions
  publication-title: Mach. Learn.
– volume: 23
  start-page: 643
  year: 2001
  end-page: 660
  ident: b0255
  article-title: From few to many: illumination cone models for face recognition under variable lighting and pose
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: Proceedings of ICML 1996 International Conference on, Machine Learning, 1996, pp. 148–156.
– reference: M. Jones, P. Viola, Fast Multi-View Face Detection, MERL, Report TR2003-96, July, 2003.
– reference: M. Asbach, P. Hosten, M. Unger, An evaluation of local features for face detection and localization, in: Proceedings of WIAMIS 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services, 2008, pp. 32–35.
– reference: J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of ICNN 1995 IEEE International Conference on, Neural Networks, 1995, pp. 1942–1948.
– reference: B.J. Fernandes, G.D. Cavalcanti, T.I. Ren, A receptive field based approach for face detection, in: Proceedings of IJCNN 2009 International Joint Conference on, Neural Networks, 2009, pp. 803–810.
– volume: 23
  start-page: 42
  year: 2001
  end-page: 53
  ident: b0265
  article-title: A fast and accurate face detector based on neural networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: H. Schneiderman, Feature-centric evaluation for efficient cascaded object detection, in: Proceedings of CVPR 2004 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 2, 2004, pp. 29–36.
– reference: E. Marami, A. Tefas, Using particle swarm optimization for scaling and rotation invariant face detection, in: Proceedings of CEC 2010 IEEE Congress on, Evolutionary Computation, 2010, pp. 1–7.
– reference: R. Lienhart, J. Maydt, An extended set of Haar-like features for rapid object detection, in: Proceedings of ICIP 2002 IEEE International Conference on Image Processing, vol. 1, 2002, pp. 900–903.
– reference: D. Kim, R. Dahyot, Face components detection using SURF descriptors and SVMs, in: Proceedings of IMVIP’08 International Conference on Machine Vision and Image Processing, 2008, pp. 51–56.
– volume: 20
  start-page: 23
  year: 1998
  end-page: 38
  ident: b0025
  article-title: Neural network based face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: R. Xiao, L. Zhu, H. Zhang, Boosting chain learning for object detection, in: Proceedings of ICCV 2003 9th IEEE International Conference on Computer Vision, vol. 1, 2003, pp. 709–715.
– reference: E. Osuna, R. Freund, F. Girosi, Training support vector machines: an application to face detection, in: Proceedings of CVPR 1997 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, 1997, pp. 130–136.
– reference: H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, SURF: speeded up robust features, in: Proceedings of ECCV 9th European Conference on Computer Vision, Part(1), 2006, pp. 404–417.
– volume: 24
  start-page: 34
  year: 2002
  end-page: 58
  ident: b0005
  article-title: Detecting faces in images: a survey
  publication-title: IEEE Trans Pattern Anal. Mach. Intell.
– reference: N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proceedings of CVPR 2005 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, 2005, pp. 886–893.
– reference: H. Jin, Q. Liu, H. Lu, X. Tong, Face detection using improved LBP under bayesian framework, in: Proceedings of ICIG 2004 Third International Conference on Image and Graphics, 2004, pp. 306–309.
– reference: T. Mita, T. Kaneko, O. Hori, Joint Haar-like features for face detection, in: Proceedings of ICCV 2005 10th IEEE International Conference on Computer Vision, vol. 2, 2005, pp. 1619–1626.
– volume: 20
  start-page: 39
  year: 1998
  end-page: 51
  ident: b0015
  article-title: Example-based learning for view-based human face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 57
  start-page: 137
  year: 2004
  end-page: 154
  ident: b0045
  article-title: Robust real-time face detection
  publication-title: Int. J. Comput. Vis.
– volume: 26
  start-page: 1112
  year: 2004
  end-page: 1123
  ident: b0090
  article-title: Floatboost learning and statistical face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 28
  start-page: 2037
  year: 2006
  end-page: 2041
  ident: b0135
  article-title: Face description with local binary patterns: application to face recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 110
  start-page: 346
  year: 2008
  end-page: 359
  ident: b0175
  article-title: SURF: speeded up robust features
  publication-title: Comput. Vis. Image Understand.
– reference: M.H. Yang, D. Roth, N. Ahuja, A SNoW-based face detector, in: Proceedings of NIPS 1999 Advances in Neural Information Processing Systems, vol. 12, 2000, pp. 855–861.
– volume: 26
  start-page: 1408
  year: 2004
  end-page: 1423
  ident: b0270
  article-title: Convolutional face finder: a neural architecture for fast and robust face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: S. Stein, G.A. Fink, A new method for combined face detection and identification using interest point descriptors, in: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, 2011, pp. 519–524.
– reference: A. Treptow, A. Zell, Combining Adaboost learning and evolutionary search to select features for real-time object detection, in: Proceedings of CEC2004 Congress on Evolutionary Computation, vol. 2, 2004, pp. 2107–2113.
– reference: C. Huang, H.Z. Ai, Y. Li, S.H. Lao, Vector boosting for rotation invariant multi-view face detection, in: Proceedings of IEEE International Conference on Computer Vision, vol. 1, 2005, pp. 446–453.
– volume: 24
  start-page: 971
  year: 2002
  end-page: 987
  ident: b0130
  article-title: Multiresolution gray scale and rotation invariant texture analysis with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 24
  start-page: 327
  year: 2006
  end-page: 341
  ident: b0155
  article-title: Object detection using spatial histogram features
  publication-title: Image Vis. Comput.
– reference: M.S. Bartlett, G. Littlewort, I. Fasel, J.R. Movellan, Real time face detection and facial expression recognition: Development and application to human computer interaction, in: Proceedings of CVPRW 2003 IEEE International Conference on Computer Vision and Pattern Workshop, vol. 5, 2003, pp. 139–157.
– ident: 10.1016/j.cviu.2012.09.003_b0120
  doi: 10.1109/CVPR.2004.1315144
– volume: 83
  start-page: 236
  issue: 3
  year: 2002
  ident: 10.1016/j.cviu.2012.09.003_b0010
  article-title: Face detection: a survey
  publication-title: Comput. Vis. Image Understand.
  doi: 10.1006/cviu.2001.0921
– ident: 10.1016/j.cviu.2012.09.003_b0170
  doi: 10.1007/11744023_32
– ident: 10.1016/j.cviu.2012.09.003_b0230
– ident: 10.1016/j.cviu.2012.09.003_b0100
  doi: 10.1109/ICCV.2005.129
– ident: 10.1016/j.cviu.2012.09.003_b0240
  doi: 10.1109/ICIP.2010.5653519
– ident: 10.1016/j.cviu.2012.09.003_b0030
  doi: 10.1109/CVPR.2000.855895
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 10.1016/j.cviu.2012.09.003_b0165
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: 10.1016/j.cviu.2012.09.003_b0220
  doi: 10.1109/CEC.2010.5586159
– ident: 10.1016/j.cviu.2012.09.003_b0250
  doi: 10.1007/3-540-45344-X_14
– volume: 39
  start-page: 595
  issue: 4
  year: 2006
  ident: 10.1016/j.cviu.2012.09.003_b0200
  article-title: Classification by evolutionary ensembles
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2005.09.016
– ident: 10.1016/j.cviu.2012.09.003_b0285
  doi: 10.1109/IJCNN.2009.5179017
– ident: 10.1016/j.cviu.2012.09.003_b0140
– ident: 10.1016/j.cviu.2012.09.003_b0055
  doi: 10.1109/ICPR.2004.1334239
– ident: 10.1016/j.cviu.2012.09.003_b0035
– volume: 12
  start-page: 562
  issue: 5
  year: 2008
  ident: 10.1016/j.cviu.2012.09.003_b0210
  article-title: Fast and robust face detection using evolutionary pruning
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.910140
– ident: 10.1016/j.cviu.2012.09.003_b0195
  doi: 10.1109/CVPRW.2003.10057
– volume: 24
  start-page: 34
  issue: 1
  year: 2002
  ident: 10.1016/j.cviu.2012.09.003_b0005
  article-title: Detecting faces in images: a survey
  publication-title: IEEE Trans Pattern Anal. Mach. Intell.
  doi: 10.1109/34.982883
– ident: 10.1016/j.cviu.2012.09.003_b0215
  doi: 10.1109/ITSIM.2008.4631734
– ident: 10.1016/j.cviu.2012.09.003_b0315
– ident: 10.1016/j.cviu.2012.09.003_b0050
– ident: 10.1016/j.cviu.2012.09.003_b0190
  doi: 10.1109/WIAMIS.2008.58
– ident: 10.1016/j.cviu.2012.09.003_b0310
  doi: 10.1109/ICCV.2005.246
– volume: 23
  start-page: 42
  issue: 1
  year: 2001
  ident: 10.1016/j.cviu.2012.09.003_b0265
  article-title: A fast and accurate face detector based on neural networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.899945
– ident: 10.1016/j.cviu.2012.09.003_b0180
  doi: 10.1109/FG.2011.5771452
– volume: 26
  start-page: 1408
  issue: 11
  year: 2004
  ident: 10.1016/j.cviu.2012.09.003_b0270
  article-title: Convolutional face finder: a neural architecture for fast and robust face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.97
– ident: 10.1016/j.cviu.2012.09.003_b0125
  doi: 10.1109/CVPR.2005.177
– volume: 20
  start-page: 23
  issue: 1
  year: 1998
  ident: 10.1016/j.cviu.2012.09.003_b0025
  article-title: Neural network based face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.655647
– volume: 28
  start-page: 2037
  issue: 12
  year: 2006
  ident: 10.1016/j.cviu.2012.09.003_b0135
  article-title: Face description with local binary patterns: application to face recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.244
– volume: 24
  start-page: 971
  issue: 7
  year: 2002
  ident: 10.1016/j.cviu.2012.09.003_b0130
  article-title: Multiresolution gray scale and rotation invariant texture analysis with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017623
– ident: 10.1016/j.cviu.2012.09.003_b0110
  doi: 10.1109/ICCV.2007.4409038
– volume: 110
  start-page: 346
  issue: 3
  year: 2008
  ident: 10.1016/j.cviu.2012.09.003_b0175
  article-title: SURF: speeded up robust features
  publication-title: Comput. Vis. Image Understand.
  doi: 10.1016/j.cviu.2007.09.014
– ident: 10.1016/j.cviu.2012.09.003_b0275
  doi: 10.1109/CVPR.2004.1315141
– ident: 10.1016/j.cviu.2012.09.003_b0105
  doi: 10.1109/ICIP.2002.1038171
– ident: 10.1016/j.cviu.2012.09.003_b0040
  doi: 10.1109/CVPR.2001.990517
– volume: 38
  start-page: 149
  issue: 1
  year: 2008
  ident: 10.1016/j.cviu.2012.09.003_b0260
  article-title: The CAS-PEAL large-scale chinese face database and baseline evaluations
  publication-title: IEEE Trans. Syst. Man Cybernet. (Part A)
  doi: 10.1109/TSMCA.2007.909557
– ident: 10.1016/j.cviu.2012.09.003_b0225
  doi: 10.1109/CEC.2009.4983254
– ident: 10.1016/j.cviu.2012.09.003_b0300
  doi: 10.1109/FG.2011.5771409
– ident: 10.1016/j.cviu.2012.09.003_b0020
– volume: 74
  start-page: 167
  issue: 2
  year: 2007
  ident: 10.1016/j.cviu.2012.09.003_b0295
  article-title: A component-based framework for face detection and identification
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-006-0006-z
– ident: 10.1016/j.cviu.2012.09.003_b0150
  doi: 10.1109/CVPR.2008.4587802
– volume: 35
  start-page: 467
  issue: 3
  year: 2005
  ident: 10.1016/j.cviu.2012.09.003_b0290
  article-title: Face detection using spectral histograms and SVMs
  publication-title: IEEE Trans. Syst. Man Cybernet. Part B: Cybernet.
  doi: 10.1109/TSMCB.2005.846655
– volume: 30
  start-page: 369
  issue: 3
  year: 2008
  ident: 10.1016/j.cviu.2012.09.003_b0070
  article-title: Fast asymmetric learning for cascade face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1181
– ident: 10.1016/j.cviu.2012.09.003_b0235
  doi: 10.1109/ICNN.1995.488968
– volume: 37
  start-page: 297
  issue: 3
  year: 1999
  ident: 10.1016/j.cviu.2012.09.003_b0075
  article-title: Improved boosting algorithms using confidence-rated predictions
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007614523901
– volume: 24
  start-page: 327
  issue: 4
  year: 2006
  ident: 10.1016/j.cviu.2012.09.003_b0155
  article-title: Object detection using spatial histogram features
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2005.11.010
– volume: 20
  start-page: 39
  issue: 1
  year: 1998
  ident: 10.1016/j.cviu.2012.09.003_b0015
  article-title: Example-based learning for view-based human face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.655648
– ident: 10.1016/j.cviu.2012.09.003_b0145
  doi: 10.1007/978-3-540-74549-5_2
– volume: 26
  start-page: 1112
  issue: 9
  year: 2004
  ident: 10.1016/j.cviu.2012.09.003_b0090
  article-title: Floatboost learning and statistical face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.68
– volume: 28
  start-page: 337
  issue: 2
  year: 2000
  ident: 10.1016/j.cviu.2012.09.003_b0080
  article-title: Additive logistic regression: a statistical view of boosting
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1016218223
– volume: 22
  start-page: 1090
  issue: 10
  year: 2000
  ident: 10.1016/j.cviu.2012.09.003_b0245
  article-title: The FERET evaluation methodology for face-recognition algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.879790
– volume: 29
  start-page: 671
  issue: 4
  year: 2007
  ident: 10.1016/j.cviu.2012.09.003_b0115
  article-title: High-performance rotation invariant multiview face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1011
– ident: 10.1016/j.cviu.2012.09.003_b0205
  doi: 10.1109/CEC.2004.1331156
– volume: 25
  start-page: 725
  issue: 6
  year: 2003
  ident: 10.1016/j.cviu.2012.09.003_b0280
  article-title: A Bayesian discriminating features method for face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2003.1201822
– volume: 23
  start-page: 643
  issue: 6
  year: 2001
  ident: 10.1016/j.cviu.2012.09.003_b0255
  article-title: From few to many: illumination cone models for face recognition under variable lighting and pose
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.927464
– ident: 10.1016/j.cviu.2012.09.003_b0085
  doi: 10.1109/CVPR.2003.1211407
– volume: 6312
  start-page: 608
  year: 2010
  ident: 10.1016/j.cviu.2012.09.003_b0095
  article-title: LACBoost and FisherBoost: optimally building cascade classifiers
  publication-title: Lect. Notes Comput. Sci., Comput. Vis. – ECCV
– ident: 10.1016/j.cviu.2012.09.003_b0065
– ident: 10.1016/j.cviu.2012.09.003_b0160
  doi: 10.1109/ICCV.2009.5459207
– volume: 57
  start-page: 137
  issue: 2
  year: 2004
  ident: 10.1016/j.cviu.2012.09.003_b0045
  article-title: Robust real-time face detection
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: 10.1016/j.cviu.2012.09.003_b0185
  doi: 10.1109/IMVIP.2008.15
– ident: 10.1016/j.cviu.2012.09.003_b0305
  doi: 10.21236/ADA341629
– ident: 10.1016/j.cviu.2012.09.003_b0060
  doi: 10.1109/ICCV.2003.1238417
SSID ssj0011491
Score 2.2188668
Snippet ► Represent face patterns with heterogeneous and complementary feature descriptors. ► Propose PSO-Adaboost algorithm for efficient discriminative feature...
The performance of an efficient and accurate face detection system depends on several issues: (1) distinctive representation for face patterns; (2) effective...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12
SubjectTerms Adaboost
Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Artificial intelligence
Cascade classifier
Classifiers
Computer science; control theory; systems
Data processing. List processing. Character string processing
Detectors
Exact sciences and technology
Face detection
Feature selection
Learning
Memory organisation. Data processing
Optimization
Pattern recognition. Digital image processing. Computational geometry
PSO
Searching
Software
Support vector machines
Theoretical computing
Title Efficient and accurate face detection using heterogeneous feature descriptors and feature selection
URI https://dx.doi.org/10.1016/j.cviu.2012.09.003
https://www.proquest.com/docview/1283660046
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhvaSEtkkTuv1YFOitOGtLsmQfQ0jYtiSXNpCbkPXRbijeJd7tsb-9M7K0NARyqI9Css3MaEaWnt8j5GMZpGWh8YWTXBXCBo8ggBZmvGfKGFa28cT06lrOb8SX2_p2h5znf2EQVply_5jTY7ZOLbNkzdlqsZh9gw8XxSs80Yy7KcgJKoRCFYPTP1uYByz3o2oedi6wd_pxZsR42d-LDcK7WOQ6zcJZj4vT_soMYLIwal08StuxFl2-Ii_SIpKeje95QHZ8f0hepgUlTdN1gKas2ZDbDsnzfwgIXxN7ERkkoPBQ0ztqrN0gdQQNxnrq_DritHqK4Pgf9CciZ5YQcH65GWjwkRIUeo2JZ3k_xHvk9iEK7MDoI3JzefH9fF4k2YXCcsnX4CYoas5Zx52CKygbmpK3HXNeSGGqEEznGlNzKb2UHbOiZUqVyvK25qKT_Jjs9svevyGUc8NC51Xj6yB86wwzxtmyaStnjbR8Qqpsb20TJzlKY_zSGXx2p9FHGn2kyxaZTCfk03bMamTkeLJ3nd2oH8SVhpLx5LjpA59vH8UUxFrF6wk5yUGgYUbiMYuJ9tdQ8cE0uPHw9j8f_o7ssai6gTs978nu-n7jP8DaZ91NY3BPybOzz1_n138BsU4FYQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgBU8SggtoViJG4obGI7dnKsqlYLtL3QSr1Zjh9lEcquml2O_HbGjr2iqtQDOY7GcTQznpnYn2cAPpZeGOobV1jBZMGNdwEE0OKKd1RqTcs2npienYvZJf96VV9twVG-CxNglcn3jz49eutEmSZpTpfz-fQ7_rhIVoUTzbibwh_AQ15TGf7APv_Z4Dww349t8wJ3EdjTzZkR5GV-z9cB30VjsdPcOetudNpZ6gFl5sdmF3f8dgxGJ8_hacoiyeH4oS9gy_W78CxllCSt1wFJuWlDpu3Ck38qEL4EcxxLSGDkIbq3RBuzDrUjiNfGEetWEajVk4COvyY_AnRmgRbnFuuBeBdrgiLX6HkWN0N8R6YPscMOjn4FlyfHF0ezIvVdKAwTbIV6wqhmrbHMSny8NL4pWdtR67jguvJed7bRNRPCCdFRw1sUeykNa2vGO8Few3a_6N0bIIxp6jsnG1d77lqrqdbWlE1bWaOFYROosryVSUXJQ2-MXyqjz36qoCMVdKTKNpQyncCnzZjlWJLjXu46q1HdMiyFMePecQe3dL6Ziko0torVE_iQjUDhkgznLDrKX2HIR9GEnYe9_5z8PTyaXZydqtMv59_24TGNLTjCts9b2F7drN07TIRW3UE09L-n0Qb2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+and+accurate+face+detection+using+heterogeneous+feature+descriptors+and+feature+selection&rft.jtitle=Computer+vision+and+image+understanding&rft.au=HONG+PAN&rft.au=YAPING+ZHU&rft.au=LIANGZHENG+XIA&rft.date=2013&rft.pub=Elsevier&rft.issn=1077-3142&rft.volume=117&rft.issue=1&rft.spage=12&rft.epage=28&rft_id=info:doi/10.1016%2Fj.cviu.2012.09.003&rft.externalDBID=n%2Fa&rft.externalDocID=27129135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon