Efficient and accurate face detection using heterogeneous feature descriptors and feature selection
► Represent face patterns with heterogeneous and complementary feature descriptors. ► Propose PSO-Adaboost algorithm for efficient discriminative feature selection. ► Develop fast and robust face detector with a three-stage cascade classifiers. ► Reduce training time up to 20 times using the propose...
        Saved in:
      
    
          | Published in | Computer vision and image understanding Vol. 117; no. 1; pp. 12 - 28 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier Inc
    
        01.01.2013
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1077-3142 1090-235X  | 
| DOI | 10.1016/j.cviu.2012.09.003 | 
Cover
| Abstract | ► Represent face patterns with heterogeneous and complementary feature descriptors. ► Propose PSO-Adaboost algorithm for efficient discriminative feature selection. ► Develop fast and robust face detector with a three-stage cascade classifiers. ► Reduce training time up to 20 times using the proposed PSO-Adaboost and cascade structure. ► Achieves the best detection rate (96.50%) at 10 false positives on CMU+MIT dataset.
The performance of an efficient and accurate face detection system depends on several issues: (1) distinctive representation for face patterns; (2) effective algorithm for feature selection and classifier learning; (3) suitable framework for rapid background removal. To address the first issue, we propose to represent face patterns with a set of heterogeneous and complementary feature descriptors including the Generalized Haar-like (GH) descriptor, Multi-Block Local Binary Patterns (MB-LBP) descriptor and Speeded-Up Robust Features (SURF) descriptor. To address the second issue, Particle Swarm Optimization (PSO) algorithm is incorporated into the Adaboost framework, replacing the exhaustive search used in original Adaboost for efficient feature selection. The utilization of heterogeneous feature descriptors enriches the diversity of feature types for Adaboost learning algorithm. As a result, classification performance of the boosted ensemble classifier also improves significantly. A three-stage hierarchical classifier structure is proposed to tackle the last issue. In particular, a new stage is added to detect candidate face regions more quickly by using a large size window with a large moving step. Nonlinear support vector machine (SVM) classifiers are used instead of decision stump classifiers in the last stage to remove those remaining complex non-face patterns that cannot be rejected in the previous two stages. Combining the abovementioned effective modules, we derive the proposed Hetero-PSO-Adaboost-SVM face detector that achieves superior detection accuracy while maintaining a low training and detection complexity. Extensive experiments demonstrate the robustness and efficiency of our system by comparing it with several popular state-of-the-art algorithms on our own test set as well as the widely used CMU+MIT frontal and CMU profile face dataset. | 
    
|---|---|
| AbstractList | The performance of an efficient and accurate face detection system depends on several issues: (1) distinctive representation for face patterns; (2) effective algorithm for feature selection and classifier learning; (3) suitable framework for rapid background removal. To address the first issue, we propose to represent face patterns with a set of heterogeneous and complementary feature descriptors including the Generalized Haar-like (GH) descriptor, Multi-Block Local Binary Patterns (MB-LBP) descriptor and Speeded-Up Robust Features (SURF) descriptor. To address the second issue, Particle Swarm Optimization (PSO) algorithm is incorporated into the Adaboost framework, replacing the exhaustive search used in original Adaboost for efficient feature selection. The utilization of heterogeneous feature descriptors enriches the diversity of feature types for Adaboost learning algorithm. As a result, classification performance of the boosted ensemble classifier also improves significantly. A three-stage hierarchical classifier structure is proposed to tackle the last issue. In particular, a new stage is added to detect candidate face regions more quickly by using a large size window with a large moving step. Nonlinear support vector machine (SVM) classifiers are used instead of decision stump classifiers in the last stage to remove those remaining complex non-face patterns that cannot be rejected in the previous two stages. Combining the abovementioned effective modules, we derive the proposed Hetero-PSO-Adaboost-SVM face detector that achieves superior detection accuracy while maintaining a low training and detection complexity. Extensive experiments demonstrate the robustness and efficiency of our system by comparing it with several popular state-of-the-art algorithms on our own test set as well as the widely used CMU + MIT frontal and CMU profile face dataset. ► Represent face patterns with heterogeneous and complementary feature descriptors. ► Propose PSO-Adaboost algorithm for efficient discriminative feature selection. ► Develop fast and robust face detector with a three-stage cascade classifiers. ► Reduce training time up to 20 times using the proposed PSO-Adaboost and cascade structure. ► Achieves the best detection rate (96.50%) at 10 false positives on CMU+MIT dataset. The performance of an efficient and accurate face detection system depends on several issues: (1) distinctive representation for face patterns; (2) effective algorithm for feature selection and classifier learning; (3) suitable framework for rapid background removal. To address the first issue, we propose to represent face patterns with a set of heterogeneous and complementary feature descriptors including the Generalized Haar-like (GH) descriptor, Multi-Block Local Binary Patterns (MB-LBP) descriptor and Speeded-Up Robust Features (SURF) descriptor. To address the second issue, Particle Swarm Optimization (PSO) algorithm is incorporated into the Adaboost framework, replacing the exhaustive search used in original Adaboost for efficient feature selection. The utilization of heterogeneous feature descriptors enriches the diversity of feature types for Adaboost learning algorithm. As a result, classification performance of the boosted ensemble classifier also improves significantly. A three-stage hierarchical classifier structure is proposed to tackle the last issue. In particular, a new stage is added to detect candidate face regions more quickly by using a large size window with a large moving step. Nonlinear support vector machine (SVM) classifiers are used instead of decision stump classifiers in the last stage to remove those remaining complex non-face patterns that cannot be rejected in the previous two stages. Combining the abovementioned effective modules, we derive the proposed Hetero-PSO-Adaboost-SVM face detector that achieves superior detection accuracy while maintaining a low training and detection complexity. Extensive experiments demonstrate the robustness and efficiency of our system by comparing it with several popular state-of-the-art algorithms on our own test set as well as the widely used CMU+MIT frontal and CMU profile face dataset.  | 
    
| Author | Zhu, Yaping Xia, Liangzheng Pan, Hong  | 
    
| Author_xml | – sequence: 1 givenname: Hong surname: Pan fullname: Pan, Hong email: enhpan@seu.edu.cn, mspanhong@hotmail.com organization: School of Automation, Southeast University, Nanjing 210096, China – sequence: 2 givenname: Yaping surname: Zhu fullname: Zhu, Yaping email: zhuyaping@cuc.edu.cn organization: Department of Communication Engineering, Communication University of China, Beijing 100024, China – sequence: 3 givenname: Liangzheng surname: Xia fullname: Xia, Liangzheng email: lzxia@seu.edu.cn organization: School of Automation, Southeast University, Nanjing 210096, China  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27129135$$DView record in Pascal Francis | 
    
| BookMark | eNp9kctKxDAUhoOM4PUFXHUjuGk9STrpFNzI4A0ENwruQubkZMxQ2zFJBd_e1pnZuJhscuH_fpIvJ2zSdi0xdsGh4MDV9arAb98XArgooC4A5AE75lBDLuT0fTKuqyqXvBRH7CTGFQDnZc2PGd4559FTmzLT2swg9sEkypxByiwlwuS7Nuujb5fZx7AP3ZJa6vqYOTKpD2MqYvDr1IX417E7j9Rs6DN26EwT6Xw7n7K3-7vX-WP-_PLwNL99zlEqmXIOUglr0UpbDcNV6GYg64WwVKrScOfMws7MVCpFSi0ElrWoKqhQ1lNZLpQ8ZVeb3nXovnqKSX_6iNQ05u_CmovZwAKUY_RyGzURTeOCadFHvQ7-04QfLSouai6nQ262yWHoYgzkNPpkxkelYHyjOejRv17p0b8e_Wuo9eB_QMU_dNe-F7rZQDR4-vYUdBw_B8n6MMjUtvP78F8kRqKJ | 
    
| CODEN | CVIUF4 | 
    
| CitedBy_id | crossref_primary_10_1007_s11047_022_09912_3 crossref_primary_10_1016_j_ijleo_2015_07_178 crossref_primary_10_1016_j_asoc_2018_03_030 crossref_primary_10_1016_j_jksuci_2020_11_028 crossref_primary_10_1631_jzus_CIIP1301 crossref_primary_10_1016_j_eswa_2021_115620 crossref_primary_10_1109_ACCESS_2020_3023743 crossref_primary_10_1134_S1054661818010170 crossref_primary_10_1016_j_ijleo_2017_11_188 crossref_primary_10_1016_j_patrec_2018_04_012 crossref_primary_10_1007_s11042_015_2699_x crossref_primary_10_19072_ijet_301087 crossref_primary_10_1142_S0218001416550223 crossref_primary_10_1016_j_eswa_2014_03_033 crossref_primary_10_1016_j_neucom_2015_07_130 crossref_primary_10_1016_j_cviu_2015_02_011  | 
    
| Cites_doi | 10.1109/CVPR.2004.1315144 10.1006/cviu.2001.0921 10.1007/11744023_32 10.1109/ICCV.2005.129 10.1109/ICIP.2010.5653519 10.1109/CVPR.2000.855895 10.1023/B:VISI.0000029664.99615.94 10.1109/CEC.2010.5586159 10.1007/3-540-45344-X_14 10.1016/j.patcog.2005.09.016 10.1109/IJCNN.2009.5179017 10.1109/ICPR.2004.1334239 10.1109/TEVC.2007.910140 10.1109/CVPRW.2003.10057 10.1109/34.982883 10.1109/ITSIM.2008.4631734 10.1109/WIAMIS.2008.58 10.1109/ICCV.2005.246 10.1109/34.899945 10.1109/FG.2011.5771452 10.1109/TPAMI.2004.97 10.1109/CVPR.2005.177 10.1109/34.655647 10.1109/TPAMI.2006.244 10.1109/TPAMI.2002.1017623 10.1109/ICCV.2007.4409038 10.1016/j.cviu.2007.09.014 10.1109/CVPR.2004.1315141 10.1109/ICIP.2002.1038171 10.1109/CVPR.2001.990517 10.1109/TSMCA.2007.909557 10.1109/CEC.2009.4983254 10.1109/FG.2011.5771409 10.1007/s11263-006-0006-z 10.1109/CVPR.2008.4587802 10.1109/TSMCB.2005.846655 10.1109/TPAMI.2007.1181 10.1109/ICNN.1995.488968 10.1023/A:1007614523901 10.1016/j.imavis.2005.11.010 10.1109/34.655648 10.1007/978-3-540-74549-5_2 10.1109/TPAMI.2004.68 10.1214/aos/1016218223 10.1109/34.879790 10.1109/TPAMI.2007.1011 10.1109/CEC.2004.1331156 10.1109/TPAMI.2003.1201822 10.1109/34.927464 10.1109/CVPR.2003.1211407 10.1109/ICCV.2009.5459207 10.1023/B:VISI.0000013087.49260.fb 10.1109/IMVIP.2008.15 10.21236/ADA341629 10.1109/ICCV.2003.1238417  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2012 Elsevier Inc. 2014 INIST-CNRS  | 
    
| Copyright_xml | – notice: 2012 Elsevier Inc. – notice: 2014 INIST-CNRS  | 
    
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.cviu.2012.09.003 | 
    
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Engineering Computer Science  | 
    
| EISSN | 1090-235X | 
    
| EndPage | 28 | 
    
| ExternalDocumentID | 27129135 10_1016_j_cviu_2012_09_003 S1077314212001294  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HF~ HVGLF HZ~ IHE J1W JJJVA KOM LG5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TN5 XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS SST ~HD BNPGV IQODW 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c363t-10362ddcd3d7777f7cf8039b2de464a1ffabd8a5366e66b2c4927707c39534b63 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1077-3142 | 
    
| IngestDate | Sat Sep 27 19:11:28 EDT 2025 Wed Apr 02 07:26:15 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 Sat Oct 25 05:18:31 EDT 2025 Fri Feb 23 02:26:56 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Feature selection Cascade classifier Face detection PSO Adaboost Automatic classification Haar function Binary code Aggregate model Efficiency Facies Vector support machine Selection criterion Swarm intelligence Robustness Learning algorithm Hessian matrices Computer vision Data analysis Face recognition Hierarchical classification Particle swarm optimization Computational geometry Supervised learning Binary descriptor Frontal Hierarchical system Artificial intelligence  | 
    
| Language | English | 
    
| License | CC BY 4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c363t-10362ddcd3d7777f7cf8039b2de464a1ffabd8a5366e66b2c4927707c39534b63 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23  | 
    
| PQID | 1283660046 | 
    
| PQPubID | 23500 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | proquest_miscellaneous_1283660046 pascalfrancis_primary_27129135 crossref_citationtrail_10_1016_j_cviu_2012_09_003 crossref_primary_10_1016_j_cviu_2012_09_003 elsevier_sciencedirect_doi_10_1016_j_cviu_2012_09_003  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2013 2013-01-00 2013 20130101  | 
    
| PublicationDateYYYYMMDD | 2013-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2013 text: January 2013  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationTitle | Computer vision and image understanding | 
    
| PublicationYear | 2013 | 
    
| Publisher | Elsevier Inc Elsevier  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Elsevier  | 
    
| References | S.Y. Yan, S.G. Shan, X.L. Chen, W. Gao, Locally Assembled Binary (LAB) feature with feature-centric cascade for fast and accurate face detection, in: Proceedings of CVPR 2008 IEEE International Conference on Computer Vision and Pattern, 2008, pp. 1–7. C. Huang, H.Z. Ai, Y. Li, S.H. Lao, Vector boosting for rotation invariant multi-view face detection, in: Proceedings of IEEE International Conference on Computer Vision, vol. 1, 2005, pp. 446–453. L. Zhang, R. Chu, S. Xiang, S. Liao, S. Li, Face detection based on multi-block LBP representation, in: Proceedings of ICB 2007 International Conference on Biometrics, 2007, pp. 11–18. Hjelmas, Low (b0010) 2002; 83 Heisele, Serre, Poggio (b0295) 2007; 74 Ahonen, Hadid, Pietikainen (b0135) 2006; 28 C. Liu, H.Y. Shum, Kullback-Leibler Boosting, in: Proceedings of CVPR 2003 IEEE International Conference on Computer Vision and Pattern, vol. 1, 2003, pp. 587–594. R. Lienhart, J. Maydt, An extended set of Haar-like features for rapid object detection, in: Proceedings of ICIP 2002 IEEE International Conference on Image Processing, vol. 1, 2002, pp. 900–903. Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: Proceedings of ICML 1996 International Conference on, Machine Learning, 1996, pp. 148–156. A. Mohemmed, M. Zhang, M. Johnston, Particle swarm optimization based Adaboost for face detection, in: Proceedings of CEC 2009 IEEE Congress on, Evolutionary Computation, 2009, pp. 2494–2501. E. Marami, A. Tefas, Using particle swarm optimization for scaling and rotation invariant face detection, in: Proceedings of CEC 2010 IEEE Congress on, Evolutionary Computation, 2010, pp. 1–7. H. Jin, Q. Liu, H. Lu, X. Tong, Face detection using improved LBP under bayesian framework, in: Proceedings of ICIG 2004 Third International Conference on Image and Graphics, 2004, pp. 306–309. O. Jesorsky, K. Kirchberg, R. Frischholz, Robust face detection using the hausdorff distance, in: Proceedings of the Third International Conference on Audio- and Video-Based Biometric Person Authentication, 2001, pp. 90–95. M. Asbach, P. Hosten, M. Unger, An evaluation of local features for face detection and localization, in: Proceedings of WIAMIS 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services, 2008, pp. 32–35. Zhang, Gao, Chen, Zhao (b0155) 2006; 24 S. Stein, G.A. Fink, A new method for combined face detection and identification using interest point descriptors, in: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, 2011, pp. 519–524. Féraud, Bernier, Viallet, Collobert (b0265) 2001; 23 P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in: Proceedings of CVPR 2001 IEEE International Conference on Computer Vision and Pattern, vol. 1, 2001, pp. I-511–I-518. Friedman, Hastie, Tibshirani (b0080) 2000; 28 A. Treptow, A. Zell, Combining Adaboost learning and evolutionary search to select features for real-time object detection, in: Proceedings of CEC2004 Congress on Evolutionary Computation, vol. 2, 2004, pp. 2107–2113. Gao, Cao, Shan, Chen, Zhou, Zhang, Zhao (b0260) 2008; 38 M.T. Pham, T.J. Cham, Fast training and selection and Haar features using statistics in boosting-based face detection, in: Proceedings of ICCV 2007 11th IEEE International Conference on Computer Vision, 2007, pp. 1–7. M.S. Bartlett, G. Littlewort, I. Fasel, J.R. Movellan, Real time face detection and facial expression recognition: Development and application to human computer interaction, in: Proceedings of CVPRW 2003 IEEE International Conference on Computer Vision and Pattern Workshop, vol. 5, 2003, pp. 139–157. Viola, Jones (b0045) 2004; 57 Liu (b0280) 2003; 25 H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, SURF: speeded up robust features, in: Proceedings of ECCV 9th European Conference on Computer Vision, Part(1), 2006, pp. 404–417. Rowley, Baluja, Kanade (b0025) 1998; 20 Li, Zhang (b0090) 2004; 26 Waring, Liu (b0290) 2005; 35 J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of ICNN 1995 IEEE International Conference on, Neural Networks, 1995, pp. 1942–1948. Schapire, Singer (b0075) 1999; 37 K. Levi, Y. Weiss, Learning object detection from a small number of examples: the importance of good features, in: Proceedings of CVPR 2004 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 2, 2004, pp. 53–60. V. Rapp, T. Senechal, K. Bailly, L. Prevost, Multiple kernel learning SVM and statistical validation for facial landmark detection, in: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, 2011, pp. 265–271. Phillips, Hyeonjoon, Rizvi, Rauss (b0245) 2000; 22 Lowe (b0165) 2004; 60 D. Kim, R. Dahyot, Face components detection using SURF descriptors and SVMs, in: Proceedings of IMVIP’08 International Conference on Machine Vision and Image Processing, 2008, pp. 51–56. Jang, Kim (b0210) 2008; 12 C. Huang, H.Z. Ai, B. Wu, S.H. Lao, Boosting nested cascade detector for multi-view face detection, in: Proceedings of ICPR 2004 17th International Conference on Pattern Recognition, vol. 2, 2004, pp. 415–418. Ojala, Pietikainen, Maenpaa (b0130) 2002; 24 Z. Zin, M. Khalid, R. Yusof, Evolutionary feature selections for face detection system, in: Proceedings of ITSim 2008 International Symposium on Information Technology, 2008, pp. 1–8. E. Osuna, R. Freund, F. Girosi, Training support vector machines: an application to face detection, in: Proceedings of CVPR 1997 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, 1997, pp. 130–136. Garcia, Delakis (b0270) 2004; 26 H. Schneiderman, Feature-centric evaluation for efficient cascaded object detection, in: Proceedings of CVPR 2004 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 2, 2004, pp. 29–36. H. Schneiderman, T. Kanade, A statistical method for 3D object detection applied to faces and cars, in: Proceedings of CVPR 2000 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, 2000, pp. 746–751. M.H. Yang, D. Roth, N. Ahuja, A SNoW-based face detector, in: Proceedings of NIPS 1999 Advances in Neural Information Processing Systems, vol. 12, 2000, pp. 855–861. X. Wang, T.X. Han, S. Yan, An HOG-LBP human detector with partial occlusion handling, in: Proceedings of ICCV 2009 12th IEEE International Conference on Computer Vision, 2009, pp. 32–39. Bay, Ess, Tuytelaars, Van Gool (b0175) 2008; 110 H. Rowley, S. Baluja, T. Kanade, Rotation invariant neural network-based face detection, in: Proceedings of CVPR 1998 IEEE International Conference on Computer Vision and, Pattern Recognition, 1998, pp. 29–36. Shen, Wang, Li (b0095) 2010; 6312 Wu, Brubaker, Mullin, Rehg (b0070) 2008; 30 Sung, Poggio (b0015) 1998; 20 R. Xiao, L. Zhu, H. Zhang, Boosting chain learning for object detection, in: Proceedings of ICCV 2003 9th IEEE International Conference on Computer Vision, vol. 1, 2003, pp. 709–715. T. Mita, T. Kaneko, O. Hori, Joint Haar-like features for face detection, in: Proceedings of ICCV 2005 10th IEEE International Conference on Computer Vision, vol. 2, 2005, pp. 1619–1626. Yang, Kreigman, Ahuja (b0005) 2002; 24 T. Sim, S. Baker, M. Bsat, The CMU Pose, Illumination, and Expression (PIE) Database of Human Face, CMU-RI-TR-01-02, 2002, pp. 1–17. B. Wu, H.Z. Ai, C. Huang, S.H. Lao, Fast rotation invariant multi-view face detection based on real AdaBoost, in: Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004, pp. 79–84. M. Jones, P. Viola, Fast Multi-View Face Detection, MERL, Report TR2003-96, July, 2003. Huang, Ai, Li, Lao (b0115) 2007; 29 Wang, Wang (b0200) 2006; 39 B.J. Fernandes, G.D. Cavalcanti, T.I. Ren, A receptive field based approach for face detection, in: Proceedings of IJCNN 2009 International Joint Conference on, Neural Networks, 2009, pp. 803–810. H. Pan, L.Z. Xia, T.Q. Nguyen, Robust object detection scheme using feature selection, in: Proceedings of ICIP 2010 IEEE International Conference on Image Processing, 2010, pp. 849–852. N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proceedings of CVPR 2005 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, 2005, pp. 886–893. Georghiades, Belhumeur, Kriegman (b0255) 2001; 23 10.1016/j.cviu.2012.09.003_b0085 Ojala (10.1016/j.cviu.2012.09.003_b0130) 2002; 24 10.1016/j.cviu.2012.09.003_b0240 10.1016/j.cviu.2012.09.003_b0160 10.1016/j.cviu.2012.09.003_b0040 Zhang (10.1016/j.cviu.2012.09.003_b0155) 2006; 24 Sung (10.1016/j.cviu.2012.09.003_b0015) 1998; 20 Gao (10.1016/j.cviu.2012.09.003_b0260) 2008; 38 Hjelmas (10.1016/j.cviu.2012.09.003_b0010) 2002; 83 10.1016/j.cviu.2012.09.003_b0205 10.1016/j.cviu.2012.09.003_b0125 10.1016/j.cviu.2012.09.003_b0120 10.1016/j.cviu.2012.09.003_b0285 10.1016/j.cviu.2012.09.003_b0030 10.1016/j.cviu.2012.09.003_b0195 Huang (10.1016/j.cviu.2012.09.003_b0115) 2007; 29 Phillips (10.1016/j.cviu.2012.09.003_b0245) 2000; 22 Ahonen (10.1016/j.cviu.2012.09.003_b0135) 2006; 28 10.1016/j.cviu.2012.09.003_b0150 Yang (10.1016/j.cviu.2012.09.003_b0005) 2002; 24 10.1016/j.cviu.2012.09.003_b0190 Li (10.1016/j.cviu.2012.09.003_b0090) 2004; 26 Wang (10.1016/j.cviu.2012.09.003_b0200) 2006; 39 10.1016/j.cviu.2012.09.003_b0315 10.1016/j.cviu.2012.09.003_b0235 10.1016/j.cviu.2012.09.003_b0035 10.1016/j.cviu.2012.09.003_b0310 10.1016/j.cviu.2012.09.003_b0230 Rowley (10.1016/j.cviu.2012.09.003_b0025) 1998; 20 10.1016/j.cviu.2012.09.003_b0110 10.1016/j.cviu.2012.09.003_b0275 10.1016/j.cviu.2012.09.003_b0140 10.1016/j.cviu.2012.09.003_b0020 10.1016/j.cviu.2012.09.003_b0185 Shen (10.1016/j.cviu.2012.09.003_b0095) 2010; 6312 10.1016/j.cviu.2012.09.003_b0180 10.1016/j.cviu.2012.09.003_b0060 Garcia (10.1016/j.cviu.2012.09.003_b0270) 2004; 26 Liu (10.1016/j.cviu.2012.09.003_b0280) 2003; 25 Schapire (10.1016/j.cviu.2012.09.003_b0075) 1999; 37 10.1016/j.cviu.2012.09.003_b0305 10.1016/j.cviu.2012.09.003_b0225 10.1016/j.cviu.2012.09.003_b0105 10.1016/j.cviu.2012.09.003_b0300 Bay (10.1016/j.cviu.2012.09.003_b0175) 2008; 110 Waring (10.1016/j.cviu.2012.09.003_b0290) 2005; 35 10.1016/j.cviu.2012.09.003_b0100 10.1016/j.cviu.2012.09.003_b0145 10.1016/j.cviu.2012.09.003_b0065 10.1016/j.cviu.2012.09.003_b0220 10.1016/j.cviu.2012.09.003_b0250 10.1016/j.cviu.2012.09.003_b0050 Jang (10.1016/j.cviu.2012.09.003_b0210) 2008; 12 Heisele (10.1016/j.cviu.2012.09.003_b0295) 2007; 74 10.1016/j.cviu.2012.09.003_b0170 Wu (10.1016/j.cviu.2012.09.003_b0070) 2008; 30 Friedman (10.1016/j.cviu.2012.09.003_b0080) 2000; 28 Féraud (10.1016/j.cviu.2012.09.003_b0265) 2001; 23 Viola (10.1016/j.cviu.2012.09.003_b0045) 2004; 57 Georghiades (10.1016/j.cviu.2012.09.003_b0255) 2001; 23 10.1016/j.cviu.2012.09.003_b0215 Lowe (10.1016/j.cviu.2012.09.003_b0165) 2004; 60 10.1016/j.cviu.2012.09.003_b0055  | 
    
| References_xml | – volume: 39 start-page: 595 year: 2006 end-page: 607 ident: b0200 article-title: Classification by evolutionary ensembles publication-title: Pattern Recognit. – reference: V. Rapp, T. Senechal, K. Bailly, L. Prevost, Multiple kernel learning SVM and statistical validation for facial landmark detection, in: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, 2011, pp. 265–271. – reference: H. Rowley, S. Baluja, T. Kanade, Rotation invariant neural network-based face detection, in: Proceedings of CVPR 1998 IEEE International Conference on Computer Vision and, Pattern Recognition, 1998, pp. 29–36. – volume: 12 start-page: 562 year: 2008 end-page: 571 ident: b0210 article-title: Fast and robust face detection using evolutionary pruning publication-title: IEEE Trans. Evol. Comput. – reference: X. Wang, T.X. Han, S. Yan, An HOG-LBP human detector with partial occlusion handling, in: Proceedings of ICCV 2009 12th IEEE International Conference on Computer Vision, 2009, pp. 32–39. – volume: 83 start-page: 236 year: 2002 end-page: 274 ident: b0010 article-title: Face detection: a survey publication-title: Comput. Vis. Image Understand. – reference: L. Zhang, R. Chu, S. Xiang, S. Liao, S. Li, Face detection based on multi-block LBP representation, in: Proceedings of ICB 2007 International Conference on Biometrics, 2007, pp. 11–18. – reference: H. Pan, L.Z. Xia, T.Q. Nguyen, Robust object detection scheme using feature selection, in: Proceedings of ICIP 2010 IEEE International Conference on Image Processing, 2010, pp. 849–852. – reference: H. Schneiderman, T. Kanade, A statistical method for 3D object detection applied to faces and cars, in: Proceedings of CVPR 2000 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, 2000, pp. 746–751. – volume: 25 start-page: 725 year: 2003 end-page: 740 ident: b0280 article-title: A Bayesian discriminating features method for face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 28 start-page: 337 year: 2000 end-page: 407 ident: b0080 article-title: Additive logistic regression: a statistical view of boosting publication-title: Ann. Stat. – reference: B. Wu, H.Z. Ai, C. Huang, S.H. Lao, Fast rotation invariant multi-view face detection based on real AdaBoost, in: Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004, pp. 79–84. – volume: 6312 start-page: 608 year: 2010 end-page: 621 ident: b0095 article-title: LACBoost and FisherBoost: optimally building cascade classifiers publication-title: Lect. Notes Comput. Sci., Comput. Vis. – ECCV – volume: 60 start-page: 91 year: 2004 end-page: 110 ident: b0165 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. – reference: S.Y. Yan, S.G. Shan, X.L. Chen, W. Gao, Locally Assembled Binary (LAB) feature with feature-centric cascade for fast and accurate face detection, in: Proceedings of CVPR 2008 IEEE International Conference on Computer Vision and Pattern, 2008, pp. 1–7. – volume: 29 start-page: 671 year: 2007 end-page: 686 ident: b0115 article-title: High-performance rotation invariant multiview face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in: Proceedings of CVPR 2001 IEEE International Conference on Computer Vision and Pattern, vol. 1, 2001, pp. I-511–I-518. – reference: O. Jesorsky, K. Kirchberg, R. Frischholz, Robust face detection using the hausdorff distance, in: Proceedings of the Third International Conference on Audio- and Video-Based Biometric Person Authentication, 2001, pp. 90–95. – volume: 38 start-page: 149 year: 2008 end-page: 161 ident: b0260 article-title: The CAS-PEAL large-scale chinese face database and baseline evaluations publication-title: IEEE Trans. Syst. Man Cybernet. (Part A) – reference: Z. Zin, M. Khalid, R. Yusof, Evolutionary feature selections for face detection system, in: Proceedings of ITSim 2008 International Symposium on Information Technology, 2008, pp. 1–8. – reference: C. Liu, H.Y. Shum, Kullback-Leibler Boosting, in: Proceedings of CVPR 2003 IEEE International Conference on Computer Vision and Pattern, vol. 1, 2003, pp. 587–594. – reference: A. Mohemmed, M. Zhang, M. Johnston, Particle swarm optimization based Adaboost for face detection, in: Proceedings of CEC 2009 IEEE Congress on, Evolutionary Computation, 2009, pp. 2494–2501. – volume: 35 start-page: 467 year: 2005 end-page: 476 ident: b0290 article-title: Face detection using spectral histograms and SVMs publication-title: IEEE Trans. Syst. Man Cybernet. Part B: Cybernet. – reference: C. Huang, H.Z. Ai, B. Wu, S.H. Lao, Boosting nested cascade detector for multi-view face detection, in: Proceedings of ICPR 2004 17th International Conference on Pattern Recognition, vol. 2, 2004, pp. 415–418. – reference: M.T. Pham, T.J. Cham, Fast training and selection and Haar features using statistics in boosting-based face detection, in: Proceedings of ICCV 2007 11th IEEE International Conference on Computer Vision, 2007, pp. 1–7. – reference: K. Levi, Y. Weiss, Learning object detection from a small number of examples: the importance of good features, in: Proceedings of CVPR 2004 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 2, 2004, pp. 53–60. – volume: 22 start-page: 1090 year: 2000 end-page: 1104 ident: b0245 article-title: The FERET evaluation methodology for face-recognition algorithms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 74 start-page: 167 year: 2007 end-page: 181 ident: b0295 article-title: A component-based framework for face detection and identification publication-title: Int. J. Comput. Vis. – volume: 30 start-page: 369 year: 2008 end-page: 382 ident: b0070 article-title: Fast asymmetric learning for cascade face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: T. Sim, S. Baker, M. Bsat, The CMU Pose, Illumination, and Expression (PIE) Database of Human Face, CMU-RI-TR-01-02, 2002, pp. 1–17. – volume: 37 start-page: 297 year: 1999 end-page: 336 ident: b0075 article-title: Improved boosting algorithms using confidence-rated predictions publication-title: Mach. Learn. – volume: 23 start-page: 643 year: 2001 end-page: 660 ident: b0255 article-title: From few to many: illumination cone models for face recognition under variable lighting and pose publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: Proceedings of ICML 1996 International Conference on, Machine Learning, 1996, pp. 148–156. – reference: M. Jones, P. Viola, Fast Multi-View Face Detection, MERL, Report TR2003-96, July, 2003. – reference: M. Asbach, P. Hosten, M. Unger, An evaluation of local features for face detection and localization, in: Proceedings of WIAMIS 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services, 2008, pp. 32–35. – reference: J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of ICNN 1995 IEEE International Conference on, Neural Networks, 1995, pp. 1942–1948. – reference: B.J. Fernandes, G.D. Cavalcanti, T.I. Ren, A receptive field based approach for face detection, in: Proceedings of IJCNN 2009 International Joint Conference on, Neural Networks, 2009, pp. 803–810. – volume: 23 start-page: 42 year: 2001 end-page: 53 ident: b0265 article-title: A fast and accurate face detector based on neural networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: H. Schneiderman, Feature-centric evaluation for efficient cascaded object detection, in: Proceedings of CVPR 2004 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 2, 2004, pp. 29–36. – reference: E. Marami, A. Tefas, Using particle swarm optimization for scaling and rotation invariant face detection, in: Proceedings of CEC 2010 IEEE Congress on, Evolutionary Computation, 2010, pp. 1–7. – reference: R. Lienhart, J. Maydt, An extended set of Haar-like features for rapid object detection, in: Proceedings of ICIP 2002 IEEE International Conference on Image Processing, vol. 1, 2002, pp. 900–903. – reference: D. Kim, R. Dahyot, Face components detection using SURF descriptors and SVMs, in: Proceedings of IMVIP’08 International Conference on Machine Vision and Image Processing, 2008, pp. 51–56. – volume: 20 start-page: 23 year: 1998 end-page: 38 ident: b0025 article-title: Neural network based face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: R. Xiao, L. Zhu, H. Zhang, Boosting chain learning for object detection, in: Proceedings of ICCV 2003 9th IEEE International Conference on Computer Vision, vol. 1, 2003, pp. 709–715. – reference: E. Osuna, R. Freund, F. Girosi, Training support vector machines: an application to face detection, in: Proceedings of CVPR 1997 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, 1997, pp. 130–136. – reference: H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, SURF: speeded up robust features, in: Proceedings of ECCV 9th European Conference on Computer Vision, Part(1), 2006, pp. 404–417. – volume: 24 start-page: 34 year: 2002 end-page: 58 ident: b0005 article-title: Detecting faces in images: a survey publication-title: IEEE Trans Pattern Anal. Mach. Intell. – reference: N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proceedings of CVPR 2005 IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, 2005, pp. 886–893. – reference: H. Jin, Q. Liu, H. Lu, X. Tong, Face detection using improved LBP under bayesian framework, in: Proceedings of ICIG 2004 Third International Conference on Image and Graphics, 2004, pp. 306–309. – reference: T. Mita, T. Kaneko, O. Hori, Joint Haar-like features for face detection, in: Proceedings of ICCV 2005 10th IEEE International Conference on Computer Vision, vol. 2, 2005, pp. 1619–1626. – volume: 20 start-page: 39 year: 1998 end-page: 51 ident: b0015 article-title: Example-based learning for view-based human face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 57 start-page: 137 year: 2004 end-page: 154 ident: b0045 article-title: Robust real-time face detection publication-title: Int. J. Comput. Vis. – volume: 26 start-page: 1112 year: 2004 end-page: 1123 ident: b0090 article-title: Floatboost learning and statistical face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 28 start-page: 2037 year: 2006 end-page: 2041 ident: b0135 article-title: Face description with local binary patterns: application to face recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 110 start-page: 346 year: 2008 end-page: 359 ident: b0175 article-title: SURF: speeded up robust features publication-title: Comput. Vis. Image Understand. – reference: M.H. Yang, D. Roth, N. Ahuja, A SNoW-based face detector, in: Proceedings of NIPS 1999 Advances in Neural Information Processing Systems, vol. 12, 2000, pp. 855–861. – volume: 26 start-page: 1408 year: 2004 end-page: 1423 ident: b0270 article-title: Convolutional face finder: a neural architecture for fast and robust face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: S. Stein, G.A. Fink, A new method for combined face detection and identification using interest point descriptors, in: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, 2011, pp. 519–524. – reference: A. Treptow, A. Zell, Combining Adaboost learning and evolutionary search to select features for real-time object detection, in: Proceedings of CEC2004 Congress on Evolutionary Computation, vol. 2, 2004, pp. 2107–2113. – reference: C. Huang, H.Z. Ai, Y. Li, S.H. Lao, Vector boosting for rotation invariant multi-view face detection, in: Proceedings of IEEE International Conference on Computer Vision, vol. 1, 2005, pp. 446–453. – volume: 24 start-page: 971 year: 2002 end-page: 987 ident: b0130 article-title: Multiresolution gray scale and rotation invariant texture analysis with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 24 start-page: 327 year: 2006 end-page: 341 ident: b0155 article-title: Object detection using spatial histogram features publication-title: Image Vis. Comput. – reference: M.S. Bartlett, G. Littlewort, I. Fasel, J.R. Movellan, Real time face detection and facial expression recognition: Development and application to human computer interaction, in: Proceedings of CVPRW 2003 IEEE International Conference on Computer Vision and Pattern Workshop, vol. 5, 2003, pp. 139–157. – ident: 10.1016/j.cviu.2012.09.003_b0120 doi: 10.1109/CVPR.2004.1315144 – volume: 83 start-page: 236 issue: 3 year: 2002 ident: 10.1016/j.cviu.2012.09.003_b0010 article-title: Face detection: a survey publication-title: Comput. Vis. Image Understand. doi: 10.1006/cviu.2001.0921 – ident: 10.1016/j.cviu.2012.09.003_b0170 doi: 10.1007/11744023_32 – ident: 10.1016/j.cviu.2012.09.003_b0230 – ident: 10.1016/j.cviu.2012.09.003_b0100 doi: 10.1109/ICCV.2005.129 – ident: 10.1016/j.cviu.2012.09.003_b0240 doi: 10.1109/ICIP.2010.5653519 – ident: 10.1016/j.cviu.2012.09.003_b0030 doi: 10.1109/CVPR.2000.855895 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 10.1016/j.cviu.2012.09.003_b0165 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – ident: 10.1016/j.cviu.2012.09.003_b0220 doi: 10.1109/CEC.2010.5586159 – ident: 10.1016/j.cviu.2012.09.003_b0250 doi: 10.1007/3-540-45344-X_14 – volume: 39 start-page: 595 issue: 4 year: 2006 ident: 10.1016/j.cviu.2012.09.003_b0200 article-title: Classification by evolutionary ensembles publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2005.09.016 – ident: 10.1016/j.cviu.2012.09.003_b0285 doi: 10.1109/IJCNN.2009.5179017 – ident: 10.1016/j.cviu.2012.09.003_b0140 – ident: 10.1016/j.cviu.2012.09.003_b0055 doi: 10.1109/ICPR.2004.1334239 – ident: 10.1016/j.cviu.2012.09.003_b0035 – volume: 12 start-page: 562 issue: 5 year: 2008 ident: 10.1016/j.cviu.2012.09.003_b0210 article-title: Fast and robust face detection using evolutionary pruning publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.910140 – ident: 10.1016/j.cviu.2012.09.003_b0195 doi: 10.1109/CVPRW.2003.10057 – volume: 24 start-page: 34 issue: 1 year: 2002 ident: 10.1016/j.cviu.2012.09.003_b0005 article-title: Detecting faces in images: a survey publication-title: IEEE Trans Pattern Anal. Mach. Intell. doi: 10.1109/34.982883 – ident: 10.1016/j.cviu.2012.09.003_b0215 doi: 10.1109/ITSIM.2008.4631734 – ident: 10.1016/j.cviu.2012.09.003_b0315 – ident: 10.1016/j.cviu.2012.09.003_b0050 – ident: 10.1016/j.cviu.2012.09.003_b0190 doi: 10.1109/WIAMIS.2008.58 – ident: 10.1016/j.cviu.2012.09.003_b0310 doi: 10.1109/ICCV.2005.246 – volume: 23 start-page: 42 issue: 1 year: 2001 ident: 10.1016/j.cviu.2012.09.003_b0265 article-title: A fast and accurate face detector based on neural networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.899945 – ident: 10.1016/j.cviu.2012.09.003_b0180 doi: 10.1109/FG.2011.5771452 – volume: 26 start-page: 1408 issue: 11 year: 2004 ident: 10.1016/j.cviu.2012.09.003_b0270 article-title: Convolutional face finder: a neural architecture for fast and robust face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.97 – ident: 10.1016/j.cviu.2012.09.003_b0125 doi: 10.1109/CVPR.2005.177 – volume: 20 start-page: 23 issue: 1 year: 1998 ident: 10.1016/j.cviu.2012.09.003_b0025 article-title: Neural network based face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.655647 – volume: 28 start-page: 2037 issue: 12 year: 2006 ident: 10.1016/j.cviu.2012.09.003_b0135 article-title: Face description with local binary patterns: application to face recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.244 – volume: 24 start-page: 971 issue: 7 year: 2002 ident: 10.1016/j.cviu.2012.09.003_b0130 article-title: Multiresolution gray scale and rotation invariant texture analysis with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1017623 – ident: 10.1016/j.cviu.2012.09.003_b0110 doi: 10.1109/ICCV.2007.4409038 – volume: 110 start-page: 346 issue: 3 year: 2008 ident: 10.1016/j.cviu.2012.09.003_b0175 article-title: SURF: speeded up robust features publication-title: Comput. Vis. Image Understand. doi: 10.1016/j.cviu.2007.09.014 – ident: 10.1016/j.cviu.2012.09.003_b0275 doi: 10.1109/CVPR.2004.1315141 – ident: 10.1016/j.cviu.2012.09.003_b0105 doi: 10.1109/ICIP.2002.1038171 – ident: 10.1016/j.cviu.2012.09.003_b0040 doi: 10.1109/CVPR.2001.990517 – volume: 38 start-page: 149 issue: 1 year: 2008 ident: 10.1016/j.cviu.2012.09.003_b0260 article-title: The CAS-PEAL large-scale chinese face database and baseline evaluations publication-title: IEEE Trans. Syst. Man Cybernet. (Part A) doi: 10.1109/TSMCA.2007.909557 – ident: 10.1016/j.cviu.2012.09.003_b0225 doi: 10.1109/CEC.2009.4983254 – ident: 10.1016/j.cviu.2012.09.003_b0300 doi: 10.1109/FG.2011.5771409 – ident: 10.1016/j.cviu.2012.09.003_b0020 – volume: 74 start-page: 167 issue: 2 year: 2007 ident: 10.1016/j.cviu.2012.09.003_b0295 article-title: A component-based framework for face detection and identification publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-006-0006-z – ident: 10.1016/j.cviu.2012.09.003_b0150 doi: 10.1109/CVPR.2008.4587802 – volume: 35 start-page: 467 issue: 3 year: 2005 ident: 10.1016/j.cviu.2012.09.003_b0290 article-title: Face detection using spectral histograms and SVMs publication-title: IEEE Trans. Syst. Man Cybernet. Part B: Cybernet. doi: 10.1109/TSMCB.2005.846655 – volume: 30 start-page: 369 issue: 3 year: 2008 ident: 10.1016/j.cviu.2012.09.003_b0070 article-title: Fast asymmetric learning for cascade face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1181 – ident: 10.1016/j.cviu.2012.09.003_b0235 doi: 10.1109/ICNN.1995.488968 – volume: 37 start-page: 297 issue: 3 year: 1999 ident: 10.1016/j.cviu.2012.09.003_b0075 article-title: Improved boosting algorithms using confidence-rated predictions publication-title: Mach. Learn. doi: 10.1023/A:1007614523901 – volume: 24 start-page: 327 issue: 4 year: 2006 ident: 10.1016/j.cviu.2012.09.003_b0155 article-title: Object detection using spatial histogram features publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2005.11.010 – volume: 20 start-page: 39 issue: 1 year: 1998 ident: 10.1016/j.cviu.2012.09.003_b0015 article-title: Example-based learning for view-based human face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.655648 – ident: 10.1016/j.cviu.2012.09.003_b0145 doi: 10.1007/978-3-540-74549-5_2 – volume: 26 start-page: 1112 issue: 9 year: 2004 ident: 10.1016/j.cviu.2012.09.003_b0090 article-title: Floatboost learning and statistical face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.68 – volume: 28 start-page: 337 issue: 2 year: 2000 ident: 10.1016/j.cviu.2012.09.003_b0080 article-title: Additive logistic regression: a statistical view of boosting publication-title: Ann. Stat. doi: 10.1214/aos/1016218223 – volume: 22 start-page: 1090 issue: 10 year: 2000 ident: 10.1016/j.cviu.2012.09.003_b0245 article-title: The FERET evaluation methodology for face-recognition algorithms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.879790 – volume: 29 start-page: 671 issue: 4 year: 2007 ident: 10.1016/j.cviu.2012.09.003_b0115 article-title: High-performance rotation invariant multiview face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1011 – ident: 10.1016/j.cviu.2012.09.003_b0205 doi: 10.1109/CEC.2004.1331156 – volume: 25 start-page: 725 issue: 6 year: 2003 ident: 10.1016/j.cviu.2012.09.003_b0280 article-title: A Bayesian discriminating features method for face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2003.1201822 – volume: 23 start-page: 643 issue: 6 year: 2001 ident: 10.1016/j.cviu.2012.09.003_b0255 article-title: From few to many: illumination cone models for face recognition under variable lighting and pose publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.927464 – ident: 10.1016/j.cviu.2012.09.003_b0085 doi: 10.1109/CVPR.2003.1211407 – volume: 6312 start-page: 608 year: 2010 ident: 10.1016/j.cviu.2012.09.003_b0095 article-title: LACBoost and FisherBoost: optimally building cascade classifiers publication-title: Lect. Notes Comput. Sci., Comput. Vis. – ECCV – ident: 10.1016/j.cviu.2012.09.003_b0065 – ident: 10.1016/j.cviu.2012.09.003_b0160 doi: 10.1109/ICCV.2009.5459207 – volume: 57 start-page: 137 issue: 2 year: 2004 ident: 10.1016/j.cviu.2012.09.003_b0045 article-title: Robust real-time face detection publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000013087.49260.fb – ident: 10.1016/j.cviu.2012.09.003_b0185 doi: 10.1109/IMVIP.2008.15 – ident: 10.1016/j.cviu.2012.09.003_b0305 doi: 10.21236/ADA341629 – ident: 10.1016/j.cviu.2012.09.003_b0060 doi: 10.1109/ICCV.2003.1238417  | 
    
| SSID | ssj0011491 | 
    
| Score | 2.2188668 | 
    
| Snippet | ► Represent face patterns with heterogeneous and complementary feature descriptors. ► Propose PSO-Adaboost algorithm for efficient discriminative feature... The performance of an efficient and accurate face detection system depends on several issues: (1) distinctive representation for face patterns; (2) effective...  | 
    
| SourceID | proquest pascalfrancis crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 12 | 
    
| SubjectTerms | Adaboost Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Artificial intelligence Cascade classifier Classifiers Computer science; control theory; systems Data processing. List processing. Character string processing Detectors Exact sciences and technology Face detection Feature selection Learning Memory organisation. Data processing Optimization Pattern recognition. Digital image processing. Computational geometry PSO Searching Software Support vector machines Theoretical computing  | 
    
| Title | Efficient and accurate face detection using heterogeneous feature descriptors and feature selection | 
    
| URI | https://dx.doi.org/10.1016/j.cviu.2012.09.003 https://www.proquest.com/docview/1283660046  | 
    
| Volume | 117 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhvaSEtkkTuv1YFOitOGtLsmQfQ0jYtiSXNpCbkPXRbijeJd7tsb-9M7K0NARyqI9Css3MaEaWnt8j5GMZpGWh8YWTXBXCBo8ggBZmvGfKGFa28cT06lrOb8SX2_p2h5znf2EQVply_5jTY7ZOLbNkzdlqsZh9gw8XxSs80Yy7KcgJKoRCFYPTP1uYByz3o2oedi6wd_pxZsR42d-LDcK7WOQ6zcJZj4vT_soMYLIwal08StuxFl2-Ii_SIpKeje95QHZ8f0hepgUlTdN1gKas2ZDbDsnzfwgIXxN7ERkkoPBQ0ztqrN0gdQQNxnrq_DritHqK4Pgf9CciZ5YQcH65GWjwkRIUeo2JZ3k_xHvk9iEK7MDoI3JzefH9fF4k2YXCcsnX4CYoas5Zx52CKygbmpK3HXNeSGGqEEznGlNzKb2UHbOiZUqVyvK25qKT_Jjs9svevyGUc8NC51Xj6yB86wwzxtmyaStnjbR8Qqpsb20TJzlKY_zSGXx2p9FHGn2kyxaZTCfk03bMamTkeLJ3nd2oH8SVhpLx5LjpA59vH8UUxFrF6wk5yUGgYUbiMYuJ9tdQ8cE0uPHw9j8f_o7ssai6gTs978nu-n7jP8DaZ91NY3BPybOzz1_n138BsU4FYQ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgBU8SggtoViJG4obGI7dnKsqlYLtL3QSr1Zjh9lEcquml2O_HbGjr2iqtQDOY7GcTQznpnYn2cAPpZeGOobV1jBZMGNdwEE0OKKd1RqTcs2npienYvZJf96VV9twVG-CxNglcn3jz49eutEmSZpTpfz-fQ7_rhIVoUTzbibwh_AQ15TGf7APv_Z4Dww349t8wJ3EdjTzZkR5GV-z9cB30VjsdPcOetudNpZ6gFl5sdmF3f8dgxGJ8_hacoiyeH4oS9gy_W78CxllCSt1wFJuWlDpu3Ck38qEL4EcxxLSGDkIbq3RBuzDrUjiNfGEetWEajVk4COvyY_AnRmgRbnFuuBeBdrgiLX6HkWN0N8R6YPscMOjn4FlyfHF0ezIvVdKAwTbIV6wqhmrbHMSny8NL4pWdtR67jguvJed7bRNRPCCdFRw1sUeykNa2vGO8Few3a_6N0bIIxp6jsnG1d77lqrqdbWlE1bWaOFYROosryVSUXJQ2-MXyqjz36qoCMVdKTKNpQyncCnzZjlWJLjXu46q1HdMiyFMePecQe3dL6Ziko0torVE_iQjUDhkgznLDrKX2HIR9GEnYe9_5z8PTyaXZydqtMv59_24TGNLTjCts9b2F7drN07TIRW3UE09L-n0Qb2 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+and+accurate+face+detection+using+heterogeneous+feature+descriptors+and+feature+selection&rft.jtitle=Computer+vision+and+image+understanding&rft.au=HONG+PAN&rft.au=YAPING+ZHU&rft.au=LIANGZHENG+XIA&rft.date=2013&rft.pub=Elsevier&rft.issn=1077-3142&rft.volume=117&rft.issue=1&rft.spage=12&rft.epage=28&rft_id=info:doi/10.1016%2Fj.cviu.2012.09.003&rft.externalDBID=n%2Fa&rft.externalDocID=27129135 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon |