Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods
The objective of this study is to make a comparison of the prediction performance of three techniques, Functional Trees (FT), Multilayer Perceptron Neural Networks (MLP Neural Nets), and Naïve Bayes (NB) for landslide susceptibility assessment at the Uttarakhand Area (India). Firstly, a landslide in...
Saved in:
| Published in | Theoretical and applied climatology Vol. 128; no. 1-2; pp. 255 - 273 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Vienna
Springer Vienna
01.04.2017
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0177-798X 1434-4483 |
| DOI | 10.1007/s00704-015-1702-9 |
Cover
| Abstract | The objective of this study is to make a comparison of the prediction performance of three techniques, Functional Trees (FT), Multilayer Perceptron Neural Networks (MLP Neural Nets), and Naïve Bayes (NB) for landslide susceptibility assessment at the Uttarakhand Area (India). Firstly, a landslide inventory map with 430 landslide locations in the study area was constructed from various sources. Landslide locations were then randomly split into two parts (i) 70 % landslide locations being used for training models (ii) 30 % landslide locations being employed for validation process. Secondly, a total of eleven landslide conditioning factors including slope angle, slope aspect, elevation, curvature, lithology, soil, land cover, distance to roads, distance to lineaments, distance to rivers, and rainfall were used in the analysis to elucidate the spatial relationship between these factors and landslide occurrences. Feature selection of Linear Support Vector Machine (LSVM) algorithm was employed to assess the prediction capability of these conditioning factors on landslide models. Subsequently, the NB, MLP Neural Nets, and FT models were constructed using training dataset. Finally, success rate and predictive rate curves were employed to validate and compare the predictive capability of three used models. Overall, all the three models performed very well for landslide susceptibility assessment. Out of these models, the MLP Neural Nets and the FT models had almost the same predictive capability whereas the MLP Neural Nets (AUC = 0.850) was slightly better than the FT model (AUC = 0.849). The NB model (AUC = 0.838) had the lowest predictive capability compared to other models. Landslide susceptibility maps were final developed using these three models. These maps would be helpful to planners and engineers for the development activities and land-use planning. |
|---|---|
| AbstractList | The objective of this study is to make a comparison of the prediction performance of three techniques, Functional Trees (FT), Multilayer Perceptron Neural Networks (MLP Neural Nets), and Naïve Bayes (NB) for landslide susceptibility assessment at the Uttarakhand Area (India). Firstly, a landslide inventory map with 430 landslide locations in the study area was constructed from various sources. Landslide locations were then randomly split into two parts (i) 70 % landslide locations being used for training models (ii) 30 % landslide locations being employed for validation process. Secondly, a total of eleven landslide conditioning factors including slope angle, slope aspect, elevation, curvature, lithology, soil, land cover, distance to roads, distance to lineaments, distance to rivers, and rainfall were used in the analysis to elucidate the spatial relationship between these factors and landslide occurrences. Feature selection of Linear Support Vector Machine (LSVM) algorithm was employed to assess the prediction capability of these conditioning factors on landslide models. Subsequently, the NB, MLP Neural Nets, and FT models were constructed using training dataset. Finally, success rate and predictive rate curves were employed to validate and compare the predictive capability of three used models. Overall, all the three models performed very well for landslide susceptibility assessment. Out of these models, the MLP Neural Nets and the FT models had almost the same predictive capability whereas the MLP Neural Nets (AUC = 0.850) was slightly better than the FT model (AUC = 0.849). The NB model (AUC = 0.838) had the lowest predictive capability compared to other models. Landslide susceptibility maps were final developed using these three models. These maps would be helpful to planners and engineers for the development activities and land-use planning. The objective of this study is to make a comparison of the prediction performance of three techniques, Functional Trees (FT), Multilayer Perceptron Neural Networks (MLP Neural Nets), and Naïve Bayes (NB) for landslide susceptibility assessment at the Uttarakhand Area (India). Firstly, a landslide inventory map with 430 landslide locations in the study area was constructed from various sources. Landslide locations were then randomly split into two parts (i) 70 % landslide locations being used for training models (ii) 30 % landslide locations being employed for validation process. Secondly, a total of eleven landslide conditioning factors including slope angle, slope aspect, elevation, curvature, lithology, soil, land cover, distance to roads, distance to lineaments, distance to rivers, and rainfall were used in the analysis to elucidate the spatial relationship between these factors and landslide occurrences. Feature selection of Linear Support Vector Machine (LSVM) algorithm was employed to assess the prediction capability of these conditioning factors on landslide models. Subsequently, the NB, MLP Neural Nets, and FT models were constructed using training dataset. Finally, success rate and predictive rate curves were employed to validate and compare the predictive capability of three used models. Overall, all the three models performed very well for landslide susceptibility assessment. Out of these models, the MLP Neural Nets and the FT models had almost the same predictive capability whereas the MLP Neural Nets (AUC = 0.850) was slightly better than the FT model (AUC = 0.849). The NB model (AUC = 0.838) had the lowest predictive capability compared to other models. Landslide susceptibility maps were final developed using these three models. These maps would be helpful to planners and engineers for the development activities and land-use planning. The objective of this study is to make a comparison of the prediction performance of three techniques, Functional Trees (FT), Multilayer Perceptron Neural Networks (MLP Neural Nets), and Naive Bayes (NB) for landslide susceptibility assessment at the Uttarakhand Area (India). Firstly, a landslide inventory map with 430 landslide locations in the study area was constructed from various sources. Landslide locations were then randomly split into two parts (i) 70 % landslide locations being used for training models (ii) 30 % landslide locations being employed for validation process. Secondly, a total of eleven landslide conditioning factors including slope angle, slope aspect, elevation, curvature, lithology, soil, land cover, distance to roads, distance to lineaments, distance to rivers, and rainfall were used in the analysis to elucidate the spatial relationship between these factors and landslide occurrences. Feature selection of Linear Support Vector Machine (LSVM) algorithm was employed to assess the prediction capability of these conditioning factors on landslide models. Subsequently, the NB, MLP Neural Nets, and FT models were constructed using training dataset. Finally, success rate and predictive rate curves were employed to validate and compare the predictive capability of three used models. Overall, all the three models performed very well for landslide susceptibility assessment. Out of these models, the MLP Neural Nets and the FT models had almost the same predictive capability whereas the MLP Neural Nets (AUC = 0.850) was slightly better than the FT model (AUC = 0.849). The NB model (AUC = 0.838) had the lowest predictive capability compared to other models. Landslide susceptibility maps were final developed using these three models. These maps would be helpful to planners and engineers for the development activities and land-use planning. |
| Author | Indra, Prakash Pourghasemi, Hamid Reza Pham, Binh Thai Dholakia, M. B. Tien Bui, Dieu |
| Author_xml | – sequence: 1 givenname: Binh Thai surname: Pham fullname: Pham, Binh Thai email: phambinhgtvt@gmail.com organization: Department of Civil Engineering, Gujarat Technological University, Department of Geotechnical Engineering, University of Transport Technology – sequence: 2 givenname: Dieu surname: Tien Bui fullname: Tien Bui, Dieu organization: Geographic Information System Group, Department of Business Administration and Computer Science, University College of Southeast Norway – sequence: 3 givenname: Hamid Reza surname: Pourghasemi fullname: Pourghasemi, Hamid Reza organization: Department of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University – sequence: 4 givenname: Prakash surname: Indra fullname: Indra, Prakash organization: Department of Science & Technology, Bhaskarcharya Institute for Space Applications and Geo-Informatics (BISAG), Government of Gujarat – sequence: 5 givenname: M. B. surname: Dholakia fullname: Dholakia, M. B. organization: Department of Civil Engineering, LDCE, Gujarat Technological University |
| BookMark | eNqFksFu1DAQhiNUJLaFB-BmiUuRCNiOs064oYqWlVbiAJW4RRN70nWbOMHjFO1T8RB9AR4Jp9sDqgRcPJbn-2fGo_84O_Kjxyx7Kfhbwbl-R-ngKueizIXmMq-fZCuhCpUrVRVH2YoLrXNdV9-eZcdE15xzuV7rVfZrC95S7ywymsngFF3rehf3DIiQiAb0kTnP4g7ZZYwQ4GaXJAwCAjvdeOvgNZvJ-St2sfnyngEz4zBBcDR6RnG2ezZ2bAponYkuvRmY4KFFSni4-3mLrIU90hs2zH10fboHNmFYpglJ4XEO0KcQf4zhJmFL_2729_VSIgZEYgPG3Wjpefa0g57wxUM8yS7PP349-5RvP19szj5sc1OsizpHU2lQpkZd8q4GKWUr2qK1xhZGl7otpBUKVcehFqWyIDrOS8u7QkkpuGqLk-z0UHcK4_cZKTaDS_vre_A4ztTItGKl9Xpd_hcVVVXVWiq5oK8eodfjHNIn7ylR1FLVdaL0gTJhJArYNcZFWLYRA7i-EbxZTNEcTNEkUzSLKZpFKR4pp-AGCPt_auRBQ4n1Vxj-mOmvot-1ZdBG |
| CitedBy_id | crossref_primary_10_1007_s10064_017_1010_y crossref_primary_10_1016_j_qsa_2024_100180 crossref_primary_10_1007_s12145_025_01727_x crossref_primary_10_1080_19475705_2021_1920480 crossref_primary_10_5194_nhess_22_1395_2022 crossref_primary_10_1155_2022_9923775 crossref_primary_10_1007_s11069_022_05339_2 crossref_primary_10_1007_s12665_019_8562_z crossref_primary_10_1007_s00531_023_02337_y crossref_primary_10_3390_rs13204129 crossref_primary_10_1016_j_gsf_2023_101541 crossref_primary_10_3390_app9061248 crossref_primary_10_1016_j_catena_2018_12_018 crossref_primary_10_1007_s10064_018_1401_8 crossref_primary_10_1061_NHREFO_NHENG_1665 crossref_primary_10_1007_s12040_024_02450_9 crossref_primary_10_1016_j_catena_2020_105114 crossref_primary_10_3390_f10090743 crossref_primary_10_1109_LGRS_2020_2989497 crossref_primary_10_3390_app10072466 crossref_primary_10_3390_rs10101538 crossref_primary_10_1007_s10668_022_02314_6 crossref_primary_10_1016_j_heliyon_2023_e16186 crossref_primary_10_3390_ijgi12120503 crossref_primary_10_1007_s10064_018_1256_z crossref_primary_10_1016_j_catena_2018_08_025 crossref_primary_10_1080_10106049_2016_1165294 crossref_primary_10_1155_2022_6912018 crossref_primary_10_1007_s00477_024_02683_6 crossref_primary_10_1007_s12665_016_6374_y crossref_primary_10_1080_19475683_2025_2481063 crossref_primary_10_1155_2021_9914650 crossref_primary_10_1016_j_asr_2024_06_018 crossref_primary_10_1016_j_scitotenv_2018_04_055 crossref_primary_10_1007_s12517_022_09699_8 crossref_primary_10_1214_20_AOAS1326 crossref_primary_10_1016_j_jafrearsci_2024_105237 crossref_primary_10_1016_j_sbsr_2021_100435 crossref_primary_10_1007_s10064_017_1202_5 crossref_primary_10_1007_s12145_024_01455_8 crossref_primary_10_1080_19475705_2021_1890644 crossref_primary_10_3390_sym12111848 crossref_primary_10_1007_s10706_017_0264_2 crossref_primary_10_3390_s18113704 crossref_primary_10_1007_s12040_018_1047_8 crossref_primary_10_1049_iet_syb_2019_0028 crossref_primary_10_1007_s10346_016_0708_4 crossref_primary_10_1016_j_asr_2024_10_018 crossref_primary_10_1007_s11053_022_10100_4 crossref_primary_10_3389_fenvs_2022_1009433 crossref_primary_10_1080_10106049_2018_1510038 crossref_primary_10_1016_j_ecolind_2020_106300 crossref_primary_10_1016_j_srs_2024_100132 crossref_primary_10_1016_j_gsf_2024_101960 crossref_primary_10_3390_app12189029 crossref_primary_10_1007_s42514_022_00097_w crossref_primary_10_1016_j_catena_2018_12_035 crossref_primary_10_1515_geo_2020_0206 crossref_primary_10_1007_s12665_023_10846_x crossref_primary_10_1007_s10064_023_03188_2 crossref_primary_10_1016_j_nhres_2024_10_003 crossref_primary_10_1007_s43538_024_00305_x crossref_primary_10_1007_s00704_016_1919_2 crossref_primary_10_1007_s13762_022_04491_3 crossref_primary_10_1080_10106049_2021_1948109 crossref_primary_10_3390_ijgi9030144 crossref_primary_10_1007_s12665_019_8415_9 crossref_primary_10_1016_j_rsase_2020_100411 crossref_primary_10_1007_s11069_024_06903_8 crossref_primary_10_3390_w12113066 crossref_primary_10_1007_s12303_018_0052_x crossref_primary_10_1080_19475705_2023_2227324 crossref_primary_10_1088_1755_1315_1064_1_012031 crossref_primary_10_3390_app14125084 crossref_primary_10_1002_ldr_3255 crossref_primary_10_1080_10106049_2022_2066202 crossref_primary_10_1007_s10064_023_03498_5 crossref_primary_10_1007_s41062_019_0215_2 crossref_primary_10_1007_s41748_024_00545_3 crossref_primary_10_1016_j_jhydrol_2020_124808 crossref_primary_10_1080_17538947_2020_1860145 crossref_primary_10_1007_s10586_024_05017_x crossref_primary_10_1080_17538947_2023_2249863 crossref_primary_10_1007_s12665_018_7548_6 crossref_primary_10_1016_j_catena_2019_03_017 crossref_primary_10_1007_s40710_017_0248_5 crossref_primary_10_3390_rs13244966 crossref_primary_10_1007_s10064_018_1273_y crossref_primary_10_1007_s12517_024_12022_2 crossref_primary_10_1007_s11069_021_04986_1 crossref_primary_10_3390_rs13224694 crossref_primary_10_1155_2022_4230674 crossref_primary_10_1016_j_catena_2019_104179 crossref_primary_10_3390_app12084090 crossref_primary_10_3390_w12010239 crossref_primary_10_1080_17445647_2024_2428654 crossref_primary_10_1007_s12145_021_00653_y crossref_primary_10_1016_j_catena_2021_105729 crossref_primary_10_1007_s42979_023_01960_5 crossref_primary_10_3390_f11010118 crossref_primary_10_1007_s12524_018_0791_1 crossref_primary_10_1080_17538947_2016_1169561 crossref_primary_10_1007_s10706_016_9990_0 crossref_primary_10_1007_s12665_022_10195_1 crossref_primary_10_1016_j_petrol_2018_12_013 crossref_primary_10_3390_sym11060762 crossref_primary_10_3390_su11226323 crossref_primary_10_1002_esp_6032 crossref_primary_10_1080_17538947_2023_2229797 crossref_primary_10_3390_rs15041007 crossref_primary_10_3390_rs12233854 crossref_primary_10_1007_s12040_024_02453_6 crossref_primary_10_1007_s12665_021_10152_4 crossref_primary_10_1007_s12665_017_6689_3 crossref_primary_10_1007_s11069_021_04731_8 crossref_primary_10_3390_sym12030325 crossref_primary_10_1016_j_catena_2019_104150 crossref_primary_10_3390_sym16081067 crossref_primary_10_3390_land14040678 crossref_primary_10_1007_s41748_024_00457_2 crossref_primary_10_1016_j_uclim_2023_101503 crossref_primary_10_1007_s12518_018_0248_9 crossref_primary_10_3390_su11164386 crossref_primary_10_1080_10106049_2018_1425738 crossref_primary_10_1007_s12524_023_01760_7 crossref_primary_10_1515_geo_2022_0424 crossref_primary_10_1016_j_scitotenv_2019_02_263 crossref_primary_10_1080_10106049_2018_1499820 crossref_primary_10_3390_su11247118 crossref_primary_10_1007_s10064_023_03409_8 crossref_primary_10_3390_ijgi9070443 crossref_primary_10_1145_3380972 crossref_primary_10_3390_f11040421 crossref_primary_10_1016_j_catena_2020_104777 crossref_primary_10_2113_2022_5216125 crossref_primary_10_1061__ASCE_NH_1527_6996_0000398 crossref_primary_10_1016_j_jhydrol_2019_03_073 crossref_primary_10_1080_17499518_2021_1957484 crossref_primary_10_1007_s00500_023_08951_x crossref_primary_10_3390_app10010016 crossref_primary_10_3390_land10100995 crossref_primary_10_1038_s41598_020_69233_2 crossref_primary_10_1007_s00477_022_02342_8 crossref_primary_10_1080_19475683_2022_2040587 crossref_primary_10_4236_ojapps_2021_1111094 crossref_primary_10_3390_s22041573 crossref_primary_10_3390_w16050657 crossref_primary_10_3934_environsci_2024029 crossref_primary_10_1080_10106049_2022_2120546 crossref_primary_10_1007_s10708_019_09991_3 crossref_primary_10_1115_1_4045742 crossref_primary_10_3390_ijgi9120696 crossref_primary_10_1007_s10668_023_04117_9 crossref_primary_10_1007_s11069_020_04141_2 crossref_primary_10_3390_app10010029 crossref_primary_10_1016_j_gsf_2020_09_004 crossref_primary_10_1007_s11069_021_04638_4 crossref_primary_10_3390_rs15204952 crossref_primary_10_1007_s13351_022_1214_3 crossref_primary_10_1016_j_jhydrol_2020_125423 crossref_primary_10_1016_j_geoderma_2019_01_050 crossref_primary_10_1007_s12665_019_8225_0 crossref_primary_10_1080_10298436_2023_2201902 crossref_primary_10_1016_j_petrol_2019_02_045 crossref_primary_10_1186_s40562_022_00249_4 crossref_primary_10_3390_s19214698 crossref_primary_10_1007_s10064_021_02275_6 crossref_primary_10_1080_19475705_2021_1960433 crossref_primary_10_1007_s11629_018_5168_y crossref_primary_10_3390_w12092572 crossref_primary_10_1007_s11069_020_04453_3 crossref_primary_10_1016_j_ijdrr_2020_101642 crossref_primary_10_3390_geosciences11080333 crossref_primary_10_1186_s40677_024_00307_3 crossref_primary_10_1007_s12517_022_09974_8 crossref_primary_10_1007_s12517_022_10865_1 crossref_primary_10_1155_2021_4832864 crossref_primary_10_1007_s11069_022_05570_x crossref_primary_10_3390_ijgi8020079 crossref_primary_10_1007_s11069_025_07132_3 crossref_primary_10_1016_j_scitotenv_2018_06_389 crossref_primary_10_1007_s12665_024_11911_9 crossref_primary_10_1080_19475705_2020_1785555 crossref_primary_10_1016_j_gsf_2020_05_010 crossref_primary_10_1016_j_rsase_2022_100905 crossref_primary_10_3390_w15122287 crossref_primary_10_3390_w13243520 crossref_primary_10_1080_10106049_2021_1920629 crossref_primary_10_1080_19475705_2017_1289250 crossref_primary_10_1016_j_scitotenv_2019_134514 crossref_primary_10_1007_s10064_025_04097_2 crossref_primary_10_1111_nrm_12409 crossref_primary_10_3390_e20110868 crossref_primary_10_1007_s11069_023_06310_5 crossref_primary_10_1007_s13201_023_02049_3 crossref_primary_10_1016_j_ejrh_2021_100848 crossref_primary_10_1016_j_scs_2022_104307 crossref_primary_10_1002_gj_4932 crossref_primary_10_1007_s12517_021_08871_w crossref_primary_10_1007_s10064_019_01572_5 crossref_primary_10_1007_s11069_024_06596_z crossref_primary_10_1007_s11356_024_33128_w crossref_primary_10_1080_10106049_2020_1730451 crossref_primary_10_3389_feart_2024_1431203 crossref_primary_10_1080_10106049_2018_1559885 crossref_primary_10_1007_s11069_020_04498_4 crossref_primary_10_1016_j_jhydrol_2020_125615 crossref_primary_10_3390_rs12030475 crossref_primary_10_1007_s11629_018_5337_z crossref_primary_10_1007_s11356_024_32075_w crossref_primary_10_1007_s12665_020_09227_5 crossref_primary_10_3390_app8122540 crossref_primary_10_3390_f15091535 crossref_primary_10_1007_s11069_016_2304_2 crossref_primary_10_3390_s20051313 crossref_primary_10_3390_rs11212575 crossref_primary_10_1007_s10064_022_02748_2 crossref_primary_10_2174_1573405615666190404163233 crossref_primary_10_1016_j_scitotenv_2023_161430 crossref_primary_10_3390_ijerph17082749 crossref_primary_10_1038_s41467_022_32650_0 crossref_primary_10_1007_s12524_016_0620_3 crossref_primary_10_1080_19475705_2023_2273214 crossref_primary_10_1016_j_jenvman_2021_112449 crossref_primary_10_3390_rs14071730 crossref_primary_10_5194_hess_22_4771_2018 crossref_primary_10_1016_j_pce_2022_103198 crossref_primary_10_1007_s12665_016_5919_4 crossref_primary_10_1007_s12665_024_11501_9 crossref_primary_10_1007_s12040_022_01881_6 crossref_primary_10_3390_rs11242995 crossref_primary_10_3390_e21020106 crossref_primary_10_1155_2022_6505372 crossref_primary_10_3390_app8071046 crossref_primary_10_1007_s10064_021_02194_6 crossref_primary_10_3390_s19163590 crossref_primary_10_1186_s40677_019_0124_x crossref_primary_10_1080_10106049_2018_1544288 crossref_primary_10_1007_s00477_021_02036_7 crossref_primary_10_3390_electronics13071271 crossref_primary_10_1007_s11356_022_22118_5 crossref_primary_10_3390_app9142824 crossref_primary_10_1007_s12145_023_01032_5 crossref_primary_10_3390_rs14194803 crossref_primary_10_1080_13632469_2020_1838358 crossref_primary_10_1080_17538947_2023_2295408 crossref_primary_10_1007_s11629_018_4833_5 crossref_primary_10_1016_j_engappai_2022_105690 crossref_primary_10_3390_rs13234782 crossref_primary_10_21523_gcj1_2024080101 crossref_primary_10_3390_s22093119 crossref_primary_10_1080_19475705_2016_1250112 |
| Cites_doi | 10.1093/bioinformatics/btq619 10.1109/JSTARS.2014.2341276 10.1016/j.cageo.2010.10.012 10.1016/j.enggeo.2006.05.001 10.1007/s11069-012-0217-2 10.1016/S0013-7952(03)00142-X 10.1016/S1352-2310(97)00447-0 10.1016/j.geomorph.2012.03.036 10.1016/j.geomorph.2004.06.010 10.1007/s10346-007-0080-5 10.1016/j.catena.2015.05.019 10.1016/j.enggeo.2015.04.004 10.1007/s10651-010-0147-7 10.1016/j.eswa.2012.10.072 10.1007/s12665-010-0724-y 10.1007/s10346-013-0391-7 10.1371/journal.pone.0133262 10.1016/j.jseaes.2012.10.005 10.1016/S0273-1177(97)00882-X 10.1016/S0013-7952(03)00069-3 10.1016/j.compenvurbsys.2009.12.004 10.1007/s12517-012-0807-z 10.1007/s12665-009-0245-8 10.1007/s10346-011-0283-7 10.1016/j.catena.2014.04.009 10.1016/j.catena.2013.11.014 10.1007/s12517-012-0610-x 10.1016/j.cageo.2012.03.003 10.1016/j.geomorph.2013.08.021 10.1016/j.geomorph.2012.12.001 10.1016/j.cageo.2011.05.010 10.1016/j.catena.2012.04.001 10.5194/nhess-5-853-2005 10.1016/j.jseaes.2012.12.014 10.1016/j.cageo.2011.10.031 10.1002/etc.2746 10.1016/j.neucom.2013.10.044 10.1016/j.asoc.2007.10.012 10.1016/j.csda.2006.09.028 10.1007/s11069-014-1128-1 10.1016/j.catena.2013.08.006 10.1016/j.knosys.2010.04.004 10.1007/s12040-013-0282-2 10.1016/j.proeng.2011.08.404 10.1016/j.cageo.2011.04.012 10.1016/j.enggeo.2011.09.011 10.1016/S1088-467X(97)00008-5 10.1016/j.enggeo.2011.09.006 10.1007/s12665-010-0509-3 10.1016/j.cageo.2013.07.018 10.1016/j.geomorph.2009.09.023 10.1016/j.asoc.2012.07.029 10.1144/1470-9236/09-029 10.1039/c2mb25039j 10.1023/B:MACH.0000027782.67192.13 10.1016/j.cageo.2013.11.009 10.1016/j.geomorph.2011.12.040 10.1007/s11069-012-0163-z 10.1016/S0167-7012(00)00201-3 10.1007/s00254-007-1090-2 10.1016/j.cageo.2008.08.007 10.4236/ijg.2014.51006 10.1016/j.geomorph.2013.08.013 10.1016/j.cageo.2012.08.023 10.3390/rs70404318 10.1016/j.apenergy.2008.06.003 10.1016/j.geomorph.2007.06.001 10.1007/s12517-012-0532-7 10.1016/S0004-3702(03)00079-1 10.1007/3-540-44399-1_28 10.5194/nhess-12-2719-2012 10.1109/IJCNN.2010.5596360 10.1016/j.geomorph.2005.12.003 10.1023/B:NHAZ.0000007172.62651.2b 10.1016/j.earscirev.2012.02.001 10.1007/s11069-006-9027-8 10.1016/j.cageo.2010.04.004 10.1007/BF00058655 10.1007/978-3-319-05050-8_65 10.1007/978-3-319-05906-8_6 10.1127/zfg/16/1972/432 10.1109/INTECH.2013.6653646 10.1007/978-3-319-17738-0_13 10.1145/1008992.1009034 10.1016/j.catena.2011.01.014 10.1007/s000240050017 10.1007/978-3-540-69970-5 10.1007/978-3-540-30115-8_46 10.1007/978-3-642-32618-9_22 10.1007/11573548_1 10.5121/ijcnc.2014.6315 10.1155/2012/974638 10.1016/j.geomorph.2006.10.035 10.1007/978-0-387-09697-1_3 10.1007/s11069-015-1799-2 10.1016/j.geomorph.2005.06.002 10.1007/BF02591446 10.1109/TGRS.2010.2050328 10.1016/j.dss.2009.07.004 10.1007/s11069-015-1702-1 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Wien 2015 Theoretical and Applied Climatology is a copyright of Springer, 2017. |
| Copyright_xml | – notice: Springer-Verlag Wien 2015 – notice: Theoretical and Applied Climatology is a copyright of Springer, 2017. |
| DBID | AAYXX CITATION 3V. 7QH 7TG 7TN 7UA 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G L6V M2P M7S P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7S9 L.6 |
| DOI | 10.1007/s00704-015-1702-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database (Proquest) Engineering Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1434-4483 |
| EndPage | 273 |
| ExternalDocumentID | 4321217997 10_1007_s00704_015_1702_9 |
| GeographicLocations | ISW, India India |
| GeographicLocations_xml | – name: ISW, India – name: India |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 199 1N0 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBD EBLON EBS EDH EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IEP IFM IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW L6V LAS LK5 LLZTM M2P M4Y M7R M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 XXG Y6R YLTOR Z45 Z5O Z7R Z7U Z7Y Z7Z Z83 Z86 Z88 Z8M Z8O Z8S Z8T Z8W Z8Z Z92 ZMTXR ZY4 ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7QH 7TG 7TN 7UA 7XB 8FK C1K F1W H96 KL. L.G PKEHL PQEST PQUKI PRINS Q9U 7S9 L.6 |
| ID | FETCH-LOGICAL-c3639-ec87a4c9e750f9a222b1b3bdcd3c757b32d14e4f0a9154da1f005d0f3422104b3 |
| IEDL.DBID | U2A |
| ISSN | 0177-798X |
| IngestDate | Sun Aug 24 03:54:16 EDT 2025 Tue Oct 07 10:00:32 EDT 2025 Sat Aug 16 04:21:07 EDT 2025 Thu Apr 24 23:05:07 EDT 2025 Wed Oct 01 04:42:31 EDT 2025 Fri Feb 21 02:41:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | Landslide Susceptibility Landslide Occurrence Landslide Susceptibility Assessment Landslide Location Functional Tree |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3639-ec87a4c9e750f9a222b1b3bdcd3c757b32d14e4f0a9154da1f005d0f3422104b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1881392499 |
| PQPubID | 48318 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_2000477665 proquest_miscellaneous_1888972425 proquest_journals_1881392499 crossref_citationtrail_10_1007_s00704_015_1702_9 crossref_primary_10_1007_s00704_015_1702_9 springer_journals_10_1007_s00704_015_1702_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20170400 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 4 year: 2017 text: 20170400 |
| PublicationDecade | 2010 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna – name: Wien |
| PublicationTitle | Theoretical and applied climatology |
| PublicationTitleAbbrev | Theor Appl Climatol |
| PublicationYear | 2017 |
| Publisher | Springer Vienna Springer Nature B.V |
| Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
| References | Bai, Lü, Wang, Zhou, Ding (CR9) 2011; 62 Soni, Ansari, Sharma, Soni (CR101) 2011; 17 Saboya, da Glória, Dias Pinto (CR90) 2006; 86 Murata, Yoshizawa, Amari (CR68) 1994; 5 Aksoy, Ercanoglu (CR4) 2012; 38 Ayalew, Yamagishi (CR7) 2005; 65 CR37 Chen, Li, Chen, Yn, Peijnenburg (CR16) 2014; 33 Dou, Chang, Chen, Yunus, Liu, Xia, Zhu (CR30) 2015; 7 Jebur, Pradhan, Tehrany (CR51) 2015; 8 CR34 CR33 Sezer, Pradhan, Gokceoglu (CR98) 2013; 40 Chen, Zeng, Jiang, Tang (CR18) 2015; 149 CR31 Bhargavi, Jyothi (CR12) 2009; 9 Benediktsson, Swain, Ersoy (CR11) 1990; 28 CR49 CR47 Zhang, Gao (CR120) 2011; 15 Gardner, Dorling (CR41) 1998; 32 CR46 CR45 CR42 Fourniadis, Liu, Mason (CR36) 2007; 4 Dash, Liu (CR27) 2003; 151 Constantin, Bednarik, Jurchescu, Vlaicu (CR23) 2011; 63 Marjanovic, Kovacevic, Bajat, Vozenílek (CR63) 2011; 123 Soria, Garibaldi, Biganzoli, Ellis (CR102) 2008 Pradhan (CR81) 2011; 18 Aguiar-Pulido, Munteanu, Seoane, Fernández-Blanco, Pérez-Montoto, González-Díaz, Dorado (CR1) 2012; 8 Schicker, Moon (CR95) 2012; 161–162 Alimohammadlou, Najafi, Gokceoglu (CR5) 2014; 120 CR59 Oh, Pradhan (CR71) 2011; 37 Pradhan, Abokharima, Jebur, Tehrany (CR83) 2014; 73 CR52 Feizizadeh, Jankowski, Blaschke (CR35) 2014; 64 CR50 Pourghasemi, Jirandeh, Pradhan, Xu, Gokceoglu (CR78) 2013; 2 Kayastha, Dhital, De Smedt (CR56) 2012; 63 Pourghasemi, Pradhan, Gokceoglu (CR79) 2012; 63 Stocking (CR103) 1972; 16 Choi, Oh, Lee, Lee, Lee (CR19) 2012; 124 Conoscenti, Angileri, Cappadonia, Rotigliano, Agnesi, Märker (CR22) 2014; 204 Martha, van Westen, Kerle, Jetten, Vinod Kumar (CR64) 2013; 184 Basheer, Hajmeer (CR10) 2000; 43 Kavzoglu, Sahin, Colkesen (CR55) 2014; 11 Dou, Paudel, Oguchi, Uchiyama, Hayakavva (CR32) 2015 CR69 CR66 CR65 Nerini, Ghattas (CR70) 2007; 51 Mohammady, Pourghasemi, Pradhan (CR67) 2012; 61 Sarkar, Kanungo, Chauhan (CR92) 2011; 44 Yilmaz (CR117) 2009; 35 CR60 Shahabi, Khezri, Ahmad, Hashim (CR99) 2014; 115 Pradhan (CR82) 2013; 51 Althuwaynee, Pradhan, Lee (CR6) 2012; 44 Conforti, Pascale, Robustelli, Sdao (CR21) 2014; 113 Şenkal, Kuleli (CR97) 2009; 86 Hong, Pradhan, Xu, Tien Bui (CR48) 2015; 133 Peng, Niu, Huang, Wu, Zhao, Ye (CR76) 2014; 204 CR77 CR115 CR116 Xu, Dai, Xu, Lee (CR114) 2012; 145–146 CR73 CR111 CR112 CR110 Das, Sahoo, van Westen, Stein, Hack (CR25) 2010; 114 Lee, Ryu, Won, Park (CR58) 2004; 71 Zare, Pourghasemi, Vafakhah, Pradhan (CR118) 2013; 6 CR119 Akgun, Sezer, Nefeslioglu, Gokceoglu, Pradhan (CR3) 2012; 38 Gama (CR38) 2004; 55 Guha-Sapir, Hoyois, Below (CR43) 2014 Dou (CR29) 2015; 10 Tien Bui, Pradhan, Lofman, Revhaug, Dick (CR108) 2012; 96 Ohlmacher, Davis (CR72) 2003; 69 CR8 Ozdemir, Altural (CR74) 2013; 64 Pareek, Pal, Sharma, Arora (CR75) 2013; 61 Kavzoglu, Kutlug Sahin, Colkesen (CR54) 2015; 192 Pradhan, Lee (CR84) 2010; 60 CR87 CR86 Regmi, Devkota, Yoshida, Pradhan, Pourghasemi, Kumamoto, Akgun (CR88) 2014; 7 Guyon, Elisseeff (CR44) 2003; 3 Pradhan, Lee, Buchroithner (CR85) 2010; 34 Lan, Frank, Hall (CR57) 2011 CR17 Lu, Chiang, Keh, Huang (CR62) 2010; 23 Brenning (CR14) 2005; 5 CR15 CR13 Akgun (CR2) 2012; 9 Lin, Lee, Chen, Tseng (CR61) 2008; 8 CR96 CR94 CR93 CR91 Gaprindashvili, Guo, Daorueang, Xin, Rahimy (CR39) 2014; 5 Singhroy, Mattar, Gray (CR100) 1998; 21 Rosen, Reichenberger, Rosenfeld (CR89) 2011; 27 Garcia-Rodriguez, Malpica, Benito, Diaz (CR40) 2008; 95 Pourghasemi, Pradhan, Gokceoglu, Mohammadi, Moradi (CR80) 2013; 6 Tien Bui, Pradhan, Lofman, Revhaug, Dick (CR107) 2012; 45 Dash, Liu (CR26) 1997; 1 CR28 CR104 CR105 CR20 Dai, Xu (CR24) 2013; 13 Karegowda, Manjunath, Jayaram (CR53) 2010; 2 Vijith, Madhu (CR113) 2008; 55 CR109 CR106 I Fourniadis (1702_CR36) 2007; 4 B Pradhan (1702_CR81) 2011; 18 1702_CR112 1702_CR115 HR Pourghasemi (1702_CR78) 2013; 2 1702_CR111 1702_CR110 1702_CR31 1702_CR116 1702_CR34 1702_CR119 1702_CR33 O Şenkal (1702_CR97) 2009; 86 I Basheer (1702_CR10) 2000; 43 1702_CR37 J Gama (1702_CR38) 2004; 55 AD Regmi (1702_CR88) 2014; 7 A Akgun (1702_CR3) 2012; 38 C Conoscenti (1702_CR22) 2014; 204 S Lee (1702_CR58) 2004; 71 1702_CR104 1702_CR109 V Aguiar-Pulido (1702_CR1) 2012; 8 C Xu (1702_CR114) 2012; 145–146 1702_CR106 1702_CR42 1702_CR105 1702_CR45 1702_CR47 1702_CR46 1702_CR49 G Chen (1702_CR16) 2014; 33 OF Althuwaynee (1702_CR6) 2012; 44 GC Ohlmacher (1702_CR72) 2003; 69 B Pradhan (1702_CR85) 2010; 34 1702_CR94 I Guyon (1702_CR44) 2003; 3 1702_CR93 1702_CR96 A Ozdemir (1702_CR74) 2013; 64 N Pareek (1702_CR75) 2013; 61 1702_CR13 J Dai (1702_CR24) 2013; 13 1702_CR15 1702_CR17 D Guha-Sapir (1702_CR43) 2014 L Peng (1702_CR76) 2014; 204 J Chen (1702_CR18) 2015; 149 H-J Oh (1702_CR71) 2011; 37 G Gaprindashvili (1702_CR39) 2014; 5 M Constantin (1702_CR23) 2011; 63 M Dash (1702_CR27) 2003; 151 M Dash (1702_CR26) 1997; 1 F Saboya Jr (1702_CR90) 2006; 86 B Pradhan (1702_CR82) 2013; 51 MJ Garcia-Rodriguez (1702_CR40) 2008; 95 1702_CR20 MN Jebur (1702_CR51) 2015; 8 S Bai (1702_CR9) 2011; 62 1702_CR28 V Singhroy (1702_CR100) 1998; 21 M Marjanovic (1702_CR63) 2011; 123 I Das (1702_CR25) 2010; 114 H Shahabi (1702_CR99) 2014; 115 AG Karegowda (1702_CR53) 2010; 2 HR Pourghasemi (1702_CR79) 2012; 63 1702_CR73 R Schicker (1702_CR95) 2012; 161–162 GL Rosen (1702_CR89) 2011; 27 1702_CR77 Y Alimohammadlou (1702_CR5) 2014; 120 S Sarkar (1702_CR92) 2011; 44 H Lan (1702_CR57) 2011 W Zhang (1702_CR120) 2011; 15 M Mohammady (1702_CR67) 2012; 61 D Soria (1702_CR102) 2008 B Feizizadeh (1702_CR35) 2014; 64 A Akgun (1702_CR2) 2012; 9 S-W Lin (1702_CR61) 2008; 8 1702_CR91 EA Sezer (1702_CR98) 2013; 40 1702_CR87 B Pradhan (1702_CR84) 2010; 60 1702_CR86 D Tien Bui (1702_CR108) 2012; 96 J Dou (1702_CR30) 2015; 7 B Pradhan (1702_CR83) 2014; 73 B Aksoy (1702_CR4) 2012; 38 J Dou (1702_CR32) 2015 M Zare (1702_CR118) 2013; 6 M Conforti (1702_CR21) 2014; 113 N Murata (1702_CR68) 1994; 5 S-H Lu (1702_CR62) 2010; 23 M Stocking (1702_CR103) 1972; 16 1702_CR50 1702_CR52 L Ayalew (1702_CR7) 2005; 65 TR Martha (1702_CR64) 2013; 184 J Benediktsson (1702_CR11) 1990; 28 A Brenning (1702_CR14) 2005; 5 J Soni (1702_CR101) 2011; 17 T Kavzoglu (1702_CR54) 2015; 192 J Choi (1702_CR19) 2012; 124 HR Pourghasemi (1702_CR80) 2013; 6 I Yilmaz (1702_CR117) 2009; 35 1702_CR59 P Kayastha (1702_CR56) 2012; 63 D Nerini (1702_CR70) 2007; 51 H Vijith (1702_CR113) 2008; 55 M Gardner (1702_CR41) 1998; 32 J Dou (1702_CR29) 2015; 10 1702_CR60 1702_CR65 P Bhargavi (1702_CR12) 2009; 9 H Hong (1702_CR48) 2015; 133 1702_CR8 1702_CR66 1702_CR69 T Kavzoglu (1702_CR55) 2014; 11 D Tien Bui (1702_CR107) 2012; 45 |
| References_xml | – ident: CR45 – volume: 27 start-page: 127 year: 2011 end-page: 129 ident: CR89 article-title: NBC: the Naive Bayes Classification tool webserver for taxonomic classification of metagenomic reads publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq619 – ident: CR115 – volume: 8 start-page: 674 year: 2015 end-page: 690 ident: CR51 article-title: Manifestation of LiDAR-derived parameters in the spatial prediction of landslides using novel ensemble evidential belief functions and support vector machine models in GIS publication-title: Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of doi: 10.1109/JSTARS.2014.2341276 – volume: 37 start-page: 1264 year: 2011 end-page: 1276 ident: CR71 article-title: Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2010.10.012 – ident: CR77 – ident: CR8 – volume: 86 start-page: 211 year: 2006 end-page: 224 ident: CR90 article-title: Assessment of failure susceptibility of soil slopes using fuzzy logic publication-title: Eng Geol doi: 10.1016/j.enggeo.2006.05.001 – ident: CR106 – start-page: 619 year: 2008 end-page: 624 ident: CR102 article-title: A comparison of three different methods for classification of breast cancer data. In: Machine learning and applications publication-title: ICMLA ’08. Seventh International Conference on, 2008. IEEE – volume: 63 start-page: 965 year: 2012 end-page: 996 ident: CR79 article-title: Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran publication-title: Nat Hazards doi: 10.1007/s11069-012-0217-2 – ident: CR42 – volume: 71 start-page: 289 year: 2004 end-page: 302 ident: CR58 article-title: Determination and application of the weights for landslide susceptibility mapping using an artificial neural network publication-title: Eng Geol doi: 10.1016/S0013-7952(03)00142-X – volume: 32 start-page: 2627 year: 1998 end-page: 2636 ident: CR41 article-title: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences publication-title: Atmospheric environment doi: 10.1016/S1352-2310(97)00447-0 – volume: 161–162 start-page: 40 year: 2012 end-page: 57 ident: CR95 article-title: Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale publication-title: Geomorphology doi: 10.1016/j.geomorph.2012.03.036 – volume: 65 start-page: 15 year: 2005 end-page: 31 ident: CR7 article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains publication-title: Central Japan Geomorphology doi: 10.1016/j.geomorph.2004.06.010 – volume: 4 start-page: 267 year: 2007 end-page: 278 ident: CR36 article-title: Regional assessment of landslide impact in the Three Gorges area. China using ASTER data publication-title: Wushan-Zigui Landslides doi: 10.1007/s10346-007-0080-5 – ident: CR60 – ident: CR112 – volume: 133 start-page: 266 year: 2015 end-page: 281 ident: CR48 article-title: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines publication-title: CATENA doi: 10.1016/j.catena.2015.05.019 – ident: CR109 – year: 2011 ident: CR57 publication-title: Data mining: Practical machine learning tools and techniques – volume: 192 start-page: 101 year: 2015 end-page: 112 ident: CR54 article-title: Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm publication-title: Eng Geol doi: 10.1016/j.enggeo.2015.04.004 – volume: 18 start-page: 471 year: 2011 end-page: 493 ident: CR81 article-title: Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling publication-title: Environmental and Ecological Statistics doi: 10.1007/s10651-010-0147-7 – volume: 40 start-page: 2360 year: 2013 ident: CR98 article-title: Erratum to: “Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia” [Expert Systems with Applications 38 (2011) 8208–8219] publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.10.072 – volume: 63 start-page: 397 year: 2011 end-page: 406 ident: CR23 article-title: Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania) publication-title: Environ Earth Sci doi: 10.1007/s12665-010-0724-y – ident: CR66 – ident: CR91 – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: CR44 article-title: An introduction to variable and feature selection publication-title: J Mach Learning Res – ident: CR47 – volume: 11 start-page: 425 year: 2014 end-page: 439 ident: CR55 article-title: Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression publication-title: Landslides doi: 10.1007/s10346-013-0391-7 – volume: 17 start-page: 43 year: 2011 end-page: 48 ident: CR101 article-title: Predictive data mining for medical diagnosis: an overview of heart disease prediction publication-title: Int J Comput Appl – volume: 10 start-page: e0133262 year: 2015 ident: CR29 article-title: Optimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata, Japan publication-title: PLoS One doi: 10.1371/journal.pone.0133262 – ident: CR33 – volume: 61 start-page: 221 year: 2012 end-page: 236 ident: CR67 article-title: Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster–Shafer, and weights-of-evidence models publication-title: Journal of Asian Earth Sciences doi: 10.1016/j.jseaes.2012.10.005 – volume: 21 start-page: 465 year: 1998 end-page: 476 ident: CR100 article-title: Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images publication-title: Adv Space Res doi: 10.1016/S0273-1177(97)00882-X – ident: CR86 – volume: 69 start-page: 331 year: 2003 end-page: 343 ident: CR72 article-title: Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA publication-title: Eng Geol doi: 10.1016/S0013-7952(03)00069-3 – volume: 34 start-page: 216 year: 2010 end-page: 235 ident: CR85 article-title: A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses publication-title: Comput Environ Urban Syst doi: 10.1016/j.compenvurbsys.2009.12.004 – volume: 7 start-page: 725 year: 2014 end-page: 742 ident: CR88 article-title: Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in CCentral Nepal Himalaya publication-title: Arabian Journal of Geosciences doi: 10.1007/s12517-012-0807-z – volume: 60 start-page: 1037 year: 2010 end-page: 1054 ident: CR84 article-title: Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models publication-title: Environ Earth Sci doi: 10.1007/s12665-009-0245-8 – start-page: 26 year: 2015 ident: CR32 publication-title: Shallow and Deep-Seated Landslide Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area – ident: CR69 – ident: CR94 – volume: 9 start-page: 93 year: 2012 end-page: 106 ident: CR2 article-title: A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey publication-title: Landslides doi: 10.1007/s10346-011-0283-7 – volume: 120 start-page: 149 year: 2014 end-page: 162 ident: CR5 article-title: Estimation of rainfall-induced landslides using ANN and fuzzy clustering methods: A case study in Saeen Slope, Azerbaijan province, Iran publication-title: Catena doi: 10.1016/j.catena.2014.04.009 – volume: 115 start-page: 55 year: 2014 end-page: 70 ident: CR99 article-title: Landslide susceptibility mapping at central Zab basin, Iran: a comparison between analytical hierarchy process, frequency ratio and logistic regression models publication-title: CATENA doi: 10.1016/j.catena.2013.11.014 – ident: CR52 – ident: CR13 – volume: 6 start-page: 2873 year: 2013 end-page: 2888 ident: CR118 article-title: Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms publication-title: Arab J Geosci doi: 10.1007/s12517-012-0610-x – volume: 44 start-page: 120 year: 2012 end-page: 135 ident: CR6 article-title: Application of an evidential belief function model in landslide susceptibility mapping publication-title: Comput Geosci doi: 10.1016/j.cageo.2012.03.003 – volume: 204 start-page: 399 year: 2014 end-page: 411 ident: CR22 article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy) publication-title: Geomorphology doi: 10.1016/j.geomorph.2013.08.021 – volume: 184 start-page: 139 year: 2013 end-page: 150 ident: CR64 article-title: Landslide hazard and risk assessment using semi-automatically created landslide inventories publication-title: Geomorphology doi: 10.1016/j.geomorph.2012.12.001 – volume: 38 start-page: 87 year: 2012 end-page: -98 ident: CR4 article-title: Landslide identification and classification by object-based image analysis and fuzzy logic: An example from the Azdavay region (Kastamonu, Turkey) publication-title: Comput Geosci doi: 10.1016/j.cageo.2011.05.010 – volume: 96 start-page: 28 year: 2012 end-page: 40 ident: CR108 article-title: Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models publication-title: Catena doi: 10.1016/j.catena.2012.04.001 – volume: 28 start-page: 540 year: 1990 end-page: 552 ident: CR11 article-title: Neural network approaches versus statistical methods in classification of multisource remote sensing data Geoscience and Remote Sensing publication-title: IEEE Trans – volume: 5 start-page: 853 year: 2005 end-page: 862 ident: CR14 article-title: Spatial prediction models for landslide hazards: review, comparison and evaluation publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-5-853-2005 – volume: 64 start-page: 180 year: 2013 end-page: 197 ident: CR74 article-title: A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey publication-title: Journal of Asian Earth Sciences doi: 10.1016/j.jseaes.2012.12.014 – volume: 45 start-page: 199 year: 2012 end-page: 211 ident: CR107 article-title: Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS publication-title: Comput Geosci doi: 10.1016/j.cageo.2011.10.031 – volume: 33 start-page: 2688 year: 2014 end-page: 2693 ident: CR16 article-title: Comparative study of biodegradability prediction of chemicals using decision trees, functional trees, and logistic regression publication-title: Environmental Toxicology and Chemistry doi: 10.1002/etc.2746 – ident: CR49 – ident: CR93 – volume: 149 start-page: 151 issue: Part A year: 2015 end-page: 157 ident: CR18 article-title: Deformation prediction of landslide based on functional network publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.10.044 – ident: CR87 – volume: 8 start-page: 1505 year: 2008 end-page: 1512 ident: CR61 article-title: Parameter determination of support vector machine and feature selection using simulated annealing approach publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.10.012 – volume: 51 start-page: 4984 year: 2007 end-page: 4993 ident: CR70 article-title: Classifying densities using functional regression trees: Applications in oceanology publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2006.09.028 – year: 2014 ident: CR43 publication-title: Annual Disaster Statistical Review 2013: The Numbers and Trends – ident: CR119 – volume: 73 start-page: 1019 year: 2014 end-page: 1042 ident: CR83 article-title: Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS publication-title: Nat Hazards doi: 10.1007/s11069-014-1128-1 – volume: 113 start-page: 236 year: 2014 end-page: 250 ident: CR21 article-title: Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy) publication-title: CATENA doi: 10.1016/j.catena.2013.08.006 – volume: 23 start-page: 598 year: 2010 end-page: 604 ident: CR62 article-title: Chinese text classification by the Naïve Bayes Classifier and the associative classifier with multiple confidence threshold values publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2010.04.004 – ident: CR111 – volume: 2 start-page: 349 year: 2013 end-page: 369 ident: CR78 article-title: Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran publication-title: J Earth Syst Sci doi: 10.1007/s12040-013-0282-2 – volume: 15 start-page: 2160 year: 2011 end-page: 2164 ident: CR120 article-title: An improvement to naive Bayes for text classification publication-title: Procedia Eng doi: 10.1016/j.proeng.2011.08.404 – volume: 38 start-page: 23 year: 2012 end-page: 34 ident: CR3 article-title: An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm publication-title: Comput Geosci doi: 10.1016/j.cageo.2011.04.012 – volume: 124 start-page: 12 year: 2012 end-page: 23 ident: CR19 article-title: Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS publication-title: Engineering Geology doi: 10.1016/j.enggeo.2011.09.011 – ident: CR46 – volume: 1 start-page: 131 year: 1997 end-page: 156 ident: CR26 article-title: Feature selection for classification publication-title: Intell data Anal doi: 10.1016/S1088-467X(97)00008-5 – ident: CR96 – volume: 123 start-page: 225 year: 2011 end-page: 234 ident: CR63 article-title: Landslide susceptibility assessment using SVM machine learning algorithm publication-title: Eng Geol doi: 10.1016/j.enggeo.2011.09.006 – volume: 62 start-page: 139 year: 2011 end-page: 149 ident: CR9 article-title: GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang publication-title: China Environ Earth Sci doi: 10.1007/s12665-010-0509-3 – ident: CR15 – ident: CR50 – volume: 61 start-page: 50 year: 2013 end-page: 63 ident: CR75 article-title: Study of effect of seismic displacements on landslide susceptibility zonation (LSZ) in Garhwal Himalayan region of India using GIS and remote sensing techniques publication-title: Comput Geosci doi: 10.1016/j.cageo.2013.07.018 – ident: CR116 – volume: 9 start-page: 117 year: 2009 end-page: 122 ident: CR12 article-title: Applying naive Bayes data mining technique for classification of agricultural land soils publication-title: Int J Comput Sci Netw Secur – volume: 114 start-page: 627 year: 2010 end-page: 637 ident: CR25 article-title: Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India) publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.09.023 – ident: CR105 – volume: 13 start-page: 211 year: 2013 end-page: 221 ident: CR24 article-title: Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.07.029 – volume: 44 start-page: 17 year: 2011 end-page: 22 ident: CR92 article-title: Varunavat landslide disaster in Uttarkashi, Garhwal Himalaya, India publication-title: Q J Eng Geol Hydrogeol doi: 10.1144/1470-9236/09-029 – volume: 8 start-page: 1716 year: 2012 end-page: 1722 ident: CR1 article-title: Naïve Bayes QSDR classification based on spiral-graph Shannon entropies for protein biomarkers in human colon cancer publication-title: Mol BioSyst doi: 10.1039/c2mb25039j – volume: 55 start-page: 219 year: 2004 end-page: 250 ident: CR38 article-title: Functional trees publication-title: Machine Learning doi: 10.1023/B:MACH.0000027782.67192.13 – volume: 64 start-page: 81 year: 2014 end-page: 95 ident: CR35 article-title: A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis publication-title: Comput Geosci doi: 10.1016/j.cageo.2013.11.009 – ident: CR37 – volume: 145–146 start-page: 70 year: 2012 end-page: 80 ident: CR114 article-title: GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.12.040 – volume: 63 start-page: 479 year: 2012 end-page: 498 ident: CR56 article-title: Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed, Nepal publication-title: Nat Hazards doi: 10.1007/s11069-012-0163-z – volume: 43 start-page: 3 year: 2000 end-page: 31 ident: CR10 article-title: Artificial neural networks: fundamentals, computing, design, and application publication-title: Journal of microbiological methods doi: 10.1016/S0167-7012(00)00201-3 – volume: 55 start-page: 1397 year: 2008 end-page: 1405 ident: CR113 article-title: Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS publication-title: Environmental Geology doi: 10.1007/s00254-007-1090-2 – volume: 35 start-page: 1125 year: 2009 end-page: 1138 ident: CR117 article-title: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey) publication-title: Comput Geosci doi: 10.1016/j.cageo.2008.08.007 – volume: 5 start-page: 38 year: 2014 end-page: 49 ident: CR39 article-title: A new statistic approach towards landslide hazard risk assessment publication-title: Int J Geosci doi: 10.4236/ijg.2014.51006 – volume: 5 start-page: 865 year: 1994 end-page: 872 ident: CR68 article-title: Network information criterion-determining the number of hidden units for an artificial neural network model. Neural Networks publication-title: IEEE Transac – volume: 204 start-page: 287 year: 2014 end-page: 301 ident: CR76 article-title: Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2013.08.013 – volume: 16 start-page: 432 year: 1972 end-page: -443 ident: CR103 article-title: Relief analysis and soil erosion in Rhodesia using multi-variate techniques publication-title: Zeitschrift fur Geomorphologie NF – volume: 51 start-page: 350 year: 2013 end-page: -365 ident: CR82 article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS publication-title: Comput Geosci doi: 10.1016/j.cageo.2012.08.023 – ident: CR104 – volume: 7 start-page: 4318 year: 2015 end-page: 4342 ident: CR30 article-title: Automatic case-based reasoning approach for landslide detection: integration of object-oriented image analysis and a genetic algorithm publication-title: Remote Sens doi: 10.3390/rs70404318 – ident: CR73 – volume: 86 start-page: 1222 year: 2009 end-page: 1228 ident: CR97 article-title: Estimation of solar radiation over Turkey using artificial neural network and satellite data publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.06.003 – ident: CR65 – ident: CR17 – ident: CR31 – volume: 95 start-page: 172 year: 2008 end-page: 191 ident: CR40 article-title: Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression publication-title: Geomorphology doi: 10.1016/j.geomorph.2007.06.001 – volume: 6 start-page: 2351 year: 2013 end-page: 2365 ident: CR80 article-title: Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran publication-title: Arabian J Geosci doi: 10.1007/s12517-012-0532-7 – ident: CR34 – ident: CR110 – volume: 151 start-page: 155 year: 2003 end-page: 176 ident: CR27 article-title: Consistency-based search in feature selection publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(03)00079-1 – volume: 2 start-page: 271 year: 2010 end-page: 277 ident: CR53 article-title: Comparative study of attribute selection using gain ratio and correlation based feature selection publication-title: Int J Inf Technol Knowledge Manag – ident: CR59 – ident: CR28 – ident: CR20 – volume: 73 start-page: 1019 year: 2014 ident: 1702_CR83 publication-title: Nat Hazards doi: 10.1007/s11069-014-1128-1 – volume: 65 start-page: 15 year: 2005 ident: 1702_CR7 publication-title: Central Japan Geomorphology doi: 10.1016/j.geomorph.2004.06.010 – ident: 1702_CR37 doi: 10.1007/3-540-44399-1_28 – volume: 13 start-page: 211 year: 2013 ident: 1702_CR24 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.07.029 – ident: 1702_CR110 – volume: 192 start-page: 101 year: 2015 ident: 1702_CR54 publication-title: Eng Geol doi: 10.1016/j.enggeo.2015.04.004 – ident: 1702_CR60 doi: 10.5194/nhess-12-2719-2012 – volume: 35 start-page: 1125 year: 2009 ident: 1702_CR117 publication-title: Comput Geosci doi: 10.1016/j.cageo.2008.08.007 – volume: 2 start-page: 349 year: 2013 ident: 1702_CR78 publication-title: J Earth Syst Sci doi: 10.1007/s12040-013-0282-2 – volume: 18 start-page: 471 year: 2011 ident: 1702_CR81 publication-title: Environmental and Ecological Statistics doi: 10.1007/s10651-010-0147-7 – ident: 1702_CR59 doi: 10.1109/IJCNN.2010.5596360 – volume: 5 start-page: 865 year: 1994 ident: 1702_CR68 publication-title: IEEE Transac – volume: 6 start-page: 2351 year: 2013 ident: 1702_CR80 publication-title: Arabian J Geosci doi: 10.1007/s12517-012-0532-7 – volume: 204 start-page: 287 year: 2014 ident: 1702_CR76 publication-title: Geomorphology doi: 10.1016/j.geomorph.2013.08.013 – ident: 1702_CR112 doi: 10.1016/j.geomorph.2005.12.003 – volume: 123 start-page: 225 year: 2011 ident: 1702_CR63 publication-title: Eng Geol doi: 10.1016/j.enggeo.2011.09.006 – volume: 6 start-page: 2873 year: 2013 ident: 1702_CR118 publication-title: Arab J Geosci doi: 10.1007/s12517-012-0610-x – ident: 1702_CR20 doi: 10.1023/B:NHAZ.0000007172.62651.2b – volume: 55 start-page: 1397 year: 2008 ident: 1702_CR113 publication-title: Environmental Geology doi: 10.1007/s00254-007-1090-2 – ident: 1702_CR116 – volume: 3 start-page: 1157 year: 2003 ident: 1702_CR44 publication-title: J Mach Learning Res – ident: 1702_CR45 doi: 10.1016/j.earscirev.2012.02.001 – ident: 1702_CR50 doi: 10.1007/s11069-006-9027-8 – volume: 86 start-page: 1222 year: 2009 ident: 1702_CR97 publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.06.003 – volume: 9 start-page: 117 year: 2009 ident: 1702_CR12 publication-title: Int J Comput Sci Netw Secur – start-page: 26 volume-title: Shallow and Deep-Seated Landslide Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area year: 2015 ident: 1702_CR32 – volume: 45 start-page: 199 year: 2012 ident: 1702_CR107 publication-title: Comput Geosci doi: 10.1016/j.cageo.2011.10.031 – ident: 1702_CR111 doi: 10.1016/j.cageo.2010.04.004 – volume: 8 start-page: 674 year: 2015 ident: 1702_CR51 publication-title: Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of doi: 10.1109/JSTARS.2014.2341276 – ident: 1702_CR13 doi: 10.1007/BF00058655 – ident: 1702_CR31 doi: 10.1007/978-3-319-05050-8_65 – volume: 115 start-page: 55 year: 2014 ident: 1702_CR99 publication-title: CATENA doi: 10.1016/j.catena.2013.11.014 – volume: 63 start-page: 397 year: 2011 ident: 1702_CR23 publication-title: Environ Earth Sci doi: 10.1007/s12665-010-0724-y – volume: 51 start-page: 350 year: 2013 ident: 1702_CR82 publication-title: Comput Geosci doi: 10.1016/j.cageo.2012.08.023 – ident: 1702_CR109 doi: 10.1007/978-3-319-05906-8_6 – volume: 61 start-page: 221 year: 2012 ident: 1702_CR67 publication-title: Journal of Asian Earth Sciences doi: 10.1016/j.jseaes.2012.10.005 – ident: 1702_CR77 – volume: 7 start-page: 725 year: 2014 ident: 1702_CR88 publication-title: Arabian Journal of Geosciences doi: 10.1007/s12517-012-0807-z – volume: 16 start-page: 432 year: 1972 ident: 1702_CR103 publication-title: Zeitschrift fur Geomorphologie NF doi: 10.1127/zfg/16/1972/432 – volume: 10 start-page: e0133262 year: 2015 ident: 1702_CR29 publication-title: PLoS One doi: 10.1371/journal.pone.0133262 – volume: 60 start-page: 1037 year: 2010 ident: 1702_CR84 publication-title: Environ Earth Sci doi: 10.1007/s12665-009-0245-8 – volume: 21 start-page: 465 year: 1998 ident: 1702_CR100 publication-title: Adv Space Res doi: 10.1016/S0273-1177(97)00882-X – ident: 1702_CR47 doi: 10.1109/INTECH.2013.6653646 – ident: 1702_CR49 doi: 10.1007/978-3-319-17738-0_13 – ident: 1702_CR66 doi: 10.1145/1008992.1009034 – ident: 1702_CR115 doi: 10.1016/j.catena.2011.01.014 – volume: 15 start-page: 2160 year: 2011 ident: 1702_CR120 publication-title: Procedia Eng doi: 10.1016/j.proeng.2011.08.404 – volume: 124 start-page: 12 year: 2012 ident: 1702_CR19 publication-title: Engineering Geology doi: 10.1016/j.enggeo.2011.09.011 – volume: 4 start-page: 267 year: 2007 ident: 1702_CR36 publication-title: Wushan-Zigui Landslides doi: 10.1007/s10346-007-0080-5 – volume: 38 start-page: 23 year: 2012 ident: 1702_CR3 publication-title: Comput Geosci doi: 10.1016/j.cageo.2011.04.012 – volume: 2 start-page: 271 year: 2010 ident: 1702_CR53 publication-title: Int J Inf Technol Knowledge Manag – volume: 43 start-page: 3 year: 2000 ident: 1702_CR10 publication-title: Journal of microbiological methods doi: 10.1016/S0167-7012(00)00201-3 – volume: 51 start-page: 4984 year: 2007 ident: 1702_CR70 publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2006.09.028 – volume: 33 start-page: 2688 year: 2014 ident: 1702_CR16 publication-title: Environmental Toxicology and Chemistry doi: 10.1002/etc.2746 – volume: 161–162 start-page: 40 year: 2012 ident: 1702_CR95 publication-title: Geomorphology doi: 10.1016/j.geomorph.2012.03.036 – volume: 55 start-page: 219 year: 2004 ident: 1702_CR38 publication-title: Machine Learning doi: 10.1023/B:MACH.0000027782.67192.13 – volume: 32 start-page: 2627 year: 1998 ident: 1702_CR41 publication-title: Atmospheric environment doi: 10.1016/S1352-2310(97)00447-0 – volume: 113 start-page: 236 year: 2014 ident: 1702_CR21 publication-title: CATENA doi: 10.1016/j.catena.2013.08.006 – volume: 11 start-page: 425 year: 2014 ident: 1702_CR55 publication-title: Landslides doi: 10.1007/s10346-013-0391-7 – volume: 23 start-page: 598 year: 2010 ident: 1702_CR62 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2010.04.004 – volume-title: Data mining: Practical machine learning tools and techniques year: 2011 ident: 1702_CR57 – ident: 1702_CR91 – volume: 204 start-page: 399 year: 2014 ident: 1702_CR22 publication-title: Geomorphology doi: 10.1016/j.geomorph.2013.08.021 – ident: 1702_CR42 doi: 10.1007/s000240050017 – ident: 1702_CR94 doi: 10.1007/978-3-540-69970-5 – ident: 1702_CR119 doi: 10.1007/978-3-540-30115-8_46 – volume: 34 start-page: 216 year: 2010 ident: 1702_CR85 publication-title: Comput Environ Urban Syst doi: 10.1016/j.compenvurbsys.2009.12.004 – ident: 1702_CR104 doi: 10.1007/978-3-642-32618-9_22 – volume: 145–146 start-page: 70 year: 2012 ident: 1702_CR114 publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.12.040 – ident: 1702_CR52 doi: 10.1007/11573548_1 – volume: 44 start-page: 17 year: 2011 ident: 1702_CR92 publication-title: Q J Eng Geol Hydrogeol doi: 10.1144/1470-9236/09-029 – volume: 71 start-page: 289 year: 2004 ident: 1702_CR58 publication-title: Eng Geol doi: 10.1016/S0013-7952(03)00142-X – ident: 1702_CR28 doi: 10.5121/ijcnc.2014.6315 – volume: 7 start-page: 4318 year: 2015 ident: 1702_CR30 publication-title: Remote Sens doi: 10.3390/rs70404318 – volume: 64 start-page: 81 year: 2014 ident: 1702_CR35 publication-title: Comput Geosci doi: 10.1016/j.cageo.2013.11.009 – volume: 5 start-page: 38 year: 2014 ident: 1702_CR39 publication-title: Int J Geosci doi: 10.4236/ijg.2014.51006 – volume: 63 start-page: 965 year: 2012 ident: 1702_CR79 publication-title: Nat Hazards doi: 10.1007/s11069-012-0217-2 – volume: 95 start-page: 172 year: 2008 ident: 1702_CR40 publication-title: Geomorphology doi: 10.1016/j.geomorph.2007.06.001 – volume: 5 start-page: 853 year: 2005 ident: 1702_CR14 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-5-853-2005 – ident: 1702_CR105 doi: 10.1155/2012/974638 – volume: 8 start-page: 1716 year: 2012 ident: 1702_CR1 publication-title: Mol BioSyst doi: 10.1039/c2mb25039j – volume: 96 start-page: 28 year: 2012 ident: 1702_CR108 publication-title: Catena doi: 10.1016/j.catena.2012.04.001 – volume: 149 start-page: 151 issue: Part A year: 2015 ident: 1702_CR18 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.10.044 – ident: 1702_CR65 doi: 10.1016/j.geomorph.2006.10.035 – ident: 1702_CR15 doi: 10.1007/978-0-387-09697-1_3 – ident: 1702_CR69 – ident: 1702_CR33 doi: 10.1007/s11069-015-1799-2 – ident: 1702_CR93 – ident: 1702_CR46 doi: 10.1016/j.geomorph.2005.06.002 – volume: 184 start-page: 139 year: 2013 ident: 1702_CR64 publication-title: Geomorphology doi: 10.1016/j.geomorph.2012.12.001 – ident: 1702_CR106 – volume: 27 start-page: 127 year: 2011 ident: 1702_CR89 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq619 – volume-title: Annual Disaster Statistical Review 2013: The Numbers and Trends year: 2014 ident: 1702_CR43 – ident: 1702_CR34 – volume: 61 start-page: 50 year: 2013 ident: 1702_CR75 publication-title: Comput Geosci doi: 10.1016/j.cageo.2013.07.018 – volume: 64 start-page: 180 year: 2013 ident: 1702_CR74 publication-title: Journal of Asian Earth Sciences doi: 10.1016/j.jseaes.2012.12.014 – volume: 63 start-page: 479 year: 2012 ident: 1702_CR56 publication-title: Nat Hazards doi: 10.1007/s11069-012-0163-z – volume: 40 start-page: 2360 year: 2013 ident: 1702_CR98 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.10.072 – volume: 69 start-page: 331 year: 2003 ident: 1702_CR72 publication-title: Eng Geol doi: 10.1016/S0013-7952(03)00069-3 – volume: 28 start-page: 540 year: 1990 ident: 1702_CR11 publication-title: IEEE Trans – volume: 86 start-page: 211 year: 2006 ident: 1702_CR90 publication-title: Eng Geol doi: 10.1016/j.enggeo.2006.05.001 – ident: 1702_CR8 – volume: 38 start-page: 87 year: 2012 ident: 1702_CR4 publication-title: Comput Geosci doi: 10.1016/j.cageo.2011.05.010 – volume: 1 start-page: 131 year: 1997 ident: 1702_CR26 publication-title: Intell data Anal doi: 10.1016/S1088-467X(97)00008-5 – ident: 1702_CR73 – volume: 44 start-page: 120 year: 2012 ident: 1702_CR6 publication-title: Comput Geosci doi: 10.1016/j.cageo.2012.03.003 – volume: 62 start-page: 139 year: 2011 ident: 1702_CR9 publication-title: China Environ Earth Sci doi: 10.1007/s12665-010-0509-3 – ident: 1702_CR87 doi: 10.1007/BF02591446 – volume: 17 start-page: 43 year: 2011 ident: 1702_CR101 publication-title: Int J Comput Appl – volume: 120 start-page: 149 year: 2014 ident: 1702_CR5 publication-title: Catena doi: 10.1016/j.catena.2014.04.009 – volume: 37 start-page: 1264 year: 2011 ident: 1702_CR71 publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2010.10.012 – ident: 1702_CR86 doi: 10.1109/TGRS.2010.2050328 – volume: 133 start-page: 266 year: 2015 ident: 1702_CR48 publication-title: CATENA doi: 10.1016/j.catena.2015.05.019 – ident: 1702_CR17 doi: 10.1016/j.dss.2009.07.004 – ident: 1702_CR96 doi: 10.1007/s11069-015-1702-1 – volume: 9 start-page: 93 year: 2012 ident: 1702_CR2 publication-title: Landslides doi: 10.1007/s10346-011-0283-7 – start-page: 619 volume-title: ICMLA ’08. Seventh International Conference on, 2008. IEEE year: 2008 ident: 1702_CR102 – volume: 114 start-page: 627 year: 2010 ident: 1702_CR25 publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.09.023 – volume: 151 start-page: 155 year: 2003 ident: 1702_CR27 publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(03)00079-1 – volume: 8 start-page: 1505 year: 2008 ident: 1702_CR61 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.10.012 |
| SSID | ssj0002667 |
| Score | 2.5944197 |
| Snippet | The objective of this study is to make a comparison of the prediction performance of three techniques, Functional Trees (FT), Multilayer Perceptron Neural... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 255 |
| SubjectTerms | Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Climatology data collection Earth and Environmental Science Earth Sciences Geographic information systems Hazards India inventories land cover land use Land use planning Landslides Landslides & mudslides Lithology Neural networks Original Paper planning prediction rain rivers roads Slope stability soil Spatial analysis support vector machines Training trees Waste Water Technology Water Management Water Pollution Control |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bitRAEG3W2RdfxCuOrlKCiLdgkk7SiSCiy6674g6iDsxbqHR3ZHBIxmRG2K_yI_wBP8mqzmVV2H1LSDXdoaqrTnfdhHioE02w2EdPhZH2yB6nHiKdWmODvm-SwqaSE4VPZsnRPHq_iBc7YjbkwnBY5aATnaI2teY78hdBmhJYocNC9nr93eOuUexdHVpoYN9awbxyJcYuid2QK2NNxO7bg9nHT6NuJnPUJVAr5aksXQx-Tt-VFVUuIiP2AkVqIvvXUp3Bz_88ps4QHV4VV3oECW86ll8TO7a6LqYnBH7rxt2RwyPYXy0Jibq3G-L3B07nXS2NhXbbujAWFxF7Cug8vq4uJywrICwI880GG_zG9-mABCjh8XFFIvQEOED-K7w7_vwSEPTYvRBcfVqoS1g37PNhPoMmC9xPQR8q_PXzh4UCT237HFwE44qeG1h3QTUNjeCymvRTVReUTmQ8P9vc7qoS2HfeQtfuur0p5ocHX_aPvL6Rg6clISDP6lRhpDNL8KTMkCBJERSyMNpIrWJVyNAEkY1KHzNCdAaDknSD8UsZhcTEqJC3xKSqK3tbgJGBJZWBNkwwyrQskjiTGJbWL9OQDO1U-APTct1XOedmG6t8rM_s-JwTn3Pmc55NxdNxyLor8XER8d4gCXm_29v8TDan4sH4mfYpO1-wsvXW0aSZ4gPe-TScNhUplSRE82yQsr-mOW9Rdy5e1F1xOWQw4qR7T0w2zdbeIyi1Ke73--MPkT0f9g priority: 102 providerName: ProQuest |
| Title | Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods |
| URI | https://link.springer.com/article/10.1007/s00704-015-1702-9 https://www.proquest.com/docview/1881392499 https://www.proquest.com/docview/1888972425 https://www.proquest.com/docview/2000477665 |
| Volume | 128 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1434-4483 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: ABDBF dateStart: 20030401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1434-4483 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1434-4483 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1434-4483 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: 8FG dateStart: 20020501 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1434-4483 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1434-4483 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF7R9sIFQQGRUqJBQog_S7bX9trc0ipJC7RCQKRwssbrNYqInMhOkPpUPAQvwCMxs_6hRRSJk23trNfWzOx8u_OzQjzRkSZY7KKj_EA7ZI9jB5FWrWGOrptHmYklJwqfnUcns-DNPJy3edx1F-3euSTtTN0nu3FlGo6YCB1PkRonO2Iv5GpeJMQzf9RPv2RxmhxppRyVxPPOlfm3V1w1Rr8R5h9OUWtrJrfFrRYkwqjh6h1xw5T7YnBG-HZV2W1weArHywWBTft0V_x8xxm7y0VuoN7WNlLFBr1eAFqnri29CYsSCO7BbLPBCr_yljkgYUZ4dlqSlDwHjoH_AtPTj68BQfcHFIItQQurAtYVu3WYlaDJyLZDUEOJP75_M5DhhalfgQ1SXNJ9BesmbqaiHlw5k36qbOLOiYzHZ7Pa7EYCu8draE60ru-J2WT86fjEac9qcLQkkOMYHSsMdGIIgRQJEurIvExmuc6lVqHKpJ97gQkKFxMCbTl6Bal_7hYy8GnRGWTyvtgtV6V5ICCXnqFZAY0fYZBomUVhItEvjFvEPtnSgXA7pqW6LWTO52ks074Es-VzSnxOmc9pMhAv-i7rporHv4gPO0lIW4WuUy-OCSvTWpWaH_fNpIrsX8HSrLaWJk4Ur-Gup-HMqECpKCKal52UXRrmuo86-C_qh-Kmz_DDCvuh2N1UW_OIwNMmG4qdeDIdir3R9PPbMV2PxufvPwytCv0C8wsZ4g |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbGdgE3E7-iY8BBAsRfRBK7cYw0IRgbLWsrBKvUu-DYDqqokpK0oD4Vb8ANL8AjcewkHSBtd7trFadJdY7P9x2fP0Luq0ghLfalx0OmPMTj2JMSvdaulr6vo9TE1BYKD0dRb8zeTbqTDfKzrYWxaZWtTXSGWhfKnpE_D-IYyQo6C-Ll_Ktnp0bZ6Go7QkM2oxX0nmsx1hR2HJnVd3Thqr3-G5T3gzA8PDje73nNlAFPUYRnz6iYS6aEQezMhES8TIOUplppqniXpzTUATMs86VAuqFlkKHiaj-jLER3iaUUf_cC2WKUCXT-tl4fjN5_WGMBwl9dsM25x0U8aeOqvmtjyl0GSNcLOJol8S8yntDd_yK0DvgOL5PthrHCq1rFrpANk18lnSGS7aJ0Z_LwEPZnU2S-7ts18ntgy4dnU22gWlYubcZl4K5Augiz6wMK0xyQe8J4sZCl_GLP70EigYVH_RxV9jHYhPzP8Lb_8QVIUOtpieD64UKRwby0MSarV6AQ8ZtH4IVc_vrxzUAqV6Z6Bi5jcoafS5jXSTwl3mHbeOKfyuskeFxmn28xvj4aBRurr6Aer11dJ-NzEekNspkXublJQNPAoImSJowkE4qmUVdQGWbGz-IQgb1D_FZoiWq6qtvhHrNk3Q_ayTlBOSdWzonokCfrW-Z1S5GzFu-2mpA01qVKTvZCh9xbX0a7YIM9MjfF0q2JBbcO5elrbJkW4zyKcM3TVsv-esxpL7Vz9kvdJRd7x8NBMuiPjm6RS6ElQk7Td8nmolya20jjFumdZq8A-XTe2_MPElBcTg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5qBfFFvOLaqkdQ8dLQJJNkMoKItG679oKgC_sWJ5OJLF2SNdlV9lf57qt_wJ_kOZNLVWjf-pYlk0yWc-Z838y5MfZYRxppsasc4QfaQTyOHaVw1xpmynWzKDUxp0Tho-Nofxy8n4STNfazy4WhsMrOJlpDnZWazsi3vThGsoKbBbmdt2ERH3aHb-ZfHeogRZ7Wrp1GoyIHZvUdt2_169EuyvqJ7w_ffdrZd9oOA47mCM2O0bFQgZYGcTOXCrEy9VKeZjrjWoQi5X7mBSbIXSWRamTKy1FpMzfngY9bpSDl-N5L7LKgKu6UpT7c61EAga9J1RbCETKedB5V1xYwFTb2I3Q8gQZJ_ouJp0T3P9-shbzhdXat5arwtlGuG2zNFDfZ4AhpdlnZ03h4CjuzKXJe--sW-31IicOzaWagXtY2YMbG3q5AWd-yrQAK0wKQdcJ4sVCVOqGTe1BIXeHZqEBlfQ4Uiv8F9kYfX4EC3fdJBFsJF8oc5hV5l0ijQCPWt1PgjUL9-vHNQKpWpt4CGys5w-sK5k34ToVPUAFP_FNFE_6Ow2h-QvfmUBTIS19D01i7vs3GFyLQO2y9KAtzl0HGPYPGSRk_UoHUPI1CyZWfGzePfYT0AXM7oSW6radObT1mSV8J2so5QTknJOdEDtiL_pF5U0zkvMGbnSYkrV2pk9NVMGCP-ttoEcjNowpTLu2YWAraSp49hhK0AiGiCMe87LTsr2nO-qh753_UQ3YFF2VyODo-2GBXfWJAVtE32fqiWpr7yN8W6QO7UIB9vuiV-QeT-Fno |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landslide+susceptibility+assesssment+in+the+Uttarakhand+area+%28India%29+using+GIS%3A+a+comparison+study+of+prediction+capability+of+na%C3%AFve+bayes%2C+multilayer+perceptron+neural+networks%2C+and+functional+trees+methods&rft.jtitle=Theoretical+and+applied+climatology&rft.au=Pham%2C+Binh+Thai&rft.au=Tien+Bui%2C+Dieu&rft.au=Pourghasemi%2C+Hamid+Reza&rft.au=Indra%2C+Prakash&rft.date=2017-04-01&rft.issn=0177-798X&rft.eissn=1434-4483&rft.volume=128&rft.issue=1-2&rft.spage=255&rft.epage=273&rft_id=info:doi/10.1007%2Fs00704-015-1702-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00704_015_1702_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-798X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-798X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-798X&client=summon |