Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods

The objective of this study is to make a comparison of the prediction performance of three techniques, Functional Trees (FT), Multilayer Perceptron Neural Networks (MLP Neural Nets), and Naïve Bayes (NB) for landslide susceptibility assessment at the Uttarakhand Area (India). Firstly, a landslide in...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied climatology Vol. 128; no. 1-2; pp. 255 - 273
Main Authors Pham, Binh Thai, Tien Bui, Dieu, Pourghasemi, Hamid Reza, Indra, Prakash, Dholakia, M. B.
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.04.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0177-798X
1434-4483
DOI10.1007/s00704-015-1702-9

Cover

Abstract The objective of this study is to make a comparison of the prediction performance of three techniques, Functional Trees (FT), Multilayer Perceptron Neural Networks (MLP Neural Nets), and Naïve Bayes (NB) for landslide susceptibility assessment at the Uttarakhand Area (India). Firstly, a landslide inventory map with 430 landslide locations in the study area was constructed from various sources. Landslide locations were then randomly split into two parts (i) 70 % landslide locations being used for training models (ii) 30 % landslide locations being employed for validation process. Secondly, a total of eleven landslide conditioning factors including slope angle, slope aspect, elevation, curvature, lithology, soil, land cover, distance to roads, distance to lineaments, distance to rivers, and rainfall were used in the analysis to elucidate the spatial relationship between these factors and landslide occurrences. Feature selection of Linear Support Vector Machine (LSVM) algorithm was employed to assess the prediction capability of these conditioning factors on landslide models. Subsequently, the NB, MLP Neural Nets, and FT models were constructed using training dataset. Finally, success rate and predictive rate curves were employed to validate and compare the predictive capability of three used models. Overall, all the three models performed very well for landslide susceptibility assessment. Out of these models, the MLP Neural Nets and the FT models had almost the same predictive capability whereas the MLP Neural Nets (AUC = 0.850) was slightly better than the FT model (AUC = 0.849). The NB model (AUC = 0.838) had the lowest predictive capability compared to other models. Landslide susceptibility maps were final developed using these three models. These maps would be helpful to planners and engineers for the development activities and land-use planning.
AbstractList The objective of this study is to make a comparison of the prediction performance of three techniques, Functional Trees (FT), Multilayer Perceptron Neural Networks (MLP Neural Nets), and Naïve Bayes (NB) for landslide susceptibility assessment at the Uttarakhand Area (India). Firstly, a landslide inventory map with 430 landslide locations in the study area was constructed from various sources. Landslide locations were then randomly split into two parts (i) 70 % landslide locations being used for training models (ii) 30 % landslide locations being employed for validation process. Secondly, a total of eleven landslide conditioning factors including slope angle, slope aspect, elevation, curvature, lithology, soil, land cover, distance to roads, distance to lineaments, distance to rivers, and rainfall were used in the analysis to elucidate the spatial relationship between these factors and landslide occurrences. Feature selection of Linear Support Vector Machine (LSVM) algorithm was employed to assess the prediction capability of these conditioning factors on landslide models. Subsequently, the NB, MLP Neural Nets, and FT models were constructed using training dataset. Finally, success rate and predictive rate curves were employed to validate and compare the predictive capability of three used models. Overall, all the three models performed very well for landslide susceptibility assessment. Out of these models, the MLP Neural Nets and the FT models had almost the same predictive capability whereas the MLP Neural Nets (AUC = 0.850) was slightly better than the FT model (AUC = 0.849). The NB model (AUC = 0.838) had the lowest predictive capability compared to other models. Landslide susceptibility maps were final developed using these three models. These maps would be helpful to planners and engineers for the development activities and land-use planning.
The objective of this study is to make a comparison of the prediction performance of three techniques, Functional Trees (FT), Multilayer Perceptron Neural Networks (MLP Neural Nets), and Naïve Bayes (NB) for landslide susceptibility assessment at the Uttarakhand Area (India). Firstly, a landslide inventory map with 430 landslide locations in the study area was constructed from various sources. Landslide locations were then randomly split into two parts (i) 70 % landslide locations being used for training models (ii) 30 % landslide locations being employed for validation process. Secondly, a total of eleven landslide conditioning factors including slope angle, slope aspect, elevation, curvature, lithology, soil, land cover, distance to roads, distance to lineaments, distance to rivers, and rainfall were used in the analysis to elucidate the spatial relationship between these factors and landslide occurrences. Feature selection of Linear Support Vector Machine (LSVM) algorithm was employed to assess the prediction capability of these conditioning factors on landslide models. Subsequently, the NB, MLP Neural Nets, and FT models were constructed using training dataset. Finally, success rate and predictive rate curves were employed to validate and compare the predictive capability of three used models. Overall, all the three models performed very well for landslide susceptibility assessment. Out of these models, the MLP Neural Nets and the FT models had almost the same predictive capability whereas the MLP Neural Nets (AUC = 0.850) was slightly better than the FT model (AUC = 0.849). The NB model (AUC = 0.838) had the lowest predictive capability compared to other models. Landslide susceptibility maps were final developed using these three models. These maps would be helpful to planners and engineers for the development activities and land-use planning.
The objective of this study is to make a comparison of the prediction performance of three techniques, Functional Trees (FT), Multilayer Perceptron Neural Networks (MLP Neural Nets), and Naive Bayes (NB) for landslide susceptibility assessment at the Uttarakhand Area (India). Firstly, a landslide inventory map with 430 landslide locations in the study area was constructed from various sources. Landslide locations were then randomly split into two parts (i) 70 % landslide locations being used for training models (ii) 30 % landslide locations being employed for validation process. Secondly, a total of eleven landslide conditioning factors including slope angle, slope aspect, elevation, curvature, lithology, soil, land cover, distance to roads, distance to lineaments, distance to rivers, and rainfall were used in the analysis to elucidate the spatial relationship between these factors and landslide occurrences. Feature selection of Linear Support Vector Machine (LSVM) algorithm was employed to assess the prediction capability of these conditioning factors on landslide models. Subsequently, the NB, MLP Neural Nets, and FT models were constructed using training dataset. Finally, success rate and predictive rate curves were employed to validate and compare the predictive capability of three used models. Overall, all the three models performed very well for landslide susceptibility assessment. Out of these models, the MLP Neural Nets and the FT models had almost the same predictive capability whereas the MLP Neural Nets (AUC = 0.850) was slightly better than the FT model (AUC = 0.849). The NB model (AUC = 0.838) had the lowest predictive capability compared to other models. Landslide susceptibility maps were final developed using these three models. These maps would be helpful to planners and engineers for the development activities and land-use planning.
Author Indra, Prakash
Pourghasemi, Hamid Reza
Pham, Binh Thai
Dholakia, M. B.
Tien Bui, Dieu
Author_xml – sequence: 1
  givenname: Binh Thai
  surname: Pham
  fullname: Pham, Binh Thai
  email: phambinhgtvt@gmail.com
  organization: Department of Civil Engineering, Gujarat Technological University, Department of Geotechnical Engineering, University of Transport Technology
– sequence: 2
  givenname: Dieu
  surname: Tien Bui
  fullname: Tien Bui, Dieu
  organization: Geographic Information System Group, Department of Business Administration and Computer Science, University College of Southeast Norway
– sequence: 3
  givenname: Hamid Reza
  surname: Pourghasemi
  fullname: Pourghasemi, Hamid Reza
  organization: Department of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University
– sequence: 4
  givenname: Prakash
  surname: Indra
  fullname: Indra, Prakash
  organization: Department of Science & Technology, Bhaskarcharya Institute for Space Applications and Geo-Informatics (BISAG), Government of Gujarat
– sequence: 5
  givenname: M. B.
  surname: Dholakia
  fullname: Dholakia, M. B.
  organization: Department of Civil Engineering, LDCE, Gujarat Technological University
BookMark eNqFksFu1DAQhiNUJLaFB-BmiUuRCNiOs064oYqWlVbiAJW4RRN70nWbOMHjFO1T8RB9AR4Jp9sDqgRcPJbn-2fGo_84O_Kjxyx7Kfhbwbl-R-ngKueizIXmMq-fZCuhCpUrVRVH2YoLrXNdV9-eZcdE15xzuV7rVfZrC95S7ywymsngFF3rehf3DIiQiAb0kTnP4g7ZZYwQ4GaXJAwCAjvdeOvgNZvJ-St2sfnyngEz4zBBcDR6RnG2ezZ2bAponYkuvRmY4KFFSni4-3mLrIU90hs2zH10fboHNmFYpglJ4XEO0KcQf4zhJmFL_2729_VSIgZEYgPG3Wjpefa0g57wxUM8yS7PP349-5RvP19szj5sc1OsizpHU2lQpkZd8q4GKWUr2qK1xhZGl7otpBUKVcehFqWyIDrOS8u7QkkpuGqLk-z0UHcK4_cZKTaDS_vre_A4ztTItGKl9Xpd_hcVVVXVWiq5oK8eodfjHNIn7ylR1FLVdaL0gTJhJArYNcZFWLYRA7i-EbxZTNEcTNEkUzSLKZpFKR4pp-AGCPt_auRBQ4n1Vxj-mOmvot-1ZdBG
CitedBy_id crossref_primary_10_1007_s10064_017_1010_y
crossref_primary_10_1016_j_qsa_2024_100180
crossref_primary_10_1007_s12145_025_01727_x
crossref_primary_10_1080_19475705_2021_1920480
crossref_primary_10_5194_nhess_22_1395_2022
crossref_primary_10_1155_2022_9923775
crossref_primary_10_1007_s11069_022_05339_2
crossref_primary_10_1007_s12665_019_8562_z
crossref_primary_10_1007_s00531_023_02337_y
crossref_primary_10_3390_rs13204129
crossref_primary_10_1016_j_gsf_2023_101541
crossref_primary_10_3390_app9061248
crossref_primary_10_1016_j_catena_2018_12_018
crossref_primary_10_1007_s10064_018_1401_8
crossref_primary_10_1061_NHREFO_NHENG_1665
crossref_primary_10_1007_s12040_024_02450_9
crossref_primary_10_1016_j_catena_2020_105114
crossref_primary_10_3390_f10090743
crossref_primary_10_1109_LGRS_2020_2989497
crossref_primary_10_3390_app10072466
crossref_primary_10_3390_rs10101538
crossref_primary_10_1007_s10668_022_02314_6
crossref_primary_10_1016_j_heliyon_2023_e16186
crossref_primary_10_3390_ijgi12120503
crossref_primary_10_1007_s10064_018_1256_z
crossref_primary_10_1016_j_catena_2018_08_025
crossref_primary_10_1080_10106049_2016_1165294
crossref_primary_10_1155_2022_6912018
crossref_primary_10_1007_s00477_024_02683_6
crossref_primary_10_1007_s12665_016_6374_y
crossref_primary_10_1080_19475683_2025_2481063
crossref_primary_10_1155_2021_9914650
crossref_primary_10_1016_j_asr_2024_06_018
crossref_primary_10_1016_j_scitotenv_2018_04_055
crossref_primary_10_1007_s12517_022_09699_8
crossref_primary_10_1214_20_AOAS1326
crossref_primary_10_1016_j_jafrearsci_2024_105237
crossref_primary_10_1016_j_sbsr_2021_100435
crossref_primary_10_1007_s10064_017_1202_5
crossref_primary_10_1007_s12145_024_01455_8
crossref_primary_10_1080_19475705_2021_1890644
crossref_primary_10_3390_sym12111848
crossref_primary_10_1007_s10706_017_0264_2
crossref_primary_10_3390_s18113704
crossref_primary_10_1007_s12040_018_1047_8
crossref_primary_10_1049_iet_syb_2019_0028
crossref_primary_10_1007_s10346_016_0708_4
crossref_primary_10_1016_j_asr_2024_10_018
crossref_primary_10_1007_s11053_022_10100_4
crossref_primary_10_3389_fenvs_2022_1009433
crossref_primary_10_1080_10106049_2018_1510038
crossref_primary_10_1016_j_ecolind_2020_106300
crossref_primary_10_1016_j_srs_2024_100132
crossref_primary_10_1016_j_gsf_2024_101960
crossref_primary_10_3390_app12189029
crossref_primary_10_1007_s42514_022_00097_w
crossref_primary_10_1016_j_catena_2018_12_035
crossref_primary_10_1515_geo_2020_0206
crossref_primary_10_1007_s12665_023_10846_x
crossref_primary_10_1007_s10064_023_03188_2
crossref_primary_10_1016_j_nhres_2024_10_003
crossref_primary_10_1007_s43538_024_00305_x
crossref_primary_10_1007_s00704_016_1919_2
crossref_primary_10_1007_s13762_022_04491_3
crossref_primary_10_1080_10106049_2021_1948109
crossref_primary_10_3390_ijgi9030144
crossref_primary_10_1007_s12665_019_8415_9
crossref_primary_10_1016_j_rsase_2020_100411
crossref_primary_10_1007_s11069_024_06903_8
crossref_primary_10_3390_w12113066
crossref_primary_10_1007_s12303_018_0052_x
crossref_primary_10_1080_19475705_2023_2227324
crossref_primary_10_1088_1755_1315_1064_1_012031
crossref_primary_10_3390_app14125084
crossref_primary_10_1002_ldr_3255
crossref_primary_10_1080_10106049_2022_2066202
crossref_primary_10_1007_s10064_023_03498_5
crossref_primary_10_1007_s41062_019_0215_2
crossref_primary_10_1007_s41748_024_00545_3
crossref_primary_10_1016_j_jhydrol_2020_124808
crossref_primary_10_1080_17538947_2020_1860145
crossref_primary_10_1007_s10586_024_05017_x
crossref_primary_10_1080_17538947_2023_2249863
crossref_primary_10_1007_s12665_018_7548_6
crossref_primary_10_1016_j_catena_2019_03_017
crossref_primary_10_1007_s40710_017_0248_5
crossref_primary_10_3390_rs13244966
crossref_primary_10_1007_s10064_018_1273_y
crossref_primary_10_1007_s12517_024_12022_2
crossref_primary_10_1007_s11069_021_04986_1
crossref_primary_10_3390_rs13224694
crossref_primary_10_1155_2022_4230674
crossref_primary_10_1016_j_catena_2019_104179
crossref_primary_10_3390_app12084090
crossref_primary_10_3390_w12010239
crossref_primary_10_1080_17445647_2024_2428654
crossref_primary_10_1007_s12145_021_00653_y
crossref_primary_10_1016_j_catena_2021_105729
crossref_primary_10_1007_s42979_023_01960_5
crossref_primary_10_3390_f11010118
crossref_primary_10_1007_s12524_018_0791_1
crossref_primary_10_1080_17538947_2016_1169561
crossref_primary_10_1007_s10706_016_9990_0
crossref_primary_10_1007_s12665_022_10195_1
crossref_primary_10_1016_j_petrol_2018_12_013
crossref_primary_10_3390_sym11060762
crossref_primary_10_3390_su11226323
crossref_primary_10_1002_esp_6032
crossref_primary_10_1080_17538947_2023_2229797
crossref_primary_10_3390_rs15041007
crossref_primary_10_3390_rs12233854
crossref_primary_10_1007_s12040_024_02453_6
crossref_primary_10_1007_s12665_021_10152_4
crossref_primary_10_1007_s12665_017_6689_3
crossref_primary_10_1007_s11069_021_04731_8
crossref_primary_10_3390_sym12030325
crossref_primary_10_1016_j_catena_2019_104150
crossref_primary_10_3390_sym16081067
crossref_primary_10_3390_land14040678
crossref_primary_10_1007_s41748_024_00457_2
crossref_primary_10_1016_j_uclim_2023_101503
crossref_primary_10_1007_s12518_018_0248_9
crossref_primary_10_3390_su11164386
crossref_primary_10_1080_10106049_2018_1425738
crossref_primary_10_1007_s12524_023_01760_7
crossref_primary_10_1515_geo_2022_0424
crossref_primary_10_1016_j_scitotenv_2019_02_263
crossref_primary_10_1080_10106049_2018_1499820
crossref_primary_10_3390_su11247118
crossref_primary_10_1007_s10064_023_03409_8
crossref_primary_10_3390_ijgi9070443
crossref_primary_10_1145_3380972
crossref_primary_10_3390_f11040421
crossref_primary_10_1016_j_catena_2020_104777
crossref_primary_10_2113_2022_5216125
crossref_primary_10_1061__ASCE_NH_1527_6996_0000398
crossref_primary_10_1016_j_jhydrol_2019_03_073
crossref_primary_10_1080_17499518_2021_1957484
crossref_primary_10_1007_s00500_023_08951_x
crossref_primary_10_3390_app10010016
crossref_primary_10_3390_land10100995
crossref_primary_10_1038_s41598_020_69233_2
crossref_primary_10_1007_s00477_022_02342_8
crossref_primary_10_1080_19475683_2022_2040587
crossref_primary_10_4236_ojapps_2021_1111094
crossref_primary_10_3390_s22041573
crossref_primary_10_3390_w16050657
crossref_primary_10_3934_environsci_2024029
crossref_primary_10_1080_10106049_2022_2120546
crossref_primary_10_1007_s10708_019_09991_3
crossref_primary_10_1115_1_4045742
crossref_primary_10_3390_ijgi9120696
crossref_primary_10_1007_s10668_023_04117_9
crossref_primary_10_1007_s11069_020_04141_2
crossref_primary_10_3390_app10010029
crossref_primary_10_1016_j_gsf_2020_09_004
crossref_primary_10_1007_s11069_021_04638_4
crossref_primary_10_3390_rs15204952
crossref_primary_10_1007_s13351_022_1214_3
crossref_primary_10_1016_j_jhydrol_2020_125423
crossref_primary_10_1016_j_geoderma_2019_01_050
crossref_primary_10_1007_s12665_019_8225_0
crossref_primary_10_1080_10298436_2023_2201902
crossref_primary_10_1016_j_petrol_2019_02_045
crossref_primary_10_1186_s40562_022_00249_4
crossref_primary_10_3390_s19214698
crossref_primary_10_1007_s10064_021_02275_6
crossref_primary_10_1080_19475705_2021_1960433
crossref_primary_10_1007_s11629_018_5168_y
crossref_primary_10_3390_w12092572
crossref_primary_10_1007_s11069_020_04453_3
crossref_primary_10_1016_j_ijdrr_2020_101642
crossref_primary_10_3390_geosciences11080333
crossref_primary_10_1186_s40677_024_00307_3
crossref_primary_10_1007_s12517_022_09974_8
crossref_primary_10_1007_s12517_022_10865_1
crossref_primary_10_1155_2021_4832864
crossref_primary_10_1007_s11069_022_05570_x
crossref_primary_10_3390_ijgi8020079
crossref_primary_10_1007_s11069_025_07132_3
crossref_primary_10_1016_j_scitotenv_2018_06_389
crossref_primary_10_1007_s12665_024_11911_9
crossref_primary_10_1080_19475705_2020_1785555
crossref_primary_10_1016_j_gsf_2020_05_010
crossref_primary_10_1016_j_rsase_2022_100905
crossref_primary_10_3390_w15122287
crossref_primary_10_3390_w13243520
crossref_primary_10_1080_10106049_2021_1920629
crossref_primary_10_1080_19475705_2017_1289250
crossref_primary_10_1016_j_scitotenv_2019_134514
crossref_primary_10_1007_s10064_025_04097_2
crossref_primary_10_1111_nrm_12409
crossref_primary_10_3390_e20110868
crossref_primary_10_1007_s11069_023_06310_5
crossref_primary_10_1007_s13201_023_02049_3
crossref_primary_10_1016_j_ejrh_2021_100848
crossref_primary_10_1016_j_scs_2022_104307
crossref_primary_10_1002_gj_4932
crossref_primary_10_1007_s12517_021_08871_w
crossref_primary_10_1007_s10064_019_01572_5
crossref_primary_10_1007_s11069_024_06596_z
crossref_primary_10_1007_s11356_024_33128_w
crossref_primary_10_1080_10106049_2020_1730451
crossref_primary_10_3389_feart_2024_1431203
crossref_primary_10_1080_10106049_2018_1559885
crossref_primary_10_1007_s11069_020_04498_4
crossref_primary_10_1016_j_jhydrol_2020_125615
crossref_primary_10_3390_rs12030475
crossref_primary_10_1007_s11629_018_5337_z
crossref_primary_10_1007_s11356_024_32075_w
crossref_primary_10_1007_s12665_020_09227_5
crossref_primary_10_3390_app8122540
crossref_primary_10_3390_f15091535
crossref_primary_10_1007_s11069_016_2304_2
crossref_primary_10_3390_s20051313
crossref_primary_10_3390_rs11212575
crossref_primary_10_1007_s10064_022_02748_2
crossref_primary_10_2174_1573405615666190404163233
crossref_primary_10_1016_j_scitotenv_2023_161430
crossref_primary_10_3390_ijerph17082749
crossref_primary_10_1038_s41467_022_32650_0
crossref_primary_10_1007_s12524_016_0620_3
crossref_primary_10_1080_19475705_2023_2273214
crossref_primary_10_1016_j_jenvman_2021_112449
crossref_primary_10_3390_rs14071730
crossref_primary_10_5194_hess_22_4771_2018
crossref_primary_10_1016_j_pce_2022_103198
crossref_primary_10_1007_s12665_016_5919_4
crossref_primary_10_1007_s12665_024_11501_9
crossref_primary_10_1007_s12040_022_01881_6
crossref_primary_10_3390_rs11242995
crossref_primary_10_3390_e21020106
crossref_primary_10_1155_2022_6505372
crossref_primary_10_3390_app8071046
crossref_primary_10_1007_s10064_021_02194_6
crossref_primary_10_3390_s19163590
crossref_primary_10_1186_s40677_019_0124_x
crossref_primary_10_1080_10106049_2018_1544288
crossref_primary_10_1007_s00477_021_02036_7
crossref_primary_10_3390_electronics13071271
crossref_primary_10_1007_s11356_022_22118_5
crossref_primary_10_3390_app9142824
crossref_primary_10_1007_s12145_023_01032_5
crossref_primary_10_3390_rs14194803
crossref_primary_10_1080_13632469_2020_1838358
crossref_primary_10_1080_17538947_2023_2295408
crossref_primary_10_1007_s11629_018_4833_5
crossref_primary_10_1016_j_engappai_2022_105690
crossref_primary_10_3390_rs13234782
crossref_primary_10_21523_gcj1_2024080101
crossref_primary_10_3390_s22093119
crossref_primary_10_1080_19475705_2016_1250112
Cites_doi 10.1093/bioinformatics/btq619
10.1109/JSTARS.2014.2341276
10.1016/j.cageo.2010.10.012
10.1016/j.enggeo.2006.05.001
10.1007/s11069-012-0217-2
10.1016/S0013-7952(03)00142-X
10.1016/S1352-2310(97)00447-0
10.1016/j.geomorph.2012.03.036
10.1016/j.geomorph.2004.06.010
10.1007/s10346-007-0080-5
10.1016/j.catena.2015.05.019
10.1016/j.enggeo.2015.04.004
10.1007/s10651-010-0147-7
10.1016/j.eswa.2012.10.072
10.1007/s12665-010-0724-y
10.1007/s10346-013-0391-7
10.1371/journal.pone.0133262
10.1016/j.jseaes.2012.10.005
10.1016/S0273-1177(97)00882-X
10.1016/S0013-7952(03)00069-3
10.1016/j.compenvurbsys.2009.12.004
10.1007/s12517-012-0807-z
10.1007/s12665-009-0245-8
10.1007/s10346-011-0283-7
10.1016/j.catena.2014.04.009
10.1016/j.catena.2013.11.014
10.1007/s12517-012-0610-x
10.1016/j.cageo.2012.03.003
10.1016/j.geomorph.2013.08.021
10.1016/j.geomorph.2012.12.001
10.1016/j.cageo.2011.05.010
10.1016/j.catena.2012.04.001
10.5194/nhess-5-853-2005
10.1016/j.jseaes.2012.12.014
10.1016/j.cageo.2011.10.031
10.1002/etc.2746
10.1016/j.neucom.2013.10.044
10.1016/j.asoc.2007.10.012
10.1016/j.csda.2006.09.028
10.1007/s11069-014-1128-1
10.1016/j.catena.2013.08.006
10.1016/j.knosys.2010.04.004
10.1007/s12040-013-0282-2
10.1016/j.proeng.2011.08.404
10.1016/j.cageo.2011.04.012
10.1016/j.enggeo.2011.09.011
10.1016/S1088-467X(97)00008-5
10.1016/j.enggeo.2011.09.006
10.1007/s12665-010-0509-3
10.1016/j.cageo.2013.07.018
10.1016/j.geomorph.2009.09.023
10.1016/j.asoc.2012.07.029
10.1144/1470-9236/09-029
10.1039/c2mb25039j
10.1023/B:MACH.0000027782.67192.13
10.1016/j.cageo.2013.11.009
10.1016/j.geomorph.2011.12.040
10.1007/s11069-012-0163-z
10.1016/S0167-7012(00)00201-3
10.1007/s00254-007-1090-2
10.1016/j.cageo.2008.08.007
10.4236/ijg.2014.51006
10.1016/j.geomorph.2013.08.013
10.1016/j.cageo.2012.08.023
10.3390/rs70404318
10.1016/j.apenergy.2008.06.003
10.1016/j.geomorph.2007.06.001
10.1007/s12517-012-0532-7
10.1016/S0004-3702(03)00079-1
10.1007/3-540-44399-1_28
10.5194/nhess-12-2719-2012
10.1109/IJCNN.2010.5596360
10.1016/j.geomorph.2005.12.003
10.1023/B:NHAZ.0000007172.62651.2b
10.1016/j.earscirev.2012.02.001
10.1007/s11069-006-9027-8
10.1016/j.cageo.2010.04.004
10.1007/BF00058655
10.1007/978-3-319-05050-8_65
10.1007/978-3-319-05906-8_6
10.1127/zfg/16/1972/432
10.1109/INTECH.2013.6653646
10.1007/978-3-319-17738-0_13
10.1145/1008992.1009034
10.1016/j.catena.2011.01.014
10.1007/s000240050017
10.1007/978-3-540-69970-5
10.1007/978-3-540-30115-8_46
10.1007/978-3-642-32618-9_22
10.1007/11573548_1
10.5121/ijcnc.2014.6315
10.1155/2012/974638
10.1016/j.geomorph.2006.10.035
10.1007/978-0-387-09697-1_3
10.1007/s11069-015-1799-2
10.1016/j.geomorph.2005.06.002
10.1007/BF02591446
10.1109/TGRS.2010.2050328
10.1016/j.dss.2009.07.004
10.1007/s11069-015-1702-1
ContentType Journal Article
Copyright Springer-Verlag Wien 2015
Theoretical and Applied Climatology is a copyright of Springer, 2017.
Copyright_xml – notice: Springer-Verlag Wien 2015
– notice: Theoretical and Applied Climatology is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7QH
7TG
7TN
7UA
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
L6V
M2P
M7S
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7S9
L.6
DOI 10.1007/s00704-015-1702-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database (Proquest)
Engineering Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1434-4483
EndPage 273
ExternalDocumentID 4321217997
10_1007_s00704_015_1702_9
GeographicLocations ISW, India
India
GeographicLocations_xml – name: ISW, India
– name: India
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
199
1N0
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67M
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBD
EBLON
EBS
EDH
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEP
IFM
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
L6V
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
XXG
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8O
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
ZY4
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7QH
7TG
7TN
7UA
7XB
8FK
C1K
F1W
H96
KL.
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
7S9
L.6
ID FETCH-LOGICAL-c3639-ec87a4c9e750f9a222b1b3bdcd3c757b32d14e4f0a9154da1f005d0f3422104b3
IEDL.DBID U2A
ISSN 0177-798X
IngestDate Sun Aug 24 03:54:16 EDT 2025
Tue Oct 07 10:00:32 EDT 2025
Sat Aug 16 04:21:07 EDT 2025
Thu Apr 24 23:05:07 EDT 2025
Wed Oct 01 04:42:31 EDT 2025
Fri Feb 21 02:41:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Landslide Susceptibility
Landslide Occurrence
Landslide Susceptibility Assessment
Landslide Location
Functional Tree
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3639-ec87a4c9e750f9a222b1b3bdcd3c757b32d14e4f0a9154da1f005d0f3422104b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1881392499
PQPubID 48318
PageCount 19
ParticipantIDs proquest_miscellaneous_2000477665
proquest_miscellaneous_1888972425
proquest_journals_1881392499
crossref_citationtrail_10_1007_s00704_015_1702_9
crossref_primary_10_1007_s00704_015_1702_9
springer_journals_10_1007_s00704_015_1702_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170400
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 4
  year: 2017
  text: 20170400
PublicationDecade 2010
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Theoretical and applied climatology
PublicationTitleAbbrev Theor Appl Climatol
PublicationYear 2017
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Bai, Lü, Wang, Zhou, Ding (CR9) 2011; 62
Soni, Ansari, Sharma, Soni (CR101) 2011; 17
Saboya, da Glória, Dias Pinto (CR90) 2006; 86
Murata, Yoshizawa, Amari (CR68) 1994; 5
Aksoy, Ercanoglu (CR4) 2012; 38
Ayalew, Yamagishi (CR7) 2005; 65
CR37
Chen, Li, Chen, Yn, Peijnenburg (CR16) 2014; 33
Dou, Chang, Chen, Yunus, Liu, Xia, Zhu (CR30) 2015; 7
Jebur, Pradhan, Tehrany (CR51) 2015; 8
CR34
CR33
Sezer, Pradhan, Gokceoglu (CR98) 2013; 40
Chen, Zeng, Jiang, Tang (CR18) 2015; 149
CR31
Bhargavi, Jyothi (CR12) 2009; 9
Benediktsson, Swain, Ersoy (CR11) 1990; 28
CR49
CR47
Zhang, Gao (CR120) 2011; 15
Gardner, Dorling (CR41) 1998; 32
CR46
CR45
CR42
Fourniadis, Liu, Mason (CR36) 2007; 4
Dash, Liu (CR27) 2003; 151
Constantin, Bednarik, Jurchescu, Vlaicu (CR23) 2011; 63
Marjanovic, Kovacevic, Bajat, Vozenílek (CR63) 2011; 123
Soria, Garibaldi, Biganzoli, Ellis (CR102) 2008
Pradhan (CR81) 2011; 18
Aguiar-Pulido, Munteanu, Seoane, Fernández-Blanco, Pérez-Montoto, González-Díaz, Dorado (CR1) 2012; 8
Schicker, Moon (CR95) 2012; 161–162
Alimohammadlou, Najafi, Gokceoglu (CR5) 2014; 120
CR59
Oh, Pradhan (CR71) 2011; 37
Pradhan, Abokharima, Jebur, Tehrany (CR83) 2014; 73
CR52
Feizizadeh, Jankowski, Blaschke (CR35) 2014; 64
CR50
Pourghasemi, Jirandeh, Pradhan, Xu, Gokceoglu (CR78) 2013; 2
Kayastha, Dhital, De Smedt (CR56) 2012; 63
Pourghasemi, Pradhan, Gokceoglu (CR79) 2012; 63
Stocking (CR103) 1972; 16
Choi, Oh, Lee, Lee, Lee (CR19) 2012; 124
Conoscenti, Angileri, Cappadonia, Rotigliano, Agnesi, Märker (CR22) 2014; 204
Martha, van Westen, Kerle, Jetten, Vinod Kumar (CR64) 2013; 184
Basheer, Hajmeer (CR10) 2000; 43
Kavzoglu, Sahin, Colkesen (CR55) 2014; 11
Dou, Paudel, Oguchi, Uchiyama, Hayakavva (CR32) 2015
CR69
CR66
CR65
Nerini, Ghattas (CR70) 2007; 51
Mohammady, Pourghasemi, Pradhan (CR67) 2012; 61
Sarkar, Kanungo, Chauhan (CR92) 2011; 44
Yilmaz (CR117) 2009; 35
CR60
Shahabi, Khezri, Ahmad, Hashim (CR99) 2014; 115
Pradhan (CR82) 2013; 51
Althuwaynee, Pradhan, Lee (CR6) 2012; 44
Conforti, Pascale, Robustelli, Sdao (CR21) 2014; 113
Şenkal, Kuleli (CR97) 2009; 86
Hong, Pradhan, Xu, Tien Bui (CR48) 2015; 133
Peng, Niu, Huang, Wu, Zhao, Ye (CR76) 2014; 204
CR77
CR115
CR116
Xu, Dai, Xu, Lee (CR114) 2012; 145–146
CR73
CR111
CR112
CR110
Das, Sahoo, van Westen, Stein, Hack (CR25) 2010; 114
Lee, Ryu, Won, Park (CR58) 2004; 71
Zare, Pourghasemi, Vafakhah, Pradhan (CR118) 2013; 6
CR119
Akgun, Sezer, Nefeslioglu, Gokceoglu, Pradhan (CR3) 2012; 38
Gama (CR38) 2004; 55
Guha-Sapir, Hoyois, Below (CR43) 2014
Dou (CR29) 2015; 10
Tien Bui, Pradhan, Lofman, Revhaug, Dick (CR108) 2012; 96
Ohlmacher, Davis (CR72) 2003; 69
CR8
Ozdemir, Altural (CR74) 2013; 64
Pareek, Pal, Sharma, Arora (CR75) 2013; 61
Kavzoglu, Kutlug Sahin, Colkesen (CR54) 2015; 192
Pradhan, Lee (CR84) 2010; 60
CR87
CR86
Regmi, Devkota, Yoshida, Pradhan, Pourghasemi, Kumamoto, Akgun (CR88) 2014; 7
Guyon, Elisseeff (CR44) 2003; 3
Pradhan, Lee, Buchroithner (CR85) 2010; 34
Lan, Frank, Hall (CR57) 2011
CR17
Lu, Chiang, Keh, Huang (CR62) 2010; 23
Brenning (CR14) 2005; 5
CR15
CR13
Akgun (CR2) 2012; 9
Lin, Lee, Chen, Tseng (CR61) 2008; 8
CR96
CR94
CR93
CR91
Gaprindashvili, Guo, Daorueang, Xin, Rahimy (CR39) 2014; 5
Singhroy, Mattar, Gray (CR100) 1998; 21
Rosen, Reichenberger, Rosenfeld (CR89) 2011; 27
Garcia-Rodriguez, Malpica, Benito, Diaz (CR40) 2008; 95
Pourghasemi, Pradhan, Gokceoglu, Mohammadi, Moradi (CR80) 2013; 6
Tien Bui, Pradhan, Lofman, Revhaug, Dick (CR107) 2012; 45
Dash, Liu (CR26) 1997; 1
CR28
CR104
CR105
CR20
Dai, Xu (CR24) 2013; 13
Karegowda, Manjunath, Jayaram (CR53) 2010; 2
Vijith, Madhu (CR113) 2008; 55
CR109
CR106
I Fourniadis (1702_CR36) 2007; 4
B Pradhan (1702_CR81) 2011; 18
1702_CR112
1702_CR115
HR Pourghasemi (1702_CR78) 2013; 2
1702_CR111
1702_CR110
1702_CR31
1702_CR116
1702_CR34
1702_CR119
1702_CR33
O Şenkal (1702_CR97) 2009; 86
I Basheer (1702_CR10) 2000; 43
1702_CR37
J Gama (1702_CR38) 2004; 55
AD Regmi (1702_CR88) 2014; 7
A Akgun (1702_CR3) 2012; 38
C Conoscenti (1702_CR22) 2014; 204
S Lee (1702_CR58) 2004; 71
1702_CR104
1702_CR109
V Aguiar-Pulido (1702_CR1) 2012; 8
C Xu (1702_CR114) 2012; 145–146
1702_CR106
1702_CR42
1702_CR105
1702_CR45
1702_CR47
1702_CR46
1702_CR49
G Chen (1702_CR16) 2014; 33
OF Althuwaynee (1702_CR6) 2012; 44
GC Ohlmacher (1702_CR72) 2003; 69
B Pradhan (1702_CR85) 2010; 34
1702_CR94
I Guyon (1702_CR44) 2003; 3
1702_CR93
1702_CR96
A Ozdemir (1702_CR74) 2013; 64
N Pareek (1702_CR75) 2013; 61
1702_CR13
J Dai (1702_CR24) 2013; 13
1702_CR15
1702_CR17
D Guha-Sapir (1702_CR43) 2014
L Peng (1702_CR76) 2014; 204
J Chen (1702_CR18) 2015; 149
H-J Oh (1702_CR71) 2011; 37
G Gaprindashvili (1702_CR39) 2014; 5
M Constantin (1702_CR23) 2011; 63
M Dash (1702_CR27) 2003; 151
M Dash (1702_CR26) 1997; 1
F Saboya Jr (1702_CR90) 2006; 86
B Pradhan (1702_CR82) 2013; 51
MJ Garcia-Rodriguez (1702_CR40) 2008; 95
1702_CR20
MN Jebur (1702_CR51) 2015; 8
S Bai (1702_CR9) 2011; 62
1702_CR28
V Singhroy (1702_CR100) 1998; 21
M Marjanovic (1702_CR63) 2011; 123
I Das (1702_CR25) 2010; 114
H Shahabi (1702_CR99) 2014; 115
AG Karegowda (1702_CR53) 2010; 2
HR Pourghasemi (1702_CR79) 2012; 63
1702_CR73
R Schicker (1702_CR95) 2012; 161–162
GL Rosen (1702_CR89) 2011; 27
1702_CR77
Y Alimohammadlou (1702_CR5) 2014; 120
S Sarkar (1702_CR92) 2011; 44
H Lan (1702_CR57) 2011
W Zhang (1702_CR120) 2011; 15
M Mohammady (1702_CR67) 2012; 61
D Soria (1702_CR102) 2008
B Feizizadeh (1702_CR35) 2014; 64
A Akgun (1702_CR2) 2012; 9
S-W Lin (1702_CR61) 2008; 8
1702_CR91
EA Sezer (1702_CR98) 2013; 40
1702_CR87
B Pradhan (1702_CR84) 2010; 60
1702_CR86
D Tien Bui (1702_CR108) 2012; 96
J Dou (1702_CR30) 2015; 7
B Pradhan (1702_CR83) 2014; 73
B Aksoy (1702_CR4) 2012; 38
J Dou (1702_CR32) 2015
M Zare (1702_CR118) 2013; 6
M Conforti (1702_CR21) 2014; 113
N Murata (1702_CR68) 1994; 5
S-H Lu (1702_CR62) 2010; 23
M Stocking (1702_CR103) 1972; 16
1702_CR50
1702_CR52
L Ayalew (1702_CR7) 2005; 65
TR Martha (1702_CR64) 2013; 184
J Benediktsson (1702_CR11) 1990; 28
A Brenning (1702_CR14) 2005; 5
J Soni (1702_CR101) 2011; 17
T Kavzoglu (1702_CR54) 2015; 192
J Choi (1702_CR19) 2012; 124
HR Pourghasemi (1702_CR80) 2013; 6
I Yilmaz (1702_CR117) 2009; 35
1702_CR59
P Kayastha (1702_CR56) 2012; 63
D Nerini (1702_CR70) 2007; 51
H Vijith (1702_CR113) 2008; 55
M Gardner (1702_CR41) 1998; 32
J Dou (1702_CR29) 2015; 10
1702_CR60
1702_CR65
P Bhargavi (1702_CR12) 2009; 9
H Hong (1702_CR48) 2015; 133
1702_CR8
1702_CR66
1702_CR69
T Kavzoglu (1702_CR55) 2014; 11
D Tien Bui (1702_CR107) 2012; 45
References_xml – ident: CR45
– volume: 27
  start-page: 127
  year: 2011
  end-page: 129
  ident: CR89
  article-title: NBC: the Naive Bayes Classification tool webserver for taxonomic classification of metagenomic reads
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq619
– ident: CR115
– volume: 8
  start-page: 674
  year: 2015
  end-page: 690
  ident: CR51
  article-title: Manifestation of LiDAR-derived parameters in the spatial prediction of landslides using novel ensemble evidential belief functions and support vector machine models in GIS
  publication-title: Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of
  doi: 10.1109/JSTARS.2014.2341276
– volume: 37
  start-page: 1264
  year: 2011
  end-page: 1276
  ident: CR71
  article-title: Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2010.10.012
– ident: CR77
– ident: CR8
– volume: 86
  start-page: 211
  year: 2006
  end-page: 224
  ident: CR90
  article-title: Assessment of failure susceptibility of soil slopes using fuzzy logic
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2006.05.001
– ident: CR106
– start-page: 619
  year: 2008
  end-page: 624
  ident: CR102
  article-title: A comparison of three different methods for classification of breast cancer data. In: Machine learning and applications
  publication-title: ICMLA ’08. Seventh International Conference on, 2008. IEEE
– volume: 63
  start-page: 965
  year: 2012
  end-page: 996
  ident: CR79
  article-title: Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran
  publication-title: Nat Hazards
  doi: 10.1007/s11069-012-0217-2
– ident: CR42
– volume: 71
  start-page: 289
  year: 2004
  end-page: 302
  ident: CR58
  article-title: Determination and application of the weights for landslide susceptibility mapping using an artificial neural network
  publication-title: Eng Geol
  doi: 10.1016/S0013-7952(03)00142-X
– volume: 32
  start-page: 2627
  year: 1998
  end-page: 2636
  ident: CR41
  article-title: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences
  publication-title: Atmospheric environment
  doi: 10.1016/S1352-2310(97)00447-0
– volume: 161–162
  start-page: 40
  year: 2012
  end-page: 57
  ident: CR95
  article-title: Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2012.03.036
– volume: 65
  start-page: 15
  year: 2005
  end-page: 31
  ident: CR7
  article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains
  publication-title: Central Japan Geomorphology
  doi: 10.1016/j.geomorph.2004.06.010
– volume: 4
  start-page: 267
  year: 2007
  end-page: 278
  ident: CR36
  article-title: Regional assessment of landslide impact in the Three Gorges area. China using ASTER data
  publication-title: Wushan-Zigui Landslides
  doi: 10.1007/s10346-007-0080-5
– ident: CR60
– ident: CR112
– volume: 133
  start-page: 266
  year: 2015
  end-page: 281
  ident: CR48
  article-title: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines
  publication-title: CATENA
  doi: 10.1016/j.catena.2015.05.019
– ident: CR109
– year: 2011
  ident: CR57
  publication-title: Data mining: Practical machine learning tools and techniques
– volume: 192
  start-page: 101
  year: 2015
  end-page: 112
  ident: CR54
  article-title: Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2015.04.004
– volume: 18
  start-page: 471
  year: 2011
  end-page: 493
  ident: CR81
  article-title: Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling
  publication-title: Environmental and Ecological Statistics
  doi: 10.1007/s10651-010-0147-7
– volume: 40
  start-page: 2360
  year: 2013
  ident: CR98
  article-title: Erratum to: “Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia” [Expert Systems with Applications 38 (2011) 8208–8219]
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.10.072
– volume: 63
  start-page: 397
  year: 2011
  end-page: 406
  ident: CR23
  article-title: Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania)
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-010-0724-y
– ident: CR66
– ident: CR91
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: CR44
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learning Res
– ident: CR47
– volume: 11
  start-page: 425
  year: 2014
  end-page: 439
  ident: CR55
  article-title: Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression
  publication-title: Landslides
  doi: 10.1007/s10346-013-0391-7
– volume: 17
  start-page: 43
  year: 2011
  end-page: 48
  ident: CR101
  article-title: Predictive data mining for medical diagnosis: an overview of heart disease prediction
  publication-title: Int J Comput Appl
– volume: 10
  start-page: e0133262
  year: 2015
  ident: CR29
  article-title: Optimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata, Japan
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0133262
– ident: CR33
– volume: 61
  start-page: 221
  year: 2012
  end-page: 236
  ident: CR67
  article-title: Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster–Shafer, and weights-of-evidence models
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2012.10.005
– volume: 21
  start-page: 465
  year: 1998
  end-page: 476
  ident: CR100
  article-title: Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images
  publication-title: Adv Space Res
  doi: 10.1016/S0273-1177(97)00882-X
– ident: CR86
– volume: 69
  start-page: 331
  year: 2003
  end-page: 343
  ident: CR72
  article-title: Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA
  publication-title: Eng Geol
  doi: 10.1016/S0013-7952(03)00069-3
– volume: 34
  start-page: 216
  year: 2010
  end-page: 235
  ident: CR85
  article-title: A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses
  publication-title: Comput Environ Urban Syst
  doi: 10.1016/j.compenvurbsys.2009.12.004
– volume: 7
  start-page: 725
  year: 2014
  end-page: 742
  ident: CR88
  article-title: Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in CCentral Nepal Himalaya
  publication-title: Arabian Journal of Geosciences
  doi: 10.1007/s12517-012-0807-z
– volume: 60
  start-page: 1037
  year: 2010
  end-page: 1054
  ident: CR84
  article-title: Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-009-0245-8
– start-page: 26
  year: 2015
  ident: CR32
  publication-title: Shallow and Deep-Seated Landslide Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area
– ident: CR69
– ident: CR94
– volume: 9
  start-page: 93
  year: 2012
  end-page: 106
  ident: CR2
  article-title: A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey
  publication-title: Landslides
  doi: 10.1007/s10346-011-0283-7
– volume: 120
  start-page: 149
  year: 2014
  end-page: 162
  ident: CR5
  article-title: Estimation of rainfall-induced landslides using ANN and fuzzy clustering methods: A case study in Saeen Slope, Azerbaijan province, Iran
  publication-title: Catena
  doi: 10.1016/j.catena.2014.04.009
– volume: 115
  start-page: 55
  year: 2014
  end-page: 70
  ident: CR99
  article-title: Landslide susceptibility mapping at central Zab basin, Iran: a comparison between analytical hierarchy process, frequency ratio and logistic regression models
  publication-title: CATENA
  doi: 10.1016/j.catena.2013.11.014
– ident: CR52
– ident: CR13
– volume: 6
  start-page: 2873
  year: 2013
  end-page: 2888
  ident: CR118
  article-title: Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-012-0610-x
– volume: 44
  start-page: 120
  year: 2012
  end-page: 135
  ident: CR6
  article-title: Application of an evidential belief function model in landslide susceptibility mapping
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2012.03.003
– volume: 204
  start-page: 399
  year: 2014
  end-page: 411
  ident: CR22
  article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2013.08.021
– volume: 184
  start-page: 139
  year: 2013
  end-page: 150
  ident: CR64
  article-title: Landslide hazard and risk assessment using semi-automatically created landslide inventories
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2012.12.001
– volume: 38
  start-page: 87
  year: 2012
  end-page: -98
  ident: CR4
  article-title: Landslide identification and classification by object-based image analysis and fuzzy logic: An example from the Azdavay region (Kastamonu, Turkey)
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2011.05.010
– volume: 96
  start-page: 28
  year: 2012
  end-page: 40
  ident: CR108
  article-title: Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models
  publication-title: Catena
  doi: 10.1016/j.catena.2012.04.001
– volume: 28
  start-page: 540
  year: 1990
  end-page: 552
  ident: CR11
  article-title: Neural network approaches versus statistical methods in classification of multisource remote sensing data Geoscience and Remote Sensing
  publication-title: IEEE Trans
– volume: 5
  start-page: 853
  year: 2005
  end-page: 862
  ident: CR14
  article-title: Spatial prediction models for landslide hazards: review, comparison and evaluation
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-5-853-2005
– volume: 64
  start-page: 180
  year: 2013
  end-page: 197
  ident: CR74
  article-title: A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2012.12.014
– volume: 45
  start-page: 199
  year: 2012
  end-page: 211
  ident: CR107
  article-title: Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2011.10.031
– volume: 33
  start-page: 2688
  year: 2014
  end-page: 2693
  ident: CR16
  article-title: Comparative study of biodegradability prediction of chemicals using decision trees, functional trees, and logistic regression
  publication-title: Environmental Toxicology and Chemistry
  doi: 10.1002/etc.2746
– ident: CR49
– ident: CR93
– volume: 149
  start-page: 151
  issue: Part A
  year: 2015
  end-page: 157
  ident: CR18
  article-title: Deformation prediction of landslide based on functional network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.10.044
– ident: CR87
– volume: 8
  start-page: 1505
  year: 2008
  end-page: 1512
  ident: CR61
  article-title: Parameter determination of support vector machine and feature selection using simulated annealing approach
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.10.012
– volume: 51
  start-page: 4984
  year: 2007
  end-page: 4993
  ident: CR70
  article-title: Classifying densities using functional regression trees: Applications in oceanology
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2006.09.028
– year: 2014
  ident: CR43
  publication-title: Annual Disaster Statistical Review 2013: The Numbers and Trends
– ident: CR119
– volume: 73
  start-page: 1019
  year: 2014
  end-page: 1042
  ident: CR83
  article-title: Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS
  publication-title: Nat Hazards
  doi: 10.1007/s11069-014-1128-1
– volume: 113
  start-page: 236
  year: 2014
  end-page: 250
  ident: CR21
  article-title: Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy)
  publication-title: CATENA
  doi: 10.1016/j.catena.2013.08.006
– volume: 23
  start-page: 598
  year: 2010
  end-page: 604
  ident: CR62
  article-title: Chinese text classification by the Naïve Bayes Classifier and the associative classifier with multiple confidence threshold values
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2010.04.004
– ident: CR111
– volume: 2
  start-page: 349
  year: 2013
  end-page: 369
  ident: CR78
  article-title: Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran
  publication-title: J Earth Syst Sci
  doi: 10.1007/s12040-013-0282-2
– volume: 15
  start-page: 2160
  year: 2011
  end-page: 2164
  ident: CR120
  article-title: An improvement to naive Bayes for text classification
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2011.08.404
– volume: 38
  start-page: 23
  year: 2012
  end-page: 34
  ident: CR3
  article-title: An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2011.04.012
– volume: 124
  start-page: 12
  year: 2012
  end-page: 23
  ident: CR19
  article-title: Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2011.09.011
– ident: CR46
– volume: 1
  start-page: 131
  year: 1997
  end-page: 156
  ident: CR26
  article-title: Feature selection for classification
  publication-title: Intell data Anal
  doi: 10.1016/S1088-467X(97)00008-5
– ident: CR96
– volume: 123
  start-page: 225
  year: 2011
  end-page: 234
  ident: CR63
  article-title: Landslide susceptibility assessment using SVM machine learning algorithm
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2011.09.006
– volume: 62
  start-page: 139
  year: 2011
  end-page: 149
  ident: CR9
  article-title: GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang
  publication-title: China Environ Earth Sci
  doi: 10.1007/s12665-010-0509-3
– ident: CR15
– ident: CR50
– volume: 61
  start-page: 50
  year: 2013
  end-page: 63
  ident: CR75
  article-title: Study of effect of seismic displacements on landslide susceptibility zonation (LSZ) in Garhwal Himalayan region of India using GIS and remote sensing techniques
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2013.07.018
– ident: CR116
– volume: 9
  start-page: 117
  year: 2009
  end-page: 122
  ident: CR12
  article-title: Applying naive Bayes data mining technique for classification of agricultural land soils
  publication-title: Int J Comput Sci Netw Secur
– volume: 114
  start-page: 627
  year: 2010
  end-page: 637
  ident: CR25
  article-title: Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.09.023
– ident: CR105
– volume: 13
  start-page: 211
  year: 2013
  end-page: 221
  ident: CR24
  article-title: Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.07.029
– volume: 44
  start-page: 17
  year: 2011
  end-page: 22
  ident: CR92
  article-title: Varunavat landslide disaster in Uttarkashi, Garhwal Himalaya, India
  publication-title: Q J Eng Geol Hydrogeol
  doi: 10.1144/1470-9236/09-029
– volume: 8
  start-page: 1716
  year: 2012
  end-page: 1722
  ident: CR1
  article-title: Naïve Bayes QSDR classification based on spiral-graph Shannon entropies for protein biomarkers in human colon cancer
  publication-title: Mol BioSyst
  doi: 10.1039/c2mb25039j
– volume: 55
  start-page: 219
  year: 2004
  end-page: 250
  ident: CR38
  article-title: Functional trees
  publication-title: Machine Learning
  doi: 10.1023/B:MACH.0000027782.67192.13
– volume: 64
  start-page: 81
  year: 2014
  end-page: 95
  ident: CR35
  article-title: A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2013.11.009
– ident: CR37
– volume: 145–146
  start-page: 70
  year: 2012
  end-page: 80
  ident: CR114
  article-title: GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.12.040
– volume: 63
  start-page: 479
  year: 2012
  end-page: 498
  ident: CR56
  article-title: Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed, Nepal
  publication-title: Nat Hazards
  doi: 10.1007/s11069-012-0163-z
– volume: 43
  start-page: 3
  year: 2000
  end-page: 31
  ident: CR10
  article-title: Artificial neural networks: fundamentals, computing, design, and application
  publication-title: Journal of microbiological methods
  doi: 10.1016/S0167-7012(00)00201-3
– volume: 55
  start-page: 1397
  year: 2008
  end-page: 1405
  ident: CR113
  article-title: Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS
  publication-title: Environmental Geology
  doi: 10.1007/s00254-007-1090-2
– volume: 35
  start-page: 1125
  year: 2009
  end-page: 1138
  ident: CR117
  article-title: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey)
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2008.08.007
– volume: 5
  start-page: 38
  year: 2014
  end-page: 49
  ident: CR39
  article-title: A new statistic approach towards landslide hazard risk assessment
  publication-title: Int J Geosci
  doi: 10.4236/ijg.2014.51006
– volume: 5
  start-page: 865
  year: 1994
  end-page: 872
  ident: CR68
  article-title: Network information criterion-determining the number of hidden units for an artificial neural network model. Neural Networks
  publication-title: IEEE Transac
– volume: 204
  start-page: 287
  year: 2014
  end-page: 301
  ident: CR76
  article-title: Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2013.08.013
– volume: 16
  start-page: 432
  year: 1972
  end-page: -443
  ident: CR103
  article-title: Relief analysis and soil erosion in Rhodesia using multi-variate techniques
  publication-title: Zeitschrift fur Geomorphologie NF
– volume: 51
  start-page: 350
  year: 2013
  end-page: -365
  ident: CR82
  article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2012.08.023
– ident: CR104
– volume: 7
  start-page: 4318
  year: 2015
  end-page: 4342
  ident: CR30
  article-title: Automatic case-based reasoning approach for landslide detection: integration of object-oriented image analysis and a genetic algorithm
  publication-title: Remote Sens
  doi: 10.3390/rs70404318
– ident: CR73
– volume: 86
  start-page: 1222
  year: 2009
  end-page: 1228
  ident: CR97
  article-title: Estimation of solar radiation over Turkey using artificial neural network and satellite data
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.06.003
– ident: CR65
– ident: CR17
– ident: CR31
– volume: 95
  start-page: 172
  year: 2008
  end-page: 191
  ident: CR40
  article-title: Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2007.06.001
– volume: 6
  start-page: 2351
  year: 2013
  end-page: 2365
  ident: CR80
  article-title: Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran
  publication-title: Arabian J Geosci
  doi: 10.1007/s12517-012-0532-7
– ident: CR34
– ident: CR110
– volume: 151
  start-page: 155
  year: 2003
  end-page: 176
  ident: CR27
  article-title: Consistency-based search in feature selection
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(03)00079-1
– volume: 2
  start-page: 271
  year: 2010
  end-page: 277
  ident: CR53
  article-title: Comparative study of attribute selection using gain ratio and correlation based feature selection
  publication-title: Int J Inf Technol Knowledge Manag
– ident: CR59
– ident: CR28
– ident: CR20
– volume: 73
  start-page: 1019
  year: 2014
  ident: 1702_CR83
  publication-title: Nat Hazards
  doi: 10.1007/s11069-014-1128-1
– volume: 65
  start-page: 15
  year: 2005
  ident: 1702_CR7
  publication-title: Central Japan Geomorphology
  doi: 10.1016/j.geomorph.2004.06.010
– ident: 1702_CR37
  doi: 10.1007/3-540-44399-1_28
– volume: 13
  start-page: 211
  year: 2013
  ident: 1702_CR24
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.07.029
– ident: 1702_CR110
– volume: 192
  start-page: 101
  year: 2015
  ident: 1702_CR54
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2015.04.004
– ident: 1702_CR60
  doi: 10.5194/nhess-12-2719-2012
– volume: 35
  start-page: 1125
  year: 2009
  ident: 1702_CR117
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2008.08.007
– volume: 2
  start-page: 349
  year: 2013
  ident: 1702_CR78
  publication-title: J Earth Syst Sci
  doi: 10.1007/s12040-013-0282-2
– volume: 18
  start-page: 471
  year: 2011
  ident: 1702_CR81
  publication-title: Environmental and Ecological Statistics
  doi: 10.1007/s10651-010-0147-7
– ident: 1702_CR59
  doi: 10.1109/IJCNN.2010.5596360
– volume: 5
  start-page: 865
  year: 1994
  ident: 1702_CR68
  publication-title: IEEE Transac
– volume: 6
  start-page: 2351
  year: 2013
  ident: 1702_CR80
  publication-title: Arabian J Geosci
  doi: 10.1007/s12517-012-0532-7
– volume: 204
  start-page: 287
  year: 2014
  ident: 1702_CR76
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2013.08.013
– ident: 1702_CR112
  doi: 10.1016/j.geomorph.2005.12.003
– volume: 123
  start-page: 225
  year: 2011
  ident: 1702_CR63
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2011.09.006
– volume: 6
  start-page: 2873
  year: 2013
  ident: 1702_CR118
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-012-0610-x
– ident: 1702_CR20
  doi: 10.1023/B:NHAZ.0000007172.62651.2b
– volume: 55
  start-page: 1397
  year: 2008
  ident: 1702_CR113
  publication-title: Environmental Geology
  doi: 10.1007/s00254-007-1090-2
– ident: 1702_CR116
– volume: 3
  start-page: 1157
  year: 2003
  ident: 1702_CR44
  publication-title: J Mach Learning Res
– ident: 1702_CR45
  doi: 10.1016/j.earscirev.2012.02.001
– ident: 1702_CR50
  doi: 10.1007/s11069-006-9027-8
– volume: 86
  start-page: 1222
  year: 2009
  ident: 1702_CR97
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.06.003
– volume: 9
  start-page: 117
  year: 2009
  ident: 1702_CR12
  publication-title: Int J Comput Sci Netw Secur
– start-page: 26
  volume-title: Shallow and Deep-Seated Landslide Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area
  year: 2015
  ident: 1702_CR32
– volume: 45
  start-page: 199
  year: 2012
  ident: 1702_CR107
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2011.10.031
– ident: 1702_CR111
  doi: 10.1016/j.cageo.2010.04.004
– volume: 8
  start-page: 674
  year: 2015
  ident: 1702_CR51
  publication-title: Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of
  doi: 10.1109/JSTARS.2014.2341276
– ident: 1702_CR13
  doi: 10.1007/BF00058655
– ident: 1702_CR31
  doi: 10.1007/978-3-319-05050-8_65
– volume: 115
  start-page: 55
  year: 2014
  ident: 1702_CR99
  publication-title: CATENA
  doi: 10.1016/j.catena.2013.11.014
– volume: 63
  start-page: 397
  year: 2011
  ident: 1702_CR23
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-010-0724-y
– volume: 51
  start-page: 350
  year: 2013
  ident: 1702_CR82
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2012.08.023
– ident: 1702_CR109
  doi: 10.1007/978-3-319-05906-8_6
– volume: 61
  start-page: 221
  year: 2012
  ident: 1702_CR67
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2012.10.005
– ident: 1702_CR77
– volume: 7
  start-page: 725
  year: 2014
  ident: 1702_CR88
  publication-title: Arabian Journal of Geosciences
  doi: 10.1007/s12517-012-0807-z
– volume: 16
  start-page: 432
  year: 1972
  ident: 1702_CR103
  publication-title: Zeitschrift fur Geomorphologie NF
  doi: 10.1127/zfg/16/1972/432
– volume: 10
  start-page: e0133262
  year: 2015
  ident: 1702_CR29
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0133262
– volume: 60
  start-page: 1037
  year: 2010
  ident: 1702_CR84
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-009-0245-8
– volume: 21
  start-page: 465
  year: 1998
  ident: 1702_CR100
  publication-title: Adv Space Res
  doi: 10.1016/S0273-1177(97)00882-X
– ident: 1702_CR47
  doi: 10.1109/INTECH.2013.6653646
– ident: 1702_CR49
  doi: 10.1007/978-3-319-17738-0_13
– ident: 1702_CR66
  doi: 10.1145/1008992.1009034
– ident: 1702_CR115
  doi: 10.1016/j.catena.2011.01.014
– volume: 15
  start-page: 2160
  year: 2011
  ident: 1702_CR120
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2011.08.404
– volume: 124
  start-page: 12
  year: 2012
  ident: 1702_CR19
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2011.09.011
– volume: 4
  start-page: 267
  year: 2007
  ident: 1702_CR36
  publication-title: Wushan-Zigui Landslides
  doi: 10.1007/s10346-007-0080-5
– volume: 38
  start-page: 23
  year: 2012
  ident: 1702_CR3
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2011.04.012
– volume: 2
  start-page: 271
  year: 2010
  ident: 1702_CR53
  publication-title: Int J Inf Technol Knowledge Manag
– volume: 43
  start-page: 3
  year: 2000
  ident: 1702_CR10
  publication-title: Journal of microbiological methods
  doi: 10.1016/S0167-7012(00)00201-3
– volume: 51
  start-page: 4984
  year: 2007
  ident: 1702_CR70
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2006.09.028
– volume: 33
  start-page: 2688
  year: 2014
  ident: 1702_CR16
  publication-title: Environmental Toxicology and Chemistry
  doi: 10.1002/etc.2746
– volume: 161–162
  start-page: 40
  year: 2012
  ident: 1702_CR95
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2012.03.036
– volume: 55
  start-page: 219
  year: 2004
  ident: 1702_CR38
  publication-title: Machine Learning
  doi: 10.1023/B:MACH.0000027782.67192.13
– volume: 32
  start-page: 2627
  year: 1998
  ident: 1702_CR41
  publication-title: Atmospheric environment
  doi: 10.1016/S1352-2310(97)00447-0
– volume: 113
  start-page: 236
  year: 2014
  ident: 1702_CR21
  publication-title: CATENA
  doi: 10.1016/j.catena.2013.08.006
– volume: 11
  start-page: 425
  year: 2014
  ident: 1702_CR55
  publication-title: Landslides
  doi: 10.1007/s10346-013-0391-7
– volume: 23
  start-page: 598
  year: 2010
  ident: 1702_CR62
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2010.04.004
– volume-title: Data mining: Practical machine learning tools and techniques
  year: 2011
  ident: 1702_CR57
– ident: 1702_CR91
– volume: 204
  start-page: 399
  year: 2014
  ident: 1702_CR22
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2013.08.021
– ident: 1702_CR42
  doi: 10.1007/s000240050017
– ident: 1702_CR94
  doi: 10.1007/978-3-540-69970-5
– ident: 1702_CR119
  doi: 10.1007/978-3-540-30115-8_46
– volume: 34
  start-page: 216
  year: 2010
  ident: 1702_CR85
  publication-title: Comput Environ Urban Syst
  doi: 10.1016/j.compenvurbsys.2009.12.004
– ident: 1702_CR104
  doi: 10.1007/978-3-642-32618-9_22
– volume: 145–146
  start-page: 70
  year: 2012
  ident: 1702_CR114
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.12.040
– ident: 1702_CR52
  doi: 10.1007/11573548_1
– volume: 44
  start-page: 17
  year: 2011
  ident: 1702_CR92
  publication-title: Q J Eng Geol Hydrogeol
  doi: 10.1144/1470-9236/09-029
– volume: 71
  start-page: 289
  year: 2004
  ident: 1702_CR58
  publication-title: Eng Geol
  doi: 10.1016/S0013-7952(03)00142-X
– ident: 1702_CR28
  doi: 10.5121/ijcnc.2014.6315
– volume: 7
  start-page: 4318
  year: 2015
  ident: 1702_CR30
  publication-title: Remote Sens
  doi: 10.3390/rs70404318
– volume: 64
  start-page: 81
  year: 2014
  ident: 1702_CR35
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2013.11.009
– volume: 5
  start-page: 38
  year: 2014
  ident: 1702_CR39
  publication-title: Int J Geosci
  doi: 10.4236/ijg.2014.51006
– volume: 63
  start-page: 965
  year: 2012
  ident: 1702_CR79
  publication-title: Nat Hazards
  doi: 10.1007/s11069-012-0217-2
– volume: 95
  start-page: 172
  year: 2008
  ident: 1702_CR40
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2007.06.001
– volume: 5
  start-page: 853
  year: 2005
  ident: 1702_CR14
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-5-853-2005
– ident: 1702_CR105
  doi: 10.1155/2012/974638
– volume: 8
  start-page: 1716
  year: 2012
  ident: 1702_CR1
  publication-title: Mol BioSyst
  doi: 10.1039/c2mb25039j
– volume: 96
  start-page: 28
  year: 2012
  ident: 1702_CR108
  publication-title: Catena
  doi: 10.1016/j.catena.2012.04.001
– volume: 149
  start-page: 151
  issue: Part A
  year: 2015
  ident: 1702_CR18
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.10.044
– ident: 1702_CR65
  doi: 10.1016/j.geomorph.2006.10.035
– ident: 1702_CR15
  doi: 10.1007/978-0-387-09697-1_3
– ident: 1702_CR69
– ident: 1702_CR33
  doi: 10.1007/s11069-015-1799-2
– ident: 1702_CR93
– ident: 1702_CR46
  doi: 10.1016/j.geomorph.2005.06.002
– volume: 184
  start-page: 139
  year: 2013
  ident: 1702_CR64
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2012.12.001
– ident: 1702_CR106
– volume: 27
  start-page: 127
  year: 2011
  ident: 1702_CR89
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq619
– volume-title: Annual Disaster Statistical Review 2013: The Numbers and Trends
  year: 2014
  ident: 1702_CR43
– ident: 1702_CR34
– volume: 61
  start-page: 50
  year: 2013
  ident: 1702_CR75
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2013.07.018
– volume: 64
  start-page: 180
  year: 2013
  ident: 1702_CR74
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2012.12.014
– volume: 63
  start-page: 479
  year: 2012
  ident: 1702_CR56
  publication-title: Nat Hazards
  doi: 10.1007/s11069-012-0163-z
– volume: 40
  start-page: 2360
  year: 2013
  ident: 1702_CR98
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.10.072
– volume: 69
  start-page: 331
  year: 2003
  ident: 1702_CR72
  publication-title: Eng Geol
  doi: 10.1016/S0013-7952(03)00069-3
– volume: 28
  start-page: 540
  year: 1990
  ident: 1702_CR11
  publication-title: IEEE Trans
– volume: 86
  start-page: 211
  year: 2006
  ident: 1702_CR90
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2006.05.001
– ident: 1702_CR8
– volume: 38
  start-page: 87
  year: 2012
  ident: 1702_CR4
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2011.05.010
– volume: 1
  start-page: 131
  year: 1997
  ident: 1702_CR26
  publication-title: Intell data Anal
  doi: 10.1016/S1088-467X(97)00008-5
– ident: 1702_CR73
– volume: 44
  start-page: 120
  year: 2012
  ident: 1702_CR6
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2012.03.003
– volume: 62
  start-page: 139
  year: 2011
  ident: 1702_CR9
  publication-title: China Environ Earth Sci
  doi: 10.1007/s12665-010-0509-3
– ident: 1702_CR87
  doi: 10.1007/BF02591446
– volume: 17
  start-page: 43
  year: 2011
  ident: 1702_CR101
  publication-title: Int J Comput Appl
– volume: 120
  start-page: 149
  year: 2014
  ident: 1702_CR5
  publication-title: Catena
  doi: 10.1016/j.catena.2014.04.009
– volume: 37
  start-page: 1264
  year: 2011
  ident: 1702_CR71
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2010.10.012
– ident: 1702_CR86
  doi: 10.1109/TGRS.2010.2050328
– volume: 133
  start-page: 266
  year: 2015
  ident: 1702_CR48
  publication-title: CATENA
  doi: 10.1016/j.catena.2015.05.019
– ident: 1702_CR17
  doi: 10.1016/j.dss.2009.07.004
– ident: 1702_CR96
  doi: 10.1007/s11069-015-1702-1
– volume: 9
  start-page: 93
  year: 2012
  ident: 1702_CR2
  publication-title: Landslides
  doi: 10.1007/s10346-011-0283-7
– start-page: 619
  volume-title: ICMLA ’08. Seventh International Conference on, 2008. IEEE
  year: 2008
  ident: 1702_CR102
– volume: 114
  start-page: 627
  year: 2010
  ident: 1702_CR25
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.09.023
– volume: 151
  start-page: 155
  year: 2003
  ident: 1702_CR27
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(03)00079-1
– volume: 8
  start-page: 1505
  year: 2008
  ident: 1702_CR61
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.10.012
SSID ssj0002667
Score 2.5944197
Snippet The objective of this study is to make a comparison of the prediction performance of three techniques, Functional Trees (FT), Multilayer Perceptron Neural...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 255
SubjectTerms Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Climatology
data collection
Earth and Environmental Science
Earth Sciences
Geographic information systems
Hazards
India
inventories
land cover
land use
Land use planning
Landslides
Landslides & mudslides
Lithology
Neural networks
Original Paper
planning
prediction
rain
rivers
roads
Slope stability
soil
Spatial analysis
support vector machines
Training
trees
Waste Water Technology
Water Management
Water Pollution Control
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bitRAEG3W2RdfxCuOrlKCiLdgkk7SiSCiy6674g6iDsxbqHR3ZHBIxmRG2K_yI_wBP8mqzmVV2H1LSDXdoaqrTnfdhHioE02w2EdPhZH2yB6nHiKdWmODvm-SwqaSE4VPZsnRPHq_iBc7YjbkwnBY5aATnaI2teY78hdBmhJYocNC9nr93eOuUexdHVpoYN9awbxyJcYuid2QK2NNxO7bg9nHT6NuJnPUJVAr5aksXQx-Tt-VFVUuIiP2AkVqIvvXUp3Bz_88ps4QHV4VV3oECW86ll8TO7a6LqYnBH7rxt2RwyPYXy0Jibq3G-L3B07nXS2NhXbbujAWFxF7Cug8vq4uJywrICwI880GG_zG9-mABCjh8XFFIvQEOED-K7w7_vwSEPTYvRBcfVqoS1g37PNhPoMmC9xPQR8q_PXzh4UCT237HFwE44qeG1h3QTUNjeCymvRTVReUTmQ8P9vc7qoS2HfeQtfuur0p5ocHX_aPvL6Rg6clISDP6lRhpDNL8KTMkCBJERSyMNpIrWJVyNAEkY1KHzNCdAaDknSD8UsZhcTEqJC3xKSqK3tbgJGBJZWBNkwwyrQskjiTGJbWL9OQDO1U-APTct1XOedmG6t8rM_s-JwTn3Pmc55NxdNxyLor8XER8d4gCXm_29v8TDan4sH4mfYpO1-wsvXW0aSZ4gPe-TScNhUplSRE82yQsr-mOW9Rdy5e1F1xOWQw4qR7T0w2zdbeIyi1Ke73--MPkT0f9g
  priority: 102
  providerName: ProQuest
Title Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods
URI https://link.springer.com/article/10.1007/s00704-015-1702-9
https://www.proquest.com/docview/1881392499
https://www.proquest.com/docview/1888972425
https://www.proquest.com/docview/2000477665
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1434-4483
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: ABDBF
  dateStart: 20030401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1434-4483
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1434-4483
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: 8FG
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF7R9sIFQQGRUqJBQog_S7bX9trc0ipJC7RCQKRwssbrNYqInMhOkPpUPAQvwCMxs_6hRRSJk23trNfWzOx8u_OzQjzRkSZY7KKj_EA7ZI9jB5FWrWGOrptHmYklJwqfnUcns-DNPJy3edx1F-3euSTtTN0nu3FlGo6YCB1PkRonO2Iv5GpeJMQzf9RPv2RxmhxppRyVxPPOlfm3V1w1Rr8R5h9OUWtrJrfFrRYkwqjh6h1xw5T7YnBG-HZV2W1weArHywWBTft0V_x8xxm7y0VuoN7WNlLFBr1eAFqnri29CYsSCO7BbLPBCr_yljkgYUZ4dlqSlDwHjoH_AtPTj68BQfcHFIItQQurAtYVu3WYlaDJyLZDUEOJP75_M5DhhalfgQ1SXNJ9BesmbqaiHlw5k36qbOLOiYzHZ7Pa7EYCu8draE60ru-J2WT86fjEac9qcLQkkOMYHSsMdGIIgRQJEurIvExmuc6lVqHKpJ97gQkKFxMCbTl6Bal_7hYy8GnRGWTyvtgtV6V5ICCXnqFZAY0fYZBomUVhItEvjFvEPtnSgXA7pqW6LWTO52ks074Es-VzSnxOmc9pMhAv-i7rporHv4gPO0lIW4WuUy-OCSvTWpWaH_fNpIrsX8HSrLaWJk4Ur-Gup-HMqECpKCKal52UXRrmuo86-C_qh-Kmz_DDCvuh2N1UW_OIwNMmG4qdeDIdir3R9PPbMV2PxufvPwytCv0C8wsZ4g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbGdgE3E7-iY8BBAsRfRBK7cYw0IRgbLWsrBKvUu-DYDqqokpK0oD4Vb8ANL8AjcewkHSBtd7trFadJdY7P9x2fP0Luq0ghLfalx0OmPMTj2JMSvdaulr6vo9TE1BYKD0dRb8zeTbqTDfKzrYWxaZWtTXSGWhfKnpE_D-IYyQo6C-Ll_Ktnp0bZ6Go7QkM2oxX0nmsx1hR2HJnVd3Thqr3-G5T3gzA8PDje73nNlAFPUYRnz6iYS6aEQezMhES8TIOUplppqniXpzTUATMs86VAuqFlkKHiaj-jLER3iaUUf_cC2WKUCXT-tl4fjN5_WGMBwl9dsM25x0U8aeOqvmtjyl0GSNcLOJol8S8yntDd_yK0DvgOL5PthrHCq1rFrpANk18lnSGS7aJ0Z_LwEPZnU2S-7ts18ntgy4dnU22gWlYubcZl4K5Augiz6wMK0xyQe8J4sZCl_GLP70EigYVH_RxV9jHYhPzP8Lb_8QVIUOtpieD64UKRwby0MSarV6AQ8ZtH4IVc_vrxzUAqV6Z6Bi5jcoafS5jXSTwl3mHbeOKfyuskeFxmn28xvj4aBRurr6Aer11dJ-NzEekNspkXublJQNPAoImSJowkE4qmUVdQGWbGz-IQgb1D_FZoiWq6qtvhHrNk3Q_ayTlBOSdWzonokCfrW-Z1S5GzFu-2mpA01qVKTvZCh9xbX0a7YIM9MjfF0q2JBbcO5elrbJkW4zyKcM3TVsv-esxpL7Vz9kvdJRd7x8NBMuiPjm6RS6ElQk7Td8nmolya20jjFumdZq8A-XTe2_MPElBcTg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5qBfFFvOLaqkdQ8dLQJJNkMoKItG679oKgC_sWJ5OJLF2SNdlV9lf57qt_wJ_kOZNLVWjf-pYlk0yWc-Z838y5MfZYRxppsasc4QfaQTyOHaVw1xpmynWzKDUxp0Tho-Nofxy8n4STNfazy4WhsMrOJlpDnZWazsi3vThGsoKbBbmdt2ERH3aHb-ZfHeogRZ7Wrp1GoyIHZvUdt2_169EuyvqJ7w_ffdrZd9oOA47mCM2O0bFQgZYGcTOXCrEy9VKeZjrjWoQi5X7mBSbIXSWRamTKy1FpMzfngY9bpSDl-N5L7LKgKu6UpT7c61EAga9J1RbCETKedB5V1xYwFTb2I3Q8gQZJ_ouJp0T3P9-shbzhdXat5arwtlGuG2zNFDfZ4AhpdlnZ03h4CjuzKXJe--sW-31IicOzaWagXtY2YMbG3q5AWd-yrQAK0wKQdcJ4sVCVOqGTe1BIXeHZqEBlfQ4Uiv8F9kYfX4EC3fdJBFsJF8oc5hV5l0ijQCPWt1PgjUL9-vHNQKpWpt4CGys5w-sK5k34ToVPUAFP_FNFE_6Ow2h-QvfmUBTIS19D01i7vs3GFyLQO2y9KAtzl0HGPYPGSRk_UoHUPI1CyZWfGzePfYT0AXM7oSW6radObT1mSV8J2so5QTknJOdEDtiL_pF5U0zkvMGbnSYkrV2pk9NVMGCP-ttoEcjNowpTLu2YWAraSp49hhK0AiGiCMe87LTsr2nO-qh753_UQ3YFF2VyODo-2GBXfWJAVtE32fqiWpr7yN8W6QO7UIB9vuiV-QeT-Fno
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landslide+susceptibility+assesssment+in+the+Uttarakhand+area+%28India%29+using+GIS%3A+a+comparison+study+of+prediction+capability+of+na%C3%AFve+bayes%2C+multilayer+perceptron+neural+networks%2C+and+functional+trees+methods&rft.jtitle=Theoretical+and+applied+climatology&rft.au=Pham%2C+Binh+Thai&rft.au=Tien+Bui%2C+Dieu&rft.au=Pourghasemi%2C+Hamid+Reza&rft.au=Indra%2C+Prakash&rft.date=2017-04-01&rft.issn=0177-798X&rft.eissn=1434-4483&rft.volume=128&rft.issue=1-2&rft.spage=255&rft.epage=273&rft_id=info:doi/10.1007%2Fs00704-015-1702-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00704_015_1702_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-798X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-798X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-798X&client=summon