A novel method for discovering fuzzy sequential patterns using the simple fuzzy partition method

Sequential patterns refer to the frequently occurring patterns related to time or other sequences, and have been widely applied to solving decision problems. For example, they can help managers determine which items were bought after some items had been bought. However, since fuzzy sequential patter...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Society for Information Science and Technology Vol. 54; no. 7; pp. 660 - 670
Main Authors Chen, Ruey-Shun, Hu, Yi-Chung
Format Journal Article
LanguageEnglish
Published New York Wiley Subscription Services, Inc., A Wiley Company 01.05.2003
Wiley Periodicals Inc
Subjects
Online AccessGet full text
ISSN1532-2882
2330-1635
1532-2890
2330-1643
DOI10.1002/asi.10258

Cover

Abstract Sequential patterns refer to the frequently occurring patterns related to time or other sequences, and have been widely applied to solving decision problems. For example, they can help managers determine which items were bought after some items had been bought. However, since fuzzy sequential patterns described by natural language are one type of fuzzy knowledge representation, they are helpful in building a prototype fuzzy knowledge base in a business. Moreover, each fuzzy sequential pattern consisting of several fuzzy sets described by the natural language is well suited for the thinking of human subjects and will help to increase the flexibility for users in making decisions. Additionally, since the comprehensibility of fuzzy representation by human users is a criterion in designing a fuzzy system, the simple fuzzy partition method is preferable. In this method, each attribute is partitioned by its various fuzzy sets with pre‐specified membership functions. The advantage of the simple fuzzy partition method is that the linguistic interpretation of each fuzzy set is easily obtained. The main aim of this paper is exactly to propose a fuzzy data mining technique to discover fuzzy sequential patterns by using the simple partition method. Two numerical examples are utilized to demonstrate the usefulness of the proposed method.
AbstractList Sequential patterns refer to the frequently occurring patterns related to time or other sequences, and have been widely applied to solving decision problems. For example, they can help managers determine which items were bought after some items had been bought. However, since fuzzy sequential patterns described by natural language are one type of fuzzy knowledge representation, they are helpful in building a prototype fuzzy knowledge base in a business. Moreover, each fuzzy sequential pattern consisting of several fuzzy sets described by the natural language is well suited for the thinking of human subjects and will help to increase the flexibility for users in making decisions. Additionally, since the comprehensibility of fuzzy representation by human users is a criterion in designing a fuzzy system, the simple fuzzy partition method is preferable. In this method, each attribute is partitioned by its various fuzzy sets with pre‐specified membership functions. The advantage of the simple fuzzy partition method is that the linguistic interpretation of each fuzzy set is easily obtained. The main aim of this paper is exactly to propose a fuzzy data mining technique to discover fuzzy sequential patterns by using the simple partition method. Two numerical examples are utilized to demonstrate the usefulness of the proposed method.
Contribution to a special topic section on Web retrieval and mining: a machine learning perspective. Sequential patterns refer to the frequently occurring patterns related to time or other sequences and have been widely applied to solving decision problems. Since fuzzy sequential patterns described by natural language are one type of fuzzy knowledge representation, they are helpful in building a prototype fuzzy knowledge base in a business. Each fuzzy sequential pattern consisting of several fuzzy sets described by the natural language is well suited for the thinking of human subjects and will help to increase the flexibility for users in making decisions. Since the comprehensibility of fuzzy representation by human users is a criterion in designing a fuzzy system, the simple fuzzy partition method is preferable. Each attribute is partitioned by its various fuzzy sets with pre-specified membership functions. The advantage of the simple fuzzy partition method is that the linguistic interpretation of each fuzzy set is easily obtained. Proposes a fuzzy data mining technique to discover fuzzy sequential patterns by using the simple partition method. Two numerical examples are utilized to demonstrate the usefulness of the proposed method. (Original abstract - amended)
Sequential patterns refer to the frequently occurring patterns related to time or other sequences, and have been widely applied to solving decision problems. For example, they can help managers determine which items were bought after some items had been bought. However, since fuzzy sequential patterns described by natural language are one type of fuzzy knowledge representation, they are helpful in building a prototype fuzzy knowledge base in a business. Moreover, each fuzzy sequential pattern consisting of several fuzzy sets described by the natural language is well suited for the thinking of human subjects and will help to increase the flexibility for users in making decisions. Additionally, since the comprehensibility of fuzzy representation by human users is a criterion in designing a fuzzy system, the simple fuzzy partition method is preferable. In this method, each attribute is partitioned by its various fuzzy sets with pre-specified membership functions. The advantage of the simple fuzzy partition method is that the linguistic interpretation of each fuzzy set is easily obtained. The main aim of this paper is exactly to propose a fuzzy data mining technique to discover fuzzy sequential patterns by using the simple partition method. Two numerical examples are utilized to demonstrate the usefulness of the proposed method. [PUBLICATION ABSTRACT]
Author Chen, Ruey-Shun
Hu, Yi-Chung
Author_xml – sequence: 1
  givenname: Ruey-Shun
  surname: Chen
  fullname: Chen, Ruey-Shun
  email: rschen@bis03.iim.nctu.edu.tw
  organization: Institute of Information Management, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
– sequence: 2
  givenname: Yi-Chung
  surname: Hu
  fullname: Hu, Yi-Chung
  organization: Institute of Information Management, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
BookMark eNp9kE1P3DAQhi1EJT7aQ_-B1UOlHgL-WMfOcUsLRUItqK16NE4yBtOsHWwHuvx6vOyWA1J7mtHM876aeffQtg8eEHpLyQElhB2a5ErDhNpCu1RwVjHVkO3nXrEdtJfSDSGUCkp20eUc-3AHA15Avg49tiHi3qWuzKLzV9hODw9LnOB2Ap-dGfBocoboE57Sap-vASe3GAfYoKOJ2WUX_MbxNXplzZDgzabuo5_Hn38cfanOvp2cHs3Pqo7XXFWshZpI2YDtBNTAeiIbZltiGmP7vqdEiXameNPPoFVyRqCW1na1qBtpeWs530fv175jDOXYlPWivAHDYDyEKWkhBVe0FgV89wK8CVP05TatBGViRpkq0Ic11MWQUgSrx-gWJi41JXoVtC5B66egC3v4gu1cNqsIcjRu-J_i3g2w_Le1nn8__auo1gqXMvx5Vpj4W9eSS6F_fT3Rn5Qi5xfnF_ojfwQHb6Hv
CitedBy_id crossref_primary_10_1109_TFUZZ_2007_894976
crossref_primary_10_1142_S0219622011004233
crossref_primary_10_1016_j_dss_2008_09_003
crossref_primary_10_1016_j_knosys_2010_04_012
Cites_doi 10.1109/ICDM.2001.989525
10.1016/S0360-8352(02)00136-5
10.1109/3477.790443
10.1109/91.413232
10.1016/S0377-2217(99)00090-9
10.1007/978-1-4757-0450-1
10.1109/21.256541
10.1016/S0957-4174(00)00024-5
10.1016/0020-0255(75)90036-5
10.1109/91.388168
10.1145/170035.170072
10.1109/5.364486
10.1109/3477.604117
10.1109/91.273127
10.1016/S0165-0114(99)00070-6
10.7551/mitpress/3926.001.0001
10.1145/345124.345167
10.1109/21.199466
10.1109/ICDE.1995.380415
10.1016/0165-0114(94)90003-5
10.1016/S0019-9958(65)90241-X
10.1016/S0020-0255(01)00144-X
10.1007/978-94-015-8702-0
ContentType Journal Article
Copyright Copyright © 2003 Wiley Periodicals, Inc.
Copyright Wiley Periodicals Inc. May 2003
Copyright_xml – notice: Copyright © 2003 Wiley Periodicals, Inc.
– notice: Copyright Wiley Periodicals Inc. May 2003
DBID BSCLL
AAYXX
CITATION
0-V
3V.
7SC
7WY
7WZ
7XB
87Z
883
88B
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
AIMQZ
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CJNVE
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
LIQON
L~C
L~D
M0C
M0F
M0P
M1O
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PMKZF
PQBIZ
PQBZA
PQEDU
PQEST
PQGLB
PQQKQ
PQUKI
PRQQA
Q9U
DOI 10.1002/asi.10258
DatabaseName Istex
CrossRef
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ABI/INFORM Collection
Education Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library
ProQuest Central (Alumni)
ProQuest Central
Proquest One Literature (subscription)
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
Education Collection
Library & Information Science Collection
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
ProQuest One Literature (OCUL)
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
ABI/INFORM Trade & Industry
ProQuest Education Database (Subscription)
Library Science Database
Research Library (subscription)
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest Digital Collections
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Social Sciences
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest One Education
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
Education Collection
ProQuest One Literature
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest One Literature - U.S. Customers Only
ProQuest One Social Sciences
ABI/INFORM Trade & Industry (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Education Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest Digital Collections
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ABI/INFORM Trade & Industry
ProQuest Education Journals (Alumni Edition)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
Library and Information Science Abstracts (LISA)
CrossRef
ProQuest One Education
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1532-2890
2330-1643
EndPage 670
ExternalDocumentID 2263626001
10_1002_asi_10258
ASI10258
ark_67375_WNG_D880PQPQ_B
Genre article
GroupedDBID -~X
.3N
.4I
.DC
.GA
.GJ
.Y3
0-V
05W
07C
10A
186
1L6
1OB
1OC
1OL
29L
31~
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5GY
66C
6PF
6TJ
702
77I
77K
7PT
7WY
8-0
8-1
8-3
8-4
8-5
883
8FE
8FG
8FL
8FW
8G5
8R4
8R5
8UM
8VB
930
A03
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
AEFGJ
AEIGN
AEIMD
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AHQJS
AI.
AIDQK
AIDYY
AITYG
AIURR
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALUQN
AMBMR
AMYDB
ARALO
ARAPS
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
BAFTC
BDRZF
BENPR
BEZIV
BKOMP
BROTX
BRXPI
BSCLL
BY8
CJNVE
CNYFK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
EBO
EBS
EBU
EJD
ELW
F00
F01
F04
F5P
FEDTE
FRNLG
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_ABI_INFORM_RESEARCH
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
I-F
IX1
JPC
K1G
K6V
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0C
M0F
M0P
M1O
M2O
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
NF~
OHT
OIG
P-O
P2X
P4D
P62
Q.N
Q11
Q2X
QB0
QRW
QWB
R.K
ROL
RX1
SUPJJ
TH9
UB1
V2E
VH1
W8V
WH7
WIH
WIK
WJL
WQJ
WXSBR
XG1
XPP
XV2
XZL
ZL0
~IA
~WT
AAYXX
CITATION
3V.
7SC
7XB
8FD
8FK
AFKRA
AIMQZ
BGLVJ
CCPQU
E3H
F2A
JQ2
K60
K6~
K7-
L.-
L7M
LIQON
L~C
L~D
MBDVC
PHGZM
PHGZT
PKEHL
PMKZF
PQBIZ
PQBZA
PQEDU
PQEST
PQGLB
PQQKQ
PQUKI
PRQQA
Q9U
ID FETCH-LOGICAL-c3638-2be60779efc5e6e2d0792fb0a9afddd1085b4839d4eb8740e67ffc65697f3bf33
IEDL.DBID DR2
ISSN 1532-2882
2330-1635
IngestDate Thu Oct 02 11:48:30 EDT 2025
Sat Oct 25 06:49:13 EDT 2025
Wed Oct 01 04:56:39 EDT 2025
Thu Apr 24 22:51:15 EDT 2025
Sun Sep 21 06:17:35 EDT 2025
Sun Sep 21 06:18:04 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3638-2be60779efc5e6e2d0792fb0a9afddd1085b4839d4eb8740e67ffc65697f3bf33
Notes Nomenclature K, number of partitions in each quantitative attribute; k, length of a fuzzy sequence; d, degree of a given relation, where d ≥ 1; A K,i mx m, im-th linguistic value of K fuzzy partitions defined in quantitative attribute xm, 1 ≤ im ≤ K; μ K,i mx m, membership function of A K,i mx m; n, total number of customers; cr, r-th customer, where 1 ≤ r ≤ n; αr, number of consecutive transactions ordered by transaction-time for cr; β, total number of frequent fuzzy grids; t p(r), p-th transaction corresponding to cr, where t p(r) = (t p1(r), t p2(r), ..., t pd(r)), and 1 ≤ p ≤ αr; Lj, j-th frequent fuzzy grid, where 1 ≤ j≤ β.
ark:/67375/WNG-D880PQPQ-B
istex:FBDD5AF6FFB82D76A74CD9B6B86BAF80793CE908
ArticleID:ASI10258
A
p1
fuzzy partitions defined in quantitative attribute
number of consecutive transactions ordered by transaction‐time for
p2

th frequent fuzzy grid, where 1
K
L
membership function of
where
th linguistic value of
β, total number of frequent fuzzy grids
and 1
c
d
im

Nomenclature
(
degree of a given relation, where
i
)
j
,
m
th transaction corresponding to
n
p
1
α
r
t
pd
number of partitions in each quantitative attribute
x
length of a fuzzy sequence
;
total number of customers
th customer, where 1
μ
β.
=
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 851254128
PQPubID 26268
PageCount 11
ParticipantIDs proquest_miscellaneous_57538165
proquest_journals_851254128
crossref_primary_10_1002_asi_10258
crossref_citationtrail_10_1002_asi_10258
wiley_primary_10_1002_asi_10258_ASI10258
istex_primary_ark_67375_WNG_D880PQPQ_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-05
May 2003
2003-05-00
20030501
PublicationDateYYYYMMDD 2003-05-01
PublicationDate_xml – month: 05
  year: 2003
  text: 2003-05
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Hoboken
PublicationTitle Journal of the American Society for Information Science and Technology
PublicationTitleAlternate J. Am. Soc. Inf. Sci
PublicationYear 2003
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Periodicals Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Periodicals Inc
References Hu, Y.C., Chen, R.S., & Tzeng, G.H. Generating learning sequences for decision makers through data mining and competence set expansion. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 32(5), 679-686.
Bezdek J.C. (1981). Pattern recognition with fuzzy objective function algorithms, New York: Plenum.
Zimmermann, H.-J. (1996). Fuzzy set theory and its applications. Boston: Kluwer.
Wang, L.X., & Mendel, J.M. (1992). Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man, and Cybernetics, 22(6), 1414-1427.
Han J.W., & Kamber M. (2001). Data mining: concepts and techniques. San Francisco: Morgan Kaufmann.
Ishibuchi, H., Nakashima, T., Murata, T. (1999). Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Transactions on Systems, Man, and Cybernetics, 29(5), 601-618.
Myra, S. (2000). Web usage mining for web site evaluation. Communications of the ACM, 43(8), 127-134.
Berry, M., & Linoff, G. (1997). Data mining techniques: for marketing, sales, and customer support. New York: John Wiley & Sons.
Sun, C.T. (1994). Rule-base structure identification in an adaptive-network-based fuzzy inference system. IEEE Transactions on Fuzzy Systems, 2(1), 64-73.
Zadeh, L.A. (1975, 1976) The concept of a linguistic variable and its application to approximate reasoning, Information Science, 8(3), 199-249(part 1); 8(4), 301-357(part 2); 9(1), 43-80(part 3).
Jang, J.S.R. (1993). ANFIS: adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685.
Zimmermann, H.-J. (1991). Fuzzy sets, decision making, and expert systems. Boston: Kluwer.
Pedrycz, W. (1994). Why triangular membership functions? Fuzzy Sets and Systems 64, 21-30.
Hong T.P., Wang T.T., Wang, S.L., & Chien, B.C. (2000). Learning a coverage set of maximally general fuzzy rules by rough sets. Expert Systems with Applications, 19(2), 97-103.
Pedrycz, W., & Gomide, F. (1998). An Introduction to Fuzzy Sets: Analysis and Design, Cambridge: MIT Press.
Ishibuchi, H., Nozaki K., Yamamoto N., & Tanaka H. (1995). Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Transactions on Fuzzy Systems, 3(3), 260-270.
Ravi, V., Zimmermann, H.-J. (2000). Fuzzy rule based classification with FeatureSelector and modified threshold accepting. European Journal of Operational Research, 123(1), 16-28.
Chen, S.M., & Jong, W.T. (1997). Fuzzy query translation for relational database systems. IEEE Transactions on Systems, Man, and Cybernetics, 27(4), 714-721.
Homaifar, A., & McCormick, E. (1995). Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms. IEEE Transactions on Fuzzy Systems, 3(2), 129-139.
Ishibuchi, H., Nakashima T., & Murata, T. (2001). Three-objective genetics-based machine learning for linguistic rule extraction. Information Sciences, 136, 109-133.
Jang, J.S.R., & Sun, C.T. (1995). Neuro-fuzzy modeling and control. Proceedings of the IEEE, 83(3), 378-406.
Saaty, T.L. (1980). The analytic hierarchy process: planning, priority setting, resource allocation. New York: McGraw-Hill.
Sharma, S. (1996). Applied multivariate techniques. Singapore: John Wiley & Sons.
Zadeh, L.A. (1965). Fuzzy sets. Information Control, 8(3), 338-353.
Ishibuchi H., & Nii, M. (2001). Numerical analysis of the learning of fuzzified neural networks from fuzzy if-then rules. Fuzzy Sets and Systems 120, 281-307.
Hu Y.C., Tzeng G.H., & Chen R. S. (2002). Mining fuzzy association rules for classification problems. Computers and Industrial Engineering, 43(4), 735-750.
1993; 23
2001; 120
1999; 29
2000; 43
1998
1997
1996
1995
1997; 27
1993
1991
1995; 3
32
1994; 64
1995; 83
2000; 19
1975, 1976; 8
2001
1965; 8
2002; 43
1981
2000; 123
1980
1992; 22
1994; 2
2001; 136
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
Zimmermann H.‐J. (e_1_2_7_29_1) 1991
Agrawal R. (e_1_2_7_3_1) 1996
Berry M. (e_1_2_7_5_1) 1997
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
Hu Y.C. (e_1_2_7_11_1); 32
e_1_2_7_28_1
Sharma S. (e_1_2_7_25_1) 1996
e_1_2_7_30_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Han J.W. (e_1_2_7_8_1) 2001
Saaty T.L. (e_1_2_7_24_1) 1980
References_xml – reference: Ravi, V., Zimmermann, H.-J. (2000). Fuzzy rule based classification with FeatureSelector and modified threshold accepting. European Journal of Operational Research, 123(1), 16-28.
– reference: Pedrycz, W., & Gomide, F. (1998). An Introduction to Fuzzy Sets: Analysis and Design, Cambridge: MIT Press.
– reference: Jang, J.S.R., & Sun, C.T. (1995). Neuro-fuzzy modeling and control. Proceedings of the IEEE, 83(3), 378-406.
– reference: Myra, S. (2000). Web usage mining for web site evaluation. Communications of the ACM, 43(8), 127-134.
– reference: Hu Y.C., Tzeng G.H., & Chen R. S. (2002). Mining fuzzy association rules for classification problems. Computers and Industrial Engineering, 43(4), 735-750.
– reference: Zimmermann, H.-J. (1996). Fuzzy set theory and its applications. Boston: Kluwer.
– reference: Homaifar, A., & McCormick, E. (1995). Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms. IEEE Transactions on Fuzzy Systems, 3(2), 129-139.
– reference: Saaty, T.L. (1980). The analytic hierarchy process: planning, priority setting, resource allocation. New York: McGraw-Hill.
– reference: Hong T.P., Wang T.T., Wang, S.L., & Chien, B.C. (2000). Learning a coverage set of maximally general fuzzy rules by rough sets. Expert Systems with Applications, 19(2), 97-103.
– reference: Ishibuchi, H., Nakashima T., & Murata, T. (2001). Three-objective genetics-based machine learning for linguistic rule extraction. Information Sciences, 136, 109-133.
– reference: Berry, M., & Linoff, G. (1997). Data mining techniques: for marketing, sales, and customer support. New York: John Wiley & Sons.
– reference: Wang, L.X., & Mendel, J.M. (1992). Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man, and Cybernetics, 22(6), 1414-1427.
– reference: Bezdek J.C. (1981). Pattern recognition with fuzzy objective function algorithms, New York: Plenum.
– reference: Zadeh, L.A. (1975, 1976) The concept of a linguistic variable and its application to approximate reasoning, Information Science, 8(3), 199-249(part 1); 8(4), 301-357(part 2); 9(1), 43-80(part 3).
– reference: Hu, Y.C., Chen, R.S., & Tzeng, G.H. Generating learning sequences for decision makers through data mining and competence set expansion. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 32(5), 679-686.
– reference: Pedrycz, W. (1994). Why triangular membership functions? Fuzzy Sets and Systems 64, 21-30.
– reference: Sharma, S. (1996). Applied multivariate techniques. Singapore: John Wiley & Sons.
– reference: Chen, S.M., & Jong, W.T. (1997). Fuzzy query translation for relational database systems. IEEE Transactions on Systems, Man, and Cybernetics, 27(4), 714-721.
– reference: Sun, C.T. (1994). Rule-base structure identification in an adaptive-network-based fuzzy inference system. IEEE Transactions on Fuzzy Systems, 2(1), 64-73.
– reference: Zimmermann, H.-J. (1991). Fuzzy sets, decision making, and expert systems. Boston: Kluwer.
– reference: Ishibuchi H., & Nii, M. (2001). Numerical analysis of the learning of fuzzified neural networks from fuzzy if-then rules. Fuzzy Sets and Systems 120, 281-307.
– reference: Ishibuchi, H., Nozaki K., Yamamoto N., & Tanaka H. (1995). Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Transactions on Fuzzy Systems, 3(3), 260-270.
– reference: Han J.W., & Kamber M. (2001). Data mining: concepts and techniques. San Francisco: Morgan Kaufmann.
– reference: Jang, J.S.R. (1993). ANFIS: adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685.
– reference: Ishibuchi, H., Nakashima, T., Murata, T. (1999). Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Transactions on Systems, Man, and Cybernetics, 29(5), 601-618.
– reference: Zadeh, L.A. (1965). Fuzzy sets. Information Control, 8(3), 338-353.
– year: 1981
– volume: 29
  start-page: 601
  issue: 5
  year: 1999
  end-page: 618
  article-title: Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  end-page: 353
  article-title: Fuzzy sets
  publication-title: Information Control
– volume: 2
  start-page: 64
  issue: 1
  year: 1994
  end-page: 73
  article-title: Rule‐base structure identification in an adaptive‐network‐based fuzzy inference system
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 83
  start-page: 378
  issue: 3
  year: 1995
  end-page: 406
  article-title: Neuro‐fuzzy modeling and control
  publication-title: Proceedings of the IEEE
– year: 2001
– year: 1996
– volume: 64
  start-page: 21
  year: 1994
  end-page: 30
  article-title: Why triangular membership functions?
  publication-title: Fuzzy Sets and Systems
– start-page: 307
  year: 1996
  end-page: 328
– year: 1998
– volume: 27
  start-page: 714
  issue: 4
  year: 1997
  end-page: 721
  article-title: Fuzzy query translation for relational database systems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 19
  start-page: 97
  issue: 2
  year: 2000
  end-page: 103
  article-title: Learning a coverage set of maximally general fuzzy rules by rough sets
  publication-title: Expert Systems with Applications
– volume: 43
  start-page: 735
  issue: 4
  year: 2002
  end-page: 750
  article-title: Mining fuzzy association rules for classification problems
  publication-title: Computers and Industrial Engineering
– volume: 120
  start-page: 281
  year: 2001
  end-page: 307
  article-title: Numerical analysis of the learning of fuzzified neural networks from fuzzy if‐then rules
  publication-title: Fuzzy Sets and Systems
– volume: 8
  start-page: 199
  issue: 3
  year: 1975, 1976
  end-page: 249
  article-title: The concept of a linguistic variable and its application to approximate reasoning
  publication-title: Information Science
– year: 1980
– volume: 43
  start-page: 127
  issue: 8
  year: 2000
  end-page: 134
  article-title: Web usage mining for web site evaluation
  publication-title: Communications of the ACM
– year: 1997
– volume: 22
  start-page: 1414
  issue: 6
  year: 1992
  end-page: 1427
  article-title: Generating fuzzy rules by learning from examples
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 3
  start-page: 260
  issue: 3
  year: 1995
  end-page: 270
  article-title: Selecting fuzzy if‐then rules for classification problems using genetic algorithms
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 3
  start-page: 129
  issue: 2
  year: 1995
  end-page: 139
  article-title: Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms
  publication-title: IEEE Transactions on Fuzzy Systems
– start-page: 241
  year: 2001
  end-page: 248
– year: 1991
– start-page: 207
  year: 1993
  end-page: 216
– volume: 32
  start-page: 679
  issue: 5
  end-page: 686
  article-title: Generating learning sequences for decision makers through data mining and competence set expansion
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  end-page: 685
  article-title: ANFIS: adaptive‐network‐based fuzzy inference systems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 123
  start-page: 16
  issue: 1
  year: 2000
  end-page: 28
  article-title: Fuzzy rule based classification with and modified threshold accepting
  publication-title: European Journal of Operational Research
– start-page: 3
  year: 1995
  end-page: 14
– volume: 136
  start-page: 109
  year: 2001
  end-page: 133
  article-title: Three‐objective genetics‐based machine learning for linguistic rule extraction
  publication-title: Information Sciences
– volume-title: Data mining techniques: for marketing, sales, and customer support
  year: 1997
  ident: e_1_2_7_5_1
– volume: 32
  start-page: 679
  issue: 5
  ident: e_1_2_7_11_1
  article-title: Generating learning sequences for decision makers through data mining and competence set expansion
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B
– ident: e_1_2_7_17_1
  doi: 10.1109/ICDM.2001.989525
– ident: e_1_2_7_12_1
  doi: 10.1016/S0360-8352(02)00136-5
– volume-title: Applied multivariate techniques
  year: 1996
  ident: e_1_2_7_25_1
– ident: e_1_2_7_13_1
  doi: 10.1109/3477.790443
– ident: e_1_2_7_15_1
  doi: 10.1109/91.413232
– ident: e_1_2_7_23_1
  doi: 10.1016/S0377-2217(99)00090-9
– ident: e_1_2_7_6_1
  doi: 10.1007/978-1-4757-0450-1
– ident: e_1_2_7_18_1
  doi: 10.1109/21.256541
– ident: e_1_2_7_10_1
  doi: 10.1016/S0957-4174(00)00024-5
– ident: e_1_2_7_28_1
  doi: 10.1016/0020-0255(75)90036-5
– volume-title: Fuzzy sets, decision making, and expert systems
  year: 1991
  ident: e_1_2_7_29_1
– ident: e_1_2_7_9_1
  doi: 10.1109/91.388168
– ident: e_1_2_7_2_1
  doi: 10.1145/170035.170072
– ident: e_1_2_7_19_1
  doi: 10.1109/5.364486
– ident: e_1_2_7_7_1
  doi: 10.1109/3477.604117
– volume-title: The analytic hierarchy process: planning, priority setting, resource allocation
  year: 1980
  ident: e_1_2_7_24_1
– ident: e_1_2_7_26_1
  doi: 10.1109/91.273127
– ident: e_1_2_7_16_1
  doi: 10.1016/S0165-0114(99)00070-6
– ident: e_1_2_7_22_1
  doi: 10.7551/mitpress/3926.001.0001
– ident: e_1_2_7_20_1
  doi: 10.1145/345124.345167
– ident: e_1_2_7_31_1
  doi: 10.1109/21.199466
– start-page: 307
  volume-title: Advances in knowledge discovery and data mining
  year: 1996
  ident: e_1_2_7_3_1
– ident: e_1_2_7_4_1
  doi: 10.1109/ICDE.1995.380415
– ident: e_1_2_7_21_1
  doi: 10.1016/0165-0114(94)90003-5
– ident: e_1_2_7_27_1
  doi: 10.1016/S0019-9958(65)90241-X
– volume-title: Data mining: concepts and techniques
  year: 2001
  ident: e_1_2_7_8_1
– ident: e_1_2_7_14_1
  doi: 10.1016/S0020-0255(01)00144-X
– ident: e_1_2_7_30_1
  doi: 10.1007/978-94-015-8702-0
SSID ssj0011510
Score 1.4262807
Snippet Sequential patterns refer to the frequently occurring patterns related to time or other sequences, and have been widely applied to solving decision problems....
Contribution to a special topic section on Web retrieval and mining: a machine learning perspective. Sequential patterns refer to the frequently occurring...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 660
SubjectTerms Data Analysis
Data mining
Fuzzy logic
Fuzzy set theory
Fuzzy sets
Fuzzy systems
Information retrieval
Information science
Intelligibility
Knowledge bases (artificial intelligence)
Knowledge representation
Natural language
Online information retrieval
Partition method
Partitions
Prototypes
Research subjects
Searching
Studies
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6N9gUeEGwgyhiz0DTtJVoaNwl5QKhj68akVhllYm_GP6WKKh3LimB_PXeuE3XS4C1KTk7k89mf47vvA9hzfdM3ssD4dhI3KBmXkbRZHKXaOqV4zp2v8B5PsrPLwflVerUB46YWhtIqmznRT9Rmoekf-SEiA9zL4Gz68fpnRKJRdLjaKGjIoKxgPniGsUfQTYgYqwPdo5NJ-aU9VsDlLfZqczyOEIikDdVQnBzKekY0BiT9vrZAdamvf99Dn-sY1i9Co2fwNKBHNly5-zls2GoTnqxxCm7CTqhEYPsslBpR17MQw1vwfcgmi192zsZeO5qhCTue1ZpSObEBNlre3f1hU59hjdE_Z6Vn4Kxq5rMLGAJGNp0Rp3AwLWnw-XesWnwBl6OTr5_OoiCzEGmO0RclCp2T54V1OrWZTUycF4lTsSykM8ZQeYIaII4yA6tIwM9muXMacWCRO64c5y-hUy0q-wpYrJNUS7xpaCfEC9kvHFpj6yqT-fuiBwdN3wodOMhJCmMuVuzJiUA3CO-GHrxrTa9XxBsPGe17B7UW8uYHZarlqfg2ORXHODmVF-WFOOrBduNBEYK0Fu2Q6sFu-xSji45MZGUXy1ogmKWT1RQ_3Lv9358ihtPP_uL1f1-1DY99OqBPmXwDndubpd1BWHOr3obB-hfSBfbk
  priority: 102
  providerName: ProQuest
Title A novel method for discovering fuzzy sequential patterns using the simple fuzzy partition method
URI https://api.istex.fr/ark:/67375/WNG-D880PQPQ-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasi.10258
https://www.proquest.com/docview/851254128
https://www.proquest.com/docview/57538165
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Library Science Database
  customDbUrl:
  eissn: 1532-2890
  dateEnd: 20050831
  omitProxy: false
  ssIdentifier: ssj0011510
  issn: 1532-2882
  databaseCode: M1O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/libraryscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (via ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1532-2890
  dateEnd: 20050831
  omitProxy: true
  ssIdentifier: ssj0011510
  issn: 1532-2882
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1532-2890
  dateEnd: 20050831
  omitProxy: true
  ssIdentifier: ssj0011510
  issn: 1532-2882
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1532-2882
  databaseCode: DR2
  dateStart: 19860101
  customDbUrl:
  isFulltext: true
  eissn: 1532-2890
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011510
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4xeNkegLFNlB_Fmia0l0ISN0kjnsqgsEl0hQ2NByRjJzZCVGlFWgT963dnJxlMmzTtJYqSi-P4fPZ38d1ngA_Gz_xMJmjfRqKDEnHZkjryWmGqjVI85sZmeJ_0o-Pz9peL8GIO9qpcGMcPUf9wI8uw4zUZuFTF7i_SUFncEO9ASIm-Po-sO3VWU0ch0HFMBCGn9ONOULEKecFu_eSzuWiBmvXhGdB8ClftfNNbgsuqpi7M5HZnOlE76ew3Esf__JRlWCxxKOu6jvMa5nS-Aq-esBOuwGaZ08C2WZm0REpk5WjwBq66LB_d6yFzu1AzFGGU5EtBoVgAM9PZ7JG5WG0cR4ZsbLk884JRsP01Q-jJihtiJy5Fx9SN7TtciW_hvHf4_dNxq9ywoZWiAtDiFKo5jhNt0lBHOsi8OAmM8mQiTZZllOig2ojIsrZWtBWgjmJjUkSUSWy4Mpy_g_l8lOtVYF4ahKnEixn5VDyRfmJQGktXkYw7SQM-VqoTaclmTptqDIXjYQ4ENqqwjdqA97Xo2FF4_Elo2-q_lpB3txTzFofiR_9IHOAwNzgdnIr9BqxXHUSU5l4IhK3oaONU34Ct-i7aKS2-yFyPpoVAWExrtCFW3HaFv1dFdL99tidr_y66Di9tlKGNxNyA-cndVG8iWpqoJrzo9I6asLB_2B-cNa2R4PHE__oTtK4VrQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5N68PgAbEBohvbLAQTL9HS_CQPE-rWlZatUUY3sTfPiW2pokrHsgLb_8b_xp3rREUC3vYWJSfHyp3P38V39wG80R3ZkSLB9a0FBiiRLxyhItcJC6Xz3I99bSq8R2k0uAg-XYaXK_CrroWhtMraJxpHLWcF_SPfR2SAsQx60w_X3xwijaLD1ZpBQ1hmBXlgOozZuo4TdfcDI7jqYNhDdb_1vP7x-dHAsSQDTuGj7TlejlOL40TpIlSR8qQbJ57OXZEILaWk5Pw8QBQhA5UTfZ2KYq0LREFJrP1c0_9Q3AFagR8kGPu1Do_T7HNzjIHbqWvY7XzXQeAT1q2NXG9fVBNqm0BU80sbYot0-_MPtLuMmc2m138KTyxaZd2Fea3Diio34PFSD8MN2LaVD2yP2dImUjWzPuMZXHVZOvuupmxkuKoZirDepCoodRQHYP35_f0dG5uMbvQ2U5aZjp9lxUw2A0OAysYT6mFsRTMydvOOxYjP4eJBvvgLWC1npXoJzC28sBB4U1Lk5Seik2iUxtHzSMTvkza8q78tL2zPc6LemPJFt2aPoxq4UUMbXjei14tGH38T2jMKaiTEzVfKjItD_iX9yHvoDLOz7IwftmGr1iC3TqHijQm3Ybd5iquZjmhEqWbziiN4ppPcECdu1P7vqfDueGguNv_7ql1YG5yPTvnpMD3ZgkcmFdGka76C1dubudpGSHWb71jDZXD10GvlN4brNJs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTULwwMcAUcaYhdDES7Y0rpNa4qVQysZH1QETe0HGTmw0rUqrpUXQv547OwkbAgnxFiUXx7Hvzj8nd78DeOK6RbfQEu3badygpFxH2qZxJHLrjOEZdz7D-904PTjuvT4RJ2vwrMmFCfwQ7Qc3sgzvr8nA7bxw-79YQ3V1SsQDon8FNnpC9imgb_i-JY9CqBO4CASnBOR-0vAKxcl-e-ul1WiDBvb7Jah5EbD6FWd0Ez43fQ2BJmd7y4XZy1e_0Tj-78vcghs1FGWDoDu3Yc2Wm3D9AkHhJmzXaQ1sl9V5SzSPrHYId-DLgJWzb3bKQiFqhiKM8nwpLhQbYG65Wv1gIVwbXcmUzT2dZ1kxirf_yhB9suqUCIpr0Tlpsn9GaPEuHI9efnxxENU1G6KcoylHicGZzjJpXS5sapMizmTiTKyldkVRUK6D6SEoK3rWUDVAm2bO5QgqZea4cZzfg_VyVtr7wOI8EbnGkwVtq7jUXelQGls3qc76sgNPm7lTeU1oTnU1pipQMScKB1X5Qe3A41Z0Hlg8_iS06xWgldDnZxT2lgn1afxKDdHTTY4mR-p5B7YaDVG1xVcKkSvutXG178BOexVNlf6_6NLOlpVCZEy_aQV23OvC37uiBh8O_cGDfxfdgauT4Ui9PRy_2YJrPubQx2U-hPXF-dJuI3ZamEfeRH4Czd4V5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+for+discovering+fuzzy+sequential+patterns+using+the+simple+fuzzy+partition+method&rft.jtitle=Journal+of+the+American+Society+for+Information+Science+and+Technology&rft.au=Chen%2C+Ruey%E2%80%90Shun&rft.au=Hu%2C+Yi%E2%80%90Chung&rft.date=2003-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1532-2882&rft.eissn=1532-2890&rft.volume=54&rft.issue=7&rft.spage=660&rft.epage=670&rft_id=info:doi/10.1002%2Fasi.10258&rft.externalDBID=10.1002%252Fasi.10258&rft.externalDocID=ASI10258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-2882&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-2882&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-2882&client=summon