Community detection in the sparse hypergraph stochastic block model

We consider the community detection problem in sparse random hypergraphs. Angelini et al. in [6] conjectured the existence of a sharp threshold on model parameters for community detection in sparse hypergraphs generated by a hypergraph stochastic block model. We solve the positive part of the conjec...

Full description

Saved in:
Bibliographic Details
Published inRandom structures & algorithms Vol. 59; no. 3; pp. 407 - 463
Main Authors Pal, Soumik, Zhu, Yizhe
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 01.10.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1042-9832
1098-2418
DOI10.1002/rsa.21006

Cover

Abstract We consider the community detection problem in sparse random hypergraphs. Angelini et al. in [6] conjectured the existence of a sharp threshold on model parameters for community detection in sparse hypergraphs generated by a hypergraph stochastic block model. We solve the positive part of the conjecture for the case of two blocks: above the threshold, there is a spectral algorithm which asymptotically almost surely constructs a partition of the hypergraph correlated with the true partition. Our method is a generalization to random hypergraphs of the method developed by Massoulié (2014) for sparse random graphs.
AbstractList We consider the community detection problem in sparse random hypergraphs. Angelini et al. in [6] conjectured the existence of a sharp threshold on model parameters for community detection in sparse hypergraphs generated by a hypergraph stochastic block model. We solve the positive part of the conjecture for the case of two blocks: above the threshold, there is a spectral algorithm which asymptotically almost surely constructs a partition of the hypergraph correlated with the true partition. Our method is a generalization to random hypergraphs of the method developed by Massoulié (2014) for sparse random graphs.
Author Zhu, Yizhe
Pal, Soumik
Author_xml – sequence: 1
  givenname: Soumik
  surname: Pal
  fullname: Pal, Soumik
  organization: University of Washington
– sequence: 2
  givenname: Yizhe
  surname: Zhu
  fullname: Zhu, Yizhe
  email: yiz084@ucsd.edu
  organization: University of California, San Diego
BookMark eNp1kMtOwzAURC1UJNrCgj-wxIpFWj8SO1lWES8JCYnH2nJvHeKSxMF2hfL3pLQrBKs7izMzujNDk851BqFLShaUELb0QS_YqMQJmlJS5AlLaT7Z65QlRc7ZGZqFsCWESM74FJWla9tdZ-OANyYaiNZ12HY41gaHXvtgcD30xr973dc4RAe1DtECXjcOPnDrNqY5R6eVboK5ON45eru9eS3vk8enu4dy9ZgAF1wkgkNmqCig0EZTyDjXKazTgpCcMZKlIOmG5aIgWuqMplqsKUiSSwBWiSojfI6uDrm9d587E6Laup3vxkrFskyOKUUqR2p5oMC7ELypFNio939Fr22jKFH7pdS4lPpZanRc_3L03rbaD3-yx_Qv25jhf1A9v6wOjm_6unkt
CitedBy_id crossref_primary_10_1093_bioinformatics_btac250
crossref_primary_10_1016_j_dam_2023_06_002
crossref_primary_10_1017_S0963548324000166
crossref_primary_10_1088_1742_5468_ad343b
crossref_primary_10_1093_imaiai_iaae004
crossref_primary_10_1103_PhysRevE_109_034309
crossref_primary_10_1109_TIT_2022_3205959
crossref_primary_10_1007_s42952_024_00260_9
crossref_primary_10_1109_TIT_2024_3411523
crossref_primary_10_1214_21_EJS1838
Cites_doi 10.1093/acprof:oso/9780199535255.001.0001
10.1214/15-AAP1145
10.1145/2591796.2591857
10.1007/s10955-018-1977-1
10.1201/b19706
10.1214/16-AOP1142
10.1016/j.laa.2020.01.039
10.1214/16-AOS1453
10.1007/s00493-016-3238-8
10.1109/ISIT.2017.8006915
10.1007/s00440-014-0576-6
10.1137/19M1257135
10.1137/1.9781611974331.ch108
10.1093/bioinformatics/btp467
10.1109/TIT.2015.2490670
10.1109/CVPR.2005.89
10.1145/2512329
10.1017/CBO9781139020411
10.1007/s00440-015-0659-z
10.1073/pnas.1312486110
10.1214/aoap/1019487349
10.1609/aaai.v29i1.9556
10.1109/TIT.2019.2928301
10.1103/PhysRevE.84.066106
10.1002/cpa.21719
10.1002/rsa.20443
10.1109/ALLERTON.2015.7446987
10.1109/TIT.2016.2546280
10.1016/j.patcog.2010.07.014
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/rsa.21006
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2418
EndPage 463
ExternalDocumentID 10_1002_rsa_21006
RSA21006
Genre article
GrantInformation_xml – fundername: NSF grant
  funderid: DMS‐1612483; DMS‐1949617
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XSW
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3636-63c5e169c9aea1c533a4cb4900822054c71d28690a7a514a6b1c7087cc2f6f503
IEDL.DBID DR2
ISSN 1042-9832
IngestDate Fri Jul 25 12:16:39 EDT 2025
Wed Oct 01 02:13:18 EDT 2025
Thu Apr 24 23:05:31 EDT 2025
Wed Jan 22 16:28:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3636-63c5e169c9aea1c533a4cb4900822054c71d28690a7a514a6b1c7087cc2f6f503
Notes Funding information
NSF grant,DMS‐1612483;DMS‐1949617
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2557822947
PQPubID 1016429
PageCount 57
ParticipantIDs proquest_journals_2557822947
crossref_citationtrail_10_1002_rsa_21006
crossref_primary_10_1002_rsa_21006
wiley_primary_10_1002_rsa_21006_RSA21006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Hoboken
PublicationTitle Random structures & algorithms
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 162
2009; 25
2012
2011; 84
2017; 45
2007
2016; 165
2011; 7
2018; 46
2018; 18
2020; 2
2018; 173
2015; 29
2020
2019; 65
2020; 593
2000; 10
2019
2018
2013; 60
2011; 44
2016; 62
2017
2016
2015
2014
2013; 110
2018; 71
2005; 2
2013
2016; 26
2018; 38
2012; 41
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_17_1
e_1_2_12_16_1
e_1_2_12_38_1
Abbe E. (e_1_2_12_2_1) 2018; 18
e_1_2_12_22_1
e_1_2_12_23_1
e_1_2_12_24_1
e_1_2_12_25_1
e_1_2_12_26_1
Chien I. (e_1_2_12_12_1) 2018
Zhou D. (e_1_2_12_41_1) 2007
e_1_2_12_40_1
Ghoshdastidar D. (e_1_2_12_20_1) 2015
Florescu L. (e_1_2_12_18_1) 2016
e_1_2_12_27_1
e_1_2_12_28_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_34_1
e_1_2_12_35_1
Ghoshdastidar D. (e_1_2_12_21_1) 2015; 29
e_1_2_12_36_1
e_1_2_12_15_1
Tan S. (e_1_2_12_39_1) 2011; 7
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_8_1
e_1_2_12_11_1
Stephan L. (e_1_2_12_37_1) 2019
e_1_2_12_7_1
e_1_2_12_10_1
Ghoshdastidar D. (e_1_2_12_19_1) 2014
e_1_2_12_9_1
References_xml – start-page: 397
  year: 2014
  end-page: 405
– start-page: 1589
  year: 2016
  end-page: 1601
– volume: 7
  start-page: 22
  year: 2011
  article-title: Using rich social media information for music recommendation via hypergraph model
  publication-title: ACM Trans. Multimedia Comput. Commun. Appl.
– volume: 173
  start-page: 546
  year: 2018
  end-page: 625
  article-title: Load balancing in hypergraphs
  publication-title: J. Statist. Phys.
– volume: 60
  start-page: 45
  year: 2013
  article-title: Most tensor problems are np‐hard
  publication-title: J. ACM
– start-page: 400
  year: 2015
  end-page: 409
– volume: 62
  start-page: 471
  year: 2016
  end-page: 487
  article-title: Exact recovery in the stochastic block model
  publication-title: IEEE Trans. Inform. Theory
– start-page: 2831
  year: 2019
  end-page: 2860
– start-page: 871
  year: 2018
  end-page: 879
– volume: 29
  start-page: 2610
  year: 2015
  end-page: 2616
  article-title: Spectral clustering using multilinear SVD: Analysis, approximations and applications
  publication-title: AAAI
– volume: 44
  start-page: 2255
  year: 2011
  end-page: 2262
  article-title: Hypergraph with sampling for image retrieval
  publication-title: Pattern Recogn.
– volume: 593
  start-page: 45
  year: 2020
  end-page: 73
  article-title: Exact recovery in the hypergraph stochastic block model: A spectral algorithm
  publication-title: Linear Algebra Appl.
– volume: 65
  start-page: 8095
  year: 2019
  end-page: 8118
  article-title: On the minimax misclassification ratio of hypergraph community detection
  publication-title: IEEE Trans. Inform. Theory
– year: 2018
– volume: 38
  start-page: 665
  year: 2018
  end-page: 708
  article-title: A proof of the block model threshold conjecture
  publication-title: Combinatorica
– volume: 10
  start-page: 410
  year: 2000
  end-page: 433
  article-title: Broadcasting on trees and the ising model
  publication-title: Ann. Appl. Probab.
– volume: 165
  start-page: 1025
  year: 2016
  end-page: 1049
  article-title: Community detection in sparse networks via Grothendieck's inequality
  publication-title: Probab. Theory Related Fields
– year: 2012
– volume: 45
  start-page: 289
  year: 2017
  end-page: 315
  article-title: Consistency of spectral hypergraph partitioning under planted partition model
  publication-title: Ann. Statist.
– volume: 162
  start-page: 431
  year: 2015
  end-page: 461
  article-title: Reconstruction and estimation in the planted partition model
  publication-title: Probab. Theory Related Fields
– volume: 84
  year: 2011
  article-title: Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications
  publication-title: Phys. Rev. E (3)
– volume: 2
  start-page: 132
  year: 2020
  end-page: 157
  article-title: Graph powering and spectral robustness
  publication-title: SIAM J. Math. Data Sci.
– volume: 46
  start-page: 1
  year: 2018
  end-page: 71
  article-title: Nonbacktracking spectrum of random graphs: Community detection and nonregular Ramanujan graphs
  publication-title: Ann. Probab.
– volume: 110
  start-page: 20935
  year: 2013
  end-page: 20940
  article-title: Spectral redemption in clustering sparse networks
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– year: 2020
– volume: 62
  start-page: 2788
  year: 2016
  end-page: 2797
  article-title: Achieving exact cluster recovery threshold via semidefinite programming
  publication-title: IEEE Trans. Inform. Theory
– start-page: 2178
  year: 2017
  end-page: 2182
– volume: 26
  start-page: 2211
  year: 2016
  end-page: 2256
  article-title: Belief propagation, robust reconstruction and optimal recovery of block models
  publication-title: Ann. Appl. Probab.
– start-page: 943
  year: 2016
  end-page: 959
– volume: 71
  start-page: 1334
  year: 2018
  end-page: 1406
  article-title: Proof of the achievability conjectures for the general stochastic block model
  publication-title: Comm. Pure Appl. Math.
– start-page: 1601
  year: 2007
  end-page: 1608
– start-page: 66
  year: 2015
  end-page: 73
– start-page: 694
  year: 2014
  end-page: 703
– year: 2015
– volume: 41
  start-page: 521
  year: 2012
  end-page: 545
  article-title: Loose laplacian spectra of random hypergraphs
  publication-title: Random Structures Algorithms
– volume: 25
  start-page: 2831
  year: 2009
  end-page: 2838
  article-title: A hypergraph‐based learning algorithm for classifying gene expression and arrayCGH data with prior knowledge
  publication-title: Bioinformatics
– volume: 18
  start-page: 1
  year: 2018
  end-page: 86
  article-title: Community detection and stochastic block models: Recent developments
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: 838
  year: 2005
  end-page: 845
– year: 2013
– volume: 7
  start-page: 22
  year: 2011
  ident: e_1_2_12_39_1
  article-title: Using rich social media information for music recommendation via hypergraph model
  publication-title: ACM Trans. Multimedia Comput. Commun. Appl.
– ident: e_1_2_12_10_1
  doi: 10.1093/acprof:oso/9780199535255.001.0001
– ident: e_1_2_12_35_1
  doi: 10.1214/15-AAP1145
– start-page: 1601
  volume-title: Advances in Neural Information Processing Systems
  year: 2007
  ident: e_1_2_12_41_1
– ident: e_1_2_12_33_1
  doi: 10.1145/2591796.2591857
– volume: 18
  start-page: 1
  year: 2018
  ident: e_1_2_12_2_1
  article-title: Community detection and stochastic block models: Recent developments
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_12_16_1
  doi: 10.1007/s10955-018-1977-1
– ident: e_1_2_12_25_1
  doi: 10.1201/b19706
– ident: e_1_2_12_9_1
  doi: 10.1214/16-AOP1142
– ident: e_1_2_12_14_1
  doi: 10.1016/j.laa.2020.01.039
– ident: e_1_2_12_22_1
  doi: 10.1214/16-AOS1453
– ident: e_1_2_12_36_1
  doi: 10.1007/s00493-016-3238-8
– ident: e_1_2_12_30_1
  doi: 10.1109/ISIT.2017.8006915
– ident: e_1_2_12_34_1
  doi: 10.1007/s00440-014-0576-6
– ident: e_1_2_12_4_1
  doi: 10.1137/19M1257135
– ident: e_1_2_12_11_1
  doi: 10.1137/1.9781611974331.ch108
– ident: e_1_2_12_38_1
– ident: e_1_2_12_40_1
  doi: 10.1093/bioinformatics/btp467
– ident: e_1_2_12_3_1
  doi: 10.1109/TIT.2015.2490670
– ident: e_1_2_12_8_1
– ident: e_1_2_12_6_1
  doi: 10.1109/CVPR.2005.89
– start-page: 943
  volume-title: Conference on Learning Theory
  year: 2016
  ident: e_1_2_12_18_1
– ident: e_1_2_12_26_1
  doi: 10.1145/2512329
– ident: e_1_2_12_27_1
  doi: 10.1017/CBO9781139020411
– ident: e_1_2_12_23_1
  doi: 10.1007/s00440-015-0659-z
– start-page: 871
  volume-title: International Conference on Artificial Intelligence and Statistics
  year: 2018
  ident: e_1_2_12_12_1
– ident: e_1_2_12_29_1
  doi: 10.1073/pnas.1312486110
– ident: e_1_2_12_17_1
  doi: 10.1214/aoap/1019487349
– start-page: 400
  volume-title: International Conference on Machine Learning
  year: 2015
  ident: e_1_2_12_20_1
– volume: 29
  start-page: 2610
  year: 2015
  ident: e_1_2_12_21_1
  article-title: Spectral clustering using multilinear SVD: Analysis, approximations and applications
  publication-title: AAAI
  doi: 10.1609/aaai.v29i1.9556
– start-page: 397
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: e_1_2_12_19_1
– ident: e_1_2_12_13_1
  doi: 10.1109/TIT.2019.2928301
– ident: e_1_2_12_15_1
  doi: 10.1103/PhysRevE.84.066106
– ident: e_1_2_12_5_1
  doi: 10.1002/cpa.21719
– ident: e_1_2_12_32_1
  doi: 10.1002/rsa.20443
– ident: e_1_2_12_7_1
  doi: 10.1109/ALLERTON.2015.7446987
– ident: e_1_2_12_24_1
  doi: 10.1109/TIT.2016.2546280
– start-page: 2831
  volume-title: Conference on Learning Theory
  year: 2019
  ident: e_1_2_12_37_1
– ident: e_1_2_12_31_1
  doi: 10.1016/j.patcog.2010.07.014
– ident: e_1_2_12_28_1
SSID ssj0007323
Score 2.457336
Snippet We consider the community detection problem in sparse random hypergraphs. Angelini et al. in [6] conjectured the existence of a sharp threshold on model...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 407
SubjectTerms Algorithms
community detection
Graph theory
Graphs
random tensor
self‐avoiding walk
sparse hypergraph
stochastic block model
Stochastic models
Title Community detection in the sparse hypergraph stochastic block model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.21006
https://www.proquest.com/docview/2557822947
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1042-9832
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1098-2418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007323
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jJz34LU6nBPHgpduapGmDpzEcIszDdLCDUJI0YzKp0nYH_et9SdtNRUG8lB5ev15e8n4vfe_3ELoIfRORhClP80hAgAIHoSFKYTOmaWJmJuG2OHl0x28m7HYaTBvoqq6FKfkhVhtudma49dpOcKny7po0NMtlB-IVR7ft08D9oh2vqaNCSsrkekY8AWZbswr1SHd15VdftAaYn2Gq8zPDbfRYv2GZXrLoLAvV0e_fyBv_-Qk7aKvCn7hfGswuaph0D22OVuSt-T4aVEUjxRtOTOFStVL8lGIQwbD-ZLnBc4heM8d1jQE86rm0bM9YgWNcYNdb5wBNhtcPgxuv6rXgacop9zjVgfG50EIa6WsAgZJpxYRjhAdYp0M_IbZ7lQwlYCzJla_DXhRqTWZ8FvToIWqmL6k5Qhh8Hjg9yo2vJEsIEUzZHUuRRJHQKqAtdFlrPdYVEbnth_EclxTKJAa9xE4vLXS-En0t2Td-EmrXQxdXEzCPIVKy2EewEB7nxuD3G8Tj-747Of676AnaIDa7xaX1tVGzyJbmFOBJoc6cHX4A5zLfHQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG-IHtSD30YUtTEevAxYV7o18UJQggocEBIuZmm7EgxmGhgH_et97TZQo4nxsuzw9tW-1_d73Xu_h9CF7-qARFQ6igUcAhQ4cAVRCh1R5UV6pCNmipM7XdYa0LthbVhAV3ktTMoPsdhwM5Zh12tj4GZDurJkDZ3ORBkCFsO3vWr-zxmzvO4tyaN8j6Tp9ZQ4HBQ35xWqksri0q_eaAkxPwNV62maW-gxf8c0wWRSnieyrN6_0Tf-9yO20WYGQXE91ZkdVNDxLtroLPhbZ3uokdWNJG840onN1orxU4xBBMMSNJ1pPIYAdmrprjHgRzUWhvAZS_CNE2zb6-yjQfOm32g5WbsFR3nMYw7zVE27jCsutHAV4EBBlaTcksIDslO-GxHTwEr4AmCWYNJVfjXwlSIjNqpVvQO0Er_E-hBhcHvg9zymXSloRAin0mxa8igIuJI1r4gu82EPVcZFblpiPIcpizIJYVxCOy5FdL4QfU0JOH4SKuVzF2Y2OAshWDLwh1MfHmcn4fcbhL2Huj05-rvoGVpr9TvtsH3bvT9G68Qku9gsvxJaSaZzfQJoJZGnVik_AObE4zk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeDKIg-eBcvU4P44EvnmmZpg0-ijnnZkOlgD0JJ0pTJpErbPein9yRtNxUF8aX04fSWS8__hJPfQejId3VAIiodxQIOAQocuIIohcZUeZGOdcTM5uROl7X79HrQHMyg02ovTMGHmCy4mZlh_9dmgr9G8ckUGppmog7xisFtz1EG0ZVRRL0pO8r3SJFdT4nDYdxWWKEGOZlc-tUZTRXmZ51qHU1rGT1Wr1jkl4zq41zW1fs3euM_v2EFLZUCFJ8VI2YVzehkDS12JvTWbB2dl7tG8jcc6dzmaiX4KcFgguEHlGYaDyF8TS3sGoN6VENhcM9YgmccYVtcZwP1W5cP522nLLbgKI95zGGeamqXccWFFq4CFSiokpRbJDzoOuW7ETHlq4QvQGQJJl3lNwJfKRKzuNnwNtFs8pLoLYTB6YHX85h2paARIZxKs2TJoyDgSja9bXRctXqoShK5KYjxHBYMZRJCu4S2XbbR4cT0tcBv_GRUq7ouLGdgFkKoZMQPpz48zvbB7zcIe_dn9mTn76YHaP7uohXeXnVvdtECMZkuNsWvhmbzdKz3QKrkct8OyQ9VwOHo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Community+detection+in+the+sparse+hypergraph+stochastic+block+model&rft.jtitle=Random+structures+%26+algorithms&rft.au=Pal%2C+Soumik&rft.au=Zhu%2C+Yizhe&rft.date=2021-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1042-9832&rft.eissn=1098-2418&rft.volume=59&rft.issue=3&rft.spage=407&rft.epage=463&rft_id=info:doi/10.1002%2Frsa.21006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-9832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-9832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-9832&client=summon