Combining the GOR V algorithm with evolutionary information for protein secondary structure prediction from amino acid sequence

We have modified and improved the GOR algorithm for the protein secondary structure prediction by using the evolutionary information provided by multiple sequence alignments, adding triplet statistics, and optimizing various parameters. We have expanded the database used to include the 513 non‐redun...

Full description

Saved in:
Bibliographic Details
Published inProteins, structure, function, and bioinformatics Vol. 49; no. 2; pp. 154 - 166
Main Authors Kloczkowski, A., Ting, K.-L., Jernigan, R.L., Garnier, J.
Format Journal Article
LanguageEnglish
Published New York Wiley Subscription Services, Inc., A Wiley Company 01.11.2002
Subjects
Online AccessGet full text
ISSN0887-3585
1097-0134
1097-0134
DOI10.1002/prot.10181

Cover

Abstract We have modified and improved the GOR algorithm for the protein secondary structure prediction by using the evolutionary information provided by multiple sequence alignments, adding triplet statistics, and optimizing various parameters. We have expanded the database used to include the 513 non‐redundant domains collected recently by Cuff and Barton (Proteins 1999;34:508–519; Proteins 2000;40:502–511). We have introduced a variable size window that allowed us to include sequences as short as 20–30 residues. A significant improvement over the previous versions of GOR algorithm was obtained by combining the PSI‐BLAST multiple sequence alignments with the GOR method. The new algorithm will form the basis for the future GOR V release on an online prediction server. The average accuracy of the prediction of secondary structure with multiple sequence alignment and full jack‐knife procedure was 73.5%. The accuracy of the prediction increases to 74.2% by limiting the prediction to 375 (of 513) sequences having at least 50 PSI‐BLAST alignments. The average accuracy of the prediction of the new improved program without using multiple sequence alignments was 67.5%. This is approximately a 3% improvement over the preceding GOR IV algorithm (Garnier J, Gibrat JF, Robson B. Methods Enzymol 1996;266:540–553; Kloczkowski A, Ting K‐L, Jernigan RL, Garnier J. Polymer 2002;43:441–449). We have discussed alternatives to the segment overlap (Sov) coefficient proposed by Zemla et al. (Proteins 1999;34:220–223). Proteins 2002;49:154–166. © 2002 Wiley‐Liss, Inc.
AbstractList We have modified and improved the GOR algorithm for the protein secondary structure prediction by using the evolutionary information provided by multiple sequence alignments, adding triplet statistics, and optimizing various parameters. We have expanded the database used to include the 513 non‐redundant domains collected recently by Cuff and Barton ( Proteins 1999;34:508–519 ; Proteins 2000;40:502–511 ). We have introduced a variable size window that allowed us to include sequences as short as 20–30 residues. A significant improvement over the previous versions of GOR algorithm was obtained by combining the PSI‐BLAST multiple sequence alignments with the GOR method. The new algorithm will form the basis for the future GOR V release on an online prediction server. The average accuracy of the prediction of secondary structure with multiple sequence alignment and full jack‐knife procedure was 73.5%. The accuracy of the prediction increases to 74.2% by limiting the prediction to 375 (of 513) sequences having at least 50 PSI‐BLAST alignments. The average accuracy of the prediction of the new improved program without using multiple sequence alignments was 67.5%. This is approximately a 3% improvement over the preceding GOR IV algorithm (Garnier J, Gibrat JF, Robson B. Methods Enzymol 1996;266:540–553 ; Kloczkowski A, Ting K‐L, Jernigan RL, Garnier J. Polymer 2002;43:441–449 ). We have discussed alternatives to the segment overlap (Sov) coefficient proposed by Zemla et al. ( Proteins 1999;34:220–223 ). Proteins 2002;49:154–166. © 2002 Wiley‐Liss, Inc.
We have modified and improved the GOR algorithm for the protein secondary structure prediction by using the evolutionary information provided by multiple sequence alignments, adding triplet statistics, and optimizing various parameters. We have expanded the database used to include the 513 non‐redundant domains collected recently by Cuff and Barton (Proteins 1999;34:508–519; Proteins 2000;40:502–511). We have introduced a variable size window that allowed us to include sequences as short as 20–30 residues. A significant improvement over the previous versions of GOR algorithm was obtained by combining the PSI‐BLAST multiple sequence alignments with the GOR method. The new algorithm will form the basis for the future GOR V release on an online prediction server. The average accuracy of the prediction of secondary structure with multiple sequence alignment and full jack‐knife procedure was 73.5%. The accuracy of the prediction increases to 74.2% by limiting the prediction to 375 (of 513) sequences having at least 50 PSI‐BLAST alignments. The average accuracy of the prediction of the new improved program without using multiple sequence alignments was 67.5%. This is approximately a 3% improvement over the preceding GOR IV algorithm (Garnier J, Gibrat JF, Robson B. Methods Enzymol 1996;266:540–553; Kloczkowski A, Ting K‐L, Jernigan RL, Garnier J. Polymer 2002;43:441–449). We have discussed alternatives to the segment overlap (Sov) coefficient proposed by Zemla et al. (Proteins 1999;34:220–223). Proteins 2002;49:154–166. © 2002 Wiley‐Liss, Inc.
We have modified and improved the GOR algorithm for the protein secondary structure prediction by using the evolutionary information provided by multiple sequence alignments, adding triplet statistics, and optimizing various parameters. We have expanded the database used to include the 513 non-redundant domains collected recently by Cuff and Barton (Proteins 1999;34:508-519; Proteins 2000;40:502-511). We have introduced a variable size window that allowed us to include sequences as short as 20-30 residues. A significant improvement over the previous versions of GOR algorithm was obtained by combining the PSI-BLAST multiple sequence alignments with the GOR method. The new algorithm will form the basis for the future GOR V release on an online prediction server. The average accuracy of the prediction of secondary structure with multiple sequence alignment and full jack-knife procedure was 73.5%. The accuracy of the prediction increases to 74.2% by limiting the prediction to 375 (of 513) sequences having at least 50 PSI-BLAST alignments. The average accuracy of the prediction of the new improved program without using multiple sequence alignments was 67.5%. This is approximately a 3% improvement over the preceding GOR IV algorithm (Garnier J, Gibrat JF, Robson B. Methods Enzymol 1996;266:540-553; Kloczkowski A, Ting K-L, Jernigan RL, Garnier J. Polymer 2002;43:441-449). We have discussed alternatives to the segment overlap (Sov) coefficient proposed by Zemla et al. (Proteins 1999;34:220-223).
We have modified and improved the GOR algorithm for the protein secondary structure prediction by using the evolutionary information provided by multiple sequence alignments, adding triplet statistics, and optimizing various parameters. We have expanded the database used to include the 513 non-redundant domains collected recently by Cuff and Barton (Proteins 1999;34:508-519; Proteins 2000;40:502-511). We have introduced a variable size window that allowed us to include sequences as short as 20-30 residues. A significant improvement over the previous versions of GOR algorithm was obtained by combining the PSI-BLAST multiple sequence alignments with the GOR method. The new algorithm will form the basis for the future GOR V release on an online prediction server. The average accuracy of the prediction of secondary structure with multiple sequence alignment and full jack-knife procedure was 73.5%. The accuracy of the prediction increases to 74.2% by limiting the prediction to 375 (of 513) sequences having at least 50 PSI-BLAST alignments. The average accuracy of the prediction of the new improved program without using multiple sequence alignments was 67.5%. This is approximately a 3% improvement over the preceding GOR IV algorithm (Garnier J, Gibrat JF, Robson B. Methods Enzymol 1996;266:540-553; Kloczkowski A, Ting K-L, Jernigan RL, Garnier J. Polymer 2002;43:441-449). We have discussed alternatives to the segment overlap (Sov) coefficient proposed by Zemla et al. (Proteins 1999;34:220-223).We have modified and improved the GOR algorithm for the protein secondary structure prediction by using the evolutionary information provided by multiple sequence alignments, adding triplet statistics, and optimizing various parameters. We have expanded the database used to include the 513 non-redundant domains collected recently by Cuff and Barton (Proteins 1999;34:508-519; Proteins 2000;40:502-511). We have introduced a variable size window that allowed us to include sequences as short as 20-30 residues. A significant improvement over the previous versions of GOR algorithm was obtained by combining the PSI-BLAST multiple sequence alignments with the GOR method. The new algorithm will form the basis for the future GOR V release on an online prediction server. The average accuracy of the prediction of secondary structure with multiple sequence alignment and full jack-knife procedure was 73.5%. The accuracy of the prediction increases to 74.2% by limiting the prediction to 375 (of 513) sequences having at least 50 PSI-BLAST alignments. The average accuracy of the prediction of the new improved program without using multiple sequence alignments was 67.5%. This is approximately a 3% improvement over the preceding GOR IV algorithm (Garnier J, Gibrat JF, Robson B. Methods Enzymol 1996;266:540-553; Kloczkowski A, Ting K-L, Jernigan RL, Garnier J. Polymer 2002;43:441-449). We have discussed alternatives to the segment overlap (Sov) coefficient proposed by Zemla et al. (Proteins 1999;34:220-223).
Author Ting, K.-L.
Kloczkowski, A.
Garnier, J.
Jernigan, R.L.
Author_xml – sequence: 1
  givenname: A.
  surname: Kloczkowski
  fullname: Kloczkowski, A.
  organization: Laboratory of Experimental and Computational Biology, NCI, NIH, Bethesda, Maryland
– sequence: 2
  givenname: K.-L.
  surname: Ting
  fullname: Ting, K.-L.
  organization: Laboratory of Experimental and Computational Biology, NCI, NIH, Bethesda, Maryland
– sequence: 3
  givenname: R.L.
  surname: Jernigan
  fullname: Jernigan, R.L.
  email: jernigan@iastate.edu
  organization: Laboratory of Experimental and Computational Biology, NCI, NIH, Bethesda, Maryland
– sequence: 4
  givenname: J.
  surname: Garnier
  fullname: Garnier, J.
  organization: Mathematical and Statistical Computing Laboratory, CIT, NIH, Bethesda, Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12210997$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFvFSEQx4mpsa_Vix_AcPJgshaWXXb3aF_0adL6mrbqkQA7tOgutMBae_Kry3ZbTYzxAAzh958Z_rOHdpx3gNBzSl5TQsqDq-BTjmhLH6EVJV1TEMqqHbQibdsUrG7rXbQX41dCCO8Yf4J2aVlmrmtW6Ofaj8o66y5wugS82Z7iz1gOFz7YdDnim7xj-O6HKVnvZLjF1hkfRjlfcY7wXByswxG0d_1MxBQmnaYA-Q16qxc0-BHL0TqPpbZ9xq8ncBqeosdGDhGe3Z_76NO7t-fr98XRdvNh_eao0IwzWvSdMjXRFVSyb1VrGNRSGWUaw_KSHVdElYZDTSvJJOWSG0WkbKuqh7KtK7aPXi55c7-5ckxitFHDMEgHfoqiKUnNKZ_BF_fgpEboxVWwY_6VeLAsA68WQAcfYwDzByFinoeYLRF388gw-QvWNt2Zl4K0w78ldJHc2AFu_5NcnJxuzx80xaKxMcGP3xoZvgnesKYWXz5uxBk5LuuTw0Nxxn4BiD6wsg
CitedBy_id crossref_primary_10_1016_j_molimm_2019_05_016
crossref_primary_10_1128_JB_01238_06
crossref_primary_10_1002_prot_20435
crossref_primary_10_1186_s12859_016_1209_0
crossref_primary_10_4051_ibce_2009_3_0020
crossref_primary_10_1529_biophysj_106_089243
crossref_primary_10_1016_j_compbiomed_2021_104611
crossref_primary_10_1007_s00894_013_1911_z
crossref_primary_10_1016_j_jmb_2007_06_072
crossref_primary_10_1042_BJ20141133
crossref_primary_10_1099_mic_0_054767_0
crossref_primary_10_1007_s00521_015_2150_2
crossref_primary_10_1021_ci300207x
crossref_primary_10_1016_j_compbiolchem_2019_04_005
crossref_primary_10_1007_s00726_009_0316_x
crossref_primary_10_1186_1471_2105_7_178
crossref_primary_10_1186_s12859_015_0749_z
crossref_primary_10_1002_prot_10507
crossref_primary_10_1007_s00709_010_0224_7
crossref_primary_10_1007_s00521_011_0739_7
crossref_primary_10_1186_1746_4811_10_5
crossref_primary_10_1021_bi201050u
crossref_primary_10_1098_rspa_2011_0514
crossref_primary_10_1186_1471_2105_9_357
crossref_primary_10_1128_JVI_80_8_3844_3852_2006
crossref_primary_10_1186_s13071_024_06248_y
crossref_primary_10_1016_j_heliyon_2024_e34690
crossref_primary_10_1016_j_enzmictec_2009_10_010
crossref_primary_10_1021_bi1011578
crossref_primary_10_2174_1574893615999200601122840
crossref_primary_10_1002_prot_20645
crossref_primary_10_1016_j_abb_2006_07_017
crossref_primary_10_1080_07391102_2020_1758212
crossref_primary_10_1186_s12862_016_0759_0
crossref_primary_10_1016_j_phytochem_2017_02_024
crossref_primary_10_1002_cm_20431
crossref_primary_10_1142_S0219720013500121
crossref_primary_10_1080_07391102_2007_10507176
crossref_primary_10_1529_biophysj_108_135327
crossref_primary_10_1016_j_biochi_2010_11_009
crossref_primary_10_1002_pro_2336
crossref_primary_10_1016_S1672_0229_08_60041_8
crossref_primary_10_1109_TCBB_2022_3168676
crossref_primary_10_2174_1570164615666180911113251
crossref_primary_10_1002_cbin_10821
crossref_primary_10_1002_prot_20458
crossref_primary_10_1038_s41598_025_91602_y
crossref_primary_10_1093_nar_gks1079
crossref_primary_10_1039_C6MB00206D
crossref_primary_10_1110_ps_062125306
crossref_primary_10_1142_S0219720008003758
crossref_primary_10_1016_j_neucom_2009_04_017
crossref_primary_10_1186_1471_2105_13_89
crossref_primary_10_1007_s13313_017_0479_y
crossref_primary_10_1016_j_polymer_2005_02_040
crossref_primary_10_1016_j_bbapap_2017_05_007
crossref_primary_10_3389_fbioe_2022_901018
crossref_primary_10_1007_s10930_009_9166_3
crossref_primary_10_3923_itj_2005_433_438
crossref_primary_10_1186_1472_6807_9_74
crossref_primary_10_1016_j_ygeno_2020_02_013
crossref_primary_10_1021_np4009317
crossref_primary_10_1038_s41598_021_02860_5
crossref_primary_10_1093_bioinformatics_btn438
crossref_primary_10_1007_s00894_008_0313_0
crossref_primary_10_3390_molecules23112943
crossref_primary_10_1093_bioinformatics_bti408
crossref_primary_10_1110_ps_051581805
crossref_primary_10_1111_j_1600_0722_2008_00526_x
crossref_primary_10_1016_j_peptides_2011_08_001
crossref_primary_10_1016_j_pep_2017_01_005
crossref_primary_10_1038_nmeth856
crossref_primary_10_1016_j_compbiomed_2011_08_005
crossref_primary_10_1007_s11010_016_2685_2
crossref_primary_10_1002_bab_1455
crossref_primary_10_1016_j_atg_2016_03_002
crossref_primary_10_1002_jcc_25534
crossref_primary_10_1007_s11030_021_10192_9
crossref_primary_10_1093_bioinformatics_btm379
crossref_primary_10_1007_s12013_013_9573_0
crossref_primary_10_1080_07391102_2021_1889669
crossref_primary_10_1002_prot_21480
crossref_primary_10_1007_s10719_012_9459_1
crossref_primary_10_1002_prot_21164
crossref_primary_10_1016_j_jmgm_2008_07_001
crossref_primary_10_1080_07391102_2020_1756411
crossref_primary_10_1159_000491027
crossref_primary_10_1093_nar_gkl819
crossref_primary_10_1007_s00894_012_1410_7
Cites_doi 10.1002/(SICI)1097-0134(19990201)34:2<220::AID-PROT7>3.0.CO;2-K
10.1002/bip.360221211
10.1002/(SICI)1097-0134(19990301)34:4<508::AID-PROT10>3.0.CO;2-4
10.1016/S0076-6879(96)66033-9
10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO;2-Q
10.1016/S0032-3861(01)00425-6
10.1016/0167-4838(88)90206-3
10.1002/prot.340230303
10.1016/S0022-2836(05)80007-5
10.1006/jmbi.1994.0116
10.1006/jmbi.1999.3091
10.1016/S0022-2836(05)80333-X
10.1016/0022-2836(92)90927-C
10.1016/0022-2836(88)90564-5
10.1016/S0378-1119(01)00461-9
10.1002/1097-0134(20001001)41:1<17::AID-PROT40>3.0.CO;2-F
10.1073/pnas.86.1.152
10.1006/jmbi.1993.1413
10.1016/0022-2836(87)90501-8
10.1093/protein/6.8.849
10.1016/0014-5793(95)00245-5
10.1006/jsbi.2001.4336
10.1002/(SICI)1097-0134(199710)29:2<172::AID-PROT5>3.0.CO;2-F
10.1007/978-1-4613-1571-1_10
10.1002/(SICI)1097-0134(199703)27:3<329::AID-PROT1>3.0.CO;2-8
10.1016/0022-2836(78)90297-8
10.1093/bioinformatics/14.10.846
10.1016/0022-2836(92)90892-N
10.1002/(SICI)1097-0134(199606)25:2<169::AID-PROT3>3.0.CO;2-D
10.1385/1-59259-368-2:71
10.1016/0022-2836(74)90405-7
10.1093/nar/25.17.3389
10.1016/0005-2795(75)90109-9
10.1006/jmbi.1997.0958
10.1016/0959-440X(95)80099-9
10.1002/pro.5560050113
10.1016/S0076-6879(96)66034-0
10.1093/protein/2.3.185
10.1006/jmbi.1993.1649
10.1016/0022-2836(87)90292-0
10.1006/jmbi.1993.1464
10.1002/pro.5560010312
10.1110/ps.9.6.1162
10.1021/bi00699a001
10.1002/(SICI)1097-0134(199606)25:2<157::AID-PROT2>3.0.CO;2-F
10.1016/0014-5793(86)80917-6
10.1016/0022-2836(74)90404-5
ContentType Journal Article
Copyright Copyright © 2002 Wiley‐Liss, Inc.
Copyright 2002 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2002 Wiley‐Liss, Inc.
– notice: Copyright 2002 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/prot.10181
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1097-0134
EndPage 166
ExternalDocumentID 12210997
10_1002_prot_10181
PROT10181
ark_67375_WNG_S0M25PBB_S
Genre article
Journal Article
GroupedDBID -~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
53G
AAYXX
ABEML
ACSCC
AGHNM
AIQQE
CITATION
EBD
EMOBN
FA8
HF~
LH6
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
SV3
ZGI
ZXP
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
RBB
RWI
WRC
7X8
ID FETCH-LOGICAL-c3631-d9bf50c4e4ad8b8f3e5abfbf7f3f7fa96b0b2f6e514a3a16a6fb0aa844de28543
IEDL.DBID DR2
ISSN 0887-3585
1097-0134
IngestDate Fri Jul 11 06:55:22 EDT 2025
Wed Feb 19 01:24:45 EST 2025
Thu Apr 24 23:02:07 EDT 2025
Wed Oct 01 04:34:54 EDT 2025
Sun Sep 21 06:28:34 EDT 2025
Sun Sep 21 06:14:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright 2002 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3631-d9bf50c4e4ad8b8f3e5abfbf7f3f7fa96b0b2f6e514a3a16a6fb0aa844de28543
Notes istex:5705B312F9F56CBCBBD6ADD166AEFF831590AFC7
ark:/67375/WNG-S0M25PBB-S
This article is a US Government work and, as such, is in the public domain in the United States of America.
ArticleID:PROT10181
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 12210997
PQID 72056164
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_72056164
pubmed_primary_12210997
crossref_primary_10_1002_prot_10181
crossref_citationtrail_10_1002_prot_10181
wiley_primary_10_1002_prot_10181_PROT10181
istex_primary_ark_67375_WNG_S0M25PBB_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-11-01
1 November 2002
2002-11-00
2002-Nov-01
20021101
PublicationDateYYYYMMDD 2002-11-01
PublicationDate_xml – month: 11
  year: 2002
  text: 2002-11-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2002
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Zemla A, Venclovas C, Fidelis K, Rost B. A modified definition of Sov, a segment-based measure of protein secondary structure prediction assessment. Proteins 1999; 34: 220-223.
Petersen TN, Lundegaard C, Nielsen M, et al. Prediction of protein secondary structure at 80% accuracy. Proteins 2000; 41: 17-20.
Biou V, Gibrat JF, Levin J, Robson B, Garnier J. Secondary structure prediction: combination of three different methods. Protein Eng 1988; 2: 185-191.
Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 1993; 232: 584-599.
Karplus K, Barrett C, Hughley R. Hidden Markov models for detecting remote protein homologies. Bioinformatics 1998; 14: 846-856.
Levin JM, Robson B, Garnier J. An algorithm for secondary structure determination in proteins based on sequence similarity. FEBS Lett 1986; 205: 303-308.
Ouali M, King RD. Cascaded multiple classifiers for secondary structure prediction. Protein Sci 2000; 9: 1162-1176.
Rost B. Review: protein secondary structure prediction continues to rise. J Struct Biol 2001; 134: 204-218.
Chou PY, Fasman GD. Prediction of protein conformation. Biochemistry 1974; 13: 211-215.
Cuff JA, Barton GJ. Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins 1999; 34: 508-519.
Zvelebil MJ, Barton GJ, Taylor WR, Sternberg MJE. Prediction of protein secondary structure and active sites using alignment of homologous sequences. J Mol Biol 1987; 195: 957-961.
Eisenhaber F, Frommel C, Argos P. Prediction of secondary structural content of proteins from their amino acid composition alone. II. The paradox with secondary structural class. Proteins 1996; 25: 169-179.
Kabsch W, Sander C. A dictionary of protein secondary structure. Biopolymers 1983; 22: 2577-2637.
Rost B, Sander C, Schneider R. Redefining the goals of protein secondary structure prediction. J Mol Biol 1994; 235: 13-26.
Cuff JA, Barton GJ. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 2000; 40: 502-511.
King RD, Sternberg MJ. Machine learning approach for prediction of protein secondary structure. J Mol Biol 1990; 216: 441-457.
Lim VI. Algorithm for prediction of α-helical and β-structural regions in globular proteins. J Mol Biol 1974; 88: 873-894.
Holley LH, Karplus M. Protein secondary structure prediction with a neural network. Proc Natl Acad Sci USA 1989; 86: 152-156.
Rost B. PHD: predicting one-dimensional protein structure by profile based neural networks. Methods Enzymol 1996; 266: 525-539.
Salamov AA, Solovyev VV. Protein secondary structure prediction using local alignments. J Mol Biol 1997; 268: 31-36.
Barton GJ. Protein secondary structure prediction. Curr Opin Struct Biol 1995; 5: 372-376.
Garnier J, Gibrat JF, Robson B. GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 1996; 266: 540-553.
Di Francesco V, Garnier J, Munson PJ. Improving protein secondary structure prediction with aligned homologous sequences. Protein Sci 1996; 5: 106-113.
Stolorz P, Lapedes A, Xia Y. Predicting protein secondary structure using neural net and statistical methods. J Mol Biol 1992; 225: 1049-1063.
Yi T-M, Lander ES. Protein secondary structure prediction using nearest-neighbor methods. J Mol Biol 1993; 232: 1117-1129.
Zhang CT, Chou KC. An optimization approach to predicting protein structural class from amino acid composition. Protein Sci 1992; 1: 401-408.
Salzberg S, Cost S. Predicting protein secondary structure with nearest-neighbors algorithm. J Mol Biol 1992; 227: 371-374.
Matthews BB. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 1975; 405: 442-451.
Russell RB, Barton GJ. The limits of protein secondary structure prediction accuracy from multiple sequence alignment. J Mol Biol 1993; 234: 951-957.
Eisenhaber F, Imperiale F, Argos P, Frommel C. Prediction of secondary structural content of proteins from their amino acid composition alone. I. New analytic vector decomposition methods. Proteins 1996; 25: 157-168.
Jones TD. Protein secondary structure prediction based on position specific scoring matrices. J Mol Biol 1999; 292: 195-202.
Rost B. Sander C, Schneider R. PHD: an automatic mail server for protein secondary structure prediction. Comput Appl Biosci 1994; 10: 53-60.
Levin JM, Pascarella S, Argos P, Garnier J. Quantification of secondary structure prediction improvement using distantly related proteins. Protein Eng 1993; 6: 849-854.
Lecompte O, Thompson JD, Plewniak F, Thierry JC, Poch O. Multiple alignment of complete sequences (MACS) in the post-genomic era. Gene 2001; 270: 17-30.
Kloczkowski A, Ting K-L, Jernigan RL, Garnier J. Protein secondary structure prediction based on the GOR algorithm incorporating multiple sequence alignment information. Polymer 2002; 43: 441-449.
Lim VI. Structural principles of the globular organization of protein chains: a stereochemical theory of globular protein secondary structure. J Mol Biol 1974; 88: 857-872.
Bahar I, Altigan AR, Jernigan R, Erman B. Understanding the recognition of protein structural classes by amino acid composition. Proteins 1997; 29: 172-185.
Qian N, Sejnowski TJ. Predicting the secondary structure of a globular proteins using neural network models. J Mol Biol 1989; 202: 865-884.
Levin JM, Garnier J. Improvements in secondary structure prediction method based on a search for local sequence homologies and its use as a model building tool. Biochim Biophys Acta 1988; 955: 283-295.
Chou KC. Does the folding type of protein depend on its amino acid composition? FEBS Lett 1995; 363: 127-131.
Salamov AA, Solovyev VV. Prediction of protein secondary structure by combining nearest-neighbor algorithm and multiple sequence alignments. J Mol Biol 1995; 247: 11-15.
Gibrat JF, Garnier J, Robson B. Further developments of protein secondary structure prediction using information theory: new parameters and consideration of residue pairs. J Mol Biol 1987; 198: 425-443.
Garnier J, Osguthorpe DJ, Robson B. Analysis and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 1978; 120: 97-120.
Moult J, Judson R, Fidelis K, Pedersen JT. A large scale experiment to assess protein structure prediction. Proteins 1995; 23: I-IV.
Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389-3402.
Frishman D, Argos P. Seventy-five percent accuracy in protein secondary structure prediction. Proteins 1997; 27: 329-335.
1974; 13
1994; 235
1989; 86
1999; 292
2000; 9
1997; 25
2000; 41
1992; 225
1992; 227
1997; 29
1997; 27
1996; 266
1995; 5
1993; 6
1988; 2
1986; 205
1997; 268
2001; 134
1987; 195
1974; 88
1990; 216
1987; 198
2000
1989; 202
2001; 270
1995; 23
2002; 43
1978; 120
1999; 34
2000; 40
1995; 247
1995; 363
1996; 25
1996; 5
1993; 234
1988; 955
1992; 1
1975; 405
1983; 22
1989
1994; 10
1998; 14
1993; 232
e_1_2_4_40_2
e_1_2_4_44_2
e_1_2_4_21_2
e_1_2_4_42_2
e_1_2_4_23_2
e_1_2_4_48_2
e_1_2_4_25_2
e_1_2_4_46_2
e_1_2_4_27_2
e_1_2_4_29_2
e_1_2_4_3_2
e_1_2_4_5_2
e_1_2_4_7_2
e_1_2_4_50_2
e_1_2_4_9_2
e_1_2_4_31_2
e_1_2_4_10_2
e_1_2_4_33_2
e_1_2_4_52_2
e_1_2_4_12_2
e_1_2_4_35_2
e_1_2_4_14_2
e_1_2_4_37_2
e_1_2_4_39_2
e_1_2_4_16_2
e_1_2_4_18_2
Rost B (e_1_2_4_20_2) 1994; 10
e_1_2_4_43_2
e_1_2_4_22_2
e_1_2_4_41_2
e_1_2_4_24_2
e_1_2_4_47_2
e_1_2_4_26_2
e_1_2_4_45_2
e_1_2_4_28_2
e_1_2_4_49_2
e_1_2_4_2_2
e_1_2_4_4_2
e_1_2_4_6_2
e_1_2_4_8_2
e_1_2_4_51_2
e_1_2_4_30_2
e_1_2_4_11_2
e_1_2_4_32_2
e_1_2_4_13_2
e_1_2_4_34_2
e_1_2_4_15_2
e_1_2_4_36_2
e_1_2_4_17_2
e_1_2_4_38_2
e_1_2_4_19_2
References_xml – reference: Levin JM, Robson B, Garnier J. An algorithm for secondary structure determination in proteins based on sequence similarity. FEBS Lett 1986; 205: 303-308.
– reference: Levin JM, Pascarella S, Argos P, Garnier J. Quantification of secondary structure prediction improvement using distantly related proteins. Protein Eng 1993; 6: 849-854.
– reference: Bahar I, Altigan AR, Jernigan R, Erman B. Understanding the recognition of protein structural classes by amino acid composition. Proteins 1997; 29: 172-185.
– reference: Salzberg S, Cost S. Predicting protein secondary structure with nearest-neighbors algorithm. J Mol Biol 1992; 227: 371-374.
– reference: Karplus K, Barrett C, Hughley R. Hidden Markov models for detecting remote protein homologies. Bioinformatics 1998; 14: 846-856.
– reference: Levin JM, Garnier J. Improvements in secondary structure prediction method based on a search for local sequence homologies and its use as a model building tool. Biochim Biophys Acta 1988; 955: 283-295.
– reference: Frishman D, Argos P. Seventy-five percent accuracy in protein secondary structure prediction. Proteins 1997; 27: 329-335.
– reference: Rost B. Sander C, Schneider R. PHD: an automatic mail server for protein secondary structure prediction. Comput Appl Biosci 1994; 10: 53-60.
– reference: Petersen TN, Lundegaard C, Nielsen M, et al. Prediction of protein secondary structure at 80% accuracy. Proteins 2000; 41: 17-20.
– reference: Qian N, Sejnowski TJ. Predicting the secondary structure of a globular proteins using neural network models. J Mol Biol 1989; 202: 865-884.
– reference: Biou V, Gibrat JF, Levin J, Robson B, Garnier J. Secondary structure prediction: combination of three different methods. Protein Eng 1988; 2: 185-191.
– reference: Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 1993; 232: 584-599.
– reference: Chou KC. Does the folding type of protein depend on its amino acid composition? FEBS Lett 1995; 363: 127-131.
– reference: Chou PY, Fasman GD. Prediction of protein conformation. Biochemistry 1974; 13: 211-215.
– reference: Holley LH, Karplus M. Protein secondary structure prediction with a neural network. Proc Natl Acad Sci USA 1989; 86: 152-156.
– reference: Russell RB, Barton GJ. The limits of protein secondary structure prediction accuracy from multiple sequence alignment. J Mol Biol 1993; 234: 951-957.
– reference: Kabsch W, Sander C. A dictionary of protein secondary structure. Biopolymers 1983; 22: 2577-2637.
– reference: Matthews BB. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 1975; 405: 442-451.
– reference: Cuff JA, Barton GJ. Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins 1999; 34: 508-519.
– reference: Rost B. PHD: predicting one-dimensional protein structure by profile based neural networks. Methods Enzymol 1996; 266: 525-539.
– reference: Eisenhaber F, Imperiale F, Argos P, Frommel C. Prediction of secondary structural content of proteins from their amino acid composition alone. I. New analytic vector decomposition methods. Proteins 1996; 25: 157-168.
– reference: Kloczkowski A, Ting K-L, Jernigan RL, Garnier J. Protein secondary structure prediction based on the GOR algorithm incorporating multiple sequence alignment information. Polymer 2002; 43: 441-449.
– reference: Garnier J, Gibrat JF, Robson B. GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 1996; 266: 540-553.
– reference: Salamov AA, Solovyev VV. Prediction of protein secondary structure by combining nearest-neighbor algorithm and multiple sequence alignments. J Mol Biol 1995; 247: 11-15.
– reference: Gibrat JF, Garnier J, Robson B. Further developments of protein secondary structure prediction using information theory: new parameters and consideration of residue pairs. J Mol Biol 1987; 198: 425-443.
– reference: Jones TD. Protein secondary structure prediction based on position specific scoring matrices. J Mol Biol 1999; 292: 195-202.
– reference: Yi T-M, Lander ES. Protein secondary structure prediction using nearest-neighbor methods. J Mol Biol 1993; 232: 1117-1129.
– reference: Barton GJ. Protein secondary structure prediction. Curr Opin Struct Biol 1995; 5: 372-376.
– reference: Lim VI. Algorithm for prediction of α-helical and β-structural regions in globular proteins. J Mol Biol 1974; 88: 873-894.
– reference: Rost B. Review: protein secondary structure prediction continues to rise. J Struct Biol 2001; 134: 204-218.
– reference: Cuff JA, Barton GJ. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 2000; 40: 502-511.
– reference: King RD, Sternberg MJ. Machine learning approach for prediction of protein secondary structure. J Mol Biol 1990; 216: 441-457.
– reference: Zhang CT, Chou KC. An optimization approach to predicting protein structural class from amino acid composition. Protein Sci 1992; 1: 401-408.
– reference: Lim VI. Structural principles of the globular organization of protein chains: a stereochemical theory of globular protein secondary structure. J Mol Biol 1974; 88: 857-872.
– reference: Di Francesco V, Garnier J, Munson PJ. Improving protein secondary structure prediction with aligned homologous sequences. Protein Sci 1996; 5: 106-113.
– reference: Eisenhaber F, Frommel C, Argos P. Prediction of secondary structural content of proteins from their amino acid composition alone. II. The paradox with secondary structural class. Proteins 1996; 25: 169-179.
– reference: Moult J, Judson R, Fidelis K, Pedersen JT. A large scale experiment to assess protein structure prediction. Proteins 1995; 23: I-IV.
– reference: Salamov AA, Solovyev VV. Protein secondary structure prediction using local alignments. J Mol Biol 1997; 268: 31-36.
– reference: Lecompte O, Thompson JD, Plewniak F, Thierry JC, Poch O. Multiple alignment of complete sequences (MACS) in the post-genomic era. Gene 2001; 270: 17-30.
– reference: Stolorz P, Lapedes A, Xia Y. Predicting protein secondary structure using neural net and statistical methods. J Mol Biol 1992; 225: 1049-1063.
– reference: Zemla A, Venclovas C, Fidelis K, Rost B. A modified definition of Sov, a segment-based measure of protein secondary structure prediction assessment. Proteins 1999; 34: 220-223.
– reference: Garnier J, Osguthorpe DJ, Robson B. Analysis and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 1978; 120: 97-120.
– reference: Ouali M, King RD. Cascaded multiple classifiers for secondary structure prediction. Protein Sci 2000; 9: 1162-1176.
– reference: Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389-3402.
– reference: Zvelebil MJ, Barton GJ, Taylor WR, Sternberg MJE. Prediction of protein secondary structure and active sites using alignment of homologous sequences. J Mol Biol 1987; 195: 957-961.
– reference: Rost B, Sander C, Schneider R. Redefining the goals of protein secondary structure prediction. J Mol Biol 1994; 235: 13-26.
– volume: 86
  start-page: 152
  year: 1989
  end-page: 156
  article-title: Protein secondary structure prediction with a neural network
  publication-title: Proc Natl Acad Sci USA
– volume: 43
  start-page: 441
  year: 2002
  end-page: 449
  article-title: Protein secondary structure prediction based on the GOR algorithm incorporating multiple sequence alignment information
  publication-title: Polymer
– volume: 88
  start-page: 873
  year: 1974
  end-page: 894
  article-title: Algorithm for prediction of α‐helical and β‐structural regions in globular proteins
  publication-title: J Mol Biol
– volume: 232
  start-page: 1117
  year: 1993
  end-page: 1129
  article-title: Protein secondary structure prediction using nearest‐neighbor methods
  publication-title: J Mol Biol
– volume: 266
  start-page: 525
  year: 1996
  end-page: 539
  article-title: PHD: predicting one‐dimensional protein structure by profile based neural networks
  publication-title: Methods Enzymol
– volume: 232
  start-page: 584
  year: 1993
  end-page: 599
  article-title: Prediction of protein secondary structure at better than 70% accuracy
  publication-title: J Mol Biol
– volume: 202
  start-page: 865
  year: 1989
  end-page: 884
  article-title: Predicting the secondary structure of a globular proteins using neural network models
  publication-title: J Mol Biol
– start-page: 71
  year: 2000
  end-page: 95
– volume: 225
  start-page: 1049
  year: 1992
  end-page: 1063
  article-title: Predicting protein secondary structure using neural net and statistical methods
  publication-title: J Mol Biol
– volume: 270
  start-page: 17
  year: 2001
  end-page: 30
  article-title: Multiple alignment of complete sequences (MACS) in the post‐genomic era
  publication-title: Gene
– volume: 22
  start-page: 2577
  year: 1983
  end-page: 2637
  article-title: A dictionary of protein secondary structure
  publication-title: Biopolymers
– start-page: 417
  year: 1989
  end-page: 465
– volume: 216
  start-page: 441
  year: 1990
  end-page: 457
  article-title: Machine learning approach for prediction of protein secondary structure
  publication-title: J Mol Biol
– volume: 227
  start-page: 371
  year: 1992
  end-page: 374
  article-title: Predicting protein secondary structure with nearest‐neighbors algorithm
  publication-title: J Mol Biol
– volume: 266
  start-page: 540
  year: 1996
  end-page: 553
  article-title: GOR method for predicting protein secondary structure from amino acid sequence
  publication-title: Methods Enzymol
– volume: 955
  start-page: 283
  year: 1988
  end-page: 295
  article-title: Improvements in secondary structure prediction method based on a search for local sequence homologies and its use as a model building tool
  publication-title: Biochim Biophys Acta
– volume: 25
  start-page: 157
  year: 1996
  end-page: 168
  article-title: Prediction of secondary structural content of proteins from their amino acid composition alone. I. New analytic vector decomposition methods
  publication-title: Proteins
– volume: 25
  start-page: 3389
  year: 1997
  end-page: 3402
  article-title: Gapped BLAST and PSI‐BLAST: a new generation of protein database search programs
  publication-title: Nucleic Acids Res
– volume: 41
  start-page: 17
  year: 2000
  end-page: 20
  article-title: Prediction of protein secondary structure at 80% accuracy
  publication-title: Proteins
– volume: 9
  start-page: 1162
  year: 2000
  end-page: 1176
  article-title: Cascaded multiple classifiers for secondary structure prediction
  publication-title: Protein Sci
– volume: 234
  start-page: 951
  year: 1993
  end-page: 957
  article-title: The limits of protein secondary structure prediction accuracy from multiple sequence alignment
  publication-title: J Mol Biol
– volume: 198
  start-page: 425
  year: 1987
  end-page: 443
  article-title: Further developments of protein secondary structure prediction using information theory: new parameters and consideration of residue pairs
  publication-title: J Mol Biol
– volume: 23
  start-page: I
  year: 1995
  end-page: IV
  article-title: A large scale experiment to assess protein structure prediction
  publication-title: Proteins
– volume: 205
  start-page: 303
  year: 1986
  end-page: 308
  article-title: An algorithm for secondary structure determination in proteins based on sequence similarity
  publication-title: FEBS Lett
– volume: 120
  start-page: 97
  year: 1978
  end-page: 120
  article-title: Analysis and implications of simple methods for predicting the secondary structure of globular proteins
  publication-title: J Mol Biol
– volume: 1
  start-page: 401
  year: 1992
  end-page: 408
  article-title: An optimization approach to predicting protein structural class from amino acid composition
  publication-title: Protein Sci
– volume: 195
  start-page: 957
  year: 1987
  end-page: 961
  article-title: Prediction of protein secondary structure and active sites using alignment of homologous sequences
  publication-title: J Mol Biol
– volume: 2
  start-page: 185
  year: 1988
  end-page: 191
  article-title: Secondary structure prediction: combination of three different methods
  publication-title: Protein Eng
– volume: 268
  start-page: 31
  year: 1997
  end-page: 36
  article-title: Protein secondary structure prediction using local alignments
  publication-title: J Mol Biol
– volume: 29
  start-page: 172
  year: 1997
  end-page: 185
  article-title: Understanding the recognition of protein structural classes by amino acid composition
  publication-title: Proteins
– volume: 13
  start-page: 211
  year: 1974
  end-page: 215
  article-title: Prediction of protein conformation
  publication-title: Biochemistry
– volume: 6
  start-page: 849
  year: 1993
  end-page: 854
  article-title: Quantification of secondary structure prediction improvement using distantly related proteins
  publication-title: Protein Eng
– volume: 292
  start-page: 195
  year: 1999
  end-page: 202
  article-title: Protein secondary structure prediction based on position specific scoring matrices
  publication-title: J Mol Biol
– volume: 88
  start-page: 857
  year: 1974
  end-page: 872
  article-title: Structural principles of the globular organization of protein chains: a stereochemical theory of globular protein secondary structure
  publication-title: J Mol Biol
– volume: 235
  start-page: 13
  year: 1994
  end-page: 26
  article-title: Redefining the goals of protein secondary structure prediction
  publication-title: J Mol Biol
– volume: 134
  start-page: 204
  year: 2001
  end-page: 218
  article-title: Review: protein secondary structure prediction continues to rise
  publication-title: J Struct Biol
– volume: 27
  start-page: 329
  year: 1997
  end-page: 335
  article-title: Seventy‐five percent accuracy in protein secondary structure prediction
  publication-title: Proteins
– volume: 5
  start-page: 372
  year: 1995
  end-page: 376
  article-title: Protein secondary structure prediction
  publication-title: Curr Opin Struct Biol
– volume: 40
  start-page: 502
  year: 2000
  end-page: 511
  article-title: Application of multiple sequence alignment profiles to improve protein secondary structure prediction
  publication-title: Proteins
– volume: 25
  start-page: 169
  year: 1996
  end-page: 179
  article-title: Prediction of secondary structural content of proteins from their amino acid composition alone. II. The paradox with secondary structural class
  publication-title: Proteins
– volume: 34
  start-page: 220
  year: 1999
  end-page: 223
  article-title: A modified definition of Sov, a segment‐based measure of protein secondary structure prediction assessment
  publication-title: Proteins
– volume: 14
  start-page: 846
  year: 1998
  end-page: 856
  article-title: Hidden Markov models for detecting remote protein homologies
  publication-title: Bioinformatics
– volume: 247
  start-page: 11
  year: 1995
  end-page: 15
  article-title: Prediction of protein secondary structure by combining nearest‐neighbor algorithm and multiple sequence alignments
  publication-title: J Mol Biol
– volume: 10
  start-page: 53
  year: 1994
  end-page: 60
  article-title: PHD: an automatic mail server for protein secondary structure prediction
  publication-title: Comput Appl Biosci
– volume: 405
  start-page: 442
  year: 1975
  end-page: 451
  article-title: Comparison of the predicted and observed secondary structure of T phage lysozyme
  publication-title: Biochim Biophys Acta
– volume: 363
  start-page: 127
  year: 1995
  end-page: 131
  article-title: Does the folding type of protein depend on its amino acid composition?
  publication-title: FEBS Lett
– volume: 5
  start-page: 106
  year: 1996
  end-page: 113
  article-title: Improving protein secondary structure prediction with aligned homologous sequences
  publication-title: Protein Sci
– volume: 34
  start-page: 508
  year: 1999
  end-page: 519
  article-title: Evaluation and improvement of multiple sequence methods for protein secondary structure prediction
  publication-title: Proteins
– ident: e_1_2_4_10_2
  doi: 10.1002/(SICI)1097-0134(19990201)34:2<220::AID-PROT7>3.0.CO;2-K
– ident: e_1_2_4_2_2
  doi: 10.1002/bip.360221211
– ident: e_1_2_4_31_2
  doi: 10.1002/(SICI)1097-0134(19990301)34:4<508::AID-PROT10>3.0.CO;2-4
– ident: e_1_2_4_40_2
  doi: 10.1016/S0076-6879(96)66033-9
– ident: e_1_2_4_32_2
  doi: 10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO;2-Q
– ident: e_1_2_4_45_2
  doi: 10.1016/S0032-3861(01)00425-6
– ident: e_1_2_4_3_2
– ident: e_1_2_4_27_2
  doi: 10.1016/0167-4838(88)90206-3
– ident: e_1_2_4_5_2
  doi: 10.1002/prot.340230303
– ident: e_1_2_4_11_2
  doi: 10.1016/S0022-2836(05)80007-5
– ident: e_1_2_4_8_2
  doi: 10.1006/jmbi.1994.0116
– ident: e_1_2_4_25_2
  doi: 10.1006/jmbi.1999.3091
– ident: e_1_2_4_33_2
  doi: 10.1016/S0022-2836(05)80333-X
– ident: e_1_2_4_46_2
– ident: e_1_2_4_23_2
  doi: 10.1016/0022-2836(92)90927-C
– ident: e_1_2_4_22_2
  doi: 10.1016/0022-2836(88)90564-5
– ident: e_1_2_4_44_2
  doi: 10.1016/S0378-1119(01)00461-9
– ident: e_1_2_4_24_2
  doi: 10.1002/1097-0134(20001001)41:1<17::AID-PROT40>3.0.CO;2-F
– ident: e_1_2_4_21_2
  doi: 10.1073/pnas.86.1.152
– ident: e_1_2_4_19_2
  doi: 10.1006/jmbi.1993.1413
– ident: e_1_2_4_38_2
  doi: 10.1016/0022-2836(87)90501-8
– ident: e_1_2_4_39_2
  doi: 10.1093/protein/6.8.849
– ident: e_1_2_4_49_2
  doi: 10.1016/0014-5793(95)00245-5
– volume: 10
  start-page: 53
  year: 1994
  ident: e_1_2_4_20_2
  article-title: PHD: an automatic mail server for protein secondary structure prediction
  publication-title: Comput Appl Biosci
– ident: e_1_2_4_37_2
  doi: 10.1006/jsbi.2001.4336
– ident: e_1_2_4_52_2
  doi: 10.1002/(SICI)1097-0134(199710)29:2<172::AID-PROT5>3.0.CO;2-F
– ident: e_1_2_4_17_2
  doi: 10.1007/978-1-4613-1571-1_10
– ident: e_1_2_4_6_2
  doi: 10.1002/(SICI)1097-0134(199703)27:3<329::AID-PROT1>3.0.CO;2-8
– ident: e_1_2_4_15_2
  doi: 10.1016/0022-2836(78)90297-8
– ident: e_1_2_4_35_2
  doi: 10.1093/bioinformatics/14.10.846
– ident: e_1_2_4_47_2
– ident: e_1_2_4_30_2
  doi: 10.1016/0022-2836(92)90892-N
– ident: e_1_2_4_51_2
  doi: 10.1002/(SICI)1097-0134(199606)25:2<169::AID-PROT3>3.0.CO;2-D
– ident: e_1_2_4_4_2
  doi: 10.1385/1-59259-368-2:71
– ident: e_1_2_4_14_2
  doi: 10.1016/0022-2836(74)90405-7
– ident: e_1_2_4_41_2
  doi: 10.1093/nar/25.17.3389
– ident: e_1_2_4_9_2
  doi: 10.1016/0005-2795(75)90109-9
– ident: e_1_2_4_28_2
  doi: 10.1006/jmbi.1997.0958
– ident: e_1_2_4_34_2
  doi: 10.1016/0959-440X(95)80099-9
– ident: e_1_2_4_42_2
  doi: 10.1002/pro.5560050113
– ident: e_1_2_4_18_2
  doi: 10.1016/S0076-6879(96)66034-0
– ident: e_1_2_4_7_2
  doi: 10.1093/protein/2.3.185
– ident: e_1_2_4_43_2
  doi: 10.1006/jmbi.1993.1649
– ident: e_1_2_4_16_2
  doi: 10.1016/0022-2836(87)90292-0
– ident: e_1_2_4_29_2
  doi: 10.1006/jmbi.1993.1464
– ident: e_1_2_4_48_2
  doi: 10.1002/pro.5560010312
– ident: e_1_2_4_36_2
  doi: 10.1110/ps.9.6.1162
– ident: e_1_2_4_12_2
  doi: 10.1021/bi00699a001
– ident: e_1_2_4_50_2
  doi: 10.1002/(SICI)1097-0134(199606)25:2<157::AID-PROT2>3.0.CO;2-F
– ident: e_1_2_4_26_2
  doi: 10.1016/0014-5793(86)80917-6
– ident: e_1_2_4_13_2
  doi: 10.1016/0022-2836(74)90404-5
SSID ssj0006936
Score 2.1140795
Snippet We have modified and improved the GOR algorithm for the protein secondary structure prediction by using the evolutionary information provided by multiple...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 154
SubjectTerms Algorithms
Animals
Evolution, Molecular
GOR algorithm
Information Theory
multiple sequence alignment
protein secondary structure
Protein Structure, Secondary
Proteins - chemistry
PSI-BLAST
secondary structure prediction
Sensitivity and Specificity
Sequence Alignment
Sequence Analysis, Protein - methods
Title Combining the GOR V algorithm with evolutionary information for protein secondary structure prediction from amino acid sequence
URI https://api.istex.fr/ark:/67375/WNG-S0M25PBB-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.10181
https://www.ncbi.nlm.nih.gov/pubmed/12210997
https://www.proquest.com/docview/72056164
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0887-3585
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0134
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006936
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB5CSmlfeiQ93FPQEmjBG1u25TX0JRuahEIONkmblyB0tkuydtmjtH3pX-9IsndJCYX2wSDjMZY0h2dG0jcAr6XqK8syHduiUHGuqEaVqtIYYyFtMfwohXGpgf0DtneafzgrzlbgXXcWJuBDLBJuTjO8vXYKLuR0cwka6nAMeh5vCg1wmjEfTw2X2FGs8vUBgxahU7zAJqWby1ev_I1uuIn9fp2redVz9b-enbtw3nU67Di56M1nsqd-_oHn-L-jugd3Wp-UbAUhug8rpl6D9a0a4_HxD7JB_C5Rn35fg5uDrnVru6sVtw6_0KxIX2qCoENJdg-H5CMRl5-byWj2ZUxcspeYb62UY-dIi9fqbgm2iIeLGNVk6uJz7SgCsO18YvCZW0wKpJNmTMR4VDdEqJEm3UbwB3C68_5key9uSzvECjmVxrqStkhUbnKh-7JvM1MIaaUtbYaXqJhMJLXMoDsnMpEywaxMhOjnuTbuzGf2EFbrpjaPgcjEWC2KiiZUY7AqRM60rQqLZj7NdKoieNOxmKsW99yV37jkAbGZcjdE7uc8glcL2q8B7eNaqg0vKQsSMblw--PKgn862OXHyT4tjgYDfhzBy06UODLELcWI2jTzKS-pi9xYHsGjIGHLz1HqFivLCN56OflLP_jR8PDEt578C_FTuB1K2rg80jNYRXaa5-hZzeQLr0G_Aa0PIu8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgExovAzY2wtcsgSaBlC5xEqd5XCe2Ams3dR3szfInVFuTqR8IeOFfx2cnrYYmJHiI5CgXJbHvnN-dz79D6LWQbWlookKTZTJMJVHWpIo4tL6QMtb9yLmG0ECvT7vn6YeL7KLOzYG9MJ4fYhFwA8tw8zUYOASk95asoUBk0HKEU3fRakqtowKYaLBkj6KFqxDo7cjC4gU7Kdlb3nvjf7QKXfv9NrB5E7u6n8_hA19hdeo4CyHn5LI1n4mW_PkHo-N_f9dDtF7DUrzv9egRuqPLDbS5X1qXfPwD72KXKOoi8BvoXqdprR005eI20S87swhXbQJbTImPTgb4E-ZXX6rJaPZ1jCHei_W3WtHt2-GashVOsW1hxxgxKvEUXHQFEp7bdj7R9hqsJ3nRSTXGfDwqK8zlSOEmF_wxOj98NzzohnV1h1AmNIlDVQiTRTLVKVdt0TaJzrgwwuQmsQcvqIgEMVRbRMcTHlNOjYg4b6ep0rDtM9lCK2VV6icIi0gbxbOCRERZNeA8pcoUmbEzfZyoWAboTTPGTNbU51CB44p50mbC4BOZ6_MAvVrIXnvCj1uldp2qLET45BJS5PKMfe4fsbOoR7LTToedBWin0SVmBwRWY3ipq_mU5QScN5oGaNur2PJxhMB6ZR6gt05R_vIe7HRwMnStp_8ivIPWusPeMTt-3__4DN33FW4grPQcrdih1S8s0JqJl86cfgPHAicQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELagFccLR8sRrloCVQIp28SJneSx27ItR7erbQt9s-zYhlW7SbUHAl7463jsZFdFFRI8RHLkieJjxp4Zj79B6JUs89KwRIWG0jJMS6KsSBVxaG0hZaz5kQkNroGDPts_Sd-f0tMmNgfuwnh8iIXDDSTDrdcg4PpCma0laigAGXQc4NR1tJrSIoeIvt3hEj2KFS5DoJcjqxYv0EnJ1vLbS_vRKgzt96uUzcu6q9t8end9htWpwyyEmJOzznwmO-XPPxAd_7tf99CdRi3F256P7qNrulpD69uVNcnHP_AmdoGizgO_hm5029KtnTZd3Dr6ZVcW6bJNYKtT4r3DIf6ExfmXejKafR1j8Pdi_a1hdNs63EC2wiu2JewQI0YVnoKJroDCY9vOJ9rWwXmSJ53UYyzGo6rGohwp3MaCP0AnvbfHO_thk90hLBOWxKEqpKFRmepUqFzmJtFUSCNNZhL7iILJSBLDtNXoRCJiJpiRkRB5mioN1z6Th2ilqiv9GGEZaaMELUhElLVXhUiZMgU1dqWPExWXAXrdzjEvG-hzyMBxzj1oM-HQRe7GPEAvF7QXHvDjSqpNxyoLEjE5gxC5jPLP_T1-FB0QOuh2-VGANlpe4nZC4DRGVLqeT3lGwHhjaYAeeRZb_o4QOK_MAvTGMcpf2sEHw8NjV3ryL8Qb6OZgt8c_vut_eIpu-wQ34FV6hlbszOrnVs-ayRdOmn4DO_cmlA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+the+GOR+V+algorithm+with+evolutionary+information+for+protein+secondary+structure+prediction+from+amino+acid+sequence&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Kloczkowski%2C+A.&rft.au=Ting%2C+K.%E2%80%90L.&rft.au=Jernigan%2C+R.L.&rft.au=Garnier%2C+J.&rft.date=2002-11-01&rft.issn=0887-3585&rft.eissn=1097-0134&rft.volume=49&rft.issue=2&rft.spage=154&rft.epage=166&rft_id=info:doi/10.1002%2Fprot.10181&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_prot_10181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon