Product Aesthetic Design: A Machine Learning Augmentation

Aesthetics are critically important to market acceptance. In the automotive industry, an improved aesthetic design can boost sales by 30% or more. Firms invest heavily in designing and testing aesthetics. A single automotive “theme clinic” can cost more than $100,000, and hundreds are conducted annu...

Full description

Saved in:
Bibliographic Details
Published inMarketing science (Providence, R.I.) Vol. 42; no. 6; pp. 1029 - 1056
Main Authors Burnap, Alex, Hauser, John R., Timoshenko, Artem
Format Journal Article
LanguageEnglish
Published Linthicum INFORMS 01.11.2023
Institute for Operations Research and the Management Sciences
Subjects
Online AccessGet full text
ISSN0732-2399
1526-548X
DOI10.1287/mksc.2022.1429

Cover

Abstract Aesthetics are critically important to market acceptance. In the automotive industry, an improved aesthetic design can boost sales by 30% or more. Firms invest heavily in designing and testing aesthetics. A single automotive “theme clinic” can cost more than $100,000, and hundreds are conducted annually. We propose a model to augment the commonly used aesthetic design process by predicting aesthetic scores and automatically generating innovative and appealing product designs. The model combines a probabilistic variational autoencoder (VAE) with adversarial components from generative adversarial networks (GAN) and a supervised learning component. We train and evaluate the model with data from an automotive partner—images of 203 SUVs evaluated by targeted consumers and 180,000 high-quality unrated images. Our model predicts well the appeal of new aesthetic designs—43.5% improvement relative to a uniform baseline and substantial improvement over conventional machine learning models and pretrained deep neural networks. New automotive designs are generated in a controllable manner for use by design teams. We empirically verify that automatically generated designs are (1) appealing to consumers and (2) resemble designs that were introduced to the market five years after our data were collected. We provide an additional proof-of-concept application using open-source images of dining room chairs. History: Puneet Manchanda served as the senior editor. Funding: A. Burnap received support from General Motors to partially fund a postdoctoral research position for the research conducted in this work. He certifies that none of the research or its results were censored or obfuscated in its publication. J. Hauser and A. Timoshenko certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. Supplemental Material: The data files are available at https://doi.org/10.1287/mksc.2022.1429 .
AbstractList Aesthetics are critically important to market acceptance. In the automotive industry, an improved aesthetic design can boost sales by 30% or more. Firms invest heavily in designing and testing aesthetics. A single automotive “theme clinic” can cost more than $100,000, and hundreds are conducted annually. We propose a model to augment the commonly used aesthetic design process by predicting aesthetic scores and automatically generating innovative and appealing product designs. The model combines a probabilistic variational autoencoder (VAE) with adversarial components from generative adversarial networks (GAN) and a supervised learning component. We train and evaluate the model with data from an automotive partner—images of 203 SUVs evaluated by targeted consumers and 180,000 high-quality unrated images. Our model predicts well the appeal of new aesthetic designs—43.5% improvement relative to a uniform baseline and substantial improvement over conventional machine learning models and pretrained deep neural networks. New automotive designs are generated in a controllable manner for use by design teams. We empirically verify that automatically generated designs are (1) appealing to consumers and (2) resemble designs that were introduced to the market five years after our data were collected. We provide an additional proof-of-concept application using open-source images of dining room chairs. History: Puneet Manchanda served as the senior editor. Funding: A. Burnap received support from General Motors to partially fund a postdoctoral research position for the research conducted in this work. He certifies that none of the research or its results were censored or obfuscated in its publication. J. Hauser and A. Timoshenko certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. Supplemental Material: The data files are available at https://doi.org/10.1287/mksc.2022.1429 .
Aesthetics are critically important to market acceptance. In the automotive industry, an improved aesthetic design can boost sales by 30% or more. Firms invest heavily in designing and testing aesthetics. A single automotive "theme clinic" can cost more than $100,000, and hundreds are conducted annually. We propose a model to augment the commonly used aesthetic design process by predicting aesthetic scores and automatically generating innovative and appealing product designs. The model combines a probabilistic variational autoencoder (VAE) with adversarial components from generative adversarial networks (GAN) and a supervised learning component. We train and evaluate the model with data from an automotive partner-images of 203 SUVs evaluated by targeted consumers and 180,000 high-quality unrated images. Our model predicts well the appeal of new aesthetic designs-43.5% improvement relative to a uniform baseline and substantial improvement over conventional machine learning models and pretrained deep neural networks. New automotive designs are generated in a controllable manner for use by design teams. We empirically verify that automatically generated designs are (1) appealing to consumers and (2) resemble designs that were introduced to the market five years after our data were collected. We provide an additional proof-of-concept application using open-source images of dining room chairs.
Aesthetics are critically important to market acceptance. In the automotive industry, an improved aesthetic design can boost sales by 30% or more. Firms invest heavily in designing and testing aesthetics. A single automotive “theme clinic” can cost more than $100,000, and hundreds are conducted annually. We propose a model to augment the commonly used aesthetic design process by predicting aesthetic scores and automatically generating innovative and appealing product designs. The model combines a probabilistic variational autoencoder (VAE) with adversarial components from generative adversarial networks (GAN) and a supervised learning component. We train and evaluate the model with data from an automotive partner—images of 203 SUVs evaluated by targeted consumers and 180,000 high-quality unrated images. Our model predicts well the appeal of new aesthetic designs—43.5% improvement relative to a uniform baseline and substantial improvement over conventional machine learning models and pretrained deep neural networks. New automotive designs are generated in a controllable manner for use by design teams. We empirically verify that automatically generated designs are (1) appealing to consumers and (2) resemble designs that were introduced to the market five years after our data were collected. We provide an additional proof-of-concept application using open-source images of dining room chairs. History: Puneet Manchanda served as the senior editor. Funding: A. Burnap received support from General Motors to partially fund a postdoctoral research position for the research conducted in this work. He certifies that none of the research or its results were censored or obfuscated in its publication. J. Hauser and A. Timoshenko certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. Supplemental Material: The data files are available at https://doi.org/10.1287/mksc.2022.1429 .
Author Hauser, John R.
Burnap, Alex
Timoshenko, Artem
Author_xml – sequence: 1
  givenname: Alex
  orcidid: 0000-0001-7692-8209
  surname: Burnap
  fullname: Burnap, Alex
  organization: Department of of Marketing, Yale School of Management, Yale University, New Haven, Connecticut 06511
– sequence: 2
  givenname: John R.
  orcidid: 0000-0001-8510-8640
  surname: Hauser
  fullname: Hauser, John R.
  organization: Marketing Group, MIT Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
– sequence: 3
  givenname: Artem
  orcidid: 0000-0002-5431-2136
  surname: Timoshenko
  fullname: Timoshenko, Artem
  organization: Department of Marketing, Kellogg School of Management, Northwestern University, Evanston, Illinois 60208
BookMark eNqFkD1PwzAQhi0EEm1hZY7EnGCfncRhi8qnVAQDSGyW69itS-MU2xn49yQKExJiuuV57r175-jYdU4jdEFwRoCXV-1HUBlggIwwqI7QjORQpDnj78dohksKKdCqOkXzEHYY4xIwn6HqxXdNr2JS6xC3OlqV3OhgN-46qZMnqbbW6WSlpXfWbZK637TaRRlt587QiZH7oM9_5gK93d2-Lh_S1fP947JepYoWEFOTq2KNc85YU60bKQmmzBBFZakllBLyhmOi8sY0FLgZkIGuqOFEUgBt1nSBLqe9B9999sOVYtf13g2RAnjFWAGcwUBlE6V8F4LXRhy8baX_EgSLsR4x1iPGesRYzyCwX4Ky02PRS7v_W0snzTrT-Tb8F_MNRz56Rg
CitedBy_id crossref_primary_10_1007_s11747_024_01051_8
crossref_primary_10_2139_ssrn_4644059
crossref_primary_10_3390_app14010378
crossref_primary_10_1016_j_actpsy_2024_104619
crossref_primary_10_2139_ssrn_4395751
crossref_primary_10_3390_app14199030
crossref_primary_10_1287_mnsc_2023_03775
crossref_primary_10_1109_ACCESS_2024_3422134
crossref_primary_10_1287_ijoc_2022_0333
crossref_primary_10_1016_j_jretconser_2025_104264
crossref_primary_10_1016_j_tre_2024_103413
crossref_primary_10_3390_app14177438
crossref_primary_10_2139_ssrn_4597899
crossref_primary_10_2139_ssrn_4656622
crossref_primary_10_2478_nimmir_2024_0002
crossref_primary_10_1287_mksc_2021_0107
crossref_primary_10_1016_j_ijresmar_2024_09_002
crossref_primary_10_1177_00222437231210267
crossref_primary_10_1016_j_eswa_2025_126785
crossref_primary_10_1177_00222437241276736
crossref_primary_10_2139_ssrn_4224968
crossref_primary_10_1007_s11747_023_01000_x
crossref_primary_10_51187_0135_3152_2024_4_45_57
Cites_doi 10.1509/jm.15.0036
10.1023/A:1007665907178
10.1287/mksc.2018.1123
10.1115/1.4041857
10.1177/2158244015584617
10.1016/j.destud.2015.10.001
10.1111/j.1540-5885.2010.00742.x
10.1016/0007-6813(90)90040-I
10.1362/026725707X250386
10.1111/1540-5885.1860357
10.1177/0022243719866690
10.1509/JMKG.72.3.064
10.1504/JDR.2006.010810
10.1509/jm.15.0315
10.1287/mnsc.38.3.360
10.1287/mksc.2014.0875
10.1080/01621459.2017.1285773
10.1111/j.0737-6782.2005.00112.x
10.1287/mksc.2021.1326
10.1016/j.destud.2011.06.006
10.1111/j.0737-6782.2005.00103.x
10.1287/mksc.1110.0633
10.1016/j.jesp.2009.03.009
10.2139/ssrn.2683913
10.1111/j.0737-6782.2005.00100.x
10.1016/j.destud.2004.03.001
10.1111/j.1540-5885.2009.00696.x
10.1348/000712603762842147
10.1177/002224299005400102
10.1509/jm.14.0199
10.1145/985600.966013
10.1086/346254
10.1509/jmr.15.0119
10.1287/mksc.2016.0994
10.1115/1.4002290
10.1287/mnsc.2021.3969
10.1093/ijpor/edz046
10.1177/00222437211052500
10.1177/002224299505900302
10.1115/1.3116260
10.1362/026725707X250395
10.1108/10610420610679601
10.1509/jmkg.68.4.142.42724
10.1007/978-3-030-11015-4_5
10.1287/mksc.2020.1226
10.3386/w18997
10.1287/mnsc.2016.2653
10.1509/jmkr.48.1.116
ContentType Journal Article
Copyright Copyright Institute for Operations Research and the Management Sciences Nov/Dec 2023
Copyright_xml – notice: Copyright Institute for Operations Research and the Management Sciences Nov/Dec 2023
DBID AAYXX
CITATION
8BJ
FQK
JBE
DOI 10.1287/mksc.2022.1429
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1526-548X
EndPage 1056
ExternalDocumentID 10_1287_mksc_2022_1429
mksc20221429
Genre Research Articles
GroupedDBID -~X
08R
18M
29M
2AX
3V.
4.4
4R4
5GY
7WY
8AO
8FI
8FJ
8FL
8VB
AAPBV
ABBHK
ABDNZ
ABIVO
ABKVW
ABLWH
ABSIS
ABUWG
ABYYQ
ACGFO
ACHQT
ACNCT
ACYGS
ADBBV
ADEPB
ADGDI
ADLEJ
ADNFJ
ADULT
AEGXH
AEMOZ
AERSA
AEUPB
AFAIT
AFFNX
AFKRA
AFTQD
AHAJD
AIAGR
AJPNJ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AQNXB
AQSKT
AZQEC
BAAKF
BENPR
BEZIV
BKOMP
BPHCQ
BVXVI
CBXGM
CCKSF
CCPQU
CS3
CWXUR
CYVLN
DU5
DWQXO
EBA
EBE
EBO
EBR
EBS
EBU
ECE
ECR
EJD
EMK
EPL
FRNLG
FYUFA
GENNL
GNUQQ
GROUPED_ABI_INFORM_ARCHIVE
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUPYA
HGD
H~9
IAO
IBB
ICO
IEA
IGG
IN-
IOF
IPY
ISL
ITC
JAAYA
JAV
JBC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPL
JPPEU
JSODD
JST
K1G
K60
K6~
L8O
M0C
M2M
MV1
N95
NIEAY
P2P
PQBIZ
PQQKQ
PROAC
PSYQQ
QWB
RNS
RPU
SA0
SJN
TAE
TH9
TN5
U5U
UKHRP
VQA
WH7
XFK
XI7
XSW
Y99
YK4
YNT
YQT
ZL0
AAAZS
AADHG
AAXLS
AAYXX
ABAWQ
ABXSQ
ACHJO
ACXJH
AGKTX
AHQJS
APTMU
ASMEE
CITATION
HVGLF
IPSME
PHGZM
PHGZT
PQBZA
PUEGO
8BJ
FQK
JBE
ID FETCH-LOGICAL-c362t-f5c6b05844d9bdaa1034f1c3a7ea27a25d801c5dfd328f9bd6b093f81a322efb3
ISSN 0732-2399
IngestDate Sat Aug 16 17:21:37 EDT 2025
Wed Oct 01 01:00:05 EDT 2025
Thu Apr 24 23:05:58 EDT 2025
Thu Nov 16 04:54:53 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-f5c6b05844d9bdaa1034f1c3a7ea27a25d801c5dfd328f9bd6b093f81a322efb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5431-2136
0000-0001-7692-8209
0000-0001-8510-8640
PQID 2894462842
PQPubID 4802
PageCount 28
ParticipantIDs proquest_journals_2894462842
crossref_primary_10_1287_mksc_2022_1429
crossref_citationtrail_10_1287_mksc_2022_1429
informs_primary_10_1287_mksc_2022_1429
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Linthicum
PublicationPlace_xml – name: Linthicum
PublicationTitle Marketing science (Providence, R.I.)
PublicationYear 2023
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B38
B39
B1
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B54
B55
B56
B57
B58
B59
B103
B104
B101
B102
B100
B60
B61
B62
B63
B64
B66
B67
B68
B69
B70
B71
B73
B74
B75
B76
B77
B79
B80
B81
B82
B83
B84
B85
B86
B87
B88
B89
B91
B92
B93
B94
B95
B96
B97
B10
B98
B11
B99
B12
B13
B14
B15
B16
B17
B18
B19
Goodfellow I (B27) 2014
Berlyne DE (B5) 1971
Kulkarni TD (B57) 2015
Sohn K (B91) 2015
Toffoletto G (B93) 2013
Hartley J (B31) 1996
Vlasic B (B96) 2011
Coates D (B17) 2003
Gulrajani I (B30) 2017
Gross I (B29) 1972; 14
Kingma DP (B54) 2014
Orme B (B74) 2017
Martindale C (B66) 1990
Huang H (B42) 2018; 31
Wu J (B97) 2016
Chen X (B13) 2016
References_xml – ident: B12
– ident: B35
– ident: B87
– ident: B41
– ident: B7
– ident: B29
– ident: B64
– ident: B73
– ident: B50
– ident: B96
– ident: B21
– ident: B58
– ident: B61
– ident: B69
– ident: B82
– ident: B44
– ident: B49
– ident: B24
– ident: B101
– ident: B17
– ident: B93
– ident: B30
– ident: B76
– ident: B38
– ident: B55
– ident: B85
– ident: B9
– ident: B10
– ident: B43
– ident: B66
– ident: B1
– ident: B23
– ident: B104
– ident: B18
– ident: B79
– ident: B94
– ident: B52
– ident: B71
– ident: B88
– ident: B26
– ident: B4
– ident: B46
– ident: B63
– ident: B80
– ident: B99
– ident: B91
– ident: B32
– ident: B15
– ident: B57
– ident: B74
– ident: B60
– ident: B68
– ident: B45
– ident: B83
– ident: B102
– ident: B25
– ident: B92
– ident: B16
– ident: B77
– ident: B31
– ident: B39
– ident: B54
– ident: B59
– ident: B13
– ident: B86
– ident: B40
– ident: B28
– ident: B6
– ident: B48
– ident: B97
– ident: B34
– ident: B51
– ident: B14
– ident: B20
– ident: B89
– ident: B27
– ident: B62
– ident: B81
– ident: B5
– ident: B47
– ident: B98
– ident: B100
– ident: B33
– ident: B75
– ident: B56
– ident: B8
– ident: B36
– ident: B11
– ident: B84
– ident: B42
– ident: B67
– ident: B22
– ident: B95
– ident: B103
– ident: B70
– ident: B19
– ident: B53
– ident: B44
  doi: 10.1509/jm.15.0036
– ident: B45
  doi: 10.1023/A:1007665907178
– ident: B92
  doi: 10.1287/mksc.2018.1123
– ident: B63
  doi: 10.1115/1.4041857
– ident: B32
  doi: 10.1177/2158244015584617
– ident: B81
  doi: 10.1016/j.destud.2015.10.001
– start-page: 3581
  year: 2014
  ident: B54
  publication-title: Adv. Neural Inform. Processing Systems
– start-page: 2672
  year: 2014
  ident: B27
  publication-title: Adv. Neural Inform. Processing Systems
– ident: B70
  doi: 10.1111/j.1540-5885.2010.00742.x
– ident: B18
  doi: 10.1016/0007-6813(90)90040-I
– ident: B82
  doi: 10.1362/026725707X250386
– start-page: 29
  year: 2016
  ident: B13
  publication-title: Adv. Neural Inform. Processing Systems
– ident: B21
  doi: 10.1111/1540-5885.1860357
– volume-title: Once upon a Car: The Fall and Resurrection of America’s Big Three Auto Makers: GM, Ford, and Chrysler
  year: 2011
  ident: B96
– ident: B61
  doi: 10.1177/0022243719866690
– year: 2015
  ident: B91
  publication-title: Adv. Neural Inform. Processing Systems.
– ident: B76
  doi: 10.1509/JMKG.72.3.064
– ident: B10
  doi: 10.1504/JDR.2006.010810
– start-page: 30
  year: 2017
  ident: B30
  publication-title: Adv. Neural Inform. Processing Systems
– ident: B62
  doi: 10.1509/jm.15.0315
– ident: B28
  doi: 10.1287/mnsc.38.3.360
– ident: B88
  doi: 10.1287/mksc.2014.0875
– ident: B7
  doi: 10.1080/01621459.2017.1285773
– ident: B55
  doi: 10.1111/j.0737-6782.2005.00112.x
– ident: B22
  doi: 10.1287/mksc.2021.1326
– ident: B85
  doi: 10.1016/j.destud.2011.06.006
– volume-title: The Strategic Value of Design: A Model Derived from the Existing Literature and Six Case Studies of Design Driven Organizations
  year: 2013
  ident: B93
– volume-title: Becoming an Expert in Conjoint Analysis: Choice Modelling for Pros
  year: 2017
  ident: B74
– start-page: 29
  year: 2016
  ident: B97
  publication-title: Adv. Neural Inform. Processing Systems
– ident: B19
  doi: 10.1111/j.0737-6782.2005.00103.x
– ident: B58
  doi: 10.1287/mksc.1110.0633
– ident: B73
  doi: 10.1016/j.jesp.2009.03.009
– ident: B15
  doi: 10.2139/ssrn.2683913
– ident: B36
  doi: 10.1111/j.0737-6782.2005.00100.x
– ident: B20
  doi: 10.1016/j.destud.2004.03.001
– ident: B49
  doi: 10.1111/j.1540-5885.2009.00696.x
– ident: B33
  doi: 10.1348/000712603762842147
– volume: 14
  start-page: 83
  issue: 1
  year: 1972
  ident: B29
  publication-title: Sloan Management Rev.
– ident: B1
  doi: 10.1177/002224299005400102
– ident: B40
  doi: 10.1509/jm.14.0199
– ident: B71
  doi: 10.1145/985600.966013
– ident: B51
  doi: 10.1086/346254
– ident: B98
  doi: 10.1509/jmr.15.0119
– ident: B94
  doi: 10.1287/mksc.2016.0994
– ident: B86
  doi: 10.1115/1.4002290
– volume-title: The Clockwork Muse: The Predictability of Artistic Change
  year: 1990
  ident: B66
– ident: B26
  doi: 10.1287/mnsc.2021.3969
– volume: 31
  start-page: 52
  issue: 1
  year: 2018
  ident: B42
  publication-title: Adv. Neural Inform. Processing Systems
– ident: B68
  doi: 10.1093/ijpor/edz046
– ident: B11
  doi: 10.1177/00222437211052500
– ident: B8
  doi: 10.1177/002224299505900302
– ident: B75
  doi: 10.1115/1.3116260
– ident: B16
  doi: 10.1362/026725707X250395
– start-page: 28
  year: 2015
  ident: B57
  publication-title: Adv. Neural Inform. Processing Systems
– ident: B87
  doi: 10.1108/10610420610679601
– ident: B80
  doi: 10.1509/jmkg.68.4.142.42724
– ident: B89
  doi: 10.1007/978-3-030-11015-4_5
– ident: B60
  doi: 10.1287/mksc.2020.1226
– volume-title: Brands Through the Lens of Style
  year: 1996
  ident: B31
– volume-title: Aesthetics and Psychobiology
  year: 1971
  ident: B5
– volume-title: Watches Tell More Than Time: Product Design, Information, and the Quest for Elegance
  year: 2003
  ident: B17
– ident: B9
  doi: 10.3386/w18997
– ident: B12
  doi: 10.1287/mnsc.2016.2653
– ident: B24
  doi: 10.1509/jmkr.48.1.116
SSID ssj0007208
Score 2.5543072
Snippet Aesthetics are critically important to market acceptance. In the automotive industry, an improved aesthetic design can boost sales by 30% or more. Firms invest...
SourceID proquest
crossref
informs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1029
SubjectTerms Aesthetics
Augmentation
Automotive engineering
Consumers
Design
generating new products
generative adversarial networks
Machine learning
Motor car industry
Neural networks
prelaunch forecasting
product development
Sales
Sport utility vehicles
variational autoencoders
Title Product Aesthetic Design: A Machine Learning Augmentation
URI https://www.proquest.com/docview/2894462842
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Business Source Ultimate
  customDbUrl:
  eissn: 1526-548X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007208
  issn: 0732-2399
  databaseCode: AKVCP
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT9swFLVYEYgXBGNofE15mMZD5Y76KzFvERqCTUXV-FDfItuJmQQERMsLv57r2g6pBhrsJaqSWye6xzk-tnKuEfpq-kqBENFYpcJgxrnGUlp4rzJZCc6tYsp5hwcn4uic_Rzx0fOWl1N3yUT3zOOLvpL_QRXOAa7OJfsOZJtG4QT8BnzhCAjD8U0YD3251m4O1P7HuRGBPtwHGd5uPph-J1nFEqqX3fzh8iZYjeq2KB1E53M3mnxAdg69Ra_2i-y_e8e9uGgQ1ggIDWa5Zt54AjPKwWmLWlJKsHO1-lEgUB8RGOYvozY3MtLqA22iA10iW4MmqDTxIiETt6RxeHM1duUiCQFijv-bKXLtAtx1d_kDmiepEKSD5vNfFwfDZmBNyXSDwebhQw1OuMX32RvMaIwFX4F2_NdgO1UQZytoOUj_JPc4rqK5qv6IFqPzYA3JAGfSwJl4OPeTPAlgJhHMpA3mJ3R--OPs4AiHnS2wAcEwwZYbofdA-7FS6lKp_h5ltm-oSitFUkV4CcLB8NKWlGQWQiBaUpv1FfBvZTVdR536tq4-oyQz2gKrppngjFVSZyBiJTXQnqUQnW0gHHNRmFD23e0-cl246R_krnC5K1zuCpe7DbTbxN_5gievRn4Lqf1n4HbMfBHennEBE33mfNGMbL61nS209Ny5t1Fncv9Q7YAknOgvoas8AeGgXJs
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Product+Aesthetic+Design%3A+A+Machine+Learning+Augmentation&rft.jtitle=Marketing+science+%28Providence%2C+R.I.%29&rft.date=2023-11-01&rft.pub=INFORMS&rft.issn=0732-2399&rft.eissn=1526-548X&rft.volume=42&rft.issue=6&rft.spage=1029&rft.epage=1056&rft_id=info:doi/10.1287%2Fmksc.2022.1429&rft.externalDocID=mksc20221429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0732-2399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0732-2399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0732-2399&client=summon