Distributed multi-UAV cooperation for dynamic target tracking optimized by an SAQPSO algorithm
Real-time tracking of the dynamic intrusion targets consists of two crucial factors: the path forecast of the target and real-time path optimization of multi-UAV target tracking. For the first one, the uncertainty of the target trajectory is an obstacle to realizing real-time tracking. Thus a trajec...
Saved in:
| Published in | ISA transactions Vol. 129; no. Pt A; pp. 230 - 242 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.10.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0019-0578 1879-2022 1879-2022 |
| DOI | 10.1016/j.isatra.2021.12.014 |
Cover
| Abstract | Real-time tracking of the dynamic intrusion targets consists of two crucial factors: the path forecast of the target and real-time path optimization of multi-UAV target tracking. For the first one, the uncertainty of the target trajectory is an obstacle to realizing real-time tracking. Thus a trajectory prediction method is proposed in this paper to ensure the sampling period of the target. Owing to the poor prediction accuracy of the single-step trajectory, a multi-step Unscented Kalman Filter (MUKF) is proposed to forecast its multi-step trajectory further in different regions. For the second one, there are two problems: poor optimization accuracy of the tracking trajectory and larger local optimization deviation, which will cause failure of the regional tracking. Under this circumstance, a hybrid algorithm called SAQPSO is proposed, combining the specific mechanism of two intelligence algorithms. The annealing mechanism in the Simulated Annealing (SA) algorithm is used to modify the Quantum Particle Swarm Optimization (QPSO) algorithm. Then the characteristic of quantum particles is used to update the population and enhance global searchability. Furthermore, to testify the effectiveness of the trajectory optimization algorithm and related target prediction method, a specific simulation environment is given as an example, in which the tracking trajectories of eight different algorithms are compared. Simulation results show the effectiveness of the proposed algorithm.
•A distributed cooperation multi-UAV model was built to modeling the tracking method.•A multi-step Unscented Kalman Filter trajectory forecast algorithm was put forward.•The cost function of multi-UAV tracking and observation in each area was established.•A Simulated Annealing Quantum Particle Swarm Optimization algorithm was proposed. |
|---|---|
| AbstractList | Real-time tracking of the dynamic intrusion targets consists of two crucial factors: the path forecast of the target and real-time path optimization of multi-UAV target tracking. For the first one, the uncertainty of the target trajectory is an obstacle to realizing real-time tracking. Thus a trajectory prediction method is proposed in this paper to ensure the sampling period of the target. Owing to the poor prediction accuracy of the single-step trajectory, a multi-step Unscented Kalman Filter (MUKF) is proposed to forecast its multi-step trajectory further in different regions. For the second one, there are two problems: poor optimization accuracy of the tracking trajectory and larger local optimization deviation, which will cause failure of the regional tracking. Under this circumstance, a hybrid algorithm called SAQPSO is proposed, combining the specific mechanism of two intelligence algorithms. The annealing mechanism in the Simulated Annealing (SA) algorithm is used to modify the Quantum Particle Swarm Optimization (QPSO) algorithm. Then the characteristic of quantum particles is used to update the population and enhance global searchability. Furthermore, to testify the effectiveness of the trajectory optimization algorithm and related target prediction method, a specific simulation environment is given as an example, in which the tracking trajectories of eight different algorithms are compared. Simulation results show the effectiveness of the proposed algorithm.
•A distributed cooperation multi-UAV model was built to modeling the tracking method.•A multi-step Unscented Kalman Filter trajectory forecast algorithm was put forward.•The cost function of multi-UAV tracking and observation in each area was established.•A Simulated Annealing Quantum Particle Swarm Optimization algorithm was proposed. Real-time tracking of the dynamic intrusion targets consists of two crucial factors: the path forecast of the target and real-time path optimization of multi-UAV target tracking. For the first one, the uncertainty of the target trajectory is an obstacle to realizing real-time tracking. Thus a trajectory prediction method is proposed in this paper to ensure the sampling period of the target. Owing to the poor prediction accuracy of the single-step trajectory, a multi-step Unscented Kalman Filter (MUKF) is proposed to forecast its multi-step trajectory further in different regions. For the second one, there are two problems: poor optimization accuracy of the tracking trajectory and larger local optimization deviation, which will cause failure of the regional tracking. Under this circumstance, a hybrid algorithm called SAQPSO is proposed, combining the specific mechanism of two intelligence algorithms. The annealing mechanism in the Simulated Annealing (SA) algorithm is used to modify the Quantum Particle Swarm Optimization (QPSO) algorithm. Then the characteristic of quantum particles is used to update the population and enhance global searchability. Furthermore, to testify the effectiveness of the trajectory optimization algorithm and related target prediction method, a specific simulation environment is given as an example, in which the tracking trajectories of eight different algorithms are compared. Simulation results show the effectiveness of the proposed algorithm. Real-time tracking of the dynamic intrusion targets consists of two crucial factors: the path forecast of the target and real-time path optimization of multi-UAV target tracking. For the first one, the uncertainty of the target trajectory is an obstacle to realizing real-time tracking. Thus a trajectory prediction method is proposed in this paper to ensure the sampling period of the target. Owing to the poor prediction accuracy of the single-step trajectory, a multi-step Unscented Kalman Filter (MUKF) is proposed to forecast its multi-step trajectory further in different regions. For the second one, there are two problems: poor optimization accuracy of the tracking trajectory and larger local optimization deviation, which will cause failure of the regional tracking. Under this circumstance, a hybrid algorithm called SAQPSO is proposed, combining the specific mechanism of two intelligence algorithms. The annealing mechanism in the Simulated Annealing (SA) algorithm is used to modify the Quantum Particle Swarm Optimization (QPSO) algorithm. Then the characteristic of quantum particles is used to update the population and enhance global searchability. Furthermore, to testify the effectiveness of the trajectory optimization algorithm and related target prediction method, a specific simulation environment is given as an example, in which the tracking trajectories of eight different algorithms are compared. Simulation results show the effectiveness of the proposed algorithm.Real-time tracking of the dynamic intrusion targets consists of two crucial factors: the path forecast of the target and real-time path optimization of multi-UAV target tracking. For the first one, the uncertainty of the target trajectory is an obstacle to realizing real-time tracking. Thus a trajectory prediction method is proposed in this paper to ensure the sampling period of the target. Owing to the poor prediction accuracy of the single-step trajectory, a multi-step Unscented Kalman Filter (MUKF) is proposed to forecast its multi-step trajectory further in different regions. For the second one, there are two problems: poor optimization accuracy of the tracking trajectory and larger local optimization deviation, which will cause failure of the regional tracking. Under this circumstance, a hybrid algorithm called SAQPSO is proposed, combining the specific mechanism of two intelligence algorithms. The annealing mechanism in the Simulated Annealing (SA) algorithm is used to modify the Quantum Particle Swarm Optimization (QPSO) algorithm. Then the characteristic of quantum particles is used to update the population and enhance global searchability. Furthermore, to testify the effectiveness of the trajectory optimization algorithm and related target prediction method, a specific simulation environment is given as an example, in which the tracking trajectories of eight different algorithms are compared. Simulation results show the effectiveness of the proposed algorithm. |
| Author | Li, Kun Han, Ying Yan, Xinxin Wang, Yi’an |
| Author_xml | – sequence: 1 givenname: Yi’an surname: Wang fullname: Wang, Yi’an organization: State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China – sequence: 2 givenname: Kun orcidid: 0000-0002-9759-0072 surname: Li fullname: Li, Kun email: likun@lntu.edu.cn, likun@bhu.edu.cn organization: Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, Liaoning, China – sequence: 3 givenname: Ying orcidid: 0000-0002-4856-2999 surname: Han fullname: Han, Ying organization: Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, Liaoning, China – sequence: 4 givenname: Xinxin surname: Yan fullname: Yan, Xinxin organization: Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, Liaoning, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34972544$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkMtuFDEQRS0URCaBP0DISzbd-NUvFkij8IoUKUEJLLHcdvVQQ3d7sN1Iw9fjZJINC7KyVLrnluuckKPZz0DIS85Kznj9ZltiNCmYUjDBSy5KxtUTsuJt0xV5JI7IijHeFaxq2mNyEuOWMSaqrn1GjqXqGlEptSLf32NMAfslgaPTMiYsvq6_Uev9DoJJ6Gc6-EDdfjYTWppM2ECiea39ifOG-l3CCf9ktt9TM9Pr9Zer60tqxo0PmH5Mz8nTwYwRXty_p-Tm44ebs8_FxeWn87P1RWFlLVLhOtH0ALbqqsG1rBODBMecUj0wy0Rf10qCkq6VpsnfdiCZ5dA4yxXjeXpKXh9qd8H_WiAmPWG0MI5mBr9ELWpedUJILnP01X106SdwehdwMmGvH5TkwNtDwAYfY4BBW0x3JvLVOGrO9K1_vdUH__rWv-ZCZ_8ZVv_AD_2PYO8OGGRHvxGCjhZhtuAwgE3aefx_wV8GXaGb |
| CitedBy_id | crossref_primary_10_3390_app14010416 crossref_primary_10_1016_j_jfranklin_2024_106810 crossref_primary_10_1145_3700874 crossref_primary_10_3390_drones7010055 crossref_primary_10_1016_j_conengprac_2023_105735 crossref_primary_10_3390_s24185898 crossref_primary_10_1016_j_neucom_2024_127904 crossref_primary_10_1016_j_asoc_2023_111033 crossref_primary_10_1109_ACCESS_2024_3355275 crossref_primary_10_32604_iasc_2025_060364 crossref_primary_10_1016_j_jfranklin_2023_07_002 crossref_primary_10_1109_JSEN_2024_3394883 crossref_primary_10_1016_j_inffus_2024_102704 crossref_primary_10_1109_JSEN_2024_3382826 crossref_primary_10_1016_j_ins_2024_121714 crossref_primary_10_3389_fpls_2024_1440234 crossref_primary_10_1088_1742_6596_2902_1_012039 crossref_primary_10_3390_drones8060255 crossref_primary_10_1016_j_isatra_2023_05_016 crossref_primary_10_3390_drones6050104 crossref_primary_10_3390_math11122606 crossref_primary_10_1007_s12145_023_00963_3 crossref_primary_10_1109_ACCESS_2023_3313264 crossref_primary_10_1016_j_compstruc_2023_107255 crossref_primary_10_1016_j_isatra_2023_04_028 crossref_primary_10_1016_j_isatra_2023_06_017 crossref_primary_10_1108_IR_01_2024_0004 crossref_primary_10_3390_su152014972 |
| Cites_doi | 10.1016/j.isprsjprs.2016.04.011 10.1016/j.enconman.2008.06.009 10.1016/j.asoc.2020.106150 10.1109/TCBB.2015.2443789 10.1007/978-3-319-32552-1_53 10.1016/j.adhoc.2021.102485 10.1007/s00500-015-1956-2 10.1016/j.advengsoft.2013.12.007 10.1016/j.engappai.2020.103573 10.1016/j.cja.2015.04.005 10.1109/3477.484436 10.1016/j.automatica.2021.109809 10.1109/TAC.2004.834113 10.1002/asjc.24 10.1016/j.engappai.2020.103807 10.1016/j.simpat.2009.10.006 10.1016/j.neucom.2015.07.044 10.1177/0278364904045564 10.1016/j.neucom.2013.04.020 10.2514/1.30507 10.1016/j.engappai.2020.103801 10.1109/JSAC.2018.2864421 10.1016/j.chemolab.2015.08.020 10.1109/TSMC.2013.2248146 10.1109/JPROC.2006.876930 10.1017/S0263574714001878 10.1109/TRO.2016.2593044 10.1109/ACCESS.2019.2909530 10.2514/1.G005098 |
| ContentType | Journal Article |
| Copyright | 2021 ISA Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2021 ISA – notice: Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.isatra.2021.12.014 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 1879-2022 |
| EndPage | 242 |
| ExternalDocumentID | 34972544 10_1016_j_isatra_2021_12_014 S0019057821006315 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFO ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K T9H TAE TN5 UHS UNMZH WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM 7X8 |
| ID | FETCH-LOGICAL-c362t-d927beec595fd8092f3ed0d44be0c02b6643e43d83a7544de30c1e7dc1401d83 |
| IEDL.DBID | .~1 |
| ISSN | 0019-0578 1879-2022 |
| IngestDate | Sun Sep 28 10:32:15 EDT 2025 Wed Feb 19 02:27:45 EST 2025 Thu Apr 24 23:13:15 EDT 2025 Wed Oct 01 05:14:42 EDT 2025 Fri Feb 23 02:41:31 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Pt A |
| Keywords | Dynamic target tracking Multi-UAV Trajectory prediction Quantum Particle Swarm Optimization algorithm Simulated Annealing algorithm |
| Language | English |
| License | Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c362t-d927beec595fd8092f3ed0d44be0c02b6643e43d83a7544de30c1e7dc1401d83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-4856-2999 0000-0002-9759-0072 |
| PMID | 34972544 |
| PQID | 2615922313 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2615922313 pubmed_primary_34972544 crossref_citationtrail_10_1016_j_isatra_2021_12_014 crossref_primary_10_1016_j_isatra_2021_12_014 elsevier_sciencedirect_doi_10_1016_j_isatra_2021_12_014 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ISA transactions |
| PublicationTitleAlternate | ISA Trans |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Parker, Rus, Sukhatme (b7) 2016 Mirjalili, Mirjalili, Lewis (b31) 2014; 69 Fu, Ding, Zhou, Hu (b37) 2013; 43 Xu, Ren, Zheng, Xiao (b41) 2006; 28 Wu, Xu, Zhang (b50) 2018; 36 Zhang, Duan (b34) 2015; 14 Tian (b23) 2020; 91 Matikainen, Lehtomäki, Ahokas, Hyyppä, Karjalainen, Jaakkola, Kukko, Heinonen (b1) 2016; 119 Shorakaei, Vahdani, Imani, Gholami (b28) 2016; 34 Ge, Li, Han, Xu (b35) 2020 Wang, Li, Han, Ge, Liu (b5) 2020; 90 Chu, Huang, Roddick, Pan (b18) 2011 Dorigo, Maniezzo, Colorni (b25) 1996; 26 Frew, Lawrence (b21) 2005 Tian (b20) 2020; 94 Marini, Walczak (b32) 2015; 149 Zhu, Vanegas, Gonzalez (b9) 2020 Li, Ge, Han, Wang, Xu (b24) 2020; 94 Gerkey, Matarić (b8) 2004; 23 Jiang, Li, Huang (b33) 2015; 28 Vitaly, Tal (b12) 2015 Olfati, Murray (b46) 2004; 49 Luo (b19) 2012; 51 Wang (b44) 2011 Chen, Wang, Wei, Peng, Yong (b2) 2017 Ibenthal, Kieffer, Meyer, Piet-Lahanier, Reynaud (b11) 2021; 132 Coelho, Mariani (b40) 2008; 49 Huang, Shukla, Karki, Zhang (b3) 2017 Lin, Jia, Du, Yuan (b47) 2008; 10 Beard, McLain, Nelson, Kingston, Johanson (b17) 2006; 94 Chen, Yu, Mei, Wang, Su (b48) 2016; 171 Fan, Gao, Jin, Li, Cai, Ni (b10) 2020 Huang, Savkin (b14) 2021; 117 Wise, Rysdyk (b16) 2006 Sahoo, Sahoo, Dash, Jena (b43) 2016 Kirkpatrick, Gelatt (b42) 1983; 220 Sun, Feng, Xu (b38) 2004 Cui, Wang, Chen (b26) 2014 Duan, Yu, Zhang, Shao (b29) 2010; 18 Xue, Li, Tokgo, Ri, Han (b51) 2017; 21 Yang (b36) 2010 Klavins (b45) 2004 Oliveira, Aguiar, Encarnacao (b15) 2016; 32 Liao, Liu, Liao (b49) 2001; 35 Shakhatreh, Sawalmeh, Al-Fuqaha, Dou, Almaita, Khalil, Othman, Khreishah, Guizani (b6) 2019; 7 Rao, Chakravarthy, Ghose (b13) 2021; 44 Wang, Wang, Jiang (b30) 2015; 000 Frew, Lawrence, Morris (b22) 2008; 31 Sun, Xu, Feng (b39) 2004 Qu, Xing, Alexander (b27) 2013; 120 Araar, Aouf (b4) 2014 Dorigo (10.1016/j.isatra.2021.12.014_b25) 1996; 26 Mirjalili (10.1016/j.isatra.2021.12.014_b31) 2014; 69 Fan (10.1016/j.isatra.2021.12.014_b10) 2020 Wang (10.1016/j.isatra.2021.12.014_b44) 2011 Klavins (10.1016/j.isatra.2021.12.014_b45) 2004 Wise (10.1016/j.isatra.2021.12.014_b16) 2006 Parker (10.1016/j.isatra.2021.12.014_b7) 2016 Sahoo (10.1016/j.isatra.2021.12.014_b43) 2016 Ibenthal (10.1016/j.isatra.2021.12.014_b11) 2021; 132 Yang (10.1016/j.isatra.2021.12.014_b36) 2010 Luo (10.1016/j.isatra.2021.12.014_b19) 2012; 51 Sun (10.1016/j.isatra.2021.12.014_b39) 2004 Chu (10.1016/j.isatra.2021.12.014_b18) 2011 Fu (10.1016/j.isatra.2021.12.014_b37) 2013; 43 Olfati (10.1016/j.isatra.2021.12.014_b46) 2004; 49 Xu (10.1016/j.isatra.2021.12.014_b41) 2006; 28 Beard (10.1016/j.isatra.2021.12.014_b17) 2006; 94 Sun (10.1016/j.isatra.2021.12.014_b38) 2004 Chen (10.1016/j.isatra.2021.12.014_b2) 2017 Tian (10.1016/j.isatra.2021.12.014_b20) 2020; 94 Ge (10.1016/j.isatra.2021.12.014_b35) 2020 Wang (10.1016/j.isatra.2021.12.014_b30) 2015; 000 Matikainen (10.1016/j.isatra.2021.12.014_b1) 2016; 119 Tian (10.1016/j.isatra.2021.12.014_b23) 2020; 91 Rao (10.1016/j.isatra.2021.12.014_b13) 2021; 44 Frew (10.1016/j.isatra.2021.12.014_b21) 2005 Zhang (10.1016/j.isatra.2021.12.014_b34) 2015; 14 Marini (10.1016/j.isatra.2021.12.014_b32) 2015; 149 Qu (10.1016/j.isatra.2021.12.014_b27) 2013; 120 Jiang (10.1016/j.isatra.2021.12.014_b33) 2015; 28 Liao (10.1016/j.isatra.2021.12.014_b49) 2001; 35 Oliveira (10.1016/j.isatra.2021.12.014_b15) 2016; 32 Wang (10.1016/j.isatra.2021.12.014_b5) 2020; 90 Coelho (10.1016/j.isatra.2021.12.014_b40) 2008; 49 Gerkey (10.1016/j.isatra.2021.12.014_b8) 2004; 23 Araar (10.1016/j.isatra.2021.12.014_b4) 2014 Li (10.1016/j.isatra.2021.12.014_b24) 2020; 94 Huang (10.1016/j.isatra.2021.12.014_b3) 2017 Xue (10.1016/j.isatra.2021.12.014_b51) 2017; 21 Shorakaei (10.1016/j.isatra.2021.12.014_b28) 2016; 34 Lin (10.1016/j.isatra.2021.12.014_b47) 2008; 10 Chen (10.1016/j.isatra.2021.12.014_b48) 2016; 171 Zhu (10.1016/j.isatra.2021.12.014_b9) 2020 Kirkpatrick (10.1016/j.isatra.2021.12.014_b42) 1983; 220 Huang (10.1016/j.isatra.2021.12.014_b14) 2021; 117 Vitaly (10.1016/j.isatra.2021.12.014_b12) 2015 Wu (10.1016/j.isatra.2021.12.014_b50) 2018; 36 Cui (10.1016/j.isatra.2021.12.014_b26) 2014 Shakhatreh (10.1016/j.isatra.2021.12.014_b6) 2019; 7 Duan (10.1016/j.isatra.2021.12.014_b29) 2010; 18 Frew (10.1016/j.isatra.2021.12.014_b22) 2008; 31 |
| References_xml | – volume: 120 start-page: 509 year: 2013 end-page: 517 ident: b27 article-title: An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots publication-title: Neurocomputing – volume: 32 start-page: 1062 year: 2016 end-page: 1078 ident: b15 article-title: Moving path following for unmanned aerial vehicles with applications to single and multiple target tracking problems publication-title: IEEE Trans Robot – start-page: 1 year: 2020 end-page: 18 ident: b35 article-title: Path planning of uav for oilfield inspections in a three-dimensional dynamic environment with moving obstacles based on an improved pigeon-inspired optimization algorithm publication-title: Appl Intell – volume: 23 start-page: 939 year: 2004 end-page: 954 ident: b8 article-title: A formal analysis and taxonomy of task allocation in multi-robot systems publication-title: Int J Robot Res – volume: 44 start-page: 120 year: 2021 end-page: 137 ident: b13 article-title: Planar manipulation of an object by unmanned aerial vehicles using sliding modes publication-title: J Guid Control Dyn – volume: 90 year: 2020 ident: b5 article-title: Tracking a dynamic invading target by uav in oilfield inspection via an improved bat algorithm publication-title: Appl Soft Comput – volume: 28 start-page: 1981 year: 2006 end-page: 1985 ident: b41 article-title: Displacement back analysis of rock mechanic parameters of underground grotto of suofengying hydraulic power plant publication-title: Yantu Gongcheng Xuebao(Chin J Geotech Eng) – start-page: 1335 year: 2016 end-page: 1384 ident: b7 article-title: Multiple mobile robot systems publication-title: Springer handbook of robotics – volume: 49 start-page: 1520 year: 2004 end-page: 1533 ident: b46 article-title: Consensus problems in networks of agents with switching topology and time-delays publication-title: IEEE Trans Automat Control – start-page: 111 year: 2004 end-page: 116 ident: b39 article-title: A global search strategy of quantum-behaved particle swarm optimization publication-title: IEEE conference on cybernetics and intelligent systems, 2004, Vol. 1 – start-page: 325 year: 2004 end-page: 331 ident: b38 article-title: Particle swarm optimization with particles having quantum behavior publication-title: Proceedings of the 2004 congress on evolutionary computation (ieee cat. no. 04th8753), Vol. 1 – start-page: 275 year: 2004 end-page: 291 ident: b45 article-title: Communication complexity of multi-robot systems publication-title: Algorithmic foundations of robotics V – start-page: 10480 year: 2017 end-page: 10485 ident: b2 article-title: Binocular vision perception and obstacle avoidance of visual simulation system for power lines inspection with uav publication-title: 2017 36th chinese control conference (ccc) – start-page: 1418 year: 2014 end-page: 1424 ident: b4 article-title: Visual servoing of a quadrotor uav for autonomous power lines inspection publication-title: 22nd mediterranean conference on control and automation – start-page: 1113 year: 2020 end-page: 1120 ident: b9 article-title: An approach for multi-uav system navigation and target finding in cluttered environments publication-title: 2020 international conference on unmanned aircraft systems (icuas) – volume: 49 start-page: 3080 year: 2008 end-page: 3085 ident: b40 article-title: Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects publication-title: Energy Convers Manage – volume: 149 start-page: 153 year: 2015 end-page: 165 ident: b32 article-title: Particle swarm optimization (pso). A tutorial publication-title: Chemometr Intell Lab Syst – volume: 94 start-page: 1306 year: 2006 end-page: 1324 ident: b17 article-title: Decentralized cooperative aerial surveillance using fixed-wing miniature uavs publication-title: Proc IEEE – start-page: 65 year: 2010 end-page: 74 ident: b36 article-title: A new metaheuristic bat-inspired algorithm publication-title: Nature inspired cooperative strategies for optimization (nicso 2010) – volume: 34 start-page: 823 year: 2016 end-page: 836 ident: b28 article-title: Optimal cooperative path planning of unmanned aerial vehicles by a parallel genetic algorithm publication-title: Robotica – volume: 171 start-page: 878 year: 2016 end-page: 888 ident: b48 article-title: Modified central force optimization (mcfo) algorithm for 3d uav path planning publication-title: Neurocomputing – volume: 132 year: 2021 ident: b11 article-title: Bounded-error target localization and tracking using a fleet of uavs publication-title: Automatica – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b31 article-title: Grey wolf optimizer publication-title: Adv Eng Softw – volume: 31 start-page: 290 year: 2008 end-page: 306 ident: b22 article-title: Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields publication-title: J Guid Control Dyn – volume: 14 start-page: 97 year: 2015 end-page: 107 ident: b34 article-title: Three-dimensional path planning for uninhabited combat aerial vehicle based on predator-prey pigeon-inspired optimization in dynamic environment publication-title: IEEE/ACM Trans Comput Biol Bioinform – volume: 18 start-page: 1104 year: 2010 end-page: 1115 ident: b29 article-title: Three-dimension path planning for ucav using hybrid meta-heuristic aco-de algorithm publication-title: Simul Model Pract Theory – volume: 21 start-page: 2421 year: 2017 end-page: 2437 ident: b51 article-title: Trajectory planning for autonomous mobile robot using a hybrid improved qpso algorithm publication-title: Soft Comput – start-page: 6453 year: 2006 ident: b16 article-title: Uav coordination for autonomous target tracking publication-title: Aiaa guidance, navigation, and control conference and exhibit – start-page: 291 year: 2014 end-page: 295 ident: b26 article-title: Improved ant colony optimization algorithm for UAV path planning publication-title: 2014 ieee 5th international conference on software engineering and service science – start-page: 1966 year: 2020 end-page: 1969 ident: b10 article-title: Research on route planning of group uav cooperation for deception jamming to radar network publication-title: 2020 ieee 4th information technology, networking, electronic and automation control conference (itnec), Vol. 1 – start-page: 28 year: 2011 end-page: 41 ident: b18 article-title: Overview of algorithms for swarm intelligence publication-title: International conference on computational collective intelligence – volume: 26 start-page: 29 year: 1996 end-page: 41 ident: b25 article-title: Ant system: optimization by a colony of cooperating agents publication-title: IEEE Trans Syst Man Cybern B – volume: 91 year: 2020 ident: b23 article-title: Short-term wind speed prediction based on LMD and improved FA optimized combined kernel function LSSVM publication-title: Eng Appl Artif Intell – start-page: 368 year: 2017 end-page: 372 ident: b3 article-title: Variant pid controller design for autonomous visual tracking of oil and gas pipelines via an unmanned aerial vehicle publication-title: 2017 17th international conference on control, automation and systems (iccas) – volume: 10 start-page: 254 year: 2008 end-page: 259 ident: b47 article-title: Distributed control of multi-agent systems with second-order agent dynamics and delay-dependent communications publication-title: Asian J Control – volume: 117 year: 2021 ident: b14 article-title: Energy-efficient decentralized navigation of a team of solar-powered uavs for collaborative eavesdropping on a mobile ground target in urban environments publication-title: Ad Hoc Netw – volume: 94 year: 2020 ident: b24 article-title: Path planning of multiple UAVs with online changing tasks by an orpfoa algorithm publication-title: Eng Appl Artif Intell – volume: 220 start-page: 650 year: 1983 end-page: 671 ident: b42 article-title: Vecchi mp. Optinfization by simulated annealing publication-title: Science – start-page: 2342 year: 2016 end-page: 2346 ident: b43 article-title: Optimal controller selection in software defined network using a greedy-sa algorithm publication-title: 2016 3rd international conference on computing for sustainable global development (indiacom) – volume: 7 start-page: 48572 year: 2019 end-page: 48634 ident: b6 article-title: Unmanned aerial vehicles (uavs): A survey on civil applications and key research challenges publication-title: IEEE Access – volume: 94 year: 2020 ident: b20 article-title: Backtracking search optimization algorithm-based least square support vector machine and its applications publication-title: Eng Appl Artif Intell – start-page: 6363 year: 2005 ident: b21 article-title: Cooperative stand-off tracking of moving targets by a team of autonomous aircraft publication-title: Aiaa guidance, navigation, and control conference and exhibit – volume: 119 start-page: 10 year: 2016 end-page: 31 ident: b1 article-title: Remote sensing methods for power line corridor surveys publication-title: ISPRS J Photogramm Remote Sens – volume: 35 start-page: 386 year: 2001 end-page: 389 ident: b49 article-title: Stability conditions based on cauchy-matrix for some classes of time-varying linear difference equations publication-title: J Huazhong Norm Univ (Nat Sci) – volume: 36 start-page: 1955 year: 2018 end-page: 1971 ident: b50 article-title: Capacity characterization of uav-enabled two-user broadcast channel publication-title: IEEE J Sel Areas Commun – volume: 000 start-page: 583 year: 2015 end-page: 594 ident: b30 article-title: Coordinated observation track planning for multi-uav ground moving targets based on chemical reaction optimization publication-title: Sci China: Tech Sci – volume: 28 start-page: 865 year: 2015 end-page: 873 ident: b33 article-title: Longitudinal parameter identification of a small unmanned aerial vehicle based on modified particle swarm optimization publication-title: Chin J Aeronaut – volume: 43 start-page: 1451 year: 2013 end-page: 1465 ident: b37 article-title: Route planning for unmanned aerial vehicle (uav) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization publication-title: IEEE Trans Syst Man Cybern: Syst – volume: 51 start-page: 406 year: 2012 end-page: 414 ident: b19 article-title: Collaborative tracking of ground targets by uav based on lyapunov navigation vector field publication-title: J Fudan Univ (Natl Sci Ed) – year: 2011 ident: b44 article-title: Modeling and optimization technology research on multi-uav cooperative target tracking problem – year: 2015 ident: b12 article-title: Tracking multiple ground targets in urban environments using cooperating unmanned aerial vehicles publication-title: J Dyn Syst Meas Control – volume: 119 start-page: 10 year: 2016 ident: 10.1016/j.isatra.2021.12.014_b1 article-title: Remote sensing methods for power line corridor surveys publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2016.04.011 – start-page: 1 year: 2020 ident: 10.1016/j.isatra.2021.12.014_b35 article-title: Path planning of uav for oilfield inspections in a three-dimensional dynamic environment with moving obstacles based on an improved pigeon-inspired optimization algorithm publication-title: Appl Intell – start-page: 1113 year: 2020 ident: 10.1016/j.isatra.2021.12.014_b9 article-title: An approach for multi-uav system navigation and target finding in cluttered environments – volume: 49 start-page: 3080 issue: 11 year: 2008 ident: 10.1016/j.isatra.2021.12.014_b40 article-title: Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2008.06.009 – start-page: 10480 year: 2017 ident: 10.1016/j.isatra.2021.12.014_b2 article-title: Binocular vision perception and obstacle avoidance of visual simulation system for power lines inspection with uav – volume: 90 year: 2020 ident: 10.1016/j.isatra.2021.12.014_b5 article-title: Tracking a dynamic invading target by uav in oilfield inspection via an improved bat algorithm publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106150 – volume: 14 start-page: 97 issue: 1 year: 2015 ident: 10.1016/j.isatra.2021.12.014_b34 article-title: Three-dimensional path planning for uninhabited combat aerial vehicle based on predator-prey pigeon-inspired optimization in dynamic environment publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2015.2443789 – start-page: 1335 year: 2016 ident: 10.1016/j.isatra.2021.12.014_b7 article-title: Multiple mobile robot systems doi: 10.1007/978-3-319-32552-1_53 – volume: 117 year: 2021 ident: 10.1016/j.isatra.2021.12.014_b14 article-title: Energy-efficient decentralized navigation of a team of solar-powered uavs for collaborative eavesdropping on a mobile ground target in urban environments publication-title: Ad Hoc Netw doi: 10.1016/j.adhoc.2021.102485 – volume: 21 start-page: 2421 issue: 9 year: 2017 ident: 10.1016/j.isatra.2021.12.014_b51 article-title: Trajectory planning for autonomous mobile robot using a hybrid improved qpso algorithm publication-title: Soft Comput doi: 10.1007/s00500-015-1956-2 – volume: 000 start-page: 583 issue: 6 year: 2015 ident: 10.1016/j.isatra.2021.12.014_b30 article-title: Coordinated observation track planning for multi-uav ground moving targets based on chemical reaction optimization publication-title: Sci China: Tech Sci – volume: 51 start-page: 406 issue: 4 year: 2012 ident: 10.1016/j.isatra.2021.12.014_b19 article-title: Collaborative tracking of ground targets by uav based on lyapunov navigation vector field publication-title: J Fudan Univ (Natl Sci Ed) – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.isatra.2021.12.014_b31 article-title: Grey wolf optimizer publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 91 year: 2020 ident: 10.1016/j.isatra.2021.12.014_b23 article-title: Short-term wind speed prediction based on LMD and improved FA optimized combined kernel function LSSVM publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103573 – volume: 28 start-page: 865 issue: 3 year: 2015 ident: 10.1016/j.isatra.2021.12.014_b33 article-title: Longitudinal parameter identification of a small unmanned aerial vehicle based on modified particle swarm optimization publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2015.04.005 – volume: 35 start-page: 386 issue: 4 year: 2001 ident: 10.1016/j.isatra.2021.12.014_b49 article-title: Stability conditions based on cauchy-matrix for some classes of time-varying linear difference equations publication-title: J Huazhong Norm Univ (Nat Sci) – volume: 28 start-page: 1981 issue: 11 year: 2006 ident: 10.1016/j.isatra.2021.12.014_b41 article-title: Displacement back analysis of rock mechanic parameters of underground grotto of suofengying hydraulic power plant publication-title: Yantu Gongcheng Xuebao(Chin J Geotech Eng) – volume: 26 start-page: 29 issue: 1 year: 1996 ident: 10.1016/j.isatra.2021.12.014_b25 article-title: Ant system: optimization by a colony of cooperating agents publication-title: IEEE Trans Syst Man Cybern B doi: 10.1109/3477.484436 – volume: 132 year: 2021 ident: 10.1016/j.isatra.2021.12.014_b11 article-title: Bounded-error target localization and tracking using a fleet of uavs publication-title: Automatica doi: 10.1016/j.automatica.2021.109809 – volume: 49 start-page: 1520 issue: 9 year: 2004 ident: 10.1016/j.isatra.2021.12.014_b46 article-title: Consensus problems in networks of agents with switching topology and time-delays publication-title: IEEE Trans Automat Control doi: 10.1109/TAC.2004.834113 – start-page: 1418 year: 2014 ident: 10.1016/j.isatra.2021.12.014_b4 article-title: Visual servoing of a quadrotor uav for autonomous power lines inspection – start-page: 368 year: 2017 ident: 10.1016/j.isatra.2021.12.014_b3 article-title: Variant pid controller design for autonomous visual tracking of oil and gas pipelines via an unmanned aerial vehicle – volume: 10 start-page: 254 issue: 2 year: 2008 ident: 10.1016/j.isatra.2021.12.014_b47 article-title: Distributed control of multi-agent systems with second-order agent dynamics and delay-dependent communications publication-title: Asian J Control doi: 10.1002/asjc.24 – year: 2011 ident: 10.1016/j.isatra.2021.12.014_b44 – volume: 94 year: 2020 ident: 10.1016/j.isatra.2021.12.014_b24 article-title: Path planning of multiple UAVs with online changing tasks by an orpfoa algorithm publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103807 – volume: 18 start-page: 1104 issue: 8 year: 2010 ident: 10.1016/j.isatra.2021.12.014_b29 article-title: Three-dimension path planning for ucav using hybrid meta-heuristic aco-de algorithm publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2009.10.006 – start-page: 28 year: 2011 ident: 10.1016/j.isatra.2021.12.014_b18 article-title: Overview of algorithms for swarm intelligence – volume: 171 start-page: 878 year: 2016 ident: 10.1016/j.isatra.2021.12.014_b48 article-title: Modified central force optimization (mcfo) algorithm for 3d uav path planning publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.044 – volume: 23 start-page: 939 issue: 9 year: 2004 ident: 10.1016/j.isatra.2021.12.014_b8 article-title: A formal analysis and taxonomy of task allocation in multi-robot systems publication-title: Int J Robot Res doi: 10.1177/0278364904045564 – volume: 120 start-page: 509 year: 2013 ident: 10.1016/j.isatra.2021.12.014_b27 article-title: An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.04.020 – volume: 31 start-page: 290 issue: 2 year: 2008 ident: 10.1016/j.isatra.2021.12.014_b22 article-title: Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields publication-title: J Guid Control Dyn doi: 10.2514/1.30507 – start-page: 291 year: 2014 ident: 10.1016/j.isatra.2021.12.014_b26 article-title: Improved ant colony optimization algorithm for UAV path planning – start-page: 275 year: 2004 ident: 10.1016/j.isatra.2021.12.014_b45 article-title: Communication complexity of multi-robot systems – volume: 94 year: 2020 ident: 10.1016/j.isatra.2021.12.014_b20 article-title: Backtracking search optimization algorithm-based least square support vector machine and its applications publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103801 – volume: 36 start-page: 1955 issue: 9 year: 2018 ident: 10.1016/j.isatra.2021.12.014_b50 article-title: Capacity characterization of uav-enabled two-user broadcast channel publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2018.2864421 – volume: 149 start-page: 153 year: 2015 ident: 10.1016/j.isatra.2021.12.014_b32 article-title: Particle swarm optimization (pso). A tutorial publication-title: Chemometr Intell Lab Syst doi: 10.1016/j.chemolab.2015.08.020 – start-page: 6363 year: 2005 ident: 10.1016/j.isatra.2021.12.014_b21 article-title: Cooperative stand-off tracking of moving targets by a team of autonomous aircraft – start-page: 2342 year: 2016 ident: 10.1016/j.isatra.2021.12.014_b43 article-title: Optimal controller selection in software defined network using a greedy-sa algorithm – start-page: 65 year: 2010 ident: 10.1016/j.isatra.2021.12.014_b36 article-title: A new metaheuristic bat-inspired algorithm – start-page: 1966 year: 2020 ident: 10.1016/j.isatra.2021.12.014_b10 article-title: Research on route planning of group uav cooperation for deception jamming to radar network – year: 2015 ident: 10.1016/j.isatra.2021.12.014_b12 article-title: Tracking multiple ground targets in urban environments using cooperating unmanned aerial vehicles publication-title: J Dyn Syst Meas Control – volume: 43 start-page: 1451 issue: 6 year: 2013 ident: 10.1016/j.isatra.2021.12.014_b37 article-title: Route planning for unmanned aerial vehicle (uav) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization publication-title: IEEE Trans Syst Man Cybern: Syst doi: 10.1109/TSMC.2013.2248146 – start-page: 6453 year: 2006 ident: 10.1016/j.isatra.2021.12.014_b16 article-title: Uav coordination for autonomous target tracking – volume: 94 start-page: 1306 issue: 7 year: 2006 ident: 10.1016/j.isatra.2021.12.014_b17 article-title: Decentralized cooperative aerial surveillance using fixed-wing miniature uavs publication-title: Proc IEEE doi: 10.1109/JPROC.2006.876930 – start-page: 111 year: 2004 ident: 10.1016/j.isatra.2021.12.014_b39 article-title: A global search strategy of quantum-behaved particle swarm optimization – volume: 34 start-page: 823 issue: 4 year: 2016 ident: 10.1016/j.isatra.2021.12.014_b28 article-title: Optimal cooperative path planning of unmanned aerial vehicles by a parallel genetic algorithm publication-title: Robotica doi: 10.1017/S0263574714001878 – start-page: 325 year: 2004 ident: 10.1016/j.isatra.2021.12.014_b38 article-title: Particle swarm optimization with particles having quantum behavior – volume: 32 start-page: 1062 issue: 5 year: 2016 ident: 10.1016/j.isatra.2021.12.014_b15 article-title: Moving path following for unmanned aerial vehicles with applications to single and multiple target tracking problems publication-title: IEEE Trans Robot doi: 10.1109/TRO.2016.2593044 – volume: 7 start-page: 48572 year: 2019 ident: 10.1016/j.isatra.2021.12.014_b6 article-title: Unmanned aerial vehicles (uavs): A survey on civil applications and key research challenges publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909530 – volume: 220 start-page: 650 issue: ll year: 1983 ident: 10.1016/j.isatra.2021.12.014_b42 article-title: Vecchi mp. Optinfization by simulated annealing publication-title: Science – volume: 44 start-page: 120 issue: 1 year: 2021 ident: 10.1016/j.isatra.2021.12.014_b13 article-title: Planar manipulation of an object by unmanned aerial vehicles using sliding modes publication-title: J Guid Control Dyn doi: 10.2514/1.G005098 |
| SSID | ssj0002598 |
| Score | 2.4879882 |
| Snippet | Real-time tracking of the dynamic intrusion targets consists of two crucial factors: the path forecast of the target and real-time path optimization of... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 230 |
| SubjectTerms | Dynamic target tracking Multi-UAV Quantum Particle Swarm Optimization algorithm Simulated Annealing algorithm Trajectory prediction |
| Title | Distributed multi-UAV cooperation for dynamic target tracking optimized by an SAQPSO algorithm |
| URI | https://dx.doi.org/10.1016/j.isatra.2021.12.014 https://www.ncbi.nlm.nih.gov/pubmed/34972544 https://www.proquest.com/docview/2615922313 |
| Volume | 129 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Sciencedirect - Freedom Collection customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: AKRWK dateStart: 19890101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4huNBDVR6lWx4yEgc4uOThbOLjalu0Le-nONVKbAcWQbJalgMc-O2dcRxoDwipp0hWrFgee-az8803ABtCGq27grxfWXJRypTngU24LbM8j53kGCU47x90B-fi12VyOQX9NheGaJXe9zc-3Xlr37LtZ3N7NBxSji8GM1JjDynOukRzIVKqYvDt-ZXmgfDee2PJ6e02fc5xvIgxMyb1oSh0l4KheCs8vQU_XRja-QQfPX5kvWaIczBlq3n48Jeq4DzM-f16zza9qPTWAvz-Tgq5VNzKGuZYhPy8d8F0XY9sswgYwldmmgL1rCGIMxy2prt0VqNnuRs-Yd_ikeUVO-0dH50esvz2qh4PJ9d3i3C28-OsP-C-tgLXGLIm3MgoLazViUxKkwUyKmNrAiNEYQMdREUXkYoVscninCTyjI0DHdrUaDqQYetnmK7qyn4BhhCoyLMiiaTWIhJlhgij7BaZCfGcniVJB-J2RpX2uuNU_uJWtQSzG9XYQZEdVBgptEMH-EuvUaO78c77aWss9c_6URga3um53tpW4dai_yV5ZeuHe4WHy0QifArjDiw1Rn8ZSyxkSupuX__7u8swG1EqhSMGrsD0ZPxgVxHgTIo1t4LXYKbXP9k7oufP3cHBHwui-6Q |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1V5QA9IFr6sXwaiUN7ME0cexMfVwvVUtoC6rbqCSuxHVi0TVbb3QMc-O3MJE6hh6pSr5atWB575tl58wbgrdTO2r4k71eWXJY65XnkFfdlludJIzlGCc7HJ_3RmTy8UBcrMOxyYYhWGXx_69Mbbx1a9sNq7s8mE8rxxWBGauwxxVlKNH8glUjpBvbuzz-eB-L74I41p-5d_lxD8iLKzJzkh0TcvArG8rb4dBv-bOLQwRN4HAAkG7RzXIcVX23A2n-yghuwHg7sFdsNqtJ7T-Hbe5LIpepW3rGGRsjPBufM1vXMt7uAIX5lrq1Qz1qGOMNpW3pMZzW6lsvJbxxb_GJ5xU4HX7-cfmb59Hs9nyx-XG7C-ODDeDjiobgCtxizFtxpkRbeW6VV6bJIizLxLnJSFj6ykSj6CFW8TFyW5KSR53wS2dinztKNDFu3YLWqK78DDDFQkWeFEtpaKWSZIcQo-0XmYryoZ0r1IOlW1NggPE71L6amY5j9NK0dDNnBxMKgHXrAr0fNWuGNO_qnnbHMjQ1kMDbcMfJNZ1uDZ4t-mOSVr5dXBm-XSiN-ipMebLdGv55LInVK8m7P7v3d1_BwND4-MkcfTz49h0eC8ioaluALWF3Ml_4lop1F8arZzX8B-Qv7pA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+multi-UAV+cooperation+for+dynamic+target+tracking+optimized+by+an+SAQPSO+algorithm&rft.jtitle=ISA+transactions&rft.au=Wang%2C+Yi%E2%80%99an&rft.au=Li%2C+Kun&rft.au=Han%2C+Ying&rft.au=Yan%2C+Xinxin&rft.date=2022-10-01&rft.issn=0019-0578&rft.volume=129&rft.spage=230&rft.epage=242&rft_id=info:doi/10.1016%2Fj.isatra.2021.12.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isatra_2021_12_014 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon |