Optimistic value based optimal control for uncertain linear singular systems and application to a dynamic input-output model

In this paper, optimal control problems for uncertain discrete-time singular systems and uncertain continuous-time singular systems are considered under optimistic value criterion. The above singular systems are assumed to be regular and impulse-free, and optimistic value method is employed to optim...

Full description

Saved in:
Bibliographic Details
Published inISA transactions Vol. 71; no. Pt 2; pp. 235 - 251
Main Authors Shu, Yadong, Zhu, Yuanguo
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.11.2017
Subjects
Online AccessGet full text
ISSN0019-0578
1879-2022
1879-2022
DOI10.1016/j.isatra.2017.08.007

Cover

Abstract In this paper, optimal control problems for uncertain discrete-time singular systems and uncertain continuous-time singular systems are considered under optimistic value criterion. The above singular systems are assumed to be regular and impulse-free, and optimistic value method is employed to optimize uncertain objective functions. Firstly, based on Bellman's principle of optimality, a recurrence equation is presented for settling optimal control problems subject to uncertain discrete-time singular systems. Then, by applying the principle of optimality and uncertainty theory, an equation of optimality for an optimal control model subject to an uncertain continuous-time singular system is derived. The optimal control problem can be settled through solving the equation of optimality. Two numerical examples and a dynamic input-output model are given to show the effectiveness of the results obtained. •Optimal control problems subject to uncertain discrete-time (and continuous-time) singular systems are considered under optimistic value criterion.•Employing Bellman’s principle of optimality, a recurrence equation is presented to study uncertain discrete-time optimal control models.•The corresponding optimal controls are bang-bang provided that the objective function is linear in an uncertain discrete-time optimal control problem.•An equation of optimality is derived to solve optimal control problems for uncertain continuous-time singular systems if the input vector is derivable.•A dynamic input-output model is investigated as an application to illustrate the results obtained.
AbstractList In this paper, optimal control problems for uncertain discrete-time singular systems and uncertain continuous-time singular systems are considered under optimistic value criterion. The above singular systems are assumed to be regular and impulse-free, and optimistic value method is employed to optimize uncertain objective functions. Firstly, based on Bellman's principle of optimality, a recurrence equation is presented for settling optimal control problems subject to uncertain discrete-time singular systems. Then, by applying the principle of optimality and uncertainty theory, an equation of optimality for an optimal control model subject to an uncertain continuous-time singular system is derived. The optimal control problem can be settled through solving the equation of optimality. Two numerical examples and a dynamic input-output model are given to show the effectiveness of the results obtained.
In this paper, optimal control problems for uncertain discrete-time singular systems and uncertain continuous-time singular systems are considered under optimistic value criterion. The above singular systems are assumed to be regular and impulse-free, and optimistic value method is employed to optimize uncertain objective functions. Firstly, based on Bellman's principle of optimality, a recurrence equation is presented for settling optimal control problems subject to uncertain discrete-time singular systems. Then, by applying the principle of optimality and uncertainty theory, an equation of optimality for an optimal control model subject to an uncertain continuous-time singular system is derived. The optimal control problem can be settled through solving the equation of optimality. Two numerical examples and a dynamic input-output model are given to show the effectiveness of the results obtained. •Optimal control problems subject to uncertain discrete-time (and continuous-time) singular systems are considered under optimistic value criterion.•Employing Bellman’s principle of optimality, a recurrence equation is presented to study uncertain discrete-time optimal control models.•The corresponding optimal controls are bang-bang provided that the objective function is linear in an uncertain discrete-time optimal control problem.•An equation of optimality is derived to solve optimal control problems for uncertain continuous-time singular systems if the input vector is derivable.•A dynamic input-output model is investigated as an application to illustrate the results obtained.
In this paper, optimal control problems for uncertain discrete-time singular systems and uncertain continuous-time singular systems are considered under optimistic value criterion. The above singular systems are assumed to be regular and impulse-free, and optimistic value method is employed to optimize uncertain objective functions. Firstly, based on Bellman's principle of optimality, a recurrence equation is presented for settling optimal control problems subject to uncertain discrete-time singular systems. Then, by applying the principle of optimality and uncertainty theory, an equation of optimality for an optimal control model subject to an uncertain continuous-time singular system is derived. The optimal control problem can be settled through solving the equation of optimality. Two numerical examples and a dynamic input-output model are given to show the effectiveness of the results obtained.In this paper, optimal control problems for uncertain discrete-time singular systems and uncertain continuous-time singular systems are considered under optimistic value criterion. The above singular systems are assumed to be regular and impulse-free, and optimistic value method is employed to optimize uncertain objective functions. Firstly, based on Bellman's principle of optimality, a recurrence equation is presented for settling optimal control problems subject to uncertain discrete-time singular systems. Then, by applying the principle of optimality and uncertainty theory, an equation of optimality for an optimal control model subject to an uncertain continuous-time singular system is derived. The optimal control problem can be settled through solving the equation of optimality. Two numerical examples and a dynamic input-output model are given to show the effectiveness of the results obtained.
Author Shu, Yadong
Zhu, Yuanguo
Author_xml – sequence: 1
  givenname: Yadong
  surname: Shu
  fullname: Shu, Yadong
  email: 972718523@qq.com
– sequence: 2
  givenname: Yuanguo
  surname: Zhu
  fullname: Zhu, Yuanguo
  email: adamsue17@gmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28864142$$D View this record in MEDLINE/PubMed
BookMark eNqFkUuLFDEUhYOMOD2j_0AkSzfV3qQeSbkQZPAFA7PRdUgltyRNKimT1ECDP37S9ujCha5uuHzncHPOFbkIMSAhLxnsGbDhzWHvsi5J7zkwsQe5BxBPyI5JMTYcOL8gOwA2NtALeUmucj4AAO9H-YxccimHjnV8R37ercUtLhdn6L32G9JJZ7Q0ntbaUxNDSdHTOSa6BYOpaBeodwF1otmF75s_PY654JKpDpbqdfXO6OJioCVSTe0x6KXau7BupYlbqYMu0aJ_Tp7O2md88TivybePH77efG5u7z59uXl_25h24KUxthM425ZNIDl22A7jOIMUYpDQc9EK1unWwojMyIkx6JgQZqxxdHoezDC11-T12XdN8ceGuaj6Y4Pe64Bxy4qN7cCGtu-hoq8e0W1a0Ko11RjSUf1OrALdGTAp5pxw_oMwUKdi1EGdi1GnYhRIVS-psrd_yYwrv0KqpPP_E787i7GGdO8wqWwc1jasS2iKstH92-ABBUetaw
CitedBy_id crossref_primary_10_1016_j_chaos_2023_113604
crossref_primary_10_3934_jimo_2022037
crossref_primary_10_1016_j_amc_2023_128301
crossref_primary_10_1016_j_isatra_2022_02_016
crossref_primary_10_1080_02331934_2021_2017429
crossref_primary_10_1016_j_apm_2020_02_029
crossref_primary_10_1016_j_apm_2020_05_020
crossref_primary_10_3934_jimo_2025049
crossref_primary_10_3233_JIFS_222041
crossref_primary_10_3934_jimo_2021034
crossref_primary_10_1016_j_chaos_2021_111371
crossref_primary_10_1016_j_automatica_2022_110803
crossref_primary_10_1007_s10700_022_09400_4
crossref_primary_10_1016_j_cam_2024_115894
crossref_primary_10_3233_JIFS_232401
crossref_primary_10_1007_s40815_022_01400_1
crossref_primary_10_1080_00207721_2021_2005175
crossref_primary_10_3390_axioms11090453
crossref_primary_10_1049_cth2_12400
crossref_primary_10_1016_j_eswa_2023_122059
crossref_primary_10_1007_s12652_022_03740_0
crossref_primary_10_1080_02331934_2024_2402442
Cites_doi 10.1080/01969722.2012.707574
10.1016/j.aml.2014.07.002
10.1016/0022-0531(71)90038-X
10.1007/s10700-010-9073-2
10.1137/0327063
10.1016/j.isatra.2015.12.019
10.1016/S0005-1098(96)00193-8
10.1142/S0218488513400060
10.1080/01969722.2010.511552
10.1016/j.isatra.2014.08.010
10.2143/AST.30.1.504625
10.1016/j.aml.2014.07.003
10.1109/TSMC.1979.4310229
10.1007/s00500-012-0928-z
10.1007/s10700-015-9210-z
ContentType Journal Article
Copyright 2017 ISA
Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 ISA
– notice: Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.isatra.2017.08.007
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1879-2022
EndPage 251
ExternalDocumentID 28864142
10_1016_j_isatra_2017_08_007
S0019057816305377
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6P2
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
T9H
TAE
TN5
UHS
UNMZH
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
PKN
7X8
ID FETCH-LOGICAL-c362t-cd47efd31b082e4e3699f08776805273714a3d09e1c8b1104177c90074af6c6b3
IEDL.DBID .~1
ISSN 0019-0578
1879-2022
IngestDate Sat Sep 27 21:49:02 EDT 2025
Wed Feb 19 02:40:16 EST 2025
Thu Apr 24 22:56:49 EDT 2025
Wed Oct 01 01:54:59 EDT 2025
Fri Feb 23 02:32:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt 2
Keywords Equation of optimality
Recurrence equation
Optimistic value
Optimal control
Uncertain singular system
Language English
License Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-cd47efd31b082e4e3699f08776805273714a3d09e1c8b1104177c90074af6c6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28864142
PQID 1936163550
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_1936163550
pubmed_primary_28864142
crossref_primary_10_1016_j_isatra_2017_08_007
crossref_citationtrail_10_1016_j_isatra_2017_08_007
elsevier_sciencedirect_doi_10_1016_j_isatra_2017_08_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2017
2017-11-00
2017-Nov
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ISA transactions
PublicationTitleAlternate ISA Trans
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Karatzas (bib8) 1989; 27
Lewis (bib22) 1989; 8
Bryson, Ho, Siouris (bib2) 1979; 9
Zhu (bib16) 2010; 41
Kirk (bib1) 1970; 23
Liu (bib13) 2008; 2
Yao K, Qin Z. An uncertain control model with application to production-inventory system. In: Proceedings of the twelfth asia pacific industrial engineering and management systems conference, Beijing, China; October 2011. p. 972–977.
Dixit, Pindyck (bib10) 1994
Liu (bib11) 2007
Ji, Zhou (bib28) 2015; 14
Lu R, Dai X, Du W, Xue A. Robust
Dai (bib30) 1989
Liu (bib12) 2010
Cairns (bib9) 2000; 30
Das, Mahanta (bib4) 2014; 53
Sheng, Zhu (bib21) 2013; 21
Liu, Lin, Chen (bib27) 2016; 61
Harrison (bib7) 1985
Fleming, Rishel (bib6) 1986
Kang, Zhu (bib19) 2012; 15
Xu, Zhu (bib18) 2012; 43
Merton (bib5) 1971; 3
Masubuchi, Kamitane, Ohara, Suda (bib25) 1997; 33
Liu (bib14) 2009; 3
Gao, Yue (bib20) 2013; 17
Brenan, Campell, Petzold (bib24) 1996
Chen, Liu (bib15) 2010; 9
Naidu (bib3) 2002; 2
output feedback control for uncertain stochastic singular systems. In Chinese control and decision conference; 2008. p. 4344–4349.
Wu, Li (bib23) 2014; 38
Phat, Sau (bib26) 2014; 38
Wu (10.1016/j.isatra.2017.08.007_bib23) 2014; 38
Phat (10.1016/j.isatra.2017.08.007_bib26) 2014; 38
Zhu (10.1016/j.isatra.2017.08.007_bib16) 2010; 41
Gao (10.1016/j.isatra.2017.08.007_bib20) 2013; 17
Das (10.1016/j.isatra.2017.08.007_bib4) 2014; 53
Liu (10.1016/j.isatra.2017.08.007_bib27) 2016; 61
Bryson (10.1016/j.isatra.2017.08.007_bib2) 1979; 9
Masubuchi (10.1016/j.isatra.2017.08.007_bib25) 1997; 33
10.1016/j.isatra.2017.08.007_bib29
Sheng (10.1016/j.isatra.2017.08.007_bib21) 2013; 21
Ji (10.1016/j.isatra.2017.08.007_bib28) 2015; 14
Cairns (10.1016/j.isatra.2017.08.007_bib9) 2000; 30
Karatzas (10.1016/j.isatra.2017.08.007_bib8) 1989; 27
Lewis (10.1016/j.isatra.2017.08.007_bib22) 1989; 8
Liu (10.1016/j.isatra.2017.08.007_bib12) 2010
Harrison (10.1016/j.isatra.2017.08.007_bib7) 1985
Dixit (10.1016/j.isatra.2017.08.007_bib10) 1994
Liu (10.1016/j.isatra.2017.08.007_bib14) 2009; 3
Xu (10.1016/j.isatra.2017.08.007_bib18) 2012; 43
Kirk (10.1016/j.isatra.2017.08.007_bib1) 1970; 23
Naidu (10.1016/j.isatra.2017.08.007_bib3) 2002; 2
Dai (10.1016/j.isatra.2017.08.007_bib30) 1989
Chen (10.1016/j.isatra.2017.08.007_bib15) 2010; 9
Fleming (10.1016/j.isatra.2017.08.007_bib6) 1986
Brenan (10.1016/j.isatra.2017.08.007_bib24) 1996
Liu (10.1016/j.isatra.2017.08.007_bib11) 2007
Kang (10.1016/j.isatra.2017.08.007_bib19) 2012; 15
Merton (10.1016/j.isatra.2017.08.007_bib5) 1971; 3
Liu (10.1016/j.isatra.2017.08.007_bib13) 2008; 2
10.1016/j.isatra.2017.08.007_bib17
References_xml – volume: 61
  start-page: 141
  year: 2016
  end-page: 146
  ident: bib27
  article-title: Admissibility analysis for linear singular systems with time-varying delays via neutral system approach
  publication-title: ISA Trans
– volume: 3
  start-page: 373
  year: 1971
  end-page: 413
  ident: bib5
  article-title: Optimal consumption and portfolio rules in a continuous time model
  publication-title: J Econ Theory
– volume: 9
  start-page: 366
  year: 1979
  end-page: 367
  ident: bib2
  article-title: Applied optimal control: optimization, estimation, and control
  publication-title: IEEE Trans Syst Man Cybern
– volume: 33
  start-page: 669
  year: 1997
  end-page: 673
  ident: bib25
  article-title: control for descriptor system: a matrix inequalities approach
  publication-title: Automatica
– year: 1986
  ident: bib6
  article-title: Deterministic and stochastic optimal control
– reference: output feedback control for uncertain stochastic singular systems. In Chinese control and decision conference; 2008. p. 4344–4349.
– year: 2010
  ident: bib12
  article-title: Uncertainty theory: a branch of mathematics for modeling human uncertainty
– volume: 23
  start-page: 13
  year: 1970
  end-page: 15
  ident: bib1
  article-title: Optimal control theory: an introduction
  publication-title: Posit Aware Mon J Test Posit Aware Netw
– volume: 9
  start-page: 69
  year: 2010
  end-page: 81
  ident: bib15
  article-title: Existence and uniqueness theorem for uncertain differential equations
  publication-title: Fuzzy Optim Decis Mak
– volume: 3
  start-page: 3
  year: 2009
  end-page: 10
  ident: bib14
  article-title: Some research problems in uncertainty theory
  publication-title: J Uncertain Syst
– volume: 8
  start-page: 3
  year: 1989
  end-page: 36
  ident: bib22
  article-title: A survey of singular systems
  publication-title: Circuits Syst Signal Process
– year: 1989
  ident: bib30
  article-title: Singular control systems
– reference: Yao K, Qin Z. An uncertain control model with application to production-inventory system. In: Proceedings of the twelfth asia pacific industrial engineering and management systems conference, Beijing, China; October 2011. p. 972–977.
– year: 1994
  ident: bib10
  article-title: Investment under uncertainty
– volume: 17
  start-page: 557
  year: 2013
  end-page: 567
  ident: bib20
  article-title: Credibilistic extensive game with fuzzy payoffs
  publication-title: Soft Comput
– year: 1996
  ident: bib24
  article-title: Numerical solution of initial-value problems in differential-algebraic equations
– volume: 2
  start-page: 1
  year: 2002
  end-page: 4
  ident: bib3
  article-title: Singular perturbations and time scales in control theory and applications: an overview
  publication-title: Dyn Contin Discret Impuls Syst
– volume: 2
  start-page: 3
  year: 2008
  end-page: 16
  ident: bib13
  article-title: Fuzzy process, hybrid process and uncertain process
  publication-title: J Uncertain Syst
– volume: 43
  start-page: 515
  year: 2012
  end-page: 527
  ident: bib18
  article-title: Uncertain bang-bang control for continues time model
  publication-title: Cybern Syst
– volume: 41
  start-page: 535
  year: 2010
  end-page: 547
  ident: bib16
  article-title: Uncertain optimal control with application to a portfolio selection model
  publication-title: Cybern Syst
– volume: 15
  start-page: 3229
  year: 2012
  end-page: 3237
  ident: bib19
  article-title: Bang-bang optimal control for multi-stage uncertain systems
  publication-title: Information
– volume: 38
  start-page: 67
  year: 2014
  end-page: 72
  ident: bib26
  article-title: On exponential stability of linear singular positive delayed systems
  publication-title: Appl Math Lett
– volume: 53
  start-page: 1807
  year: 2014
  end-page: 1815
  ident: bib4
  article-title: Optimal second order sliding mode control for linear uncertain systems
  publication-title: ISA Trans
– volume: 27
  start-page: 1221
  year: 1989
  end-page: 1259
  ident: bib8
  article-title: Optimization problems in the theory of continuous trading
  publication-title: SIAM J Control Optim
– volume: 30
  start-page: 19
  year: 2000
  end-page: 55
  ident: bib9
  article-title: Some notes on the dynamics and optimal control of stochastic pension fund models in continuous time
  publication-title: ASTIN Bull
– volume: 21
  start-page: 75
  year: 2013
  end-page: 87
  ident: bib21
  article-title: Optimistic value model of uncertain optimal control
  publication-title: Int J Uncertain Fuzziness Knowl-Based Syst
– volume: 38
  start-page: 57
  year: 2014
  end-page: 60
  ident: bib23
  article-title: On Semi-convergence of modified HSS method for a class of complex singular linear systems
  publication-title: Appl Math Lett
– reference: Lu R, Dai X, Du W, Xue A. Robust
– year: 1985
  ident: bib7
  article-title: Brownian motion and stochastic flow systems
– volume: 14
  start-page: 477
  year: 2015
  end-page: 491
  ident: bib28
  article-title: Multi-dimensional uncertain differential equation: existence and uniqueness of solution
  publication-title: Fuzzy Optim Decis Mak
– year: 2007
  ident: bib11
  article-title: Uncertainty theory
– volume: 43
  start-page: 515
  issue: 6
  year: 2012
  ident: 10.1016/j.isatra.2017.08.007_bib18
  article-title: Uncertain bang-bang control for continues time model
  publication-title: Cybern Syst
  doi: 10.1080/01969722.2012.707574
– volume: 3
  start-page: 3
  issue: 1
  year: 2009
  ident: 10.1016/j.isatra.2017.08.007_bib14
  article-title: Some research problems in uncertainty theory
  publication-title: J Uncertain Syst
– volume: 38
  start-page: 57
  year: 2014
  ident: 10.1016/j.isatra.2017.08.007_bib23
  article-title: On Semi-convergence of modified HSS method for a class of complex singular linear systems
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2014.07.002
– year: 1985
  ident: 10.1016/j.isatra.2017.08.007_bib7
– year: 2010
  ident: 10.1016/j.isatra.2017.08.007_bib12
– volume: 8
  start-page: 3
  year: 1989
  ident: 10.1016/j.isatra.2017.08.007_bib22
  article-title: A survey of singular systems
  publication-title: Circuits Syst Signal Process
– volume: 3
  start-page: 373
  issue: 4
  year: 1971
  ident: 10.1016/j.isatra.2017.08.007_bib5
  article-title: Optimal consumption and portfolio rules in a continuous time model
  publication-title: J Econ Theory
  doi: 10.1016/0022-0531(71)90038-X
– volume: 9
  start-page: 69
  issue: 1
  year: 2010
  ident: 10.1016/j.isatra.2017.08.007_bib15
  article-title: Existence and uniqueness theorem for uncertain differential equations
  publication-title: Fuzzy Optim Decis Mak
  doi: 10.1007/s10700-010-9073-2
– volume: 27
  start-page: 1221
  issue: 6
  year: 1989
  ident: 10.1016/j.isatra.2017.08.007_bib8
  article-title: Optimization problems in the theory of continuous trading
  publication-title: SIAM J Control Optim
  doi: 10.1137/0327063
– volume: 61
  start-page: 141
  year: 2016
  ident: 10.1016/j.isatra.2017.08.007_bib27
  article-title: Admissibility analysis for linear singular systems with time-varying delays via neutral system approach
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2015.12.019
– year: 2007
  ident: 10.1016/j.isatra.2017.08.007_bib11
– ident: 10.1016/j.isatra.2017.08.007_bib29
– volume: 33
  start-page: 669
  year: 1997
  ident: 10.1016/j.isatra.2017.08.007_bib25
  article-title: H∞ control for descriptor system: a matrix inequalities approach
  publication-title: Automatica
  doi: 10.1016/S0005-1098(96)00193-8
– volume: 21
  start-page: 75
  year: 2013
  ident: 10.1016/j.isatra.2017.08.007_bib21
  article-title: Optimistic value model of uncertain optimal control
  publication-title: Int J Uncertain Fuzziness Knowl-Based Syst
  doi: 10.1142/S0218488513400060
– volume: 2
  start-page: 3
  issue: 1
  year: 2008
  ident: 10.1016/j.isatra.2017.08.007_bib13
  article-title: Fuzzy process, hybrid process and uncertain process
  publication-title: J Uncertain Syst
– volume: 15
  start-page: 3229
  issue: 8
  year: 2012
  ident: 10.1016/j.isatra.2017.08.007_bib19
  article-title: Bang-bang optimal control for multi-stage uncertain systems
  publication-title: Information
– volume: 23
  start-page: 13
  issue: 2
  year: 1970
  ident: 10.1016/j.isatra.2017.08.007_bib1
  article-title: Optimal control theory: an introduction
  publication-title: Posit Aware Mon J Test Posit Aware Netw
– year: 1986
  ident: 10.1016/j.isatra.2017.08.007_bib6
– ident: 10.1016/j.isatra.2017.08.007_bib17
– volume: 41
  start-page: 535
  issue: 7
  year: 2010
  ident: 10.1016/j.isatra.2017.08.007_bib16
  article-title: Uncertain optimal control with application to a portfolio selection model
  publication-title: Cybern Syst
  doi: 10.1080/01969722.2010.511552
– volume: 53
  start-page: 1807
  year: 2014
  ident: 10.1016/j.isatra.2017.08.007_bib4
  article-title: Optimal second order sliding mode control for linear uncertain systems
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2014.08.010
– year: 1996
  ident: 10.1016/j.isatra.2017.08.007_bib24
– volume: 30
  start-page: 19
  issue: 1
  year: 2000
  ident: 10.1016/j.isatra.2017.08.007_bib9
  article-title: Some notes on the dynamics and optimal control of stochastic pension fund models in continuous time
  publication-title: ASTIN Bull
  doi: 10.2143/AST.30.1.504625
– volume: 38
  start-page: 67
  year: 2014
  ident: 10.1016/j.isatra.2017.08.007_bib26
  article-title: On exponential stability of linear singular positive delayed systems
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2014.07.003
– year: 1989
  ident: 10.1016/j.isatra.2017.08.007_bib30
– year: 1994
  ident: 10.1016/j.isatra.2017.08.007_bib10
– volume: 9
  start-page: 366
  issue: 6
  year: 1979
  ident: 10.1016/j.isatra.2017.08.007_bib2
  article-title: Applied optimal control: optimization, estimation, and control
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1979.4310229
– volume: 2
  start-page: 1
  issue: 2
  year: 2002
  ident: 10.1016/j.isatra.2017.08.007_bib3
  article-title: Singular perturbations and time scales in control theory and applications: an overview
  publication-title: Dyn Contin Discret Impuls Syst
– volume: 17
  start-page: 557
  issue: 4
  year: 2013
  ident: 10.1016/j.isatra.2017.08.007_bib20
  article-title: Credibilistic extensive game with fuzzy payoffs
  publication-title: Soft Comput
  doi: 10.1007/s00500-012-0928-z
– volume: 14
  start-page: 477
  issue: 4
  year: 2015
  ident: 10.1016/j.isatra.2017.08.007_bib28
  article-title: Multi-dimensional uncertain differential equation: existence and uniqueness of solution
  publication-title: Fuzzy Optim Decis Mak
  doi: 10.1007/s10700-015-9210-z
SSID ssj0002598
Score 2.284066
Snippet In this paper, optimal control problems for uncertain discrete-time singular systems and uncertain continuous-time singular systems are considered under...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 235
SubjectTerms Equation of optimality
Optimal control
Optimistic value
Recurrence equation
Uncertain singular system
Title Optimistic value based optimal control for uncertain linear singular systems and application to a dynamic input-output model
URI https://dx.doi.org/10.1016/j.isatra.2017.08.007
https://www.ncbi.nlm.nih.gov/pubmed/28864142
https://www.proquest.com/docview/1936163550
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: AKRWK
  dateStart: 19890101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QIHRMtreVSDxAEOppvEsZNjtaJaXgUhKvVm2bEjLYJktZu9IX47M7FTigSqxMmKZSeWx5n5bM98A_C8rXzVNoUSWeuckK6xwpVW0VZFljVtKKoQ-ED_w5lansu3F-XFHiymWBh2q0y6P-r0UVunmuM0m8fr1YpjfMmY0YIjRMGkJBxRLqXmLAavfv528yB4n7RxLbj1FD43-nixx8yG2YcyPRJ5clLZv5unf8HP0Qyd3oHbCT_iSRziAeyF7hBuXWEVPISD9L9u8UUilX55F358JN3wfWRlRib4Dsj2y2PP1fTC5LKOhGGRTF10FEDGoHaDfJ7A7qoYeZ-3aDuPV66-cejRoo_J7XHVrXeD6HcDFThm2rkH56evvyyWImVeECS2fBCNlzq0vsgcIYQgQ6HqumXqQMUZEDSz_NnCz-uQNZUjACEzrZua4YhtVaNccR_2u74LDwEr5ZpCl7mv9Vy2vq5aQqTa5syO7EqZz6CYJtw0iZacs2N8M5P_2VcTxWRYTIaTZs71DMRlr3Wk5bimvZ5kaf5YXoYsxzU9n02iNyQlvk6xXeh3W0PQV2WM1-YzeBDXxOVY8qpSMpP5o__-7mO4yU8x7PEJ7A-bXXhK-GdwR-MCP4IbJ4vP7z9x-ebd8uwXa2QHTg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgAOiJbX8hwkDnAw3SSOnRxRRbVAWy6t1Jtlx460CJLVbvaG-O3MxE4pEqgSp0iJnVieycxne-YbgNdt5au2KZTIWueEdI0VrrSKliqyrGlBUYXAG_onp2pxLj9dlBc7cDjlwnBYZbL90aaP1jrdOUizebBaLjnHl5wZKRwhCiYl0TfgpixzzSuwdz9_x3kQvk_muBbcfMqfG4O8OGRmzfRDmR6ZPLmq7N_907_w5-iHju7B3QQg8X0c4x7shG4f7lyhFdyHvfTDbvBNYpV-ex9-fCHj8H2kZUZm-A7IDsxjz7fphSlmHQnEIvm6GCmADELtGnlDgeNVMRI_b9B2Hq-cfePQo0Ufq9vjslttB9FvB7rgWGrnAZwffTg7XIhUekGQ3PJBNF7q0PoicwQRggyFquuWuQMVl0DQTPNnCz-vQ9ZUjhCEzLRuasYjtlWNcsVD2O36LjwGrJRrCl3mvtZz2fq6agmSapszPbIrZT6DYppw0yReci6P8c1MAWhfTRSTYTEZrpo51zMQl71WkZfjmvZ6kqX5Q78MuY5rer6aRG9ISnyeYrvQbzeGsK_KGLDNZ_Ao6sTlWPKqUjKT-ZP__u5LuLU4Ozk2xx9PPz-F2_wk5kA-g91hvQ3PCQwN7sWo7L8AMVEHTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimistic+value+based+optimal+control+for+uncertain+linear+singular+systems+and+application+to+a+dynamic+input-output+model&rft.jtitle=ISA+transactions&rft.au=Shu%2C+Yadong&rft.au=Zhu%2C+Yuanguo&rft.date=2017-11-01&rft.issn=0019-0578&rft.volume=71&rft.spage=235&rft.epage=251&rft_id=info:doi/10.1016%2Fj.isatra.2017.08.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isatra_2017_08_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon