Improving classification performance of motor imagery BCI through EEG data augmentation with conditional generative adversarial networks

In brain-computer interface (BCI), building accurate electroencephalogram (EEG) classifiers for specific mental tasks is critical for BCI performance. The classifiers are developed by machine learning (ML) and deep learning (DL) techniques, requiring a large dataset for training to build reliable an...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 180; p. 106665
Main Authors Choo, Sanghyun, Park, Hoonseok, Jung, Jae-Yoon, Flores, Kevin, Nam, Chang S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.12.2024
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2024.106665

Cover

Abstract In brain-computer interface (BCI), building accurate electroencephalogram (EEG) classifiers for specific mental tasks is critical for BCI performance. The classifiers are developed by machine learning (ML) and deep learning (DL) techniques, requiring a large dataset for training to build reliable and accurate models. However, collecting large enough EEG datasets is difficult due to intra-/inter-subject variabilities and experimental costs. This leads to the data scarcity problem, which causes overfitting issues to training samples, resulting in reducing generalization performance. To solve the EEG data scarcity problem and improve the performance of the EEG classifiers, we propose a novel EEG data augmentation (DA) framework using conditional generative adversarial networks (cGANs). An experimental study is implemented with two public EEG datasets, including motor imagery (MI) tasks (BCI competition IV IIa and III IVa), to validate the effectiveness of the proposed EEG DA method for the EEG classifiers. To evaluate the proposed cGAN-based DA method, we tested eight EEG classifiers for the experiment, including traditional MLs and state-of-the-art DLs with three existing EEG DA methods. Experimental results showed that most DA methods with proper DA proportion in the training dataset had higher classification performances than without DA. Moreover, applying the proposed DA method showed superior classification performance improvement than the other DA methods. This shows that the proposed method is a promising EEG DA method for enhancing the performances of the EEG classifiers in MI-based BCIs.
AbstractList In brain-computer interface (BCI), building accurate electroencephalogram (EEG) classifiers for specific mental tasks is critical for BCI performance. The classifiers are developed by machine learning (ML) and deep learning (DL) techniques, requiring a large dataset for training to build reliable and accurate models. However, collecting large enough EEG datasets is difficult due to intra-/inter-subject variabilities and experimental costs. This leads to the data scarcity problem, which causes overfitting issues to training samples, resulting in reducing generalization performance. To solve the EEG data scarcity problem and improve the performance of the EEG classifiers, we propose a novel EEG data augmentation (DA) framework using conditional generative adversarial networks (cGANs). An experimental study is implemented with two public EEG datasets, including motor imagery (MI) tasks (BCI competition IV IIa and III IVa), to validate the effectiveness of the proposed EEG DA method for the EEG classifiers. To evaluate the proposed cGAN-based DA method, we tested eight EEG classifiers for the experiment, including traditional MLs and state-of-the-art DLs with three existing EEG DA methods. Experimental results showed that most DA methods with proper DA proportion in the training dataset had higher classification performances than without DA. Moreover, applying the proposed DA method showed superior classification performance improvement than the other DA methods. This shows that the proposed method is a promising EEG DA method for enhancing the performances of the EEG classifiers in MI-based BCIs.
In brain-computer interface (BCI), building accurate electroencephalogram (EEG) classifiers for specific mental tasks is critical for BCI performance. The classifiers are developed by machine learning (ML) and deep learning (DL) techniques, requiring a large dataset for training to build reliable and accurate models. However, collecting large enough EEG datasets is difficult due to intra-/inter-subject variabilities and experimental costs. This leads to the data scarcity problem, which causes overfitting issues to training samples, resulting in reducing generalization performance. To solve the EEG data scarcity problem and improve the performance of the EEG classifiers, we propose a novel EEG data augmentation (DA) framework using conditional generative adversarial networks (cGANs). An experimental study is implemented with two public EEG datasets, including motor imagery (MI) tasks (BCI competition IV IIa and III IVa), to validate the effectiveness of the proposed EEG DA method for the EEG classifiers. To evaluate the proposed cGAN-based DA method, we tested eight EEG classifiers for the experiment, including traditional MLs and state-of-the-art DLs with three existing EEG DA methods. Experimental results showed that most DA methods with proper DA proportion in the training dataset had higher classification performances than without DA. Moreover, applying the proposed DA method showed superior classification performance improvement than the other DA methods. This shows that the proposed method is a promising EEG DA method for enhancing the performances of the EEG classifiers in MI-based BCIs.In brain-computer interface (BCI), building accurate electroencephalogram (EEG) classifiers for specific mental tasks is critical for BCI performance. The classifiers are developed by machine learning (ML) and deep learning (DL) techniques, requiring a large dataset for training to build reliable and accurate models. However, collecting large enough EEG datasets is difficult due to intra-/inter-subject variabilities and experimental costs. This leads to the data scarcity problem, which causes overfitting issues to training samples, resulting in reducing generalization performance. To solve the EEG data scarcity problem and improve the performance of the EEG classifiers, we propose a novel EEG data augmentation (DA) framework using conditional generative adversarial networks (cGANs). An experimental study is implemented with two public EEG datasets, including motor imagery (MI) tasks (BCI competition IV IIa and III IVa), to validate the effectiveness of the proposed EEG DA method for the EEG classifiers. To evaluate the proposed cGAN-based DA method, we tested eight EEG classifiers for the experiment, including traditional MLs and state-of-the-art DLs with three existing EEG DA methods. Experimental results showed that most DA methods with proper DA proportion in the training dataset had higher classification performances than without DA. Moreover, applying the proposed DA method showed superior classification performance improvement than the other DA methods. This shows that the proposed method is a promising EEG DA method for enhancing the performances of the EEG classifiers in MI-based BCIs.
ArticleNumber 106665
Author Park, Hoonseok
Choo, Sanghyun
Jung, Jae-Yoon
Flores, Kevin
Nam, Chang S.
Author_xml – sequence: 1
  givenname: Sanghyun
  orcidid: 0000-0002-8884-3437
  surname: Choo
  fullname: Choo, Sanghyun
  organization: Department of Industrial Engineering, Kumoh National Institute of Technology, South Korea
– sequence: 2
  givenname: Hoonseok
  surname: Park
  fullname: Park, Hoonseok
  organization: Department of Big Data Analytics, Kyung Hee University, South Korea
– sequence: 3
  givenname: Jae-Yoon
  surname: Jung
  fullname: Jung, Jae-Yoon
  organization: Department of Big Data Analytics, Kyung Hee University, South Korea
– sequence: 4
  givenname: Kevin
  surname: Flores
  fullname: Flores, Kevin
  organization: Department of Mathematics, North Carolina State University, Raleigh, NC, USA
– sequence: 5
  givenname: Chang S.
  orcidid: 0000-0001-9005-0703
  surname: Nam
  fullname: Nam, Chang S.
  email: csnam@niu.edu
  organization: Department of Industrial and Management Systems Engineering, Kyung Hee University, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39241437$$D View this record in MEDLINE/PubMed
BookMark eNqFUcFuEzEUtFARTQt_gJCPXJJ6bce75oBEo1AiVeICZ8v2vt047NrB9qbqH_DZONr2wqGcnt57MyPNzBW68MEDQu8rsqpIJW4OKw-Th7yihPJyEkKsX6FF1dRySeuGXqAFaSRbCtKQS3SV0oEQIhrO3qBLJimvOKsX6M9uPMZwcr7HdtApuc5ZnV3w-AixC3HU3gIOHR5DDhG7UfcQH_HtZofzPoap3-Pt9g63Omusp34En2f6g8t7bINv3XnVA-7BQyy_E2DdniAmHV05FwcPIf5Kb9HrTg8J3j3Na_Tz6_bH5tvy_vvdbvPlfmmZoHlpm6azwpqOGGotM9quJTUgKy0badi6uOXcGMNkyw1Zi6bhQlBNqa06LtqKXaOPs26x_XuClNXokoVh0B7ClBQr4daSSVkX6Icn6GRGaNUxFvvxUT2nVwCfZoCNIaUInbJutp-jdoOqiDpXpQ5qrkqdq1JzVYXM_yE_6_-H9nmmQQnp5CCqZB2UkloXwWbVBveywF8DCLLL
CitedBy_id crossref_primary_10_1109_TIM_2024_3522618
Cites_doi 10.1016/j.neucom.2017.05.002
10.1007/978-3-030-22796-8_16
10.1186/s40537-014-0007-7
10.1080/14697688.2020.1730426
10.1016/j.neucom.2020.07.061
10.1109/TNSRE.2020.3006180
10.1088/1741-2552/ab3471
10.1109/TCYB.2018.2841847
10.1016/j.engappai.2023.106205
10.1109/TCYB.2013.2250954
10.1016/j.neunet.2020.12.013
10.1016/j.eswa.2022.117386
10.1145/3301282
10.1016/j.neuroimage.2005.12.003
10.3389/fnhum.2021.645952
10.1007/978-3-030-36808-1_73
10.1016/j.aei.2019.100944
10.1016/j.neunet.2021.01.005
10.1016/j.neunet.2021.02.019
10.1177/1550059414522229
10.1162/EVCO_a_00069
10.1016/j.eswa.2022.117574
10.1162/neco_a_00990
10.1109/TBME.2011.2172210
10.1186/s40537-019-0197-0
10.1109/MSP.2017.2765202
10.1088/1741-2560/3/1/R02
10.1109/TII.2021.3132340
10.1109/TBME.2009.2012869
10.1088/1741-2552/aace8c
10.1109/MCI.2018.2840738
10.1109/TNSRE.2012.2190299
10.1093/gigascience/giz002
10.1016/j.neunet.2015.12.010
10.1016/j.bspc.2016.11.013
10.1088/1741-2552/acfe9c
10.1080/17434440.2016.1174572
10.1016/j.neunet.2021.05.032
10.1016/S1388-2457(99)00141-8
10.1016/j.medengphy.2016.06.010
10.1109/TNNLS.2020.3016666
10.1093/gigascience/gix034
10.1038/nrneurol.2016.113
10.1088/1741-2560/9/2/026018
10.1109/MSP.2008.4408441
10.1016/j.ipm.2009.03.002
10.1016/j.patrec.2005.10.010
10.1016/j.neunet.2014.05.012
10.1109/TBME.2004.827088
10.1109/JPROC.2015.2404941
10.1088/1741-2552/ad0a01
10.1002/hbm.23730
10.3389/fnins.2012.00055
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2024.106665
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
ExternalDocumentID 39241437
10_1016_j_neunet_2024_106665
S0893608024005896
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ID FETCH-LOGICAL-c362t-c88fc6cbf0b2cc3bac592be91a989b3560844bbb39d4b056884662a22c1f46d13
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Sat Sep 27 20:00:33 EDT 2025
Mon Jul 21 05:39:49 EDT 2025
Wed Oct 01 04:09:16 EDT 2025
Thu Apr 24 23:07:05 EDT 2025
Sat Nov 09 15:59:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Motor imagery (MI)
Brain-computer interface (BCI)
Data augmentation (DA)
Electroencephalogram (EEG)
Generative adversarial networks (GANs)
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-c88fc6cbf0b2cc3bac592be91a989b3560844bbb39d4b056884662a22c1f46d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8884-3437
0000-0001-9005-0703
PMID 39241437
PQID 3101793997
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3101793997
pubmed_primary_39241437
crossref_citationtrail_10_1016_j_neunet_2024_106665
crossref_primary_10_1016_j_neunet_2024_106665
elsevier_sciencedirect_doi_10_1016_j_neunet_2024_106665
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-Dec
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann (bib0059) 2017; 38
Yin, Zhang (bib0072) 2017; 33
Zhao, Yoshida, Ueda, Sugano, Tanaka (bib0081) 2023
Zhang, Nam, Zhou, Jin, Wang, Cichocki (bib0078) 2018; 49
Apicella, Isgrò, Pollastro, Prevete (bib0005) 2023; 123
Cho, Ahn, Ahn, Kwon, Jun (bib0014) 2017; 6
Young, Hazarika, Poria, Cambria (bib0074) 2018; 13
Zhang, Recht, Bengio, Hardt, Vinyals (bib0075) 2017
Wiese, Knobloch, Korn, Kretschmer (bib0069) 2020; 20
Doersch, C. (2016). Tutorial on variational autoencoders. arxiv preprint arXiv:1606.05908.
Salakhutdinov, Hinton (bib0057) 2009; 5
Chollet (bib0013) 2017
Luo, Lu (bib0040) 2018
Luo, Y., Zhu, L.Z., & Lu, B.L. (2019). A GAN-Based Data Augmentation Method for Multimodal Emotion Recognition. In Advances in neural networks (pp. 141–150).
Zhang, Robinson, Lee, Guan (bib0076) 2021; 136
Bischl, Mersmann, Trautmann, Weihs (bib0010) 2012; 20
Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S. et al. (2014). Generative adversarial nets. arxiv preprint arXiv:1406.2661.
Wang, Zhong, Peng, Jiang, Liu (bib0067) 2018
Zhang, Q., & Liu, Y. (2018). Improving brain computer interface performance by data augmentation with conditional Deep Convolutional Generative Adversarial Networks. ArXiv preprint arXiv:1806.07108.
Kingma, D.P., & Ba, J. (2014). Adam: A method for stochastic optimization. ArXiv preprint arXiv:1412.6980.
Amin, Altaheri, Muhammad, Abdul, Alsulaiman (bib0004) 2022; 18
Luo, Zhu, Wan, Lu (bib0042) 2020
Al-saegh, Dawwd, Abdul-jabbar (bib0002) 2021; 141
Dornhege, Blankertz, Curio, Müller (bib0018) 2004; 51
Hartmann, K.G., Schirrmeister, R.T., & Ball, T. (2018). EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals. ArXiv preprint arXiv:1806.01875.
Lotte (bib0039) 2015; 103
Perez-Benitez, Perez-Benitez, Espina-Hernandez (bib0049) 2018
Barachant, A., & Congedo, M. (2014). A Plug & Play P300 BCI Using Information Geometry. ArXiv preprint arXiv:1409.0107.
Vidaurre, Klauer, Schauer, Ramos-Murguialday, Müller (bib0066) 2016; 38
Guo, Gu, Qiao, Bi (bib0025) 2021; 140
Xie, Wang, Meng, Yue, Meng, Yi (bib0070) 2023; 20
Yin, Zhang (bib0073) 2017; 260
Zhang, Zhao, Jin, Wang, Cichocki (bib0079) 2012; 9
Pfurtscheller, Lopes da Silva (bib0052) 1999; 110
Chaudhary, Birbaumer, Ramos-Murguialday (bib0012) 2016; 12
Karras, Aila, Laine, Lehtinen (bib0033) 2018
Um, Pfister, Pichler, Endo, Lang, Hirche (bib0065) 2017
Perez, L., & Wang, J. (2017). The effectiveness of data augmentation in image classification using deep learning. ArXiv preprint arXiv:1712.04621.
Stewart, Seymour, Pass, Ming (bib0063) 2014; 44
Kang, Choi (bib0032) 2014; 57
Hong, Hwang, Yoo, Yoon (bib0028) 2019; 52
Fu, Wang, Jia (bib0021) 2022; 202
Huang, Qian, Fei, Jia, Chen, Bai (bib0029) 2012; 20
Barachant, Bonnet, Congedo, Jutten (bib0008) 2012; 59
Tangermann, Müller, Aertsen, Birbaumer, Braun, Brunner (bib0064) 2012; 6
Remsik, Young, Vermilyea, Kiekoefer, Abrams, Elmore (bib0055) 2016; 13
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training GANs. In Advances in neural information processing systems (pp. 2234–2242).
Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (bib0024) 2017
Yang, Shami (bib0071) 2020; 415
Kwon, Im (bib0036) 2022; 203
Blankertz, Tomioka, Lemm, Kawanabe, Müller (bib0011) 2008; 25
Jiang, Ren, Cai, Xu, Liu, Leung (bib0031) 2021; 142
Shorten, Khoshgoftaar (bib0061) 2019; 6
Panwar, Rad, Jung, Huang (bib0047) 2020; 28
Fawcett (bib0020) 2006; 27
Rawat, Wang (bib0054) 2017; 29
Hussein, R., Palangi, H., Ward, R., & Wang, Z.J. (2018). Epileptic seizure detection: A deep learning approach. ArXiv preprint arXiv:1803.09848.
Rivet, Souloumiac, Attina, Gibert (bib0056) 2009; 56
Gan, L., Liu, W., Luo, Y., Wu, X., & Lu, B.L. (2019). A cross-culture study on multimodal emotion recognition using deep learning. In T. Gedeon, K. W. Wong, & M. Lee (Eds.), Neural information processing (pp. 670–680).
Heusel, Ramsauer, Unterthiner, Nessler, Hochreiter (bib0027) 2017
Shenoy, Krauledat, Blankertz, Rao, Müller (bib0060) 2006; 3
Sokolova, Lapalme (bib0062) 2009; 45
Zhang, Zong, Dou, Zhao (bib0080) 2019; 16
Wen, Du, Pan, Huang, Zhang (bib0068) 2021
Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets. ArXiv preprint arXiv:1411.1784.
Ang, Chua, Phua, Wang, Chin, Kuah (bib0003) 2015; 46
Pan, Wang, Xu, Sun, Yi, Xu (bib0046) 2023; 20
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (bib0037) 2018; 15
Fahimi, Dosen, Ang, Mrachacz-Kersting, Guan (bib0019) 2021; 32
Odena, Olah, Shlens (bib0045) 2017
Rashid, Louis (bib0053) 2019; 42
Najafabadi, Villanustre, Khoshgoftaar, Seliya, Wald, Muharemagic (bib0044) 2015; 2
Pfurtscheller, Brunner, Schlögl, Lopes da Silva (bib0051) 2006; 31
Creswell, White, Dumoulin, Arulkumaran, Sengupta, Bharath (bib0016) 2018; 35
Choo, Nam (bib0015) 2020
Kodali, N., Abernethy, J., Hays, J., & Kira, Z. (2017). On Convergence and Stability of GANs. ArXiv preprint arXiv:1705.07215.
Aznan, Atapour-Abarghouei, Bonner, Connolly, Al Moubayed, Breckon (bib0007) 2019
Agarwalla, Sarma (bib0001) 2016; 78
Lee, Kwon, Kim, Kim, Lee, Williamson (bib0038) 2019; 8
Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. ArXiv preprint arXiv:1701.07875.
Pei, Luo, Yan, Yan, Jiang, Li (bib0048) 2021; 15
Stewart (10.1016/j.neunet.2024.106665_bib0063) 2014; 44
Young (10.1016/j.neunet.2024.106665_bib0074) 2018; 13
Pei (10.1016/j.neunet.2024.106665_bib0048) 2021; 15
Lee (10.1016/j.neunet.2024.106665_bib0038) 2019; 8
Fu (10.1016/j.neunet.2024.106665_bib0021) 2022; 202
10.1016/j.neunet.2024.106665_bib0030
Luo (10.1016/j.neunet.2024.106665_bib0040) 2018
Rashid (10.1016/j.neunet.2024.106665_bib0053) 2019; 42
Gulrajani (10.1016/j.neunet.2024.106665_bib0024) 2017
Guo (10.1016/j.neunet.2024.106665_bib0025) 2021; 140
Bischl (10.1016/j.neunet.2024.106665_bib0010) 2012; 20
Najafabadi (10.1016/j.neunet.2024.106665_bib0044) 2015; 2
10.1016/j.neunet.2024.106665_bib0034
10.1016/j.neunet.2024.106665_bib0035
Chaudhary (10.1016/j.neunet.2024.106665_bib0012) 2016; 12
Fawcett (10.1016/j.neunet.2024.106665_bib0020) 2006; 27
Jiang (10.1016/j.neunet.2024.106665_bib0031) 2021; 142
Chollet (10.1016/j.neunet.2024.106665_bib0013) 2017
Choo (10.1016/j.neunet.2024.106665_bib0015) 2020
Remsik (10.1016/j.neunet.2024.106665_bib0055) 2016; 13
10.1016/j.neunet.2024.106665_bib0077
Pfurtscheller (10.1016/j.neunet.2024.106665_bib0051) 2006; 31
Barachant (10.1016/j.neunet.2024.106665_bib0008) 2012; 59
Um (10.1016/j.neunet.2024.106665_bib0065) 2017
Blankertz (10.1016/j.neunet.2024.106665_bib0011) 2008; 25
10.1016/j.neunet.2024.106665_bib0041
Zhang (10.1016/j.neunet.2024.106665_bib0080) 2019; 16
Zhao (10.1016/j.neunet.2024.106665_bib0081) 2023
Apicella (10.1016/j.neunet.2024.106665_bib0005) 2023; 123
Rawat (10.1016/j.neunet.2024.106665_bib0054) 2017; 29
Rivet (10.1016/j.neunet.2024.106665_bib0056) 2009; 56
Tangermann (10.1016/j.neunet.2024.106665_bib0064) 2012; 6
Zhang (10.1016/j.neunet.2024.106665_bib0078) 2018; 49
Agarwalla (10.1016/j.neunet.2024.106665_bib0001) 2016; 78
Hong (10.1016/j.neunet.2024.106665_bib0028) 2019; 52
10.1016/j.neunet.2024.106665_bib0006
Lotte (10.1016/j.neunet.2024.106665_bib0039) 2015; 103
Yin (10.1016/j.neunet.2024.106665_bib0073) 2017; 260
Amin (10.1016/j.neunet.2024.106665_bib0004) 2022; 18
Ang (10.1016/j.neunet.2024.106665_bib0003) 2015; 46
10.1016/j.neunet.2024.106665_bib0043
Aznan (10.1016/j.neunet.2024.106665_bib0007) 2019
Pan (10.1016/j.neunet.2024.106665_bib0046) 2023; 20
10.1016/j.neunet.2024.106665_bib0009
Karras (10.1016/j.neunet.2024.106665_bib0033) 2018
Cho (10.1016/j.neunet.2024.106665_bib0014) 2017; 6
Xie (10.1016/j.neunet.2024.106665_bib0070) 2023; 20
Shorten (10.1016/j.neunet.2024.106665_bib0061) 2019; 6
Zhang (10.1016/j.neunet.2024.106665_bib0079) 2012; 9
Odena (10.1016/j.neunet.2024.106665_bib0045) 2017
Zhang (10.1016/j.neunet.2024.106665_bib0076) 2021; 136
Lawhern (10.1016/j.neunet.2024.106665_bib0037) 2018; 15
Dornhege (10.1016/j.neunet.2024.106665_bib0018) 2004; 51
Pfurtscheller (10.1016/j.neunet.2024.106665_bib0052) 1999; 110
10.1016/j.neunet.2024.106665_bib0050
Wiese (10.1016/j.neunet.2024.106665_bib0069) 2020; 20
Kang (10.1016/j.neunet.2024.106665_bib0032) 2014; 57
Schirrmeister (10.1016/j.neunet.2024.106665_bib0059) 2017; 38
Shenoy (10.1016/j.neunet.2024.106665_bib0060) 2006; 3
Wang (10.1016/j.neunet.2024.106665_bib0067) 2018
Heusel (10.1016/j.neunet.2024.106665_bib0027) 2017
Yang (10.1016/j.neunet.2024.106665_bib0071) 2020; 415
10.1016/j.neunet.2024.106665_bib0017
10.1016/j.neunet.2024.106665_bib0058
Salakhutdinov (10.1016/j.neunet.2024.106665_bib0057) 2009; 5
Kwon (10.1016/j.neunet.2024.106665_bib0036) 2022; 203
Luo (10.1016/j.neunet.2024.106665_bib0042) 2020
Fahimi (10.1016/j.neunet.2024.106665_bib0019) 2021; 32
Perez-Benitez (10.1016/j.neunet.2024.106665_bib0049) 2018
Yin (10.1016/j.neunet.2024.106665_bib0072) 2017; 33
Vidaurre (10.1016/j.neunet.2024.106665_bib0066) 2016; 38
Al-saegh (10.1016/j.neunet.2024.106665_bib0002) 2021; 141
Sokolova (10.1016/j.neunet.2024.106665_bib0062) 2009; 45
Creswell (10.1016/j.neunet.2024.106665_bib0016) 2018; 35
Huang (10.1016/j.neunet.2024.106665_bib0029) 2012; 20
Zhang (10.1016/j.neunet.2024.106665_bib0075) 2017
10.1016/j.neunet.2024.106665_bib0026
10.1016/j.neunet.2024.106665_bib0023
Panwar (10.1016/j.neunet.2024.106665_bib0047) 2020; 28
Wen (10.1016/j.neunet.2024.106665_bib0068) 2021
10.1016/j.neunet.2024.106665_bib0022
References_xml – volume: 44
  start-page: 175
  year: 2014
  end-page: 184
  ident: bib0063
  article-title: Robust audio-visual speech recognition under noisy audio-video conditions
  publication-title: IEEE Transactions on Cybernetics
– volume: 15
  start-page: 1
  year: 2018
  end-page: 30
  ident: bib0037
  article-title: EEGNet: A compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: Journal of Neural Engineering
– volume: 49
  start-page: 3322
  year: 2018
  end-page: 3332
  ident: bib0078
  article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI
  publication-title: IEEE Transactions on Cybernetics
– start-page: 18
  year: 2018
  end-page: 24
  ident: bib0049
  article-title: Development of a brain computer interface interface using multi-frequency visual stimulation and deep neural networks
  publication-title: Proceedings of the 28th international conference on electronics, communications and computers
– start-page: 5768
  year: 2017
  end-page: 5778
  ident: bib0024
  article-title: Improved training of wasserstein GANs
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1
  year: 2018
  end-page: 26
  ident: bib0033
  article-title: Progressive growing of GANs for improved quality, stability, and variation
  publication-title: Proceedings of the 6th international conference on learning representations
– volume: 15
  start-page: 1
  year: 2021
  end-page: 12
  ident: bib0048
  article-title: Data augmentation: Using channel-level recombination to improve classification performance for motor imagery EEG
  publication-title: Frontiers in Human Neuroscience
– volume: 20
  year: 2023
  ident: bib0046
  article-title: Riemannian geometric and ensemble learning for decoding cross-session motor imagery electroencephalography signals
  publication-title: Journal of Neural Engineering
– start-page: 2021
  year: 2021
  ident: bib0068
  article-title: A deep learning-based classification method for different frequency EEG data
  publication-title: Computational and Mathematical Methods in Medicine
– reference: Doersch, C. (2016). Tutorial on variational autoencoders. arxiv preprint arXiv:1606.05908.
– volume: 123
  year: 2023
  ident: bib0005
  article-title: On the effects of data normalization for domain adaptation on EEG data
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 18
  start-page: 5412
  year: 2022
  end-page: 5421
  ident: bib0004
  article-title: Attention-inception and long-short-term memory-based electroencephalography classification for motor imagery tasks in rehabilitation
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 59
  start-page: 920
  year: 2012
  end-page: 928
  ident: bib0008
  article-title: Multiclass brain-computer interface classification by Riemannian geometry
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 110
  start-page: 1842
  year: 1999
  end-page: 1857
  ident: bib0052
  article-title: Event-related EEG/MEG synchronization and desynchronization: Basic principles
  publication-title: Clinical Neurophysiology
– volume: 20
  start-page: 249
  year: 2012
  end-page: 275
  ident: bib0010
  article-title: Resampling methods for meta-model validation with recommendations for evolutionary computation
  publication-title: Evolutionary Computation
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: bib0020
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognition Letters
– volume: 29
  start-page: 2352
  year: 2017
  end-page: 2449
  ident: bib0054
  article-title: Deep convolutional neural networks for image classification: A comprehensive review
  publication-title: Neural Computation
– volume: 415
  start-page: 295
  year: 2020
  end-page: 316
  ident: bib0071
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
– volume: 33
  start-page: 30
  year: 2017
  end-page: 47
  ident: bib0072
  article-title: Cross-session classification of mental workload levels using EEG and an adaptive deep learning model
  publication-title: Biomedical Signal Processing and Control
– start-page: 82
  year: 2018
  end-page: 93
  ident: bib0067
  article-title: Data augmentation for EEG-based emotion recognition with deep convolutional neural networks
  publication-title: Proceedings of the international conference on multimedia modeling
– volume: 16
  year: 2019
  ident: bib0080
  article-title: A novel hybrid deep learning scheme for four-class motor imagery classification
  publication-title: Journal of Neural Engineering
– volume: 5
  start-page: 448
  year: 2009
  end-page: 455
  ident: bib0057
  article-title: Deep Boltzmann machines
  publication-title: Journal of Machine Learning Research
– volume: 9
  year: 2012
  ident: bib0079
  article-title: A novel BCI based on ERP components sensitive to configural processing of human faces
  publication-title: Journal of Neural Engineering
– reference: Kodali, N., Abernethy, J., Hays, J., & Kira, Z. (2017). On Convergence and Stability of GANs. ArXiv preprint arXiv:1705.07215.
– reference: Luo, Y., Zhu, L.Z., & Lu, B.L. (2019). A GAN-Based Data Augmentation Method for Multimodal Emotion Recognition. In Advances in neural networks (pp. 141–150).
– start-page: 17
  year: 2020
  ident: bib0042
  article-title: Data augmentation for enhancing EEG-based emotion recognition with deep generative models
  publication-title: Journal of Neural Engineering
– start-page: 1
  year: 2020
  end-page: 6
  ident: bib0015
  article-title: DCGAN based EEG data augmentation in cognitive state recognition
  publication-title: Proceedings of the 2020 IISE annual conference
– volume: 32
  start-page: 4039
  year: 2021
  end-page: 4051
  ident: bib0019
  article-title: Generative adversarial networks-based data augmentation for brain-computer interface
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 25
  start-page: 41
  year: 2008
  end-page: 56
  ident: bib0011
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Processing Magazine
– volume: 2
  start-page: 1
  year: 2015
  ident: bib0044
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: Journal of Big Data
– start-page: 1800
  year: 2017
  end-page: 1807
  ident: bib0013
  article-title: Xception: Deep learning with depthwise separable convolutions
  publication-title: Proceedings of the 30th IEEE conference on computer vision and pattern recognition
– volume: 6
  start-page: gix034
  year: 2017
  ident: bib0014
  article-title: EEG datasets for motor imagery brain–computer interface
  publication-title: GigaScience
– volume: 56
  start-page: 2035
  year: 2009
  end-page: 2043
  ident: bib0056
  article-title: xDAWN algorithm to enhance evoked potentials: Application to brain-computer interface
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 13
  start-page: 55
  year: 2018
  end-page: 75
  ident: bib0074
  article-title: Recent trends in deep learning based natural language processing [Review Article]
  publication-title: IEEE Computational Intelligence Magazine
– volume: 35
  start-page: 53
  year: 2018
  end-page: 65
  ident: bib0016
  article-title: Generative adversarial networks: An overview
  publication-title: IEEE Signal Processing Magazine
– volume: 202
  year: 2022
  ident: bib0021
  article-title: A new data augmentation method for EEG features based on the hybrid model of broad-deep networks
  publication-title: Expert Systems with Applications
– reference: Zhang, Q., & Liu, Y. (2018). Improving brain computer interface performance by data augmentation with conditional Deep Convolutional Generative Adversarial Networks. ArXiv preprint arXiv:1806.07108.
– volume: 141
  start-page: 433
  year: 2021
  end-page: 443
  ident: bib0002
  article-title: CutCat : An augmentation method for EEG classification
  publication-title: Neural Networks
– volume: 57
  start-page: 39
  year: 2014
  end-page: 50
  ident: bib0032
  article-title: Bayesian common spatial patterns for multi-subject EEG classification
  publication-title: Neural Networks
– reference: Barachant, A., & Congedo, M. (2014). A Plug & Play P300 BCI Using Information Geometry. ArXiv preprint arXiv:1409.0107.
– volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  ident: bib0062
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Information processing & management
– volume: 52
  start-page: 1
  year: 2019
  end-page: 43
  ident: bib0028
  article-title: How generative adversarial networks and their variants work: An overview
  publication-title: ACM Computing Surveys
– year: 2019
  ident: bib0007
  article-title: Simulating brain signals: Creating synthetic EEG data via neural-based generative models for improved SSVEP classification
  publication-title: Proceedings of the international joint conference on neural networks
– reference: Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training GANs. In Advances in neural information processing systems (pp. 2234–2242).
– volume: 20
  start-page: 1419
  year: 2020
  end-page: 1440
  ident: bib0069
  article-title: Quant GANs: Deep generation of financial time series
  publication-title: Quantitative Finance
– reference: Kingma, D.P., & Ba, J. (2014). Adam: A method for stochastic optimization. ArXiv preprint arXiv:1412.6980.
– volume: 6
  year: 2019
  ident: bib0061
  article-title: A survey on Image Data Augmentation for Deep Learning
  publication-title: Journal of Big Data
– year: 2017
  ident: bib0075
  article-title: Understanding deep learning requires rethinking generalization
  publication-title: Proceedings of the 5th international conference on learning representations
– reference: Perez, L., & Wang, J. (2017). The effectiveness of data augmentation in image classification using deep learning. ArXiv preprint arXiv:1712.04621.
– reference: Hartmann, K.G., Schirrmeister, R.T., & Ball, T. (2018). EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals. ArXiv preprint arXiv:1806.01875.
– reference: Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets. ArXiv preprint arXiv:1411.1784.
– volume: 3
  year: 2006
  ident: bib0060
  article-title: Towards adaptive classification for BCI
  publication-title: Journal of Neural Engineering
– volume: 6
  start-page: 1
  year: 2012
  end-page: 31
  ident: bib0064
  article-title: Review of the BCI competition IV
  publication-title: Frontiers in Neuroscience
– volume: 136
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib0076
  article-title: Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network
  publication-title: Neural Networks
– volume: 51
  start-page: 993
  year: 2004
  end-page: 1002
  ident: bib0018
  article-title: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms
  publication-title: IEEE Transactions on Biomedical Engineering
– start-page: 2642
  year: 2017
  end-page: 2651
  ident: bib0045
  article-title: Conditional image synthesis with auxiliary classifier Gans
  publication-title: Proceedings of the international conference on machine learning
– volume: 42
  year: 2019
  ident: bib0053
  article-title: Times-series data augmentation and deep learning for construction equipment activity recognition
  publication-title: Advanced Engineering Informatics
– volume: 140
  start-page: 158
  year: 2021
  end-page: 166
  ident: bib0025
  article-title: Improved deep CNNs based on nonlinear hybrid attention module for image classification
  publication-title: Neural Networks
– reference: Gan, L., Liu, W., Luo, Y., Wu, X., & Lu, B.L. (2019). A cross-culture study on multimodal emotion recognition using deep learning. In T. Gedeon, K. W. Wong, & M. Lee (Eds.), Neural information processing (pp. 670–680).
– volume: 260
  start-page: 349
  year: 2017
  end-page: 366
  ident: bib0073
  article-title: Cross-subject recognition of operator functional states via EEG and switching deep belief networks with adaptive weights
  publication-title: Neurocomputing
– volume: 103
  start-page: 871
  year: 2015
  end-page: 890
  ident: bib0039
  article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces
  publication-title: Proceedings of the IEEE
– volume: 28
  start-page: 1720
  year: 2020
  end-page: 1730
  ident: bib0047
  article-title: Modeling EEG data distribution with a wasserstein generative adversarial network to predict RSVP events
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– reference: Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. ArXiv preprint arXiv:1701.07875.
– reference: Hussein, R., Palangi, H., Ward, R., & Wang, Z.J. (2018). Epileptic seizure detection: A deep learning approach. ArXiv preprint arXiv:1803.09848.
– volume: 20
  year: 2023
  ident: bib0070
  article-title: Cross-dataset transfer learning for motor imagery signal classification via multi-task learning and pre-training
  publication-title: Journal of Neural Engineering
– volume: 8
  start-page: giz002
  year: 2019
  ident: bib0038
  article-title: EEG dataset and OpenBMI toolbox for three BCI paradigms: An investigation into BCI illiteracy
  publication-title: GigaScience
– reference: Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S. et al. (2014). Generative adversarial nets. arxiv preprint arXiv:1406.2661.
– volume: 20
  start-page: 379
  year: 2012
  end-page: 388
  ident: bib0029
  article-title: Electroencephalography (EEG)-based brain-computer interface (BCI): A 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– start-page: 2535
  year: 2018
  end-page: 2538
  ident: bib0040
  article-title: EEG data augmentation for emotion recognition using a conditional Wasserstein GAN
  publication-title: Proceedings of the IEEE international conference on engineering in medicine and biology society
– volume: 142
  start-page: 340
  year: 2021
  end-page: 350
  ident: bib0031
  article-title: Candidate region aware nested named entity recognition
  publication-title: Neural Networks
– start-page: 216
  year: 2017
  end-page: 220
  ident: bib0065
  article-title: Data augmentation of wearable sensor data for Parkinson's disease monitoring using convolutional neural networks
  publication-title: Proceedings of the 19th ACM international conference on multimodal interaction
– start-page: 6627
  year: 2017
  end-page: 6638
  ident: bib0027
  article-title: GANs trained by a two time-scale update rule converge to a local Nash equilibrium
  publication-title: Advances in Neural Information Processing Systems
– volume: 46
  start-page: 310
  year: 2015
  end-page: 320
  ident: bib0003
  article-title: A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke
  publication-title: Clinical EEG and Neuroscience
– volume: 31
  start-page: 153
  year: 2006
  end-page: 159
  ident: bib0051
  article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: NeuroImage
– volume: 13
  start-page: 445
  year: 2016
  end-page: 454
  ident: bib0055
  article-title: A review of the progression and future implications of brain–computer interface therapies for restoration of distal upper extremity motor function after stroke
  publication-title: Expert Review of Medical Devices
– volume: 38
  start-page: 5391
  year: 2017
  end-page: 5420
  ident: bib0059
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Mapping
– volume: 78
  start-page: 97
  year: 2016
  end-page: 111
  ident: bib0001
  article-title: Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech
  publication-title: Neural Networks
– volume: 12
  start-page: 513
  year: 2016
  end-page: 525
  ident: bib0012
  article-title: Brain-computer interfaces for communication and rehabilitation
  publication-title: Nature Reviews Neurology
– start-page: 20
  year: 2023
  ident: bib0081
  article-title: Epileptic seizure detection by using interpretable machine learning models
  publication-title: Journal of Neural Engineering
– volume: 203
  year: 2022
  ident: bib0036
  article-title: Novel Signal-to-Signal translation method based on StarGAN to generate artificial EEG for SSVEP-based brain-computer interfaces
  publication-title: Expert Systems with Applications
– volume: 38
  start-page: 1195
  year: 2016
  end-page: 1204
  ident: bib0066
  article-title: EEG-based BCI for the linear control of an upper-limb neuroprosthesis
  publication-title: Medical Engineering and Physics
– volume: 260
  start-page: 349
  year: 2017
  ident: 10.1016/j.neunet.2024.106665_bib0073
  article-title: Cross-subject recognition of operator functional states via EEG and switching deep belief networks with adaptive weights
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.002
– ident: 10.1016/j.neunet.2024.106665_bib0041
  doi: 10.1007/978-3-030-22796-8_16
– start-page: 2535
  year: 2018
  ident: 10.1016/j.neunet.2024.106665_bib0040
  article-title: EEG data augmentation for emotion recognition using a conditional Wasserstein GAN
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.neunet.2024.106665_bib0044
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-014-0007-7
– volume: 20
  start-page: 1419
  issue: 9
  year: 2020
  ident: 10.1016/j.neunet.2024.106665_bib0069
  article-title: Quant GANs: Deep generation of financial time series
  publication-title: Quantitative Finance
  doi: 10.1080/14697688.2020.1730426
– volume: 415
  start-page: 295
  year: 2020
  ident: 10.1016/j.neunet.2024.106665_bib0071
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– start-page: 6627
  year: 2017
  ident: 10.1016/j.neunet.2024.106665_bib0027
  article-title: GANs trained by a two time-scale update rule converge to a local Nash equilibrium
  publication-title: Advances in Neural Information Processing Systems
– ident: 10.1016/j.neunet.2024.106665_bib0023
– volume: 28
  start-page: 1720
  issue: 8
  year: 2020
  ident: 10.1016/j.neunet.2024.106665_bib0047
  article-title: Modeling EEG data distribution with a wasserstein generative adversarial network to predict RSVP events
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2020.3006180
– volume: 16
  issue: 6
  year: 2019
  ident: 10.1016/j.neunet.2024.106665_bib0080
  article-title: A novel hybrid deep learning scheme for four-class motor imagery classification
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ab3471
– volume: 49
  start-page: 3322
  issue: 9
  year: 2018
  ident: 10.1016/j.neunet.2024.106665_bib0078
  article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2841847
– volume: 123
  year: 2023
  ident: 10.1016/j.neunet.2024.106665_bib0005
  article-title: On the effects of data normalization for domain adaptation on EEG data
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2023.106205
– volume: 44
  start-page: 175
  issue: 2
  year: 2014
  ident: 10.1016/j.neunet.2024.106665_bib0063
  article-title: Robust audio-visual speech recognition under noisy audio-video conditions
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2013.2250954
– volume: 136
  start-page: 1
  year: 2021
  ident: 10.1016/j.neunet.2024.106665_bib0076
  article-title: Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.12.013
– volume: 202
  year: 2022
  ident: 10.1016/j.neunet.2024.106665_bib0021
  article-title: A new data augmentation method for EEG features based on the hybrid model of broad-deep networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117386
– volume: 52
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.neunet.2024.106665_bib0028
  article-title: How generative adversarial networks and their variants work: An overview
  publication-title: ACM Computing Surveys
  doi: 10.1145/3301282
– volume: 31
  start-page: 153
  issue: 1
  year: 2006
  ident: 10.1016/j.neunet.2024.106665_bib0051
  article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.12.003
– ident: 10.1016/j.neunet.2024.106665_bib0017
– volume: 15
  start-page: 1
  year: 2021
  ident: 10.1016/j.neunet.2024.106665_bib0048
  article-title: Data augmentation: Using channel-level recombination to improve classification performance for motor imagery EEG
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2021.645952
– ident: 10.1016/j.neunet.2024.106665_bib0022
  doi: 10.1007/978-3-030-36808-1_73
– volume: 42
  year: 2019
  ident: 10.1016/j.neunet.2024.106665_bib0053
  article-title: Times-series data augmentation and deep learning for construction equipment activity recognition
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2019.100944
– volume: 140
  start-page: 158
  year: 2021
  ident: 10.1016/j.neunet.2024.106665_bib0025
  article-title: Improved deep CNNs based on nonlinear hybrid attention module for image classification
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.01.005
– volume: 5
  start-page: 448
  issue: 3
  year: 2009
  ident: 10.1016/j.neunet.2024.106665_bib0057
  article-title: Deep Boltzmann machines
  publication-title: Journal of Machine Learning Research
– volume: 142
  start-page: 340
  year: 2021
  ident: 10.1016/j.neunet.2024.106665_bib0031
  article-title: Candidate region aware nested named entity recognition
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.02.019
– start-page: 18
  year: 2018
  ident: 10.1016/j.neunet.2024.106665_bib0049
  article-title: Development of a brain computer interface interface using multi-frequency visual stimulation and deep neural networks
– volume: 46
  start-page: 310
  issue: 4
  year: 2015
  ident: 10.1016/j.neunet.2024.106665_bib0003
  article-title: A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke
  publication-title: Clinical EEG and Neuroscience
  doi: 10.1177/1550059414522229
– volume: 20
  start-page: 249
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2024.106665_bib0010
  article-title: Resampling methods for meta-model validation with recommendations for evolutionary computation
  publication-title: Evolutionary Computation
  doi: 10.1162/EVCO_a_00069
– volume: 203
  year: 2022
  ident: 10.1016/j.neunet.2024.106665_bib0036
  article-title: Novel Signal-to-Signal translation method based on StarGAN to generate artificial EEG for SSVEP-based brain-computer interfaces
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117574
– volume: 29
  start-page: 2352
  year: 2017
  ident: 10.1016/j.neunet.2024.106665_bib0054
  article-title: Deep convolutional neural networks for image classification: A comprehensive review
  publication-title: Neural Computation
  doi: 10.1162/neco_a_00990
– ident: 10.1016/j.neunet.2024.106665_bib0077
– volume: 59
  start-page: 920
  issue: 4
  year: 2012
  ident: 10.1016/j.neunet.2024.106665_bib0008
  article-title: Multiclass brain-computer interface classification by Riemannian geometry
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2011.2172210
– start-page: 1
  year: 2020
  ident: 10.1016/j.neunet.2024.106665_bib0015
  article-title: DCGAN based EEG data augmentation in cognitive state recognition
– start-page: 1
  year: 2018
  ident: 10.1016/j.neunet.2024.106665_bib0033
  article-title: Progressive growing of GANs for improved quality, stability, and variation
– volume: 6
  issue: 1
  year: 2019
  ident: 10.1016/j.neunet.2024.106665_bib0061
  article-title: A survey on Image Data Augmentation for Deep Learning
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-019-0197-0
– start-page: 20
  year: 2023
  ident: 10.1016/j.neunet.2024.106665_bib0081
  article-title: Epileptic seizure detection by using interpretable machine learning models
  publication-title: Journal of Neural Engineering
– volume: 35
  start-page: 53
  issue: 1
  year: 2018
  ident: 10.1016/j.neunet.2024.106665_bib0016
  article-title: Generative adversarial networks: An overview
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2017.2765202
– ident: 10.1016/j.neunet.2024.106665_bib0035
– year: 2019
  ident: 10.1016/j.neunet.2024.106665_bib0007
  article-title: Simulating brain signals: Creating synthetic EEG data via neural-based generative models for improved SSVEP classification
– volume: 3
  issue: 1
  year: 2006
  ident: 10.1016/j.neunet.2024.106665_bib0060
  article-title: Towards adaptive classification for BCI
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/3/1/R02
– volume: 18
  start-page: 5412
  issue: 8
  year: 2022
  ident: 10.1016/j.neunet.2024.106665_bib0004
  article-title: Attention-inception and long-short-term memory-based electroencephalography classification for motor imagery tasks in rehabilitation
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2021.3132340
– volume: 56
  start-page: 2035
  issue: 8
  year: 2009
  ident: 10.1016/j.neunet.2024.106665_bib0056
  article-title: xDAWN algorithm to enhance evoked potentials: Application to brain-computer interface
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2009.2012869
– start-page: 2021
  year: 2021
  ident: 10.1016/j.neunet.2024.106665_bib0068
  article-title: A deep learning-based classification method for different frequency EEG data
  publication-title: Computational and Mathematical Methods in Medicine
– ident: 10.1016/j.neunet.2024.106665_bib0009
– volume: 15
  start-page: 1
  issue: 5
  year: 2018
  ident: 10.1016/j.neunet.2024.106665_bib0037
  article-title: EEGNet: A compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/aace8c
– volume: 13
  start-page: 55
  issue: 3
  year: 2018
  ident: 10.1016/j.neunet.2024.106665_bib0074
  article-title: Recent trends in deep learning based natural language processing [Review Article]
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2018.2840738
– volume: 20
  start-page: 379
  issue: 3
  year: 2012
  ident: 10.1016/j.neunet.2024.106665_bib0029
  article-title: Electroencephalography (EEG)-based brain-computer interface (BCI): A 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2012.2190299
– ident: 10.1016/j.neunet.2024.106665_bib0034
– volume: 8
  start-page: giz002
  issue: 5
  year: 2019
  ident: 10.1016/j.neunet.2024.106665_bib0038
  article-title: EEG dataset and OpenBMI toolbox for three BCI paradigms: An investigation into BCI illiteracy
  publication-title: GigaScience
  doi: 10.1093/gigascience/giz002
– volume: 78
  start-page: 97
  year: 2016
  ident: 10.1016/j.neunet.2024.106665_bib0001
  article-title: Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2015.12.010
– volume: 33
  start-page: 30
  year: 2017
  ident: 10.1016/j.neunet.2024.106665_bib0072
  article-title: Cross-session classification of mental workload levels using EEG and an adaptive deep learning model
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2016.11.013
– volume: 20
  issue: 5
  year: 2023
  ident: 10.1016/j.neunet.2024.106665_bib0070
  article-title: Cross-dataset transfer learning for motor imagery signal classification via multi-task learning and pre-training
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/acfe9c
– ident: 10.1016/j.neunet.2024.106665_bib0030
– volume: 13
  start-page: 445
  issue: 5
  year: 2016
  ident: 10.1016/j.neunet.2024.106665_bib0055
  article-title: A review of the progression and future implications of brain–computer interface therapies for restoration of distal upper extremity motor function after stroke
  publication-title: Expert Review of Medical Devices
  doi: 10.1080/17434440.2016.1174572
– volume: 141
  start-page: 433
  year: 2021
  ident: 10.1016/j.neunet.2024.106665_bib0002
  article-title: CutCat : An augmentation method for EEG classification
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.05.032
– volume: 110
  start-page: 1842
  issue: 11
  year: 1999
  ident: 10.1016/j.neunet.2024.106665_bib0052
  article-title: Event-related EEG/MEG synchronization and desynchronization: Basic principles
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 38
  start-page: 1195
  issue: 11
  year: 2016
  ident: 10.1016/j.neunet.2024.106665_bib0066
  article-title: EEG-based BCI for the linear control of an upper-limb neuroprosthesis
  publication-title: Medical Engineering and Physics
  doi: 10.1016/j.medengphy.2016.06.010
– start-page: 1800
  year: 2017
  ident: 10.1016/j.neunet.2024.106665_bib0013
  article-title: Xception: Deep learning with depthwise separable convolutions
– volume: 32
  start-page: 4039
  issue: 9
  year: 2021
  ident: 10.1016/j.neunet.2024.106665_bib0019
  article-title: Generative adversarial networks-based data augmentation for brain-computer interface
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.3016666
– ident: 10.1016/j.neunet.2024.106665_bib0006
– ident: 10.1016/j.neunet.2024.106665_bib0043
– start-page: 2642
  year: 2017
  ident: 10.1016/j.neunet.2024.106665_bib0045
  article-title: Conditional image synthesis with auxiliary classifier Gans
– ident: 10.1016/j.neunet.2024.106665_bib0026
– volume: 6
  start-page: gix034
  issue: 7
  year: 2017
  ident: 10.1016/j.neunet.2024.106665_bib0014
  article-title: EEG datasets for motor imagery brain–computer interface
  publication-title: GigaScience
  doi: 10.1093/gigascience/gix034
– start-page: 82
  year: 2018
  ident: 10.1016/j.neunet.2024.106665_bib0067
  article-title: Data augmentation for EEG-based emotion recognition with deep convolutional neural networks
– volume: 12
  start-page: 513
  issue: 9
  year: 2016
  ident: 10.1016/j.neunet.2024.106665_bib0012
  article-title: Brain-computer interfaces for communication and rehabilitation
  publication-title: Nature Reviews Neurology
  doi: 10.1038/nrneurol.2016.113
– volume: 9
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2024.106665_bib0079
  article-title: A novel BCI based on ERP components sensitive to configural processing of human faces
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/9/2/026018
– volume: 25
  start-page: 41
  issue: 1
  year: 2008
  ident: 10.1016/j.neunet.2024.106665_bib0011
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2008.4408441
– volume: 45
  start-page: 427
  issue: 4
  year: 2009
  ident: 10.1016/j.neunet.2024.106665_bib0062
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Information processing & management
  doi: 10.1016/j.ipm.2009.03.002
– start-page: 216
  year: 2017
  ident: 10.1016/j.neunet.2024.106665_bib0065
  article-title: Data augmentation of wearable sensor data for Parkinson's disease monitoring using convolutional neural networks
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10.1016/j.neunet.2024.106665_bib0020
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2005.10.010
– volume: 57
  start-page: 39
  year: 2014
  ident: 10.1016/j.neunet.2024.106665_bib0032
  article-title: Bayesian common spatial patterns for multi-subject EEG classification
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.05.012
– volume: 51
  start-page: 993
  issue: 6
  year: 2004
  ident: 10.1016/j.neunet.2024.106665_bib0018
  article-title: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2004.827088
– volume: 103
  start-page: 871
  issue: 6
  year: 2015
  ident: 10.1016/j.neunet.2024.106665_bib0039
  article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2015.2404941
– ident: 10.1016/j.neunet.2024.106665_bib0058
– year: 2017
  ident: 10.1016/j.neunet.2024.106665_bib0075
  article-title: Understanding deep learning requires rethinking generalization
– volume: 20
  issue: 6
  year: 2023
  ident: 10.1016/j.neunet.2024.106665_bib0046
  article-title: Riemannian geometric and ensemble learning for decoding cross-session motor imagery electroencephalography signals
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ad0a01
– start-page: 5768
  year: 2017
  ident: 10.1016/j.neunet.2024.106665_bib0024
  article-title: Improved training of wasserstein GANs
  publication-title: Advances in Neural Information Processing Systems
– start-page: 17
  issue: 5
  year: 2020
  ident: 10.1016/j.neunet.2024.106665_bib0042
  article-title: Data augmentation for enhancing EEG-based emotion recognition with deep generative models
  publication-title: Journal of Neural Engineering
– ident: 10.1016/j.neunet.2024.106665_bib0050
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  ident: 10.1016/j.neunet.2024.106665_bib0059
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23730
– volume: 6
  start-page: 1
  year: 2012
  ident: 10.1016/j.neunet.2024.106665_bib0064
  article-title: Review of the BCI competition IV
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2012.00055
SSID ssj0006843
Score 2.4568558
Snippet In brain-computer interface (BCI), building accurate electroencephalogram (EEG) classifiers for specific mental tasks is critical for BCI performance. The...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106665
SubjectTerms Brain - physiology
Brain-computer interface (BCI)
Brain-Computer Interfaces
Data augmentation (DA)
Deep Learning
Electroencephalogram (EEG)
Electroencephalography - methods
Generative adversarial networks (GANs)
Humans
Imagination - physiology
Machine Learning
Motor imagery (MI)
Neural Networks, Computer
Title Improving classification performance of motor imagery BCI through EEG data augmentation with conditional generative adversarial networks
URI https://dx.doi.org/10.1016/j.neunet.2024.106665
https://www.ncbi.nlm.nih.gov/pubmed/39241437
https://www.proquest.com/docview/3101793997
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwELUQXLgsnwuFBQ0S19Amduz4yFaFAoLLLhI3y3YcVETTirYHLnven40ndoo4ICSOscaK5RnPvDhvZgg5zYUVqbE0KTNtMCXHJpoKnVSiKKWjpZUC851v7_jwnl0_5A8rpN_mwiCtMvr-4NMbbx1HunE3u9PRqPun50Mtx1RR1vTGw7LbjAnsYnD2753mwYvAnPPCCUq36XMNx6t2i9ohozJjfsgj-fyz8PQZ_GzC0MUm-RHxI5yHJW6RFVdvk422NwPEo7pD_i9vC8AiQEZGUKMEmL6nCsCkAq-qyQuMxljL4hV-968gtu6BweASkEAKevE4jilKNeDFLfiP6HIUbhHhsSlcjV4TNHZ3nmm0aagDv3y2S-4vBn_7wyR2XUisD2bzxBZFZbk1Vc9k1lKjbS4z42SqZSEN9QipYMwYQ2XJjIdPhUcwPNNZZtOK8TKlP8lqPandPoGKe5eguaQp50xTWxgqXM8xKfIqlcJ1CG03W9lYkhw7Yzyrlnv2pIKKFKpIBRV1SLKcNQ0lOb6QF60e1QfTUj5qfDHzpFW78qcOf6Xo2k0WM0WDZ5NSdMhesIflWjziZB6FioNvv_eQrONTYM38Iqvzl4U78thnbo4b4z4ma-dXN8O7N9W-Bo4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED6k6dAuTd9108cV6KraEilSHFPDqdMmWZoA2QiSogIHjWzE9pAlc392eCLloEMQoCtFQgTvePeR_O4O4GspncytY1ldGEshOS4zTJqskVWtPKudkhTvfHQspqf851l5tgXjPhaGaJXJ9keb3lnr1DJMqzlczGbD36PgagWFivKuNp54BI95WUg6gX27ueN5iCpS50LvjLr38XMdyav169YTpbLgoSlA-fI-_3Qf_uz80P5zeJYAJO7FOb6ALd--hJ2-OAOmvfoK_m6uC9ARQiZKUCcFXNzFCuC8wSCr-RXOLimZxTV-Hx9gqt2Dk8kPJAYpmvX5ZYpRapFubjGcoutZvEbE8y5zNZlNNFTeeWlIqbGNBPPlazjdn5yMp1kqu5C54M1Wmauqxglnm5EtnGPWuFIV1qvcqEpZFiBSxbm1lqma24CfqgBhRGGKwuUNF3XO3sB2O2_9O8BGBJtghGK5ENwwV1km_chzJcsmV9IPgPWLrV3KSU6lMf7onnx2oaOINIlIRxENINuMWsScHA_0l70c9T-6pYPbeGDkl17sOmw7eksxrZ-vl5pF06aUHMDbqA-buQTIyQMMle__-7-f4cn05OhQHx4c_9qFp_QlUmg-wPbqau0_BiC0sp86Rb8F0ZsIIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+classification+performance+of+motor+imagery+BCI+through+EEG+data+augmentation+with+conditional+generative+adversarial+networks&rft.jtitle=Neural+networks&rft.au=Choo%2C+Sanghyun&rft.au=Park%2C+Hoonseok&rft.au=Jung%2C+Jae-Yoon&rft.au=Flores%2C+Kevin&rft.date=2024-12-01&rft.eissn=1879-2782&rft.volume=180&rft.spage=106665&rft_id=info:doi/10.1016%2Fj.neunet.2024.106665&rft_id=info%3Apmid%2F39241437&rft.externalDocID=39241437
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon