Improving classification performance of motor imagery BCI through EEG data augmentation with conditional generative adversarial networks
In brain-computer interface (BCI), building accurate electroencephalogram (EEG) classifiers for specific mental tasks is critical for BCI performance. The classifiers are developed by machine learning (ML) and deep learning (DL) techniques, requiring a large dataset for training to build reliable an...
        Saved in:
      
    
          | Published in | Neural networks Vol. 180; p. 106665 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Ltd
    
        01.12.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0893-6080 1879-2782 1879-2782  | 
| DOI | 10.1016/j.neunet.2024.106665 | 
Cover
| Abstract | In brain-computer interface (BCI), building accurate electroencephalogram (EEG) classifiers for specific mental tasks is critical for BCI performance. The classifiers are developed by machine learning (ML) and deep learning (DL) techniques, requiring a large dataset for training to build reliable and accurate models. However, collecting large enough EEG datasets is difficult due to intra-/inter-subject variabilities and experimental costs. This leads to the data scarcity problem, which causes overfitting issues to training samples, resulting in reducing generalization performance. To solve the EEG data scarcity problem and improve the performance of the EEG classifiers, we propose a novel EEG data augmentation (DA) framework using conditional generative adversarial networks (cGANs). An experimental study is implemented with two public EEG datasets, including motor imagery (MI) tasks (BCI competition IV IIa and III IVa), to validate the effectiveness of the proposed EEG DA method for the EEG classifiers. To evaluate the proposed cGAN-based DA method, we tested eight EEG classifiers for the experiment, including traditional MLs and state-of-the-art DLs with three existing EEG DA methods. Experimental results showed that most DA methods with proper DA proportion in the training dataset had higher classification performances than without DA. Moreover, applying the proposed DA method showed superior classification performance improvement than the other DA methods. This shows that the proposed method is a promising EEG DA method for enhancing the performances of the EEG classifiers in MI-based BCIs. | 
    
|---|---|
| AbstractList | In brain-computer interface (BCI), building accurate electroencephalogram (EEG) classifiers for specific mental tasks is critical for BCI performance. The classifiers are developed by machine learning (ML) and deep learning (DL) techniques, requiring a large dataset for training to build reliable and accurate models. However, collecting large enough EEG datasets is difficult due to intra-/inter-subject variabilities and experimental costs. This leads to the data scarcity problem, which causes overfitting issues to training samples, resulting in reducing generalization performance. To solve the EEG data scarcity problem and improve the performance of the EEG classifiers, we propose a novel EEG data augmentation (DA) framework using conditional generative adversarial networks (cGANs). An experimental study is implemented with two public EEG datasets, including motor imagery (MI) tasks (BCI competition IV IIa and III IVa), to validate the effectiveness of the proposed EEG DA method for the EEG classifiers. To evaluate the proposed cGAN-based DA method, we tested eight EEG classifiers for the experiment, including traditional MLs and state-of-the-art DLs with three existing EEG DA methods. Experimental results showed that most DA methods with proper DA proportion in the training dataset had higher classification performances than without DA. Moreover, applying the proposed DA method showed superior classification performance improvement than the other DA methods. This shows that the proposed method is a promising EEG DA method for enhancing the performances of the EEG classifiers in MI-based BCIs. In brain-computer interface (BCI), building accurate electroencephalogram (EEG) classifiers for specific mental tasks is critical for BCI performance. The classifiers are developed by machine learning (ML) and deep learning (DL) techniques, requiring a large dataset for training to build reliable and accurate models. However, collecting large enough EEG datasets is difficult due to intra-/inter-subject variabilities and experimental costs. This leads to the data scarcity problem, which causes overfitting issues to training samples, resulting in reducing generalization performance. To solve the EEG data scarcity problem and improve the performance of the EEG classifiers, we propose a novel EEG data augmentation (DA) framework using conditional generative adversarial networks (cGANs). An experimental study is implemented with two public EEG datasets, including motor imagery (MI) tasks (BCI competition IV IIa and III IVa), to validate the effectiveness of the proposed EEG DA method for the EEG classifiers. To evaluate the proposed cGAN-based DA method, we tested eight EEG classifiers for the experiment, including traditional MLs and state-of-the-art DLs with three existing EEG DA methods. Experimental results showed that most DA methods with proper DA proportion in the training dataset had higher classification performances than without DA. Moreover, applying the proposed DA method showed superior classification performance improvement than the other DA methods. This shows that the proposed method is a promising EEG DA method for enhancing the performances of the EEG classifiers in MI-based BCIs.In brain-computer interface (BCI), building accurate electroencephalogram (EEG) classifiers for specific mental tasks is critical for BCI performance. The classifiers are developed by machine learning (ML) and deep learning (DL) techniques, requiring a large dataset for training to build reliable and accurate models. However, collecting large enough EEG datasets is difficult due to intra-/inter-subject variabilities and experimental costs. This leads to the data scarcity problem, which causes overfitting issues to training samples, resulting in reducing generalization performance. To solve the EEG data scarcity problem and improve the performance of the EEG classifiers, we propose a novel EEG data augmentation (DA) framework using conditional generative adversarial networks (cGANs). An experimental study is implemented with two public EEG datasets, including motor imagery (MI) tasks (BCI competition IV IIa and III IVa), to validate the effectiveness of the proposed EEG DA method for the EEG classifiers. To evaluate the proposed cGAN-based DA method, we tested eight EEG classifiers for the experiment, including traditional MLs and state-of-the-art DLs with three existing EEG DA methods. Experimental results showed that most DA methods with proper DA proportion in the training dataset had higher classification performances than without DA. Moreover, applying the proposed DA method showed superior classification performance improvement than the other DA methods. This shows that the proposed method is a promising EEG DA method for enhancing the performances of the EEG classifiers in MI-based BCIs.  | 
    
| ArticleNumber | 106665 | 
    
| Author | Park, Hoonseok Choo, Sanghyun Jung, Jae-Yoon Flores, Kevin Nam, Chang S.  | 
    
| Author_xml | – sequence: 1 givenname: Sanghyun orcidid: 0000-0002-8884-3437 surname: Choo fullname: Choo, Sanghyun organization: Department of Industrial Engineering, Kumoh National Institute of Technology, South Korea – sequence: 2 givenname: Hoonseok surname: Park fullname: Park, Hoonseok organization: Department of Big Data Analytics, Kyung Hee University, South Korea – sequence: 3 givenname: Jae-Yoon surname: Jung fullname: Jung, Jae-Yoon organization: Department of Big Data Analytics, Kyung Hee University, South Korea – sequence: 4 givenname: Kevin surname: Flores fullname: Flores, Kevin organization: Department of Mathematics, North Carolina State University, Raleigh, NC, USA – sequence: 5 givenname: Chang S. orcidid: 0000-0001-9005-0703 surname: Nam fullname: Nam, Chang S. email: csnam@niu.edu organization: Department of Industrial and Management Systems Engineering, Kyung Hee University, South Korea  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39241437$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFUcFuEzEUtFARTQt_gJCPXJJ6bce75oBEo1AiVeICZ8v2vt047NrB9qbqH_DZONr2wqGcnt57MyPNzBW68MEDQu8rsqpIJW4OKw-Th7yihPJyEkKsX6FF1dRySeuGXqAFaSRbCtKQS3SV0oEQIhrO3qBLJimvOKsX6M9uPMZwcr7HdtApuc5ZnV3w-AixC3HU3gIOHR5DDhG7UfcQH_HtZofzPoap3-Pt9g63Omusp34En2f6g8t7bINv3XnVA-7BQyy_E2DdniAmHV05FwcPIf5Kb9HrTg8J3j3Na_Tz6_bH5tvy_vvdbvPlfmmZoHlpm6azwpqOGGotM9quJTUgKy0badi6uOXcGMNkyw1Zi6bhQlBNqa06LtqKXaOPs26x_XuClNXokoVh0B7ClBQr4daSSVkX6Icn6GRGaNUxFvvxUT2nVwCfZoCNIaUInbJutp-jdoOqiDpXpQ5qrkqdq1JzVYXM_yE_6_-H9nmmQQnp5CCqZB2UkloXwWbVBveywF8DCLLL | 
    
| CitedBy_id | crossref_primary_10_1109_TIM_2024_3522618 | 
    
| Cites_doi | 10.1016/j.neucom.2017.05.002 10.1007/978-3-030-22796-8_16 10.1186/s40537-014-0007-7 10.1080/14697688.2020.1730426 10.1016/j.neucom.2020.07.061 10.1109/TNSRE.2020.3006180 10.1088/1741-2552/ab3471 10.1109/TCYB.2018.2841847 10.1016/j.engappai.2023.106205 10.1109/TCYB.2013.2250954 10.1016/j.neunet.2020.12.013 10.1016/j.eswa.2022.117386 10.1145/3301282 10.1016/j.neuroimage.2005.12.003 10.3389/fnhum.2021.645952 10.1007/978-3-030-36808-1_73 10.1016/j.aei.2019.100944 10.1016/j.neunet.2021.01.005 10.1016/j.neunet.2021.02.019 10.1177/1550059414522229 10.1162/EVCO_a_00069 10.1016/j.eswa.2022.117574 10.1162/neco_a_00990 10.1109/TBME.2011.2172210 10.1186/s40537-019-0197-0 10.1109/MSP.2017.2765202 10.1088/1741-2560/3/1/R02 10.1109/TII.2021.3132340 10.1109/TBME.2009.2012869 10.1088/1741-2552/aace8c 10.1109/MCI.2018.2840738 10.1109/TNSRE.2012.2190299 10.1093/gigascience/giz002 10.1016/j.neunet.2015.12.010 10.1016/j.bspc.2016.11.013 10.1088/1741-2552/acfe9c 10.1080/17434440.2016.1174572 10.1016/j.neunet.2021.05.032 10.1016/S1388-2457(99)00141-8 10.1016/j.medengphy.2016.06.010 10.1109/TNNLS.2020.3016666 10.1093/gigascience/gix034 10.1038/nrneurol.2016.113 10.1088/1741-2560/9/2/026018 10.1109/MSP.2008.4408441 10.1016/j.ipm.2009.03.002 10.1016/j.patrec.2005.10.010 10.1016/j.neunet.2014.05.012 10.1109/TBME.2004.827088 10.1109/JPROC.2015.2404941 10.1088/1741-2552/ad0a01 10.1002/hbm.23730 10.3389/fnins.2012.00055  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved.  | 
    
| Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.1016/j.neunet.2024.106665 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1879-2782 | 
    
| ExternalDocumentID | 39241437 10_1016_j_neunet_2024_106665 S0893608024005896  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABDPE ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8  | 
    
| ID | FETCH-LOGICAL-c362t-c88fc6cbf0b2cc3bac592be91a989b3560844bbb39d4b056884662a22c1f46d13 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0893-6080 1879-2782  | 
    
| IngestDate | Sat Sep 27 20:00:33 EDT 2025 Mon Jul 21 05:39:49 EDT 2025 Wed Oct 01 04:09:16 EDT 2025 Thu Apr 24 23:07:05 EDT 2025 Sat Nov 09 15:59:23 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Motor imagery (MI) Brain-computer interface (BCI) Data augmentation (DA) Electroencephalogram (EEG) Generative adversarial networks (GANs)  | 
    
| Language | English | 
    
| License | Copyright © 2024 Elsevier Ltd. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c362t-c88fc6cbf0b2cc3bac592be91a989b3560844bbb39d4b056884662a22c1f46d13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-8884-3437 0000-0001-9005-0703  | 
    
| PMID | 39241437 | 
    
| PQID | 3101793997 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | proquest_miscellaneous_3101793997 pubmed_primary_39241437 crossref_citationtrail_10_1016_j_neunet_2024_106665 crossref_primary_10_1016_j_neunet_2024_106665 elsevier_sciencedirect_doi_10_1016_j_neunet_2024_106665  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | December 2024 2024-12-00 2024-Dec 20241201  | 
    
| PublicationDateYYYYMMDD | 2024-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2024 text: December 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | Neural networks | 
    
| PublicationTitleAlternate | Neural Netw | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann (bib0059) 2017; 38 Yin, Zhang (bib0072) 2017; 33 Zhao, Yoshida, Ueda, Sugano, Tanaka (bib0081) 2023 Zhang, Nam, Zhou, Jin, Wang, Cichocki (bib0078) 2018; 49 Apicella, Isgrò, Pollastro, Prevete (bib0005) 2023; 123 Cho, Ahn, Ahn, Kwon, Jun (bib0014) 2017; 6 Young, Hazarika, Poria, Cambria (bib0074) 2018; 13 Zhang, Recht, Bengio, Hardt, Vinyals (bib0075) 2017 Wiese, Knobloch, Korn, Kretschmer (bib0069) 2020; 20 Doersch, C. (2016). Tutorial on variational autoencoders. arxiv preprint arXiv:1606.05908. Salakhutdinov, Hinton (bib0057) 2009; 5 Chollet (bib0013) 2017 Luo, Lu (bib0040) 2018 Luo, Y., Zhu, L.Z., & Lu, B.L. (2019). A GAN-Based Data Augmentation Method for Multimodal Emotion Recognition. In Advances in neural networks (pp. 141–150). Zhang, Robinson, Lee, Guan (bib0076) 2021; 136 Bischl, Mersmann, Trautmann, Weihs (bib0010) 2012; 20 Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S. et al. (2014). Generative adversarial nets. arxiv preprint arXiv:1406.2661. Wang, Zhong, Peng, Jiang, Liu (bib0067) 2018 Zhang, Q., & Liu, Y. (2018). Improving brain computer interface performance by data augmentation with conditional Deep Convolutional Generative Adversarial Networks. ArXiv preprint arXiv:1806.07108. Kingma, D.P., & Ba, J. (2014). Adam: A method for stochastic optimization. ArXiv preprint arXiv:1412.6980. Amin, Altaheri, Muhammad, Abdul, Alsulaiman (bib0004) 2022; 18 Luo, Zhu, Wan, Lu (bib0042) 2020 Al-saegh, Dawwd, Abdul-jabbar (bib0002) 2021; 141 Dornhege, Blankertz, Curio, Müller (bib0018) 2004; 51 Hartmann, K.G., Schirrmeister, R.T., & Ball, T. (2018). EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals. ArXiv preprint arXiv:1806.01875. Lotte (bib0039) 2015; 103 Perez-Benitez, Perez-Benitez, Espina-Hernandez (bib0049) 2018 Barachant, A., & Congedo, M. (2014). A Plug & Play P300 BCI Using Information Geometry. ArXiv preprint arXiv:1409.0107. Vidaurre, Klauer, Schauer, Ramos-Murguialday, Müller (bib0066) 2016; 38 Guo, Gu, Qiao, Bi (bib0025) 2021; 140 Xie, Wang, Meng, Yue, Meng, Yi (bib0070) 2023; 20 Yin, Zhang (bib0073) 2017; 260 Zhang, Zhao, Jin, Wang, Cichocki (bib0079) 2012; 9 Pfurtscheller, Lopes da Silva (bib0052) 1999; 110 Chaudhary, Birbaumer, Ramos-Murguialday (bib0012) 2016; 12 Karras, Aila, Laine, Lehtinen (bib0033) 2018 Um, Pfister, Pichler, Endo, Lang, Hirche (bib0065) 2017 Perez, L., & Wang, J. (2017). The effectiveness of data augmentation in image classification using deep learning. ArXiv preprint arXiv:1712.04621. Stewart, Seymour, Pass, Ming (bib0063) 2014; 44 Kang, Choi (bib0032) 2014; 57 Hong, Hwang, Yoo, Yoon (bib0028) 2019; 52 Fu, Wang, Jia (bib0021) 2022; 202 Huang, Qian, Fei, Jia, Chen, Bai (bib0029) 2012; 20 Barachant, Bonnet, Congedo, Jutten (bib0008) 2012; 59 Tangermann, Müller, Aertsen, Birbaumer, Braun, Brunner (bib0064) 2012; 6 Remsik, Young, Vermilyea, Kiekoefer, Abrams, Elmore (bib0055) 2016; 13 Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training GANs. In Advances in neural information processing systems (pp. 2234–2242). Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (bib0024) 2017 Yang, Shami (bib0071) 2020; 415 Kwon, Im (bib0036) 2022; 203 Blankertz, Tomioka, Lemm, Kawanabe, Müller (bib0011) 2008; 25 Jiang, Ren, Cai, Xu, Liu, Leung (bib0031) 2021; 142 Shorten, Khoshgoftaar (bib0061) 2019; 6 Panwar, Rad, Jung, Huang (bib0047) 2020; 28 Fawcett (bib0020) 2006; 27 Rawat, Wang (bib0054) 2017; 29 Hussein, R., Palangi, H., Ward, R., & Wang, Z.J. (2018). Epileptic seizure detection: A deep learning approach. ArXiv preprint arXiv:1803.09848. Rivet, Souloumiac, Attina, Gibert (bib0056) 2009; 56 Gan, L., Liu, W., Luo, Y., Wu, X., & Lu, B.L. (2019). A cross-culture study on multimodal emotion recognition using deep learning. In T. Gedeon, K. W. Wong, & M. Lee (Eds.), Neural information processing (pp. 670–680). Heusel, Ramsauer, Unterthiner, Nessler, Hochreiter (bib0027) 2017 Shenoy, Krauledat, Blankertz, Rao, Müller (bib0060) 2006; 3 Sokolova, Lapalme (bib0062) 2009; 45 Zhang, Zong, Dou, Zhao (bib0080) 2019; 16 Wen, Du, Pan, Huang, Zhang (bib0068) 2021 Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets. ArXiv preprint arXiv:1411.1784. Ang, Chua, Phua, Wang, Chin, Kuah (bib0003) 2015; 46 Pan, Wang, Xu, Sun, Yi, Xu (bib0046) 2023; 20 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (bib0037) 2018; 15 Fahimi, Dosen, Ang, Mrachacz-Kersting, Guan (bib0019) 2021; 32 Odena, Olah, Shlens (bib0045) 2017 Rashid, Louis (bib0053) 2019; 42 Najafabadi, Villanustre, Khoshgoftaar, Seliya, Wald, Muharemagic (bib0044) 2015; 2 Pfurtscheller, Brunner, Schlögl, Lopes da Silva (bib0051) 2006; 31 Creswell, White, Dumoulin, Arulkumaran, Sengupta, Bharath (bib0016) 2018; 35 Choo, Nam (bib0015) 2020 Kodali, N., Abernethy, J., Hays, J., & Kira, Z. (2017). On Convergence and Stability of GANs. ArXiv preprint arXiv:1705.07215. Aznan, Atapour-Abarghouei, Bonner, Connolly, Al Moubayed, Breckon (bib0007) 2019 Agarwalla, Sarma (bib0001) 2016; 78 Lee, Kwon, Kim, Kim, Lee, Williamson (bib0038) 2019; 8 Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. ArXiv preprint arXiv:1701.07875. Pei, Luo, Yan, Yan, Jiang, Li (bib0048) 2021; 15 Stewart (10.1016/j.neunet.2024.106665_bib0063) 2014; 44 Young (10.1016/j.neunet.2024.106665_bib0074) 2018; 13 Pei (10.1016/j.neunet.2024.106665_bib0048) 2021; 15 Lee (10.1016/j.neunet.2024.106665_bib0038) 2019; 8 Fu (10.1016/j.neunet.2024.106665_bib0021) 2022; 202 10.1016/j.neunet.2024.106665_bib0030 Luo (10.1016/j.neunet.2024.106665_bib0040) 2018 Rashid (10.1016/j.neunet.2024.106665_bib0053) 2019; 42 Gulrajani (10.1016/j.neunet.2024.106665_bib0024) 2017 Guo (10.1016/j.neunet.2024.106665_bib0025) 2021; 140 Bischl (10.1016/j.neunet.2024.106665_bib0010) 2012; 20 Najafabadi (10.1016/j.neunet.2024.106665_bib0044) 2015; 2 10.1016/j.neunet.2024.106665_bib0034 10.1016/j.neunet.2024.106665_bib0035 Chaudhary (10.1016/j.neunet.2024.106665_bib0012) 2016; 12 Fawcett (10.1016/j.neunet.2024.106665_bib0020) 2006; 27 Jiang (10.1016/j.neunet.2024.106665_bib0031) 2021; 142 Chollet (10.1016/j.neunet.2024.106665_bib0013) 2017 Choo (10.1016/j.neunet.2024.106665_bib0015) 2020 Remsik (10.1016/j.neunet.2024.106665_bib0055) 2016; 13 10.1016/j.neunet.2024.106665_bib0077 Pfurtscheller (10.1016/j.neunet.2024.106665_bib0051) 2006; 31 Barachant (10.1016/j.neunet.2024.106665_bib0008) 2012; 59 Um (10.1016/j.neunet.2024.106665_bib0065) 2017 Blankertz (10.1016/j.neunet.2024.106665_bib0011) 2008; 25 10.1016/j.neunet.2024.106665_bib0041 Zhang (10.1016/j.neunet.2024.106665_bib0080) 2019; 16 Zhao (10.1016/j.neunet.2024.106665_bib0081) 2023 Apicella (10.1016/j.neunet.2024.106665_bib0005) 2023; 123 Rawat (10.1016/j.neunet.2024.106665_bib0054) 2017; 29 Rivet (10.1016/j.neunet.2024.106665_bib0056) 2009; 56 Tangermann (10.1016/j.neunet.2024.106665_bib0064) 2012; 6 Zhang (10.1016/j.neunet.2024.106665_bib0078) 2018; 49 Agarwalla (10.1016/j.neunet.2024.106665_bib0001) 2016; 78 Hong (10.1016/j.neunet.2024.106665_bib0028) 2019; 52 10.1016/j.neunet.2024.106665_bib0006 Lotte (10.1016/j.neunet.2024.106665_bib0039) 2015; 103 Yin (10.1016/j.neunet.2024.106665_bib0073) 2017; 260 Amin (10.1016/j.neunet.2024.106665_bib0004) 2022; 18 Ang (10.1016/j.neunet.2024.106665_bib0003) 2015; 46 10.1016/j.neunet.2024.106665_bib0043 Aznan (10.1016/j.neunet.2024.106665_bib0007) 2019 Pan (10.1016/j.neunet.2024.106665_bib0046) 2023; 20 10.1016/j.neunet.2024.106665_bib0009 Karras (10.1016/j.neunet.2024.106665_bib0033) 2018 Cho (10.1016/j.neunet.2024.106665_bib0014) 2017; 6 Xie (10.1016/j.neunet.2024.106665_bib0070) 2023; 20 Shorten (10.1016/j.neunet.2024.106665_bib0061) 2019; 6 Zhang (10.1016/j.neunet.2024.106665_bib0079) 2012; 9 Odena (10.1016/j.neunet.2024.106665_bib0045) 2017 Zhang (10.1016/j.neunet.2024.106665_bib0076) 2021; 136 Lawhern (10.1016/j.neunet.2024.106665_bib0037) 2018; 15 Dornhege (10.1016/j.neunet.2024.106665_bib0018) 2004; 51 Pfurtscheller (10.1016/j.neunet.2024.106665_bib0052) 1999; 110 10.1016/j.neunet.2024.106665_bib0050 Wiese (10.1016/j.neunet.2024.106665_bib0069) 2020; 20 Kang (10.1016/j.neunet.2024.106665_bib0032) 2014; 57 Schirrmeister (10.1016/j.neunet.2024.106665_bib0059) 2017; 38 Shenoy (10.1016/j.neunet.2024.106665_bib0060) 2006; 3 Wang (10.1016/j.neunet.2024.106665_bib0067) 2018 Heusel (10.1016/j.neunet.2024.106665_bib0027) 2017 Yang (10.1016/j.neunet.2024.106665_bib0071) 2020; 415 10.1016/j.neunet.2024.106665_bib0017 10.1016/j.neunet.2024.106665_bib0058 Salakhutdinov (10.1016/j.neunet.2024.106665_bib0057) 2009; 5 Kwon (10.1016/j.neunet.2024.106665_bib0036) 2022; 203 Luo (10.1016/j.neunet.2024.106665_bib0042) 2020 Fahimi (10.1016/j.neunet.2024.106665_bib0019) 2021; 32 Perez-Benitez (10.1016/j.neunet.2024.106665_bib0049) 2018 Yin (10.1016/j.neunet.2024.106665_bib0072) 2017; 33 Vidaurre (10.1016/j.neunet.2024.106665_bib0066) 2016; 38 Al-saegh (10.1016/j.neunet.2024.106665_bib0002) 2021; 141 Sokolova (10.1016/j.neunet.2024.106665_bib0062) 2009; 45 Creswell (10.1016/j.neunet.2024.106665_bib0016) 2018; 35 Huang (10.1016/j.neunet.2024.106665_bib0029) 2012; 20 Zhang (10.1016/j.neunet.2024.106665_bib0075) 2017 10.1016/j.neunet.2024.106665_bib0026 10.1016/j.neunet.2024.106665_bib0023 Panwar (10.1016/j.neunet.2024.106665_bib0047) 2020; 28 Wen (10.1016/j.neunet.2024.106665_bib0068) 2021 10.1016/j.neunet.2024.106665_bib0022  | 
    
| References_xml | – volume: 44 start-page: 175 year: 2014 end-page: 184 ident: bib0063 article-title: Robust audio-visual speech recognition under noisy audio-video conditions publication-title: IEEE Transactions on Cybernetics – volume: 15 start-page: 1 year: 2018 end-page: 30 ident: bib0037 article-title: EEGNet: A compact convolutional neural network for EEG-based brain-computer interfaces publication-title: Journal of Neural Engineering – volume: 49 start-page: 3322 year: 2018 end-page: 3332 ident: bib0078 article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI publication-title: IEEE Transactions on Cybernetics – start-page: 18 year: 2018 end-page: 24 ident: bib0049 article-title: Development of a brain computer interface interface using multi-frequency visual stimulation and deep neural networks publication-title: Proceedings of the 28th international conference on electronics, communications and computers – start-page: 5768 year: 2017 end-page: 5778 ident: bib0024 article-title: Improved training of wasserstein GANs publication-title: Advances in Neural Information Processing Systems – start-page: 1 year: 2018 end-page: 26 ident: bib0033 article-title: Progressive growing of GANs for improved quality, stability, and variation publication-title: Proceedings of the 6th international conference on learning representations – volume: 15 start-page: 1 year: 2021 end-page: 12 ident: bib0048 article-title: Data augmentation: Using channel-level recombination to improve classification performance for motor imagery EEG publication-title: Frontiers in Human Neuroscience – volume: 20 year: 2023 ident: bib0046 article-title: Riemannian geometric and ensemble learning for decoding cross-session motor imagery electroencephalography signals publication-title: Journal of Neural Engineering – start-page: 2021 year: 2021 ident: bib0068 article-title: A deep learning-based classification method for different frequency EEG data publication-title: Computational and Mathematical Methods in Medicine – reference: Doersch, C. (2016). Tutorial on variational autoencoders. arxiv preprint arXiv:1606.05908. – volume: 123 year: 2023 ident: bib0005 article-title: On the effects of data normalization for domain adaptation on EEG data publication-title: Engineering Applications of Artificial Intelligence – volume: 18 start-page: 5412 year: 2022 end-page: 5421 ident: bib0004 article-title: Attention-inception and long-short-term memory-based electroencephalography classification for motor imagery tasks in rehabilitation publication-title: IEEE Transactions on Industrial Informatics – volume: 59 start-page: 920 year: 2012 end-page: 928 ident: bib0008 article-title: Multiclass brain-computer interface classification by Riemannian geometry publication-title: IEEE Transactions on Biomedical Engineering – volume: 110 start-page: 1842 year: 1999 end-page: 1857 ident: bib0052 article-title: Event-related EEG/MEG synchronization and desynchronization: Basic principles publication-title: Clinical Neurophysiology – volume: 20 start-page: 249 year: 2012 end-page: 275 ident: bib0010 article-title: Resampling methods for meta-model validation with recommendations for evolutionary computation publication-title: Evolutionary Computation – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: bib0020 article-title: An introduction to ROC analysis publication-title: Pattern Recognition Letters – volume: 29 start-page: 2352 year: 2017 end-page: 2449 ident: bib0054 article-title: Deep convolutional neural networks for image classification: A comprehensive review publication-title: Neural Computation – volume: 415 start-page: 295 year: 2020 end-page: 316 ident: bib0071 article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice publication-title: Neurocomputing – volume: 33 start-page: 30 year: 2017 end-page: 47 ident: bib0072 article-title: Cross-session classification of mental workload levels using EEG and an adaptive deep learning model publication-title: Biomedical Signal Processing and Control – start-page: 82 year: 2018 end-page: 93 ident: bib0067 article-title: Data augmentation for EEG-based emotion recognition with deep convolutional neural networks publication-title: Proceedings of the international conference on multimedia modeling – volume: 16 year: 2019 ident: bib0080 article-title: A novel hybrid deep learning scheme for four-class motor imagery classification publication-title: Journal of Neural Engineering – volume: 5 start-page: 448 year: 2009 end-page: 455 ident: bib0057 article-title: Deep Boltzmann machines publication-title: Journal of Machine Learning Research – volume: 9 year: 2012 ident: bib0079 article-title: A novel BCI based on ERP components sensitive to configural processing of human faces publication-title: Journal of Neural Engineering – reference: Kodali, N., Abernethy, J., Hays, J., & Kira, Z. (2017). On Convergence and Stability of GANs. ArXiv preprint arXiv:1705.07215. – reference: Luo, Y., Zhu, L.Z., & Lu, B.L. (2019). A GAN-Based Data Augmentation Method for Multimodal Emotion Recognition. In Advances in neural networks (pp. 141–150). – start-page: 17 year: 2020 ident: bib0042 article-title: Data augmentation for enhancing EEG-based emotion recognition with deep generative models publication-title: Journal of Neural Engineering – start-page: 1 year: 2020 end-page: 6 ident: bib0015 article-title: DCGAN based EEG data augmentation in cognitive state recognition publication-title: Proceedings of the 2020 IISE annual conference – volume: 32 start-page: 4039 year: 2021 end-page: 4051 ident: bib0019 article-title: Generative adversarial networks-based data augmentation for brain-computer interface publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 25 start-page: 41 year: 2008 end-page: 56 ident: bib0011 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Processing Magazine – volume: 2 start-page: 1 year: 2015 ident: bib0044 article-title: Deep learning applications and challenges in big data analytics publication-title: Journal of Big Data – start-page: 1800 year: 2017 end-page: 1807 ident: bib0013 article-title: Xception: Deep learning with depthwise separable convolutions publication-title: Proceedings of the 30th IEEE conference on computer vision and pattern recognition – volume: 6 start-page: gix034 year: 2017 ident: bib0014 article-title: EEG datasets for motor imagery brain–computer interface publication-title: GigaScience – volume: 56 start-page: 2035 year: 2009 end-page: 2043 ident: bib0056 article-title: xDAWN algorithm to enhance evoked potentials: Application to brain-computer interface publication-title: IEEE Transactions on Biomedical Engineering – volume: 13 start-page: 55 year: 2018 end-page: 75 ident: bib0074 article-title: Recent trends in deep learning based natural language processing [Review Article] publication-title: IEEE Computational Intelligence Magazine – volume: 35 start-page: 53 year: 2018 end-page: 65 ident: bib0016 article-title: Generative adversarial networks: An overview publication-title: IEEE Signal Processing Magazine – volume: 202 year: 2022 ident: bib0021 article-title: A new data augmentation method for EEG features based on the hybrid model of broad-deep networks publication-title: Expert Systems with Applications – reference: Zhang, Q., & Liu, Y. (2018). Improving brain computer interface performance by data augmentation with conditional Deep Convolutional Generative Adversarial Networks. ArXiv preprint arXiv:1806.07108. – volume: 141 start-page: 433 year: 2021 end-page: 443 ident: bib0002 article-title: CutCat : An augmentation method for EEG classification publication-title: Neural Networks – volume: 57 start-page: 39 year: 2014 end-page: 50 ident: bib0032 article-title: Bayesian common spatial patterns for multi-subject EEG classification publication-title: Neural Networks – reference: Barachant, A., & Congedo, M. (2014). A Plug & Play P300 BCI Using Information Geometry. ArXiv preprint arXiv:1409.0107. – volume: 45 start-page: 427 year: 2009 end-page: 437 ident: bib0062 article-title: A systematic analysis of performance measures for classification tasks publication-title: Information processing & management – volume: 52 start-page: 1 year: 2019 end-page: 43 ident: bib0028 article-title: How generative adversarial networks and their variants work: An overview publication-title: ACM Computing Surveys – year: 2019 ident: bib0007 article-title: Simulating brain signals: Creating synthetic EEG data via neural-based generative models for improved SSVEP classification publication-title: Proceedings of the international joint conference on neural networks – reference: Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training GANs. In Advances in neural information processing systems (pp. 2234–2242). – volume: 20 start-page: 1419 year: 2020 end-page: 1440 ident: bib0069 article-title: Quant GANs: Deep generation of financial time series publication-title: Quantitative Finance – reference: Kingma, D.P., & Ba, J. (2014). Adam: A method for stochastic optimization. ArXiv preprint arXiv:1412.6980. – volume: 6 year: 2019 ident: bib0061 article-title: A survey on Image Data Augmentation for Deep Learning publication-title: Journal of Big Data – year: 2017 ident: bib0075 article-title: Understanding deep learning requires rethinking generalization publication-title: Proceedings of the 5th international conference on learning representations – reference: Perez, L., & Wang, J. (2017). The effectiveness of data augmentation in image classification using deep learning. ArXiv preprint arXiv:1712.04621. – reference: Hartmann, K.G., Schirrmeister, R.T., & Ball, T. (2018). EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals. ArXiv preprint arXiv:1806.01875. – reference: Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets. ArXiv preprint arXiv:1411.1784. – volume: 3 year: 2006 ident: bib0060 article-title: Towards adaptive classification for BCI publication-title: Journal of Neural Engineering – volume: 6 start-page: 1 year: 2012 end-page: 31 ident: bib0064 article-title: Review of the BCI competition IV publication-title: Frontiers in Neuroscience – volume: 136 start-page: 1 year: 2021 end-page: 10 ident: bib0076 article-title: Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network publication-title: Neural Networks – volume: 51 start-page: 993 year: 2004 end-page: 1002 ident: bib0018 article-title: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms publication-title: IEEE Transactions on Biomedical Engineering – start-page: 2642 year: 2017 end-page: 2651 ident: bib0045 article-title: Conditional image synthesis with auxiliary classifier Gans publication-title: Proceedings of the international conference on machine learning – volume: 42 year: 2019 ident: bib0053 article-title: Times-series data augmentation and deep learning for construction equipment activity recognition publication-title: Advanced Engineering Informatics – volume: 140 start-page: 158 year: 2021 end-page: 166 ident: bib0025 article-title: Improved deep CNNs based on nonlinear hybrid attention module for image classification publication-title: Neural Networks – reference: Gan, L., Liu, W., Luo, Y., Wu, X., & Lu, B.L. (2019). A cross-culture study on multimodal emotion recognition using deep learning. In T. Gedeon, K. W. Wong, & M. Lee (Eds.), Neural information processing (pp. 670–680). – volume: 260 start-page: 349 year: 2017 end-page: 366 ident: bib0073 article-title: Cross-subject recognition of operator functional states via EEG and switching deep belief networks with adaptive weights publication-title: Neurocomputing – volume: 103 start-page: 871 year: 2015 end-page: 890 ident: bib0039 article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces publication-title: Proceedings of the IEEE – volume: 28 start-page: 1720 year: 2020 end-page: 1730 ident: bib0047 article-title: Modeling EEG data distribution with a wasserstein generative adversarial network to predict RSVP events publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – reference: Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. ArXiv preprint arXiv:1701.07875. – reference: Hussein, R., Palangi, H., Ward, R., & Wang, Z.J. (2018). Epileptic seizure detection: A deep learning approach. ArXiv preprint arXiv:1803.09848. – volume: 20 year: 2023 ident: bib0070 article-title: Cross-dataset transfer learning for motor imagery signal classification via multi-task learning and pre-training publication-title: Journal of Neural Engineering – volume: 8 start-page: giz002 year: 2019 ident: bib0038 article-title: EEG dataset and OpenBMI toolbox for three BCI paradigms: An investigation into BCI illiteracy publication-title: GigaScience – reference: Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S. et al. (2014). Generative adversarial nets. arxiv preprint arXiv:1406.2661. – volume: 20 start-page: 379 year: 2012 end-page: 388 ident: bib0029 article-title: Electroencephalography (EEG)-based brain-computer interface (BCI): A 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – start-page: 2535 year: 2018 end-page: 2538 ident: bib0040 article-title: EEG data augmentation for emotion recognition using a conditional Wasserstein GAN publication-title: Proceedings of the IEEE international conference on engineering in medicine and biology society – volume: 142 start-page: 340 year: 2021 end-page: 350 ident: bib0031 article-title: Candidate region aware nested named entity recognition publication-title: Neural Networks – start-page: 216 year: 2017 end-page: 220 ident: bib0065 article-title: Data augmentation of wearable sensor data for Parkinson's disease monitoring using convolutional neural networks publication-title: Proceedings of the 19th ACM international conference on multimodal interaction – start-page: 6627 year: 2017 end-page: 6638 ident: bib0027 article-title: GANs trained by a two time-scale update rule converge to a local Nash equilibrium publication-title: Advances in Neural Information Processing Systems – volume: 46 start-page: 310 year: 2015 end-page: 320 ident: bib0003 article-title: A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke publication-title: Clinical EEG and Neuroscience – volume: 31 start-page: 153 year: 2006 end-page: 159 ident: bib0051 article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks publication-title: NeuroImage – volume: 13 start-page: 445 year: 2016 end-page: 454 ident: bib0055 article-title: A review of the progression and future implications of brain–computer interface therapies for restoration of distal upper extremity motor function after stroke publication-title: Expert Review of Medical Devices – volume: 38 start-page: 5391 year: 2017 end-page: 5420 ident: bib0059 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Human Brain Mapping – volume: 78 start-page: 97 year: 2016 end-page: 111 ident: bib0001 article-title: Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech publication-title: Neural Networks – volume: 12 start-page: 513 year: 2016 end-page: 525 ident: bib0012 article-title: Brain-computer interfaces for communication and rehabilitation publication-title: Nature Reviews Neurology – start-page: 20 year: 2023 ident: bib0081 article-title: Epileptic seizure detection by using interpretable machine learning models publication-title: Journal of Neural Engineering – volume: 203 year: 2022 ident: bib0036 article-title: Novel Signal-to-Signal translation method based on StarGAN to generate artificial EEG for SSVEP-based brain-computer interfaces publication-title: Expert Systems with Applications – volume: 38 start-page: 1195 year: 2016 end-page: 1204 ident: bib0066 article-title: EEG-based BCI for the linear control of an upper-limb neuroprosthesis publication-title: Medical Engineering and Physics – volume: 260 start-page: 349 year: 2017 ident: 10.1016/j.neunet.2024.106665_bib0073 article-title: Cross-subject recognition of operator functional states via EEG and switching deep belief networks with adaptive weights publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.002 – ident: 10.1016/j.neunet.2024.106665_bib0041 doi: 10.1007/978-3-030-22796-8_16 – start-page: 2535 year: 2018 ident: 10.1016/j.neunet.2024.106665_bib0040 article-title: EEG data augmentation for emotion recognition using a conditional Wasserstein GAN – volume: 2 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.neunet.2024.106665_bib0044 article-title: Deep learning applications and challenges in big data analytics publication-title: Journal of Big Data doi: 10.1186/s40537-014-0007-7 – volume: 20 start-page: 1419 issue: 9 year: 2020 ident: 10.1016/j.neunet.2024.106665_bib0069 article-title: Quant GANs: Deep generation of financial time series publication-title: Quantitative Finance doi: 10.1080/14697688.2020.1730426 – volume: 415 start-page: 295 year: 2020 ident: 10.1016/j.neunet.2024.106665_bib0071 article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.061 – start-page: 6627 year: 2017 ident: 10.1016/j.neunet.2024.106665_bib0027 article-title: GANs trained by a two time-scale update rule converge to a local Nash equilibrium publication-title: Advances in Neural Information Processing Systems – ident: 10.1016/j.neunet.2024.106665_bib0023 – volume: 28 start-page: 1720 issue: 8 year: 2020 ident: 10.1016/j.neunet.2024.106665_bib0047 article-title: Modeling EEG data distribution with a wasserstein generative adversarial network to predict RSVP events publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2020.3006180 – volume: 16 issue: 6 year: 2019 ident: 10.1016/j.neunet.2024.106665_bib0080 article-title: A novel hybrid deep learning scheme for four-class motor imagery classification publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/ab3471 – volume: 49 start-page: 3322 issue: 9 year: 2018 ident: 10.1016/j.neunet.2024.106665_bib0078 article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2841847 – volume: 123 year: 2023 ident: 10.1016/j.neunet.2024.106665_bib0005 article-title: On the effects of data normalization for domain adaptation on EEG data publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2023.106205 – volume: 44 start-page: 175 issue: 2 year: 2014 ident: 10.1016/j.neunet.2024.106665_bib0063 article-title: Robust audio-visual speech recognition under noisy audio-video conditions publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2013.2250954 – volume: 136 start-page: 1 year: 2021 ident: 10.1016/j.neunet.2024.106665_bib0076 article-title: Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network publication-title: Neural Networks doi: 10.1016/j.neunet.2020.12.013 – volume: 202 year: 2022 ident: 10.1016/j.neunet.2024.106665_bib0021 article-title: A new data augmentation method for EEG features based on the hybrid model of broad-deep networks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117386 – volume: 52 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.neunet.2024.106665_bib0028 article-title: How generative adversarial networks and their variants work: An overview publication-title: ACM Computing Surveys doi: 10.1145/3301282 – volume: 31 start-page: 153 issue: 1 year: 2006 ident: 10.1016/j.neunet.2024.106665_bib0051 article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.12.003 – ident: 10.1016/j.neunet.2024.106665_bib0017 – volume: 15 start-page: 1 year: 2021 ident: 10.1016/j.neunet.2024.106665_bib0048 article-title: Data augmentation: Using channel-level recombination to improve classification performance for motor imagery EEG publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2021.645952 – ident: 10.1016/j.neunet.2024.106665_bib0022 doi: 10.1007/978-3-030-36808-1_73 – volume: 42 year: 2019 ident: 10.1016/j.neunet.2024.106665_bib0053 article-title: Times-series data augmentation and deep learning for construction equipment activity recognition publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2019.100944 – volume: 140 start-page: 158 year: 2021 ident: 10.1016/j.neunet.2024.106665_bib0025 article-title: Improved deep CNNs based on nonlinear hybrid attention module for image classification publication-title: Neural Networks doi: 10.1016/j.neunet.2021.01.005 – volume: 5 start-page: 448 issue: 3 year: 2009 ident: 10.1016/j.neunet.2024.106665_bib0057 article-title: Deep Boltzmann machines publication-title: Journal of Machine Learning Research – volume: 142 start-page: 340 year: 2021 ident: 10.1016/j.neunet.2024.106665_bib0031 article-title: Candidate region aware nested named entity recognition publication-title: Neural Networks doi: 10.1016/j.neunet.2021.02.019 – start-page: 18 year: 2018 ident: 10.1016/j.neunet.2024.106665_bib0049 article-title: Development of a brain computer interface interface using multi-frequency visual stimulation and deep neural networks – volume: 46 start-page: 310 issue: 4 year: 2015 ident: 10.1016/j.neunet.2024.106665_bib0003 article-title: A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke publication-title: Clinical EEG and Neuroscience doi: 10.1177/1550059414522229 – volume: 20 start-page: 249 issue: 2 year: 2012 ident: 10.1016/j.neunet.2024.106665_bib0010 article-title: Resampling methods for meta-model validation with recommendations for evolutionary computation publication-title: Evolutionary Computation doi: 10.1162/EVCO_a_00069 – volume: 203 year: 2022 ident: 10.1016/j.neunet.2024.106665_bib0036 article-title: Novel Signal-to-Signal translation method based on StarGAN to generate artificial EEG for SSVEP-based brain-computer interfaces publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117574 – volume: 29 start-page: 2352 year: 2017 ident: 10.1016/j.neunet.2024.106665_bib0054 article-title: Deep convolutional neural networks for image classification: A comprehensive review publication-title: Neural Computation doi: 10.1162/neco_a_00990 – ident: 10.1016/j.neunet.2024.106665_bib0077 – volume: 59 start-page: 920 issue: 4 year: 2012 ident: 10.1016/j.neunet.2024.106665_bib0008 article-title: Multiclass brain-computer interface classification by Riemannian geometry publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2011.2172210 – start-page: 1 year: 2020 ident: 10.1016/j.neunet.2024.106665_bib0015 article-title: DCGAN based EEG data augmentation in cognitive state recognition – start-page: 1 year: 2018 ident: 10.1016/j.neunet.2024.106665_bib0033 article-title: Progressive growing of GANs for improved quality, stability, and variation – volume: 6 issue: 1 year: 2019 ident: 10.1016/j.neunet.2024.106665_bib0061 article-title: A survey on Image Data Augmentation for Deep Learning publication-title: Journal of Big Data doi: 10.1186/s40537-019-0197-0 – start-page: 20 year: 2023 ident: 10.1016/j.neunet.2024.106665_bib0081 article-title: Epileptic seizure detection by using interpretable machine learning models publication-title: Journal of Neural Engineering – volume: 35 start-page: 53 issue: 1 year: 2018 ident: 10.1016/j.neunet.2024.106665_bib0016 article-title: Generative adversarial networks: An overview publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2017.2765202 – ident: 10.1016/j.neunet.2024.106665_bib0035 – year: 2019 ident: 10.1016/j.neunet.2024.106665_bib0007 article-title: Simulating brain signals: Creating synthetic EEG data via neural-based generative models for improved SSVEP classification – volume: 3 issue: 1 year: 2006 ident: 10.1016/j.neunet.2024.106665_bib0060 article-title: Towards adaptive classification for BCI publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/3/1/R02 – volume: 18 start-page: 5412 issue: 8 year: 2022 ident: 10.1016/j.neunet.2024.106665_bib0004 article-title: Attention-inception and long-short-term memory-based electroencephalography classification for motor imagery tasks in rehabilitation publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2021.3132340 – volume: 56 start-page: 2035 issue: 8 year: 2009 ident: 10.1016/j.neunet.2024.106665_bib0056 article-title: xDAWN algorithm to enhance evoked potentials: Application to brain-computer interface publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2009.2012869 – start-page: 2021 year: 2021 ident: 10.1016/j.neunet.2024.106665_bib0068 article-title: A deep learning-based classification method for different frequency EEG data publication-title: Computational and Mathematical Methods in Medicine – ident: 10.1016/j.neunet.2024.106665_bib0009 – volume: 15 start-page: 1 issue: 5 year: 2018 ident: 10.1016/j.neunet.2024.106665_bib0037 article-title: EEGNet: A compact convolutional neural network for EEG-based brain-computer interfaces publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/aace8c – volume: 13 start-page: 55 issue: 3 year: 2018 ident: 10.1016/j.neunet.2024.106665_bib0074 article-title: Recent trends in deep learning based natural language processing [Review Article] publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2018.2840738 – volume: 20 start-page: 379 issue: 3 year: 2012 ident: 10.1016/j.neunet.2024.106665_bib0029 article-title: Electroencephalography (EEG)-based brain-computer interface (BCI): A 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2012.2190299 – ident: 10.1016/j.neunet.2024.106665_bib0034 – volume: 8 start-page: giz002 issue: 5 year: 2019 ident: 10.1016/j.neunet.2024.106665_bib0038 article-title: EEG dataset and OpenBMI toolbox for three BCI paradigms: An investigation into BCI illiteracy publication-title: GigaScience doi: 10.1093/gigascience/giz002 – volume: 78 start-page: 97 year: 2016 ident: 10.1016/j.neunet.2024.106665_bib0001 article-title: Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech publication-title: Neural Networks doi: 10.1016/j.neunet.2015.12.010 – volume: 33 start-page: 30 year: 2017 ident: 10.1016/j.neunet.2024.106665_bib0072 article-title: Cross-session classification of mental workload levels using EEG and an adaptive deep learning model publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2016.11.013 – volume: 20 issue: 5 year: 2023 ident: 10.1016/j.neunet.2024.106665_bib0070 article-title: Cross-dataset transfer learning for motor imagery signal classification via multi-task learning and pre-training publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/acfe9c – ident: 10.1016/j.neunet.2024.106665_bib0030 – volume: 13 start-page: 445 issue: 5 year: 2016 ident: 10.1016/j.neunet.2024.106665_bib0055 article-title: A review of the progression and future implications of brain–computer interface therapies for restoration of distal upper extremity motor function after stroke publication-title: Expert Review of Medical Devices doi: 10.1080/17434440.2016.1174572 – volume: 141 start-page: 433 year: 2021 ident: 10.1016/j.neunet.2024.106665_bib0002 article-title: CutCat : An augmentation method for EEG classification publication-title: Neural Networks doi: 10.1016/j.neunet.2021.05.032 – volume: 110 start-page: 1842 issue: 11 year: 1999 ident: 10.1016/j.neunet.2024.106665_bib0052 article-title: Event-related EEG/MEG synchronization and desynchronization: Basic principles publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(99)00141-8 – volume: 38 start-page: 1195 issue: 11 year: 2016 ident: 10.1016/j.neunet.2024.106665_bib0066 article-title: EEG-based BCI for the linear control of an upper-limb neuroprosthesis publication-title: Medical Engineering and Physics doi: 10.1016/j.medengphy.2016.06.010 – start-page: 1800 year: 2017 ident: 10.1016/j.neunet.2024.106665_bib0013 article-title: Xception: Deep learning with depthwise separable convolutions – volume: 32 start-page: 4039 issue: 9 year: 2021 ident: 10.1016/j.neunet.2024.106665_bib0019 article-title: Generative adversarial networks-based data augmentation for brain-computer interface publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.3016666 – ident: 10.1016/j.neunet.2024.106665_bib0006 – ident: 10.1016/j.neunet.2024.106665_bib0043 – start-page: 2642 year: 2017 ident: 10.1016/j.neunet.2024.106665_bib0045 article-title: Conditional image synthesis with auxiliary classifier Gans – ident: 10.1016/j.neunet.2024.106665_bib0026 – volume: 6 start-page: gix034 issue: 7 year: 2017 ident: 10.1016/j.neunet.2024.106665_bib0014 article-title: EEG datasets for motor imagery brain–computer interface publication-title: GigaScience doi: 10.1093/gigascience/gix034 – start-page: 82 year: 2018 ident: 10.1016/j.neunet.2024.106665_bib0067 article-title: Data augmentation for EEG-based emotion recognition with deep convolutional neural networks – volume: 12 start-page: 513 issue: 9 year: 2016 ident: 10.1016/j.neunet.2024.106665_bib0012 article-title: Brain-computer interfaces for communication and rehabilitation publication-title: Nature Reviews Neurology doi: 10.1038/nrneurol.2016.113 – volume: 9 issue: 2 year: 2012 ident: 10.1016/j.neunet.2024.106665_bib0079 article-title: A novel BCI based on ERP components sensitive to configural processing of human faces publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/9/2/026018 – volume: 25 start-page: 41 issue: 1 year: 2008 ident: 10.1016/j.neunet.2024.106665_bib0011 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2008.4408441 – volume: 45 start-page: 427 issue: 4 year: 2009 ident: 10.1016/j.neunet.2024.106665_bib0062 article-title: A systematic analysis of performance measures for classification tasks publication-title: Information processing & management doi: 10.1016/j.ipm.2009.03.002 – start-page: 216 year: 2017 ident: 10.1016/j.neunet.2024.106665_bib0065 article-title: Data augmentation of wearable sensor data for Parkinson's disease monitoring using convolutional neural networks – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 10.1016/j.neunet.2024.106665_bib0020 article-title: An introduction to ROC analysis publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2005.10.010 – volume: 57 start-page: 39 year: 2014 ident: 10.1016/j.neunet.2024.106665_bib0032 article-title: Bayesian common spatial patterns for multi-subject EEG classification publication-title: Neural Networks doi: 10.1016/j.neunet.2014.05.012 – volume: 51 start-page: 993 issue: 6 year: 2004 ident: 10.1016/j.neunet.2024.106665_bib0018 article-title: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2004.827088 – volume: 103 start-page: 871 issue: 6 year: 2015 ident: 10.1016/j.neunet.2024.106665_bib0039 article-title: Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2015.2404941 – ident: 10.1016/j.neunet.2024.106665_bib0058 – year: 2017 ident: 10.1016/j.neunet.2024.106665_bib0075 article-title: Understanding deep learning requires rethinking generalization – volume: 20 issue: 6 year: 2023 ident: 10.1016/j.neunet.2024.106665_bib0046 article-title: Riemannian geometric and ensemble learning for decoding cross-session motor imagery electroencephalography signals publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/ad0a01 – start-page: 5768 year: 2017 ident: 10.1016/j.neunet.2024.106665_bib0024 article-title: Improved training of wasserstein GANs publication-title: Advances in Neural Information Processing Systems – start-page: 17 issue: 5 year: 2020 ident: 10.1016/j.neunet.2024.106665_bib0042 article-title: Data augmentation for enhancing EEG-based emotion recognition with deep generative models publication-title: Journal of Neural Engineering – ident: 10.1016/j.neunet.2024.106665_bib0050 – volume: 38 start-page: 5391 issue: 11 year: 2017 ident: 10.1016/j.neunet.2024.106665_bib0059 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Human Brain Mapping doi: 10.1002/hbm.23730 – volume: 6 start-page: 1 year: 2012 ident: 10.1016/j.neunet.2024.106665_bib0064 article-title: Review of the BCI competition IV publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2012.00055  | 
    
| SSID | ssj0006843 | 
    
| Score | 2.4568558 | 
    
| Snippet | In brain-computer interface (BCI), building accurate electroencephalogram (EEG) classifiers for specific mental tasks is critical for BCI performance. The... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 106665 | 
    
| SubjectTerms | Brain - physiology Brain-computer interface (BCI) Brain-Computer Interfaces Data augmentation (DA) Deep Learning Electroencephalogram (EEG) Electroencephalography - methods Generative adversarial networks (GANs) Humans Imagination - physiology Machine Learning Motor imagery (MI) Neural Networks, Computer  | 
    
| Title | Improving classification performance of motor imagery BCI through EEG data augmentation with conditional generative adversarial networks | 
    
| URI | https://dx.doi.org/10.1016/j.neunet.2024.106665 https://www.ncbi.nlm.nih.gov/pubmed/39241437 https://www.proquest.com/docview/3101793997  | 
    
| Volume | 180 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwELUQXLgsnwuFBQ0S19Amduz4yFaFAoLLLhI3y3YcVETTirYHLnven40ndoo4ICSOscaK5RnPvDhvZgg5zYUVqbE0KTNtMCXHJpoKnVSiKKWjpZUC851v7_jwnl0_5A8rpN_mwiCtMvr-4NMbbx1HunE3u9PRqPun50Mtx1RR1vTGw7LbjAnsYnD2753mwYvAnPPCCUq36XMNx6t2i9ohozJjfsgj-fyz8PQZ_GzC0MUm-RHxI5yHJW6RFVdvk422NwPEo7pD_i9vC8AiQEZGUKMEmL6nCsCkAq-qyQuMxljL4hV-968gtu6BweASkEAKevE4jilKNeDFLfiP6HIUbhHhsSlcjV4TNHZ3nmm0aagDv3y2S-4vBn_7wyR2XUisD2bzxBZFZbk1Vc9k1lKjbS4z42SqZSEN9QipYMwYQ2XJjIdPhUcwPNNZZtOK8TKlP8lqPandPoGKe5eguaQp50xTWxgqXM8xKfIqlcJ1CG03W9lYkhw7Yzyrlnv2pIKKFKpIBRV1SLKcNQ0lOb6QF60e1QfTUj5qfDHzpFW78qcOf6Xo2k0WM0WDZ5NSdMhesIflWjziZB6FioNvv_eQrONTYM38Iqvzl4U78thnbo4b4z4ma-dXN8O7N9W-Bo4 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED6k6dAuTd9108cV6KraEilSHFPDqdMmWZoA2QiSogIHjWzE9pAlc392eCLloEMQoCtFQgTvePeR_O4O4GspncytY1ldGEshOS4zTJqskVWtPKudkhTvfHQspqf851l5tgXjPhaGaJXJ9keb3lnr1DJMqzlczGbD36PgagWFivKuNp54BI95WUg6gX27ueN5iCpS50LvjLr38XMdyav169YTpbLgoSlA-fI-_3Qf_uz80P5zeJYAJO7FOb6ALd--hJ2-OAOmvfoK_m6uC9ARQiZKUCcFXNzFCuC8wSCr-RXOLimZxTV-Hx9gqt2Dk8kPJAYpmvX5ZYpRapFubjGcoutZvEbE8y5zNZlNNFTeeWlIqbGNBPPlazjdn5yMp1kqu5C54M1Wmauqxglnm5EtnGPWuFIV1qvcqEpZFiBSxbm1lqma24CfqgBhRGGKwuUNF3XO3sB2O2_9O8BGBJtghGK5ENwwV1km_chzJcsmV9IPgPWLrV3KSU6lMf7onnx2oaOINIlIRxENINuMWsScHA_0l70c9T-6pYPbeGDkl17sOmw7eksxrZ-vl5pF06aUHMDbqA-buQTIyQMMle__-7-f4cn05OhQHx4c_9qFp_QlUmg-wPbqau0_BiC0sp86Rb8F0ZsIIw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+classification+performance+of+motor+imagery+BCI+through+EEG+data+augmentation+with+conditional+generative+adversarial+networks&rft.jtitle=Neural+networks&rft.au=Choo%2C+Sanghyun&rft.au=Park%2C+Hoonseok&rft.au=Jung%2C+Jae-Yoon&rft.au=Flores%2C+Kevin&rft.date=2024-12-01&rft.eissn=1879-2782&rft.volume=180&rft.spage=106665&rft_id=info:doi/10.1016%2Fj.neunet.2024.106665&rft_id=info%3Apmid%2F39241437&rft.externalDocID=39241437 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |