Annotating for Artificial Intelligence Applications in Digital Pathology: A Practical Guide for Pathologists and Researchers

Training machine learning models for artificial intelligence (AI) applications in pathology often requires extensive annotation by human experts, but there is little guidance on the subject. In this work, we aimed to describe our experience and provide a simple, useful, and practical guide addressin...

Full description

Saved in:
Bibliographic Details
Published inModern pathology Vol. 36; no. 4; p. 100086
Main Authors Montezuma, Diana, Oliveira, Sara P., Neto, Pedro C., Oliveira, Domingos, Monteiro, Ana, Cardoso, Jaime S., Macedo-Pinto, Isabel
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2023
Subjects
Online AccessGet full text
ISSN0893-3952
1530-0285
1530-0285
DOI10.1016/j.modpat.2022.100086

Cover

Abstract Training machine learning models for artificial intelligence (AI) applications in pathology often requires extensive annotation by human experts, but there is little guidance on the subject. In this work, we aimed to describe our experience and provide a simple, useful, and practical guide addressing annotation strategies for AI development in computational pathology. Annotation methodology will vary significantly depending on the specific study’s objectives, but common difficulties will be present across different settings. We summarize key aspects and issue guiding principles regarding team interaction, ground-truth quality assessment, different annotation types, and available software and hardware options and address common difficulties while annotating. This guide was specifically designed for pathology annotation, intending to help pathologists, other researchers, and AI developers with this process.
AbstractList Training machine learning models for artificial intelligence (AI) applications in pathology often requires extensive annotation by human experts, but there is little guidance on the subject. In this work, we aimed to describe our experience and provide a simple, useful, and practical guide addressing annotation strategies for AI development in computational pathology. Annotation methodology will vary significantly depending on the specific study's objectives, but common difficulties will be present across different settings. We summarize key aspects and issue guiding principles regarding team interaction, ground-truth quality assessment, different annotation types, and available software and hardware options and address common difficulties while annotating. This guide was specifically designed for pathology annotation, intending to help pathologists, other researchers, and AI developers with this process.
Training machine learning models for artificial intelligence (AI) applications in pathology often requires extensive annotation by human experts, but there is little guidance on the subject. In this work, we aimed to describe our experience and provide a simple, useful, and practical guide addressing annotation strategies for AI development in computational pathology. Annotation methodology will vary significantly depending on the specific study's objectives, but common difficulties will be present across different settings. We summarize key aspects and issue guiding principles regarding team interaction, ground-truth quality assessment, different annotation types, and available software and hardware options and address common difficulties while annotating. This guide was specifically designed for pathology annotation, intending to help pathologists, other researchers, and AI developers with this process.Training machine learning models for artificial intelligence (AI) applications in pathology often requires extensive annotation by human experts, but there is little guidance on the subject. In this work, we aimed to describe our experience and provide a simple, useful, and practical guide addressing annotation strategies for AI development in computational pathology. Annotation methodology will vary significantly depending on the specific study's objectives, but common difficulties will be present across different settings. We summarize key aspects and issue guiding principles regarding team interaction, ground-truth quality assessment, different annotation types, and available software and hardware options and address common difficulties while annotating. This guide was specifically designed for pathology annotation, intending to help pathologists, other researchers, and AI developers with this process.
ArticleNumber 100086
Author Macedo-Pinto, Isabel
Cardoso, Jaime S.
Monteiro, Ana
Oliveira, Domingos
Neto, Pedro C.
Montezuma, Diana
Oliveira, Sara P.
Author_xml – sequence: 1
  givenname: Diana
  orcidid: 0000-0001-9551-4589
  surname: Montezuma
  fullname: Montezuma, Diana
  email: diana.felizardo@impdiagnostics.com
  organization: IMP Diagnostics, Porto, Portugal
– sequence: 2
  givenname: Sara P.
  surname: Oliveira
  fullname: Oliveira, Sara P.
  organization: Telecommunications and Multimedia Unit, Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
– sequence: 3
  givenname: Pedro C.
  surname: Neto
  fullname: Neto, Pedro C.
  organization: Telecommunications and Multimedia Unit, Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
– sequence: 4
  givenname: Domingos
  surname: Oliveira
  fullname: Oliveira, Domingos
  organization: IMP Diagnostics, Porto, Portugal
– sequence: 5
  givenname: Ana
  surname: Monteiro
  fullname: Monteiro, Ana
  organization: IMP Diagnostics, Porto, Portugal
– sequence: 6
  givenname: Jaime S.
  surname: Cardoso
  fullname: Cardoso, Jaime S.
  organization: Telecommunications and Multimedia Unit, Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
– sequence: 7
  givenname: Isabel
  surname: Macedo-Pinto
  fullname: Macedo-Pinto, Isabel
  organization: IMP Diagnostics, Porto, Portugal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36788085$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFf4CQj1yyTOyN4_SAFBUolSpRIThbju1sZ5W1g-1FqsSPx9u0HDjAaTSj7z1p3jsjJz54R8jrGtY11OLdbr0PdtZ5zYCxcgKQ4hlZ1Q2HCphsTsgKZMcr3jXslJyltAOoN41kL8gpF62UIJsV-dV7H7LO6Ld0DJH2MeOIBvVEr31204Rb542j_TxPaAoXfKLo6QfcYi7Qrc53YQrb-wva09uoTS7URK8OaN2D4ROAKSeqvaVfXXI6mjsX00vyfNRTcq8e5zn5_unjt8vP1c2Xq-vL_qYyXLBcGRiYFFbyrh1qbTg4LUfZDHocxMZacFxzAe1oBefMQNeZWshNWcbyJnSMn5O3i-8cw4-DS1ntMZnynPYuHJJibdtCDbxpCvrmET0Me2fVHHGv4716SqwAmwUwMaQU3fgHqUEdi1E7tRSjjsWopZgiu_hLZjA_xJmjxul_4veL2JWQfqKLKhk81mIxOpOVDfhvg9-Duqws
CitedBy_id crossref_primary_10_1080_21681163_2024_2396595
crossref_primary_10_1016_j_pathol_2023_09_003
crossref_primary_10_1016_j_procs_2024_06_405
crossref_primary_10_1016_j_labinv_2024_102203
crossref_primary_10_1038_s41598_023_30497_z
crossref_primary_10_1007_s10278_024_01248_x
crossref_primary_10_1007_s40620_023_01775_w
crossref_primary_10_1136_jcp_2024_210031
crossref_primary_10_1016_j_ijhcs_2024_103315
crossref_primary_10_1016_j_media_2024_103360
crossref_primary_10_1016_j_ajpath_2025_01_009
crossref_primary_10_1007_s10278_024_01043_8
crossref_primary_10_3390_jimaging10110292
Cites_doi 10.1038/s41746-021-00549-7
10.1109/TSMC.1979.4310076
10.1038/s41598-022-19278-2
10.4103/jpi.jpi_81_18
10.1007/s10278-020-00384-4
10.1038/s41416-020-01122-x
10.1158/0008-5472.CAN-17-0629
10.1016/j.media.2022.102466
10.1002/cjp2.229
10.1002/path.5921
10.1371/journal.pcbi.1007313
10.1002/cjp2.256
10.1186/s13000-021-01126-y
10.1038/s41598-017-17204-5
10.1016/j.ajpath.2019.05.007
10.1038/s41379-022-01147-y
10.1002/prca.201800057
10.1016/j.bbe.2021.04.012
10.1038/nmeth.1896
10.1158/0008-5472.CAN-17-0323
10.4103/jpi.jpi_83_20
10.1186/s13000-020-00995-z
10.1016/j.jneumeth.2021.109371
10.1002/path.5662
10.1186/s13000-020-00957-5
10.1007/s00330-019-6003-8
10.1016/j.ajpath.2021.05.023
10.1016/S2589-7500(21)00216-8
10.1038/s41591-019-0508-1
10.1002/path.5797
10.1038/s41467-021-21467-y
10.1109/RBME.2020.3013489
10.1038/s41598-021-93746-z
10.1016/j.patter.2021.100383
10.3390/cancers14122974
10.1038/s41591-021-01620-2
10.3390/cancers14102489
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.modpat.2022.100086
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1530-0285
ExternalDocumentID 36788085
10_1016_j_modpat_2022_100086
S0893395222055260
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-Q-
.GJ
0R~
123
29M
2WC
36B
39C
3V.
4.4
53G
5RE
6I.
70F
7RV
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
AADWK
AAFTH
AANZL
AAQQT
AASDW
AAWBL
AAWTL
AAXUO
AAYFA
AAYJO
AAZLF
ABAWZ
ABGIJ
ABJNI
ABLJU
ABUWG
ACBMV
ACBRV
ACBYP
ACGFO
ACGFS
ACIGE
ACKTT
ACPRK
ACRQY
ACTTH
ACVWB
ACZOJ
ADBBV
ADFRT
ADHDB
ADMDM
ADQMX
ADYYL
AEDAW
AEFTE
AEJRE
AENEX
AEXYK
AFKRA
AFOSN
AFSHS
AGAYW
AGEZK
AGGBP
AGHAI
AHGBK
AHMBA
AHSBF
AILAN
AJDOV
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AMRJV
AMYLF
AXYYD
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DIK
DNIVK
DU5
E3Z
EBLON
EBS
EE.
EIOEI
EJD
EX3
F5P
FDB
FDQFY
FERAY
FIZPM
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HZ~
IWAJR
JSO
JZLTJ
KQ8
LK8
M0L
M1P
M7P
NAO
NAPCQ
NQJWS
NYICJ
O9-
OK1
OWW
P2P
PQQKQ
PROAC
PSQYO
Q2X
RNS
RNT
RNTTT
ROL
SNX
SNYQT
SOHCF
SRMVM
SWTZT
TAOOD
TBHMF
TDRGL
TR2
TSG
UKHRP
WOW
YFH
ZA5
ZGI
ZXP
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EFKBS
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
AGCQF
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c362t-c0b286d8397b1ac30ea8f85bafb64dd0e3a3607fd6332c099c1684633f6780923
ISSN 0893-3952
1530-0285
IngestDate Thu Oct 02 10:12:41 EDT 2025
Mon Jul 21 06:05:49 EDT 2025
Thu Oct 16 04:44:22 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Fri Feb 23 02:36:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords annotation
computational pathology
digital pathology
artificial intelligence
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-c0b286d8397b1ac30ea8f85bafb64dd0e3a3607fd6332c099c1684633f6780923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9551-4589
OpenAccessLink https://dx.doi.org/10.1016/j.modpat.2022.100086
PMID 36788085
PQID 2777010355
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2777010355
pubmed_primary_36788085
crossref_primary_10_1016_j_modpat_2022_100086
crossref_citationtrail_10_1016_j_modpat_2022_100086
elsevier_sciencedirect_doi_10_1016_j_modpat_2022_100086
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Modern pathology
PublicationTitleAlternate Mod Pathol
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bulten, Kartasalo, Chen (bib1) 2022; 28
Albuquerque, Moreira, Barros (bib12) 2022
Tran, Liu, Dusenberry (bib29) 2022
Möhle, Bascuñana, Brackhan, Pahnke (bib24) 2021; 364
Wahab, Miligy, Dodd (bib9) 2022; 8
Gutman, Khalilia, Lee (bib33) 2017; 77
bib32
da Silva, Pereira, Salles (bib44) 2021; 254
Campanella, Hanna, Geneslaw (bib13) 2019; 25
Korzynska, Roszkowiak, Zak, Siemion (bib37) 2021; 41
Mehta, Lu, Wu (bib2) 2022; 79
Oliveira, Neto, Fraga (bib10) 2021; 11
Neto, Oliveira, Montezuma (bib11) 2022; 14
Runz, Rusche, Schmidt, Weihrauch, Hesser, Weis (bib39) 2021; 16
Kocak, Ates, Durmaz, Ulusan, Kilickesmez (bib28) 2019; 29
Yakimovich, Beaugnon, Huang, Ozkirimli (bib15) 2021; 2
Shvetsov, Grønnesby, Pedersen (bib21) 2022; 14
Homeyer, Geißler, Schwen (bib23) 2022; 35
Rubens, Hoyoux, Vanosmael (bib31) 2019; 13
Mitchell, Cohen, Cohen (bib7) 2021; 191
Qayyum, Qadir, Bilal, Al-Fuqaha (bib8) 2021; 14
Miao, Toth, Zhou, Madabhushi, Janowczyk (bib25) 2021; 7
Wang, Yang, Rong, Zhan, Xiao (bib16) 2019; 189
Stadler, Lindvall, Lundström (bib6) 2021; 34
Bankhead (bib38) 2022; 257
Dudgeon, Wen, Hanna (bib26) 2021; 12
Allan, Burel, Moore (bib35) 2012; 9
Weigert, Schmidt (bib20) 2022
Bankhead, Loughrey, Fernández (bib30) 2017; 7
Hameed, Garcia-Zapirain, Aguirre, Isaza-Ruget (bib18) 2022; 12
Aubreville, Stathonikos, Bertram (bib19) 2022
Stritt, Stalder, Vezzali (bib34) 2020; 16
Lindman, Rose, Lindvall, Lundström, Treanor (bib22) 2019; 10
Feng, Deng, Yang (bib4) 2020; 15
bib43
Yang, Yu (bib17) 2021; 11
Martel, Hosseinzadeh, Senaras (bib36) 2017; 77
de Hond, Leeuwenberg, Hooft (bib41) 2022; 5
Otsu (bib42) 1979; 9
Chen, Mermel, Liu (bib27) 2021; 3
Pantanowitz, Hartman, Qi (bib3) 2020; 15
Boschman, Farahani, Darbandsari (bib40) 2022; 256
Echle, Rindtorff, Brinker, Luedde, Pearson, Kather (bib5) 2021; 124
Chen, Chen, Yu (bib14) 2021; 12
Lindman (10.1016/j.modpat.2022.100086_bib22) 2019; 10
Otsu (10.1016/j.modpat.2022.100086_bib42) 1979; 9
Yang (10.1016/j.modpat.2022.100086_bib17) 2021; 11
Gutman (10.1016/j.modpat.2022.100086_bib33) 2017; 77
Kocak (10.1016/j.modpat.2022.100086_bib28) 2019; 29
Bulten (10.1016/j.modpat.2022.100086_bib1) 2022; 28
da Silva (10.1016/j.modpat.2022.100086_bib44) 2021; 254
Weigert (10.1016/j.modpat.2022.100086_bib20) 2022
Mitchell (10.1016/j.modpat.2022.100086_bib7) 2021; 191
Bankhead (10.1016/j.modpat.2022.100086_bib38) 2022; 257
Runz (10.1016/j.modpat.2022.100086_bib39) 2021; 16
Wang (10.1016/j.modpat.2022.100086_bib16) 2019; 189
Bankhead (10.1016/j.modpat.2022.100086_bib30) 2017; 7
Feng (10.1016/j.modpat.2022.100086_bib4) 2020; 15
Aubreville (10.1016/j.modpat.2022.100086_bib19) 2022
Neto (10.1016/j.modpat.2022.100086_bib11) 2022; 14
Mehta (10.1016/j.modpat.2022.100086_bib2) 2022; 79
Pantanowitz (10.1016/j.modpat.2022.100086_bib3) 2020; 15
Hameed (10.1016/j.modpat.2022.100086_bib18) 2022; 12
Homeyer (10.1016/j.modpat.2022.100086_bib23) 2022; 35
Dudgeon (10.1016/j.modpat.2022.100086_bib26) 2021; 12
Miao (10.1016/j.modpat.2022.100086_bib25) 2021; 7
Oliveira (10.1016/j.modpat.2022.100086_bib10) 2021; 11
Qayyum (10.1016/j.modpat.2022.100086_bib8) 2021; 14
Rubens (10.1016/j.modpat.2022.100086_bib31) 2019; 13
Wahab (10.1016/j.modpat.2022.100086_bib9) 2022; 8
Albuquerque (10.1016/j.modpat.2022.100086_bib12) 2022
Boschman (10.1016/j.modpat.2022.100086_bib40) 2022; 256
Martel (10.1016/j.modpat.2022.100086_bib36) 2017; 77
Stritt (10.1016/j.modpat.2022.100086_bib34) 2020; 16
Allan (10.1016/j.modpat.2022.100086_bib35) 2012; 9
Campanella (10.1016/j.modpat.2022.100086_bib13) 2019; 25
Chen (10.1016/j.modpat.2022.100086_bib27) 2021; 3
Möhle (10.1016/j.modpat.2022.100086_bib24) 2021; 364
Shvetsov (10.1016/j.modpat.2022.100086_bib21) 2022; 14
de Hond (10.1016/j.modpat.2022.100086_bib41) 2022; 5
Chen (10.1016/j.modpat.2022.100086_bib14) 2021; 12
Korzynska (10.1016/j.modpat.2022.100086_bib37) 2021; 41
Tran (10.1016/j.modpat.2022.100086_bib29) 2022
Echle (10.1016/j.modpat.2022.100086_bib5) 2021; 124
Stadler (10.1016/j.modpat.2022.100086_bib6) 2021; 34
Yakimovich (10.1016/j.modpat.2022.100086_bib15) 2021; 2
References_xml – volume: 3
  start-page: e693
  year: 2021
  end-page: e695
  ident: bib27
  article-title: Evaluation of artificial intelligence on a reference standard based on subjective interpretation
  publication-title: Lancet Digit Health
– volume: 7
  year: 2017
  ident: bib30
  article-title: QuPath: Open source software for digital pathology image analysis
  publication-title: Sci Rep
– volume: 189
  start-page: 1686
  year: 2019
  end-page: 1698
  ident: bib16
  article-title: Pathology image analysis using segmentation deep learning algorithms
  publication-title: Am J Pathol
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: bib42
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans Syst Man Cybern
– volume: 9
  start-page: 245
  year: 2012
  end-page: 253
  ident: bib35
  article-title: OMERO: flexible, model-driven data management for experimental biology
  publication-title: Nat Methods
– volume: 28
  start-page: 154
  year: 2022
  end-page: 163
  ident: bib1
  article-title: Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
  publication-title: Nat Med
– volume: 364
  year: 2021
  ident: bib24
  article-title: Development of deep learning models for microglia analyses in brain tissue using DeePathology™ STUDIO
  publication-title: J Neurosci Methods
– volume: 14
  start-page: 2974
  year: 2022
  ident: bib21
  article-title: A pragmatic machine learning approach to quantify tumor-infiltrating lymphocytes in whole slide images
  publication-title: Cancers (Basel)
– volume: 34
  start-page: 105
  year: 2021
  end-page: 115
  ident: bib6
  article-title: Proactive construction of an annotated imaging database for artificial intelligence training
  publication-title: J Digit Imaging
– volume: 10
  start-page: 22
  year: 2019
  ident: bib22
  article-title: Annotations, ontologies, and whole slide images—development of an annotated ontology-driven whole slide image library of normal and abnormal human tissue
  publication-title: J Pathol Inform
– volume: 29
  start-page: 4765
  year: 2019
  end-page: 4775
  ident: bib28
  article-title: Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas
  publication-title: Eur Radiol
– volume: 25
  start-page: 1301
  year: 2019
  end-page: 1309
  ident: bib13
  article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
  publication-title: Nat Med
– volume: 77
  start-page: e75
  year: 2017
  end-page: e78
  ident: bib33
  article-title: The digital slide archive: a software platform for management, integration, and analysis of histology for cancer research
  publication-title: Cancer Res
– volume: 257
  start-page: 391
  year: 2022
  end-page: 402
  ident: bib38
  article-title: Developing image analysis methods for digital pathology
  publication-title: J Pathol
– volume: 124
  start-page: 686
  year: 2021
  end-page: 696
  ident: bib5
  article-title: Deep learning in cancer pathology: a new generation of clinical biomarkers
  publication-title: Br J Cancer
– volume: 14
  start-page: 2489
  year: 2022
  ident: bib11
  article-title: iMIL4PATH: a semi-supervised interpretable approach for colorectal whole-slide images
  publication-title: Cancers (Basel)
– volume: 15
  start-page: 65
  year: 2020
  ident: bib4
  article-title: Automated quantitative analysis of Ki-67 staining and HE images recognition and registration based on whole tissue sections in breast carcinoma
  publication-title: Diagn Pathol
– volume: 12
  year: 2022
  ident: bib18
  article-title: Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network
  publication-title: Sci Rep
– volume: 41
  start-page: 1436
  year: 2021
  end-page: 1453
  ident: bib37
  article-title: A review of current systems for annotation of cell and tissue images in digital pathology
  publication-title: Biocybern Biomed Eng
– volume: 191
  start-page: 1709
  year: 2021
  end-page: 1716
  ident: bib7
  article-title: Dealing with multi-dimensional data and the burden of annotation: easing the burden of annotation
  publication-title: Am J Pathol
– volume: 16
  year: 2020
  ident: bib34
  article-title: Orbit image analysis: an open-source whole slide image analysis tool
  publication-title: PLoS Comput Biol
– volume: 14
  start-page: 156
  year: 2021
  end-page: 180
  ident: bib8
  article-title: Secure and robust machine learning for healthcare: a survey
  publication-title: IEEE Rev Biomed Eng
– volume: 12
  start-page: 45
  year: 2021
  ident: bib26
  article-title: A pathologist-annotated dataset for validating artificial intelligence: a project description and pilot study
  publication-title: J Pathol Inform
– volume: 77
  start-page: e83
  year: 2017
  end-page: e86
  ident: bib36
  article-title: An image analysis resource for cancer research: PIIP-pathology image informatics platform for visualization, analysis, and management
  publication-title: Cancer Res
– volume: 16
  start-page: 71
  year: 2021
  ident: bib39
  article-title: Normalization of HE-stained histological images using cycle-consistent generative adversarial networks
  publication-title: Diagn Pathol
– volume: 5
  start-page: 2
  year: 2022
  ident: bib41
  article-title: Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review
  publication-title: NPJ Digit Med
– volume: 79
  start-page: 102466
  year: 2022
  ident: bib2
  article-title: End-to-End diagnosis of breast biopsy images with transformers
  publication-title: Med Image Anal
– volume: 11
  start-page: 14358
  year: 2021
  ident: bib10
  article-title: CAD systems for colorectal cancer from WSI are still not ready for clinical acceptance
  publication-title: Sci Rep
– year: 2022
  ident: bib29
  article-title: Plex: towards reliability using pretrained large model extensions
  publication-title: arXiv Preprint
– ident: bib32
  article-title: Radboud University Medical Center. ASAP
– ident: bib43
  article-title: Directorate-General for Research and Innovation. Turning FAIR into reality: final report and action plan from the European Commission expert group on FAIR data, Publications Office (2018)
– volume: 254
  start-page: 147
  year: 2021
  end-page: 158
  ident: bib44
  article-title: Independent real-world application of a clinical-grade automated prostate cancer detection system
  publication-title: J Pathol
– year: 2022
  ident: bib19
  article-title: Mitosis domain generalization in histopathology images—the MIDOG challenge
  publication-title: arXiv Preprint
– volume: 12
  start-page: 1193
  year: 2021
  ident: bib14
  article-title: An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning
  publication-title: Nat Commun
– volume: 7
  start-page: 542
  year: 2021
  end-page: 547
  ident: bib25
  article-title: Quick Annotator: an open-source digital pathology-based rapid image annotation tool
  publication-title: J Pathol Clin Res
– volume: 256
  start-page: 15
  year: 2022
  end-page: 24
  ident: bib40
  article-title: The utility of color normalization for AI-based diagnosis of hematoxylin and eosin-stained pathology images
  publication-title: J Pathol
– volume: 15
  start-page: 80
  year: 2020
  ident: bib3
  article-title: Accuracy and efficiency of an artificial intelligence tool when counting breast mitoses
  publication-title: Diagn Pathol
– volume: 8
  start-page: 116
  year: 2022
  end-page: 128
  ident: bib9
  article-title: Semantic annotation for computational pathology: multidisciplinary experience and best practice recommendations
  publication-title: J Pathol Clin Res
– start-page: 1
  year: 2022
  end-page: 4
  ident: bib20
  article-title: Nuclei instance segmentation and classification in histopathology images with Stardist
  publication-title: 2022 IEEE International Symposium on Biomedical Imaging Challenges (ISBIC)
– volume: 13
  year: 2019
  ident: bib31
  article-title: Cytomine: toward an open and collaborative software platform for digital pathology bridged to molecular investigations
  publication-title: Proteomics Clin Appl
– start-page: 588
  year: 2022
  end-page: 593
  ident: bib12
  article-title: Quality control in digital pathology: automatic fragment detection and counting
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– volume: 2
  year: 2021
  ident: bib15
  article-title: Labels in a haystack: approaches beyond supervised learning in biomedical applications
  publication-title: Patterns
– volume: 11
  year: 2021
  ident: bib17
  article-title: Artificial convolutional neural network in object detection and semantic segmentation for medical imaging analysis
  publication-title: Front Oncol
– volume: 35
  start-page: 1759
  year: 2022
  end-page: 1769
  ident: bib23
  article-title: Recommendations on compiling test datasets for evaluating artificial intelligence solutions in pathology
  publication-title: Mod Pathol
– volume: 5
  start-page: 2
  issue: 1
  year: 2022
  ident: 10.1016/j.modpat.2022.100086_bib41
  article-title: Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-021-00549-7
– volume: 9
  start-page: 62
  year: 1979
  ident: 10.1016/j.modpat.2022.100086_bib42
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1979.4310076
– volume: 12
  issue: 1
  year: 2022
  ident: 10.1016/j.modpat.2022.100086_bib18
  article-title: Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-19278-2
– start-page: 588
  year: 2022
  ident: 10.1016/j.modpat.2022.100086_bib12
  article-title: Quality control in digital pathology: automatic fragment detection and counting
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– volume: 10
  start-page: 22
  year: 2019
  ident: 10.1016/j.modpat.2022.100086_bib22
  article-title: Annotations, ontologies, and whole slide images—development of an annotated ontology-driven whole slide image library of normal and abnormal human tissue
  publication-title: J Pathol Inform
  doi: 10.4103/jpi.jpi_81_18
– volume: 34
  start-page: 105
  issue: 1
  year: 2021
  ident: 10.1016/j.modpat.2022.100086_bib6
  article-title: Proactive construction of an annotated imaging database for artificial intelligence training
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-020-00384-4
– volume: 124
  start-page: 686
  issue: 4
  year: 2021
  ident: 10.1016/j.modpat.2022.100086_bib5
  article-title: Deep learning in cancer pathology: a new generation of clinical biomarkers
  publication-title: Br J Cancer
  doi: 10.1038/s41416-020-01122-x
– volume: 77
  start-page: e75
  issue: 21
  year: 2017
  ident: 10.1016/j.modpat.2022.100086_bib33
  article-title: The digital slide archive: a software platform for management, integration, and analysis of histology for cancer research
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0629
– volume: 79
  start-page: 102466
  year: 2022
  ident: 10.1016/j.modpat.2022.100086_bib2
  article-title: End-to-End diagnosis of breast biopsy images with transformers
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102466
– year: 2022
  ident: 10.1016/j.modpat.2022.100086_bib29
  article-title: Plex: towards reliability using pretrained large model extensions
  publication-title: arXiv Preprint
– volume: 7
  start-page: 542
  issue: 6
  year: 2021
  ident: 10.1016/j.modpat.2022.100086_bib25
  article-title: Quick Annotator: an open-source digital pathology-based rapid image annotation tool
  publication-title: J Pathol Clin Res
  doi: 10.1002/cjp2.229
– volume: 257
  start-page: 391
  issue: 4
  year: 2022
  ident: 10.1016/j.modpat.2022.100086_bib38
  article-title: Developing image analysis methods for digital pathology
  publication-title: J Pathol
  doi: 10.1002/path.5921
– volume: 16
  issue: 2
  year: 2020
  ident: 10.1016/j.modpat.2022.100086_bib34
  article-title: Orbit image analysis: an open-source whole slide image analysis tool
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007313
– volume: 8
  start-page: 116
  issue: 2
  year: 2022
  ident: 10.1016/j.modpat.2022.100086_bib9
  article-title: Semantic annotation for computational pathology: multidisciplinary experience and best practice recommendations
  publication-title: J Pathol Clin Res
  doi: 10.1002/cjp2.256
– volume: 16
  start-page: 71
  issue: 1
  year: 2021
  ident: 10.1016/j.modpat.2022.100086_bib39
  article-title: Normalization of HE-stained histological images using cycle-consistent generative adversarial networks
  publication-title: Diagn Pathol
  doi: 10.1186/s13000-021-01126-y
– volume: 7
  issue: 1
  year: 2017
  ident: 10.1016/j.modpat.2022.100086_bib30
  article-title: QuPath: Open source software for digital pathology image analysis
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-17204-5
– volume: 189
  start-page: 1686
  issue: 9
  year: 2019
  ident: 10.1016/j.modpat.2022.100086_bib16
  article-title: Pathology image analysis using segmentation deep learning algorithms
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2019.05.007
– start-page: 1
  year: 2022
  ident: 10.1016/j.modpat.2022.100086_bib20
  article-title: Nuclei instance segmentation and classification in histopathology images with Stardist
– volume: 35
  start-page: 1759
  issue: 12
  year: 2022
  ident: 10.1016/j.modpat.2022.100086_bib23
  article-title: Recommendations on compiling test datasets for evaluating artificial intelligence solutions in pathology
  publication-title: Mod Pathol
  doi: 10.1038/s41379-022-01147-y
– volume: 13
  issue: 1
  year: 2019
  ident: 10.1016/j.modpat.2022.100086_bib31
  article-title: Cytomine: toward an open and collaborative software platform for digital pathology bridged to molecular investigations
  publication-title: Proteomics Clin Appl
  doi: 10.1002/prca.201800057
– volume: 41
  start-page: 1436
  issue: 4
  year: 2021
  ident: 10.1016/j.modpat.2022.100086_bib37
  article-title: A review of current systems for annotation of cell and tissue images in digital pathology
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2021.04.012
– volume: 9
  start-page: 245
  issue: 3
  year: 2012
  ident: 10.1016/j.modpat.2022.100086_bib35
  article-title: OMERO: flexible, model-driven data management for experimental biology
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1896
– volume: 77
  start-page: e83
  issue: 21
  year: 2017
  ident: 10.1016/j.modpat.2022.100086_bib36
  article-title: An image analysis resource for cancer research: PIIP-pathology image informatics platform for visualization, analysis, and management
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0323
– year: 2022
  ident: 10.1016/j.modpat.2022.100086_bib19
  article-title: Mitosis domain generalization in histopathology images—the MIDOG challenge
  publication-title: arXiv Preprint
– volume: 12
  start-page: 45
  year: 2021
  ident: 10.1016/j.modpat.2022.100086_bib26
  article-title: A pathologist-annotated dataset for validating artificial intelligence: a project description and pilot study
  publication-title: J Pathol Inform
  doi: 10.4103/jpi.jpi_83_20
– volume: 15
  start-page: 80
  issue: 1
  year: 2020
  ident: 10.1016/j.modpat.2022.100086_bib3
  article-title: Accuracy and efficiency of an artificial intelligence tool when counting breast mitoses
  publication-title: Diagn Pathol
  doi: 10.1186/s13000-020-00995-z
– volume: 364
  year: 2021
  ident: 10.1016/j.modpat.2022.100086_bib24
  article-title: Development of deep learning models for microglia analyses in brain tissue using DeePathology™ STUDIO
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2021.109371
– volume: 254
  start-page: 147
  issue: 2
  year: 2021
  ident: 10.1016/j.modpat.2022.100086_bib44
  article-title: Independent real-world application of a clinical-grade automated prostate cancer detection system
  publication-title: J Pathol
  doi: 10.1002/path.5662
– volume: 15
  start-page: 65
  issue: 1
  year: 2020
  ident: 10.1016/j.modpat.2022.100086_bib4
  article-title: Automated quantitative analysis of Ki-67 staining and HE images recognition and registration based on whole tissue sections in breast carcinoma
  publication-title: Diagn Pathol
  doi: 10.1186/s13000-020-00957-5
– volume: 29
  start-page: 4765
  issue: 9
  year: 2019
  ident: 10.1016/j.modpat.2022.100086_bib28
  article-title: Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-6003-8
– volume: 191
  start-page: 1709
  issue: 10
  year: 2021
  ident: 10.1016/j.modpat.2022.100086_bib7
  article-title: Dealing with multi-dimensional data and the burden of annotation: easing the burden of annotation
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2021.05.023
– volume: 3
  start-page: e693
  issue: 11
  year: 2021
  ident: 10.1016/j.modpat.2022.100086_bib27
  article-title: Evaluation of artificial intelligence on a reference standard based on subjective interpretation
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(21)00216-8
– volume: 25
  start-page: 1301
  issue: 8
  year: 2019
  ident: 10.1016/j.modpat.2022.100086_bib13
  article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0508-1
– volume: 256
  start-page: 15
  issue: 1
  year: 2022
  ident: 10.1016/j.modpat.2022.100086_bib40
  article-title: The utility of color normalization for AI-based diagnosis of hematoxylin and eosin-stained pathology images
  publication-title: J Pathol
  doi: 10.1002/path.5797
– volume: 12
  start-page: 1193
  issue: 1
  year: 2021
  ident: 10.1016/j.modpat.2022.100086_bib14
  article-title: An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21467-y
– volume: 11
  year: 2021
  ident: 10.1016/j.modpat.2022.100086_bib17
  article-title: Artificial convolutional neural network in object detection and semantic segmentation for medical imaging analysis
  publication-title: Front Oncol
– volume: 14
  start-page: 156
  year: 2021
  ident: 10.1016/j.modpat.2022.100086_bib8
  article-title: Secure and robust machine learning for healthcare: a survey
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2020.3013489
– volume: 11
  start-page: 14358
  issue: 1
  year: 2021
  ident: 10.1016/j.modpat.2022.100086_bib10
  article-title: CAD systems for colorectal cancer from WSI are still not ready for clinical acceptance
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-93746-z
– volume: 2
  issue: 12
  year: 2021
  ident: 10.1016/j.modpat.2022.100086_bib15
  article-title: Labels in a haystack: approaches beyond supervised learning in biomedical applications
  publication-title: Patterns
  doi: 10.1016/j.patter.2021.100383
– volume: 14
  start-page: 2974
  issue: 12
  year: 2022
  ident: 10.1016/j.modpat.2022.100086_bib21
  article-title: A pragmatic machine learning approach to quantify tumor-infiltrating lymphocytes in whole slide images
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14122974
– volume: 28
  start-page: 154
  issue: 1
  year: 2022
  ident: 10.1016/j.modpat.2022.100086_bib1
  article-title: Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01620-2
– volume: 14
  start-page: 2489
  issue: 10
  year: 2022
  ident: 10.1016/j.modpat.2022.100086_bib11
  article-title: iMIL4PATH: a semi-supervised interpretable approach for colorectal whole-slide images
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14102489
SSID ssj0014582
Score 2.492808
Snippet Training machine learning models for artificial intelligence (AI) applications in pathology often requires extensive annotation by human experts, but there is...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100086
SubjectTerms annotation
Artificial Intelligence
computational pathology
digital pathology
Humans
Machine Learning
Pathologists
Software
Title Annotating for Artificial Intelligence Applications in Digital Pathology: A Practical Guide for Pathologists and Researchers
URI https://dx.doi.org/10.1016/j.modpat.2022.100086
https://www.ncbi.nlm.nih.gov/pubmed/36788085
https://www.proquest.com/docview/2777010355
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1530-0285
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014582
  issn: 0893-3952
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1530-0285
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0014582
  issn: 0893-3952
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1530-0285
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0014582
  issn: 0893-3952
  databaseCode: GX1
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1530-0285
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014582
  issn: 0893-3952
  databaseCode: AKRWK
  dateStart: 20000101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELaWIlBfEJSjyyUj8bZKlMQ5HN6iHlRIhT600r5Fju3AVt1ktd08tOof4d8yPnIsbCnlJVpF9sjOfDueGc-B0EfKEhGFYOQwOP6dkMvSAS0_cRgVHo9SkJva4Xb8NT46C79Mo-lo9HMQtdSsCpdfb8wr-R-uwjvgq8qSvQdnO6LwAn4Df-EJHIbnP_E4q6paXaXbYMhsqQN_TPmMQaXNbLEeNb4_-65ahajy_D9MsopOTzelixTPPjczYYqBt0MADJc2l9HW_7C3QG0zKNNSbdFS7Pioil9dN3NzqwRQ7E6BbxcgZ2e6y5F2S09O3N4xrXs7TU6kWNaTPXfTlP16Dtuu17wWARkEu1jhlhKHpNGaJDalUCziwoFY9bXptVHiG-fDuTuvBewRDP4gcPvh6wW2fzv4unDENtLtPDdUckUlN1QeoIcBHBi6K8i0ix7y1XWjNlDsNtqsTB06-OdabtN6brNqtHZz-hQ9sWYJzgzGnqGRrHbQI9Oo9GoHPT62IRjP0U0POgwIwT3o8BB0eAg6PKuwBR3uQPcJZ7iDHNaQ0wSHkMMAOTyA3At0dnhwunfk2BYeDgfNaOVwrwhoLEALTwqfceJJRksaFaws4lAITxJGYi8pRUxIwMFa4X4MGjEhJShRHhgfL9FWVVdyF-HY42XISt-jPAxjv0hpkoJy6gtaFj4J5RiR9hPn3Na3V21WLvK_sXeMnG7WwtR3uWN80nIvtzqq0T1zAOQdMz-0zM5BhKt7OVbJurnMgyRJVLuVKBqjVwYF3VoIfAcKZtHre67zDdru_3Zv0dZq2ch3oD6vivcayL8AQLTGRw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Annotating+for+Artificial+Intelligence+Applications+in+Digital+Pathology%3A+A+Practical+Guide+for+Pathologists+and+Researchers&rft.jtitle=Modern+pathology&rft.au=Montezuma%2C+Diana&rft.au=Oliveira%2C+Sara+P.&rft.au=Neto%2C+Pedro+C.&rft.au=Oliveira%2C+Domingos&rft.date=2023-04-01&rft.issn=0893-3952&rft.volume=36&rft.issue=4&rft.spage=100086&rft_id=info:doi/10.1016%2Fj.modpat.2022.100086&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_modpat_2022_100086
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-3952&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-3952&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-3952&client=summon