Joint label completion and label-specific features for multi-label learning algorithm
Label correlations have always been one of the hotspots of multi-label learning. Using label correlations to complete the original label can enrich the information of the label matrix. At the same time, label-specific features give a thought that different labels have inherent characteristics that c...
Saved in:
| Published in | Soft computing (Berlin, Germany) Vol. 24; no. 9; pp. 6553 - 6569 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1432-7643 1433-7479 |
| DOI | 10.1007/s00500-020-04775-1 |
Cover
| Abstract | Label correlations have always been one of the hotspots of multi-label learning. Using label correlations to complete the original label can enrich the information of the label matrix. At the same time, label-specific features give a thought that different labels have inherent characteristics that can be distinguished, and we can use label correlations to enhance the learning process of label-specific features among similar labels. At present, most of the algorithms combine label correlations and label-specific features to improve the multi-label learning effect, but do not consider the impact of label marking errors or defaults in data sets. In fact, the label completion method can further enrich the information of label matrix, and then the joint learning framework of joint label-specific features can effectively improve the robustness of the multi-label learning algorithm. Based on this, this paper proposes a multi-label learning algorithm for joint label completion and label-specific features, and constructs a new multi-label learning algorithm framework by means of joint label completion and label-specific features. Completion matrix and label-specific features are obtained by alternating iteration method, and the label matrix updating the optimization framework fully considers the label correlations. The algorithm in this paper has been demonstrated and trained on several benchmark multi-label data sets by extensive experiments, which verifies the effectiveness of the algorithm. |
|---|---|
| AbstractList | Label correlations have always been one of the hotspots of multi-label learning. Using label correlations to complete the original label can enrich the information of the label matrix. At the same time, label-specific features give a thought that different labels have inherent characteristics that can be distinguished, and we can use label correlations to enhance the learning process of label-specific features among similar labels. At present, most of the algorithms combine label correlations and label-specific features to improve the multi-label learning effect, but do not consider the impact of label marking errors or defaults in data sets. In fact, the label completion method can further enrich the information of label matrix, and then the joint learning framework of joint label-specific features can effectively improve the robustness of the multi-label learning algorithm. Based on this, this paper proposes a multi-label learning algorithm for joint label completion and label-specific features, and constructs a new multi-label learning algorithm framework by means of joint label completion and label-specific features. Completion matrix and label-specific features are obtained by alternating iteration method, and the label matrix updating the optimization framework fully considers the label correlations. The algorithm in this paper has been demonstrated and trained on several benchmark multi-label data sets by extensive experiments, which verifies the effectiveness of the algorithm. |
| Author | Zhao, Dawei Zheng, Weijie Wang, Yibin Cheng, Yusheng |
| Author_xml | – sequence: 1 givenname: Yibin surname: Wang fullname: Wang, Yibin organization: School of Computer and Information, Anqing Normal University, The University Key Laboratory of Intelligent Perception and Computing of Anhui Province – sequence: 2 givenname: Weijie surname: Zheng fullname: Zheng, Weijie organization: School of Computer and Information, Anqing Normal University – sequence: 3 givenname: Yusheng orcidid: 0000-0002-6562-1153 surname: Cheng fullname: Cheng, Yusheng email: chengyshaq@163.com organization: School of Computer and Information, Anqing Normal University, The University Key Laboratory of Intelligent Perception and Computing of Anhui Province – sequence: 4 givenname: Dawei surname: Zhao fullname: Zhao, Dawei organization: School of Computer and Information, Anqing Normal University |
| BookMark | eNp9kE1PAyEQhompibX6Bzxt4hkdYHdZjqbxM0282DNhKVSaXViBHvz3brsmJh56IJBhnncmzyWa-eANQjcE7ggAv08AFQAGOp6S8wqTMzQnJWOYl1zMjm-KeV2yC3SZ0g6AEl6xOVq_Bedz0anWdIUO_dCZ7IIvlN9MRZwGo511urBG5X00qbAhFv2-yw5PWGdU9M5vC9VtQ3T5s79C51Z1yVz_3gu0fnr8WL7g1fvz6_JhhTWracZtDQIoU7o1vGlpyQmByvK2rY1hQIUgFjY1t9SOX40gqhRWKKK0aBu90YQt0O2UO8TwtTcpy13YRz-OlFSQBuqyKeuxi05dOoaUorFyiK5X8VsSkAd9ctInR33yqE8eopt_kHZZHdzkqFx3GmUTmsY5fmvi31YnqB_U-YaG |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126844 crossref_primary_10_1038_s41598_024_72765_6 crossref_primary_10_3233_IDA_216404 crossref_primary_10_1016_j_iswa_2022_200086 crossref_primary_10_1007_s10489_024_05809_z crossref_primary_10_1007_s10489_022_03634_w crossref_primary_10_1007_s13042_021_01432_3 crossref_primary_10_1016_j_engappai_2023_106837 crossref_primary_10_1109_TMM_2024_3406196 crossref_primary_10_1109_TNSRE_2022_3233109 crossref_primary_10_1109_LSP_2023_3340097 crossref_primary_10_1007_s00530_024_01428_3 crossref_primary_10_1109_TPAMI_2021_3070215 crossref_primary_10_1007_s10489_021_02868_4 crossref_primary_10_1007_s13042_022_01692_7 crossref_primary_10_1016_j_asoc_2024_112565 crossref_primary_10_1007_s00500_023_07916_4 crossref_primary_10_1016_j_neucom_2022_06_068 crossref_primary_10_1016_j_patcog_2021_108259 crossref_primary_10_1007_s10489_023_05203_1 crossref_primary_10_1007_s11063_024_11528_w crossref_primary_10_1145_3458283 crossref_primary_10_1109_ACCESS_2024_3411095 |
| Cites_doi | 10.1016/j.jnca.2019.02.009 10.1016/j.neucom.2018.09.033 10.1109/TPAMI.2014.2339815 10.1016/j.compind.2019.02.001 10.1016/j.patcog.2006.12.019 10.1016/j.knosys.2018.08.018 10.1016/j.neunet.2018.01.011 10.1016/j.knosys.2016.04.012 10.1137/080716542 10.1109/TCYB.2017.2663838 10.1016/j.neucom.2005.12.126 10.1109/TKDE.2016.2608339 10.1016/j.knosys.2018.07.003 10.1016/j.jclepro.2018.07.164 10.1109/ACCESS.2019.2891611 10.1109/TKDE.2017.2785795 10.1109/TIP.2009.2028250 10.1016/j.ins.2019.04.021 10.1007/s10851-015-0610-z 10.1016/j.patcog.2019.01.007 10.26555/ijain.v4i1.146 10.7551/mitpress/1120.003.0092 10.1109/ICCV.2015.473 10.1109/ICDM.2014.125 10.1609/aaai.v24i1.7699 10.1609/aaai.v32i1.11762 10.1109/ICDM.2015.67 10.1109/ICDM.2013.143 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00500-020-04775-1 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1433-7479 |
| EndPage | 6569 |
| ExternalDocumentID | 10_1007_s00500_020_04775_1 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c362t-b609023acbe78b2471105f7bb6ee302991f0d67f2f471891a49f9a1ac9b8cdc13 |
| IEDL.DBID | U2A |
| ISSN | 1432-7643 |
| IngestDate | Fri Jul 25 23:24:38 EDT 2025 Thu Apr 24 23:00:09 EDT 2025 Wed Oct 01 03:00:07 EDT 2025 Fri Feb 21 02:33:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Multi-label learning Label-specific features Label completion Label correlations |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c362t-b609023acbe78b2471105f7bb6ee302991f0d67f2f471891a49f9a1ac9b8cdc13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6562-1153 |
| PQID | 2918064846 |
| PQPubID | 2043697 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2918064846 crossref_primary_10_1007_s00500_020_04775_1 crossref_citationtrail_10_1007_s00500_020_04775_1 springer_journals_10_1007_s00500_020_04775_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-01 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Huang, Li, Huang (CR14) 2016; 28 Huang, Li, Huang (CR15) 2018; 48 Huang, Qin, Zheng (CR16) 2019; 492 Zhang, Li, Cao (CR30) 2018; 159 Zhang, Wu (CR28) 2015; 37 CR17 Zendehboudi, Baseer, Saidur (CR27) 2018; 199 Guo, Cao, Kui (CR9) 2019; 133 CR13 He, Yang, Gao (CR11) 2019; 163 Zhao, Wang, Chu (CR31) 2019; 107 Sitompul, Nababan (CR21) 2018; 4 Beck, Teboulle (CR1) 2009; 18 Huang, Zhu, Siew (CR12) 2006; 70 Liu, Li, Xu (CR18) 2018; 101 Zhu, Kwok, Zhou (CR32) 2017; 30 Xu, Yang, Yu (CR26) 2016; 104 CR3 CR6 CR8 CR7 Han, Huang, Zhang (CR10) 2019; 7 CR25 CR24 CR23 Nguyen, Nguyen, Luong (CR19) 2019; 90 CR22 Rodriguez, Wohlberg (CR20) 2016; 55 Zhang, Zhou (CR29) 2007; 40 Cheng, Zhao, Zhan (CR4) 2018; 321 Beck, Teboulle (CR2) 2009; 2 Demšar (CR5) 2006; 7 A Beck (4775_CR2) 2009; 2 4775_CR22 J Huang (4775_CR14) 2016; 28 J Huang (4775_CR15) 2018; 48 4775_CR24 4775_CR23 ML Zhang (4775_CR28) 2015; 37 Y Zhu (4775_CR32) 2017; 30 B Liu (4775_CR18) 2018; 101 D Zhao (4775_CR31) 2019; 107 S Xu (4775_CR26) 2016; 104 A Beck (4775_CR1) 2009; 18 J Huang (4775_CR16) 2019; 492 4775_CR25 YS Cheng (4775_CR4) 2018; 321 H Han (4775_CR10) 2019; 7 4775_CR3 GB Huang (4775_CR12) 2006; 70 4775_CR13 J Zhang (4775_CR30) 2018; 159 J Demšar (4775_CR5) 2006; 7 4775_CR6 4775_CR8 4775_CR7 A Zendehboudi (4775_CR27) 2018; 199 ML Zhang (4775_CR29) 2007; 40 K Guo (4775_CR9) 2019; 133 ZF He (4775_CR11) 2019; 163 OS Sitompul (4775_CR21) 2018; 4 TT Nguyen (4775_CR19) 2019; 90 4775_CR17 P Rodriguez (4775_CR20) 2016; 55 |
| References_xml | – volume: 133 start-page: 51 year: 2019 end-page: 59 ident: CR9 article-title: LCC: towards efficient label completion and correction for supervised medical image learning in smart diagnosis publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2019.02.009 – ident: CR22 – volume: 321 start-page: 92 year: 2018 end-page: 102 ident: CR4 article-title: Multi-label learning of non-equilibrium labels completion with mean shift publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.033 – volume: 37 start-page: 107 issue: 1 year: 2015 end-page: 120 ident: CR28 article-title: Lift: multi-label learning with label-specific features publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2014.2339815 – volume: 107 start-page: 59 year: 2019 end-page: 66 ident: CR31 article-title: Deep convolutional neural network based planet bearing fault classification publication-title: Comput Ind doi: 10.1016/j.compind.2019.02.001 – volume: 40 start-page: 2038 issue: 7 year: 2007 end-page: 2048 ident: CR29 article-title: ML-KNN: a lazy learning approach to multi-label learning publication-title: Pattern Recogn doi: 10.1016/j.patcog.2006.12.019 – volume: 163 start-page: 145 year: 2019 end-page: 158 ident: CR11 article-title: Joint multi-label classification and label correlations with missing labels and feature selection publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2018.08.018 – volume: 101 start-page: 57 year: 2018 end-page: 67 ident: CR18 article-title: Manifold regularized matrix completion for multi-label learning with ADMM publication-title: Neural Netw doi: 10.1016/j.neunet.2018.01.011 – ident: CR6 – volume: 104 start-page: 52 year: 2016 end-page: 61 ident: CR26 article-title: Multi-label learning with label-specific feature reduction publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2016.04.012 – volume: 2 start-page: 183 issue: 1 year: 2009 end-page: 202 ident: CR2 article-title: A fast iterative shrinkage–thresholding algorithm for linear inverse problems publication-title: SIAM J Imaging Sci doi: 10.1137/080716542 – ident: CR8 – volume: 48 start-page: 876 issue: 3 year: 2018 end-page: 889 ident: CR15 article-title: Joint feature selection and classification for multilabel learning publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2017.2663838 – volume: 70 start-page: 489 issue: 1–3 year: 2006 end-page: 501 ident: CR12 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – ident: CR25 – ident: CR23 – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: CR5 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – volume: 28 start-page: 3309 issue: 12 year: 2016 end-page: 3323 ident: CR14 article-title: Learning label-specific features and class-dependent labels for multi-label classification publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2016.2608339 – volume: 159 start-page: 148 year: 2018 end-page: 157 ident: CR30 article-title: Multi-label learning with label-specific features by resolving label correlations publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2018.07.003 – volume: 199 start-page: 272 year: 2018 end-page: 285 ident: CR27 article-title: Application of support vector machine models for forecasting solar and wind energy resources: a review publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.07.164 – ident: CR3 – volume: 7 start-page: 11474 year: 2019 end-page: 11484 ident: CR10 article-title: Multi-label learning with label specific features using correlation information publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891611 – volume: 30 start-page: 1081 issue: 6 year: 2017 end-page: 1094 ident: CR32 article-title: Multi-label learning with global and local label correlation publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2017.2785795 – volume: 18 start-page: 2419 issue: 11 year: 2009 end-page: 2434 ident: CR1 article-title: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2009.2028250 – volume: 492 start-page: 124 year: 2019 end-page: 146 ident: CR16 article-title: Improving multi-label classification with missing labels by learning label-specific features publication-title: Inf Sci doi: 10.1016/j.ins.2019.04.021 – ident: CR17 – ident: CR13 – volume: 55 start-page: 1 issue: 1 year: 2016 end-page: 8 ident: CR20 article-title: Incremental principal component pursuit for video background modeling publication-title: J Math Imaging Vis doi: 10.1007/s10851-015-0610-z – ident: CR7 – volume: 90 start-page: 35 year: 2019 end-page: 51 ident: CR19 article-title: Multi-label classification via label correlation and first order feature dependance in a data stream publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.01.007 – ident: CR24 – volume: 4 start-page: 21 issue: 1 year: 2018 end-page: 27 ident: CR21 article-title: Biased support vector machine and weighted-smote in handling class imbalance problem publication-title: Int J Adv Intell Inform doi: 10.26555/ijain.v4i1.146 – ident: 4775_CR24 – ident: 4775_CR7 doi: 10.7551/mitpress/1120.003.0092 – ident: 4775_CR23 doi: 10.1109/ICCV.2015.473 – volume: 104 start-page: 52 year: 2016 ident: 4775_CR26 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2016.04.012 – volume: 7 start-page: 11474 year: 2019 ident: 4775_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891611 – volume: 133 start-page: 51 year: 2019 ident: 4775_CR9 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2019.02.009 – volume: 163 start-page: 145 year: 2019 ident: 4775_CR11 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2018.08.018 – volume: 37 start-page: 107 issue: 1 year: 2015 ident: 4775_CR28 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2014.2339815 – volume: 321 start-page: 92 year: 2018 ident: 4775_CR4 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.033 – volume: 28 start-page: 3309 issue: 12 year: 2016 ident: 4775_CR14 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2016.2608339 – volume: 199 start-page: 272 year: 2018 ident: 4775_CR27 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.07.164 – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 4775_CR2 publication-title: SIAM J Imaging Sci doi: 10.1137/080716542 – volume: 101 start-page: 57 year: 2018 ident: 4775_CR18 publication-title: Neural Netw doi: 10.1016/j.neunet.2018.01.011 – ident: 4775_CR25 doi: 10.1109/ICDM.2014.125 – volume: 492 start-page: 124 year: 2019 ident: 4775_CR16 publication-title: Inf Sci doi: 10.1016/j.ins.2019.04.021 – volume: 7 start-page: 1 year: 2006 ident: 4775_CR5 publication-title: J Mach Learn Res – volume: 55 start-page: 1 issue: 1 year: 2016 ident: 4775_CR20 publication-title: J Math Imaging Vis doi: 10.1007/s10851-015-0610-z – ident: 4775_CR17 – volume: 48 start-page: 876 issue: 3 year: 2018 ident: 4775_CR15 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2017.2663838 – ident: 4775_CR3 – volume: 107 start-page: 59 year: 2019 ident: 4775_CR31 publication-title: Comput Ind doi: 10.1016/j.compind.2019.02.001 – ident: 4775_CR22 doi: 10.1609/aaai.v24i1.7699 – ident: 4775_CR6 doi: 10.1609/aaai.v32i1.11762 – volume: 18 start-page: 2419 issue: 11 year: 2009 ident: 4775_CR1 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2009.2028250 – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 4775_CR12 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – ident: 4775_CR13 doi: 10.1109/ICDM.2015.67 – volume: 159 start-page: 148 year: 2018 ident: 4775_CR30 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2018.07.003 – volume: 4 start-page: 21 issue: 1 year: 2018 ident: 4775_CR21 publication-title: Int J Adv Intell Inform doi: 10.26555/ijain.v4i1.146 – volume: 90 start-page: 35 year: 2019 ident: 4775_CR19 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.01.007 – volume: 40 start-page: 2038 issue: 7 year: 2007 ident: 4775_CR29 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2006.12.019 – volume: 30 start-page: 1081 issue: 6 year: 2017 ident: 4775_CR32 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2017.2785795 – ident: 4775_CR8 doi: 10.1109/ICDM.2013.143 |
| SSID | ssj0021753 |
| Score | 2.3778443 |
| Snippet | Label correlations have always been one of the hotspots of multi-label learning. Using label correlations to complete the original label can enrich the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6553 |
| SubjectTerms | Algorithms Artificial Intelligence Classification Computational Intelligence Control Correlation Datasets Engineering Foundations Hypothesis testing Labels Learning Machine learning Mathematical Logic and Foundations Mechatronics Robotics |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEB1qe_Hit1itkoM3DW6y3wcRlZZSsIhY6G3JZpMq1G216_93kmZbFOx1d5PDTJI3s5l5D-DSV6HAqFhSxbUwLTmcCszAaJEWUuRcs8BqLD0No_4oGIzDcQOGdS-MKausz0R7UBczaf6R3_CUJQifCJd3809qVKPM7WotoSGctEJxaynGtqDFDTNWE1oP3eHzyyoFc7yUGCRgXIlg7NpobDOdoULxqEmnvCCOQ8p-Q9U6_vxzZWqRqLcHOy6EJPdLn-9DQ5UHsFvLMxC3Ww9hNJi9lxVBN6spsaXjyniBiLJYPqSmzdKUChGtLL_ngmAIS2yNIV0Oc6ISEyKmE7RG9fZxBKNe9_WxT52KApUIThXNI1N66QuZqzjJOYIRhlQ6zvNIKd9DNGLaK6JYc21wKmUiSHUqmJBpnshCMv8YmuWsVCdANJNeyKWX6NgLMDFBZxhw0wkLZKq4agOrDZZJRzFulC6m2Yoc2Ro5QyNn1sgZa8PVasx8SbCx8etO7YfMbbZFtl4abbiufbN-_f9sp5tnO4NtbpeDKW_sQLP6-lbnGIJU-YVbVz-1vdXp priority: 102 providerName: ProQuest |
| Title | Joint label completion and label-specific features for multi-label learning algorithm |
| URI | https://link.springer.com/article/10.1007/s00500-020-04775-1 https://www.proquest.com/docview/2918064846 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AFBBN dateStart: 19970401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-7479 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: U2A dateStart: 19970404 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPTgY1VcXZccvGmgyfZ5XGVXWVFEXFhPJU0TXVi74tb_7yRN6wMVPBXapJSZpN83ZOYbgOOeCgSyYkkV18KU5HAqMAKjeZJLkXHNfNtj6fomvBz7o0kwcUVhizrbvT6StH_qptjNSJV41IQ7nh9FAcWYZzUwcl64ise834RZTnsSiQByRwRcVyrz8zu-wtEHx_x2LGrRZrgFG44mkn7l121YUkULNusWDMTtyBasf9IT3IHxaD4tSoKOVTNik8WVsTsRRV7dpKaw0iQHEa2soueCIGklNquQVtNcG4lHImaP89dp-fS8C-Ph4P78krq-CVQiHJU0C02yZU_ITEVxxhF-kETpKMtCpXoe4g_TXh5GmmuDTAkTfqITwYRMsljmkvX2YKWYF2ofiGbSC7j0Yh15PoYiyFYMnOmY-TJRXLWB1eZLpRMVN70tZmkjh2xNnqLJU2vylLXhpJnzUklq_Dm6U3slddtrkfKExcil8GvacFp76uPx7287-N_wQ1jjdrGYBMcOrJSvb-oISUiZdWE5Hl50YbV_8XA1wOvZ4Ob2rmtX4js0_dTC |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HODCGzEYkAOcIKJJu7U9TIinxmtCiEncSpomA2l0wIoQf47fhpOlm0CCG9e2ycF27M-N7Q9gy1c1gahYUsW1MC05nArMwGgWZ1KkXLPAcixdterNdnB-V7sbg8-yF8aUVZY-0TrqrCfNP_I9HrMIwyeGy_3nF2pYo8ztakmhIRy1QtawI8ZcY8eF-njHFK7fODtGfW9zfnpye9SkjmWASnTeBU3rpjTRFzJVYZRydNYIOXSYpnWlfA-9NdNeVg8118aPx0wEsY4FEzJOI5lJ5uO-4zAZ-EGMyd_k4Unr-maY8rk5mAhKEMdi8HdtO7Z5z4xe8ahJ37wgDGuUfQ-NI7z744rWRr7TOZhxkJUcDGxsHsZUvgCzJR0Ecd5hEdrnvce8IGhWqktsqboyWicizwYPqWnrNKVJRCs7T7RPEDITW9NIB8sciUWHiG4HpV88PC1B-1_kuQwTeS9XK0A0k16NSy_SoRdgIoTKN8FURyyQseKqAqwUWCLdSHPDrNFNhsOYrZATFHJihZywCuwM1zwPBnr8-XW11EPiDnc_GZliBXZL3Yxe_77b6t-7bcJU8_bqMrk8a12swTS3pmFKK6swUby-qXWEP0W64WyMwP1_m_UXvUcSsA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SQfTgoypWq-bgTUM32fexqKVWLR5c6G3JZpNaqNvSrv_fSfbRKip43TxYZhK-b8jMNwhd2dLlwIoFkUxxXZLDCIcIjKRhKnjCFHVMj6XnodePnMHIHa1V8Zts9-pJsqhp0CpNWd6Zp6pTF75p2RKL6NDHcnzfJRD_bDpaKAFOdMS6dchV6lACKQAeCeBbls38vMdXaFrxzW9PpAZ5evtot6SMuFv4-ABtyKyJ9qp2DLi8nU20s6YteIiiwWyS5RicLKfYJI5L7QPMs7T4SHSRpU4Uwkoadc8lBgKLTYYhKZaVLSXGmE_Hs8Ukf3s_QlHv_vW2T8oeCkQANOUk8XTipc1FIv0gYQBFQKiUnySelLYFWESVlXq-YkqjVEi5E6qQUy7CJBCpoPYxamSzTJ4grKiwXCasQPmWA2EJMBcNbSqgjgglky1EK_PFohQY130upnEtjWxMHoPJY2PymLbQdb1mXshr_Dm7XXklLq_aMmYhDYBXwd-00E3lqdXw77ud_m_6Jdp6uevFTw_DxzO0zcy50XmPbdTIFx_yHLhJnlyY4_cJj2XX1g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+label+completion+and+label-specific+features+for+multi-label+learning+algorithm&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Wang%2C+Yibin&rft.au=Zheng%2C+Weijie&rft.au=Cheng%2C+Yusheng&rft.au=Zhao%2C+Dawei&rft.date=2020-05-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=24&rft.issue=9&rft.spage=6553&rft.epage=6569&rft_id=info:doi/10.1007%2Fs00500-020-04775-1&rft.externalDocID=10_1007_s00500_020_04775_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |