Joint label completion and label-specific features for multi-label learning algorithm

Label correlations have always been one of the hotspots of multi-label learning. Using label correlations to complete the original label can enrich the information of the label matrix. At the same time, label-specific features give a thought that different labels have inherent characteristics that c...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 24; no. 9; pp. 6553 - 6569
Main Authors Wang, Yibin, Zheng, Weijie, Cheng, Yusheng, Zhao, Dawei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-020-04775-1

Cover

Abstract Label correlations have always been one of the hotspots of multi-label learning. Using label correlations to complete the original label can enrich the information of the label matrix. At the same time, label-specific features give a thought that different labels have inherent characteristics that can be distinguished, and we can use label correlations to enhance the learning process of label-specific features among similar labels. At present, most of the algorithms combine label correlations and label-specific features to improve the multi-label learning effect, but do not consider the impact of label marking errors or defaults in data sets. In fact, the label completion method can further enrich the information of label matrix, and then the joint learning framework of joint label-specific features can effectively improve the robustness of the multi-label learning algorithm. Based on this, this paper proposes a multi-label learning algorithm for joint label completion and label-specific features, and constructs a new multi-label learning algorithm framework by means of joint label completion and label-specific features. Completion matrix and label-specific features are obtained by alternating iteration method, and the label matrix updating the optimization framework fully considers the label correlations. The algorithm in this paper has been demonstrated and trained on several benchmark multi-label data sets by extensive experiments, which verifies the effectiveness of the algorithm.
AbstractList Label correlations have always been one of the hotspots of multi-label learning. Using label correlations to complete the original label can enrich the information of the label matrix. At the same time, label-specific features give a thought that different labels have inherent characteristics that can be distinguished, and we can use label correlations to enhance the learning process of label-specific features among similar labels. At present, most of the algorithms combine label correlations and label-specific features to improve the multi-label learning effect, but do not consider the impact of label marking errors or defaults in data sets. In fact, the label completion method can further enrich the information of label matrix, and then the joint learning framework of joint label-specific features can effectively improve the robustness of the multi-label learning algorithm. Based on this, this paper proposes a multi-label learning algorithm for joint label completion and label-specific features, and constructs a new multi-label learning algorithm framework by means of joint label completion and label-specific features. Completion matrix and label-specific features are obtained by alternating iteration method, and the label matrix updating the optimization framework fully considers the label correlations. The algorithm in this paper has been demonstrated and trained on several benchmark multi-label data sets by extensive experiments, which verifies the effectiveness of the algorithm.
Author Zhao, Dawei
Zheng, Weijie
Wang, Yibin
Cheng, Yusheng
Author_xml – sequence: 1
  givenname: Yibin
  surname: Wang
  fullname: Wang, Yibin
  organization: School of Computer and Information, Anqing Normal University, The University Key Laboratory of Intelligent Perception and Computing of Anhui Province
– sequence: 2
  givenname: Weijie
  surname: Zheng
  fullname: Zheng, Weijie
  organization: School of Computer and Information, Anqing Normal University
– sequence: 3
  givenname: Yusheng
  orcidid: 0000-0002-6562-1153
  surname: Cheng
  fullname: Cheng, Yusheng
  email: chengyshaq@163.com
  organization: School of Computer and Information, Anqing Normal University, The University Key Laboratory of Intelligent Perception and Computing of Anhui Province
– sequence: 4
  givenname: Dawei
  surname: Zhao
  fullname: Zhao, Dawei
  organization: School of Computer and Information, Anqing Normal University
BookMark eNp9kE1PAyEQhompibX6Bzxt4hkdYHdZjqbxM0282DNhKVSaXViBHvz3brsmJh56IJBhnncmzyWa-eANQjcE7ggAv08AFQAGOp6S8wqTMzQnJWOYl1zMjm-KeV2yC3SZ0g6AEl6xOVq_Bedz0anWdIUO_dCZ7IIvlN9MRZwGo511urBG5X00qbAhFv2-yw5PWGdU9M5vC9VtQ3T5s79C51Z1yVz_3gu0fnr8WL7g1fvz6_JhhTWracZtDQIoU7o1vGlpyQmByvK2rY1hQIUgFjY1t9SOX40gqhRWKKK0aBu90YQt0O2UO8TwtTcpy13YRz-OlFSQBuqyKeuxi05dOoaUorFyiK5X8VsSkAd9ctInR33yqE8eopt_kHZZHdzkqFx3GmUTmsY5fmvi31YnqB_U-YaG
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126844
crossref_primary_10_1038_s41598_024_72765_6
crossref_primary_10_3233_IDA_216404
crossref_primary_10_1016_j_iswa_2022_200086
crossref_primary_10_1007_s10489_024_05809_z
crossref_primary_10_1007_s10489_022_03634_w
crossref_primary_10_1007_s13042_021_01432_3
crossref_primary_10_1016_j_engappai_2023_106837
crossref_primary_10_1109_TMM_2024_3406196
crossref_primary_10_1109_TNSRE_2022_3233109
crossref_primary_10_1109_LSP_2023_3340097
crossref_primary_10_1007_s00530_024_01428_3
crossref_primary_10_1109_TPAMI_2021_3070215
crossref_primary_10_1007_s10489_021_02868_4
crossref_primary_10_1007_s13042_022_01692_7
crossref_primary_10_1016_j_asoc_2024_112565
crossref_primary_10_1007_s00500_023_07916_4
crossref_primary_10_1016_j_neucom_2022_06_068
crossref_primary_10_1016_j_patcog_2021_108259
crossref_primary_10_1007_s10489_023_05203_1
crossref_primary_10_1007_s11063_024_11528_w
crossref_primary_10_1145_3458283
crossref_primary_10_1109_ACCESS_2024_3411095
Cites_doi 10.1016/j.jnca.2019.02.009
10.1016/j.neucom.2018.09.033
10.1109/TPAMI.2014.2339815
10.1016/j.compind.2019.02.001
10.1016/j.patcog.2006.12.019
10.1016/j.knosys.2018.08.018
10.1016/j.neunet.2018.01.011
10.1016/j.knosys.2016.04.012
10.1137/080716542
10.1109/TCYB.2017.2663838
10.1016/j.neucom.2005.12.126
10.1109/TKDE.2016.2608339
10.1016/j.knosys.2018.07.003
10.1016/j.jclepro.2018.07.164
10.1109/ACCESS.2019.2891611
10.1109/TKDE.2017.2785795
10.1109/TIP.2009.2028250
10.1016/j.ins.2019.04.021
10.1007/s10851-015-0610-z
10.1016/j.patcog.2019.01.007
10.26555/ijain.v4i1.146
10.7551/mitpress/1120.003.0092
10.1109/ICCV.2015.473
10.1109/ICDM.2014.125
10.1609/aaai.v24i1.7699
10.1609/aaai.v32i1.11762
10.1109/ICDM.2015.67
10.1109/ICDM.2013.143
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-020-04775-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 6569
ExternalDocumentID 10_1007_s00500_020_04775_1
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c362t-b609023acbe78b2471105f7bb6ee302991f0d67f2f471891a49f9a1ac9b8cdc13
IEDL.DBID U2A
ISSN 1432-7643
IngestDate Fri Jul 25 23:24:38 EDT 2025
Thu Apr 24 23:00:09 EDT 2025
Wed Oct 01 03:00:07 EDT 2025
Fri Feb 21 02:33:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Multi-label learning
Label-specific features
Label completion
Label correlations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-b609023acbe78b2471105f7bb6ee302991f0d67f2f471891a49f9a1ac9b8cdc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6562-1153
PQID 2918064846
PQPubID 2043697
PageCount 17
ParticipantIDs proquest_journals_2918064846
crossref_primary_10_1007_s00500_020_04775_1
crossref_citationtrail_10_1007_s00500_020_04775_1
springer_journals_10_1007_s00500_020_04775_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Huang, Li, Huang (CR14) 2016; 28
Huang, Li, Huang (CR15) 2018; 48
Huang, Qin, Zheng (CR16) 2019; 492
Zhang, Li, Cao (CR30) 2018; 159
Zhang, Wu (CR28) 2015; 37
CR17
Zendehboudi, Baseer, Saidur (CR27) 2018; 199
Guo, Cao, Kui (CR9) 2019; 133
CR13
He, Yang, Gao (CR11) 2019; 163
Zhao, Wang, Chu (CR31) 2019; 107
Sitompul, Nababan (CR21) 2018; 4
Beck, Teboulle (CR1) 2009; 18
Huang, Zhu, Siew (CR12) 2006; 70
Liu, Li, Xu (CR18) 2018; 101
Zhu, Kwok, Zhou (CR32) 2017; 30
Xu, Yang, Yu (CR26) 2016; 104
CR3
CR6
CR8
CR7
Han, Huang, Zhang (CR10) 2019; 7
CR25
CR24
CR23
Nguyen, Nguyen, Luong (CR19) 2019; 90
CR22
Rodriguez, Wohlberg (CR20) 2016; 55
Zhang, Zhou (CR29) 2007; 40
Cheng, Zhao, Zhan (CR4) 2018; 321
Beck, Teboulle (CR2) 2009; 2
Demšar (CR5) 2006; 7
A Beck (4775_CR2) 2009; 2
4775_CR22
J Huang (4775_CR14) 2016; 28
J Huang (4775_CR15) 2018; 48
4775_CR24
4775_CR23
ML Zhang (4775_CR28) 2015; 37
Y Zhu (4775_CR32) 2017; 30
B Liu (4775_CR18) 2018; 101
D Zhao (4775_CR31) 2019; 107
S Xu (4775_CR26) 2016; 104
A Beck (4775_CR1) 2009; 18
J Huang (4775_CR16) 2019; 492
4775_CR25
YS Cheng (4775_CR4) 2018; 321
H Han (4775_CR10) 2019; 7
4775_CR3
GB Huang (4775_CR12) 2006; 70
4775_CR13
J Zhang (4775_CR30) 2018; 159
J Demšar (4775_CR5) 2006; 7
4775_CR6
4775_CR8
4775_CR7
A Zendehboudi (4775_CR27) 2018; 199
ML Zhang (4775_CR29) 2007; 40
K Guo (4775_CR9) 2019; 133
ZF He (4775_CR11) 2019; 163
OS Sitompul (4775_CR21) 2018; 4
TT Nguyen (4775_CR19) 2019; 90
4775_CR17
P Rodriguez (4775_CR20) 2016; 55
References_xml – volume: 133
  start-page: 51
  year: 2019
  end-page: 59
  ident: CR9
  article-title: LCC: towards efficient label completion and correction for supervised medical image learning in smart diagnosis
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2019.02.009
– ident: CR22
– volume: 321
  start-page: 92
  year: 2018
  end-page: 102
  ident: CR4
  article-title: Multi-label learning of non-equilibrium labels completion with mean shift
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.033
– volume: 37
  start-page: 107
  issue: 1
  year: 2015
  end-page: 120
  ident: CR28
  article-title: Lift: multi-label learning with label-specific features
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2339815
– volume: 107
  start-page: 59
  year: 2019
  end-page: 66
  ident: CR31
  article-title: Deep convolutional neural network based planet bearing fault classification
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2019.02.001
– volume: 40
  start-page: 2038
  issue: 7
  year: 2007
  end-page: 2048
  ident: CR29
  article-title: ML-KNN: a lazy learning approach to multi-label learning
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2006.12.019
– volume: 163
  start-page: 145
  year: 2019
  end-page: 158
  ident: CR11
  article-title: Joint multi-label classification and label correlations with missing labels and feature selection
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2018.08.018
– volume: 101
  start-page: 57
  year: 2018
  end-page: 67
  ident: CR18
  article-title: Manifold regularized matrix completion for multi-label learning with ADMM
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.01.011
– ident: CR6
– volume: 104
  start-page: 52
  year: 2016
  end-page: 61
  ident: CR26
  article-title: Multi-label learning with label-specific feature reduction
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2016.04.012
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  end-page: 202
  ident: CR2
  article-title: A fast iterative shrinkage–thresholding algorithm for linear inverse problems
  publication-title: SIAM J Imaging Sci
  doi: 10.1137/080716542
– ident: CR8
– volume: 48
  start-page: 876
  issue: 3
  year: 2018
  end-page: 889
  ident: CR15
  article-title: Joint feature selection and classification for multilabel learning
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2017.2663838
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  end-page: 501
  ident: CR12
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: CR25
– ident: CR23
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: CR5
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– volume: 28
  start-page: 3309
  issue: 12
  year: 2016
  end-page: 3323
  ident: CR14
  article-title: Learning label-specific features and class-dependent labels for multi-label classification
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2016.2608339
– volume: 159
  start-page: 148
  year: 2018
  end-page: 157
  ident: CR30
  article-title: Multi-label learning with label-specific features by resolving label correlations
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2018.07.003
– volume: 199
  start-page: 272
  year: 2018
  end-page: 285
  ident: CR27
  article-title: Application of support vector machine models for forecasting solar and wind energy resources: a review
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.07.164
– ident: CR3
– volume: 7
  start-page: 11474
  year: 2019
  end-page: 11484
  ident: CR10
  article-title: Multi-label learning with label specific features using correlation information
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891611
– volume: 30
  start-page: 1081
  issue: 6
  year: 2017
  end-page: 1094
  ident: CR32
  article-title: Multi-label learning with global and local label correlation
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2017.2785795
– volume: 18
  start-page: 2419
  issue: 11
  year: 2009
  end-page: 2434
  ident: CR1
  article-title: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2009.2028250
– volume: 492
  start-page: 124
  year: 2019
  end-page: 146
  ident: CR16
  article-title: Improving multi-label classification with missing labels by learning label-specific features
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.04.021
– ident: CR17
– ident: CR13
– volume: 55
  start-page: 1
  issue: 1
  year: 2016
  end-page: 8
  ident: CR20
  article-title: Incremental principal component pursuit for video background modeling
  publication-title: J Math Imaging Vis
  doi: 10.1007/s10851-015-0610-z
– ident: CR7
– volume: 90
  start-page: 35
  year: 2019
  end-page: 51
  ident: CR19
  article-title: Multi-label classification via label correlation and first order feature dependance in a data stream
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.01.007
– ident: CR24
– volume: 4
  start-page: 21
  issue: 1
  year: 2018
  end-page: 27
  ident: CR21
  article-title: Biased support vector machine and weighted-smote in handling class imbalance problem
  publication-title: Int J Adv Intell Inform
  doi: 10.26555/ijain.v4i1.146
– ident: 4775_CR24
– ident: 4775_CR7
  doi: 10.7551/mitpress/1120.003.0092
– ident: 4775_CR23
  doi: 10.1109/ICCV.2015.473
– volume: 104
  start-page: 52
  year: 2016
  ident: 4775_CR26
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2016.04.012
– volume: 7
  start-page: 11474
  year: 2019
  ident: 4775_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891611
– volume: 133
  start-page: 51
  year: 2019
  ident: 4775_CR9
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2019.02.009
– volume: 163
  start-page: 145
  year: 2019
  ident: 4775_CR11
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2018.08.018
– volume: 37
  start-page: 107
  issue: 1
  year: 2015
  ident: 4775_CR28
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2339815
– volume: 321
  start-page: 92
  year: 2018
  ident: 4775_CR4
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.033
– volume: 28
  start-page: 3309
  issue: 12
  year: 2016
  ident: 4775_CR14
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2016.2608339
– volume: 199
  start-page: 272
  year: 2018
  ident: 4775_CR27
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.07.164
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 4775_CR2
  publication-title: SIAM J Imaging Sci
  doi: 10.1137/080716542
– volume: 101
  start-page: 57
  year: 2018
  ident: 4775_CR18
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.01.011
– ident: 4775_CR25
  doi: 10.1109/ICDM.2014.125
– volume: 492
  start-page: 124
  year: 2019
  ident: 4775_CR16
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.04.021
– volume: 7
  start-page: 1
  year: 2006
  ident: 4775_CR5
  publication-title: J Mach Learn Res
– volume: 55
  start-page: 1
  issue: 1
  year: 2016
  ident: 4775_CR20
  publication-title: J Math Imaging Vis
  doi: 10.1007/s10851-015-0610-z
– ident: 4775_CR17
– volume: 48
  start-page: 876
  issue: 3
  year: 2018
  ident: 4775_CR15
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2017.2663838
– ident: 4775_CR3
– volume: 107
  start-page: 59
  year: 2019
  ident: 4775_CR31
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2019.02.001
– ident: 4775_CR22
  doi: 10.1609/aaai.v24i1.7699
– ident: 4775_CR6
  doi: 10.1609/aaai.v32i1.11762
– volume: 18
  start-page: 2419
  issue: 11
  year: 2009
  ident: 4775_CR1
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2009.2028250
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 4775_CR12
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: 4775_CR13
  doi: 10.1109/ICDM.2015.67
– volume: 159
  start-page: 148
  year: 2018
  ident: 4775_CR30
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2018.07.003
– volume: 4
  start-page: 21
  issue: 1
  year: 2018
  ident: 4775_CR21
  publication-title: Int J Adv Intell Inform
  doi: 10.26555/ijain.v4i1.146
– volume: 90
  start-page: 35
  year: 2019
  ident: 4775_CR19
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.01.007
– volume: 40
  start-page: 2038
  issue: 7
  year: 2007
  ident: 4775_CR29
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2006.12.019
– volume: 30
  start-page: 1081
  issue: 6
  year: 2017
  ident: 4775_CR32
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2017.2785795
– ident: 4775_CR8
  doi: 10.1109/ICDM.2013.143
SSID ssj0021753
Score 2.3778443
Snippet Label correlations have always been one of the hotspots of multi-label learning. Using label correlations to complete the original label can enrich the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6553
SubjectTerms Algorithms
Artificial Intelligence
Classification
Computational Intelligence
Control
Correlation
Datasets
Engineering
Foundations
Hypothesis testing
Labels
Learning
Machine learning
Mathematical Logic and Foundations
Mechatronics
Robotics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEB1qe_Hit1itkoM3DW6y3wcRlZZSsIhY6G3JZpMq1G216_93kmZbFOx1d5PDTJI3s5l5D-DSV6HAqFhSxbUwLTmcCszAaJEWUuRcs8BqLD0No_4oGIzDcQOGdS-MKausz0R7UBczaf6R3_CUJQifCJd3809qVKPM7WotoSGctEJxaynGtqDFDTNWE1oP3eHzyyoFc7yUGCRgXIlg7NpobDOdoULxqEmnvCCOQ8p-Q9U6_vxzZWqRqLcHOy6EJPdLn-9DQ5UHsFvLMxC3Ww9hNJi9lxVBN6spsaXjyniBiLJYPqSmzdKUChGtLL_ngmAIS2yNIV0Oc6ISEyKmE7RG9fZxBKNe9_WxT52KApUIThXNI1N66QuZqzjJOYIRhlQ6zvNIKd9DNGLaK6JYc21wKmUiSHUqmJBpnshCMv8YmuWsVCdANJNeyKWX6NgLMDFBZxhw0wkLZKq4agOrDZZJRzFulC6m2Yoc2Ro5QyNn1sgZa8PVasx8SbCx8etO7YfMbbZFtl4abbiufbN-_f9sp5tnO4NtbpeDKW_sQLP6-lbnGIJU-YVbVz-1vdXp
  priority: 102
  providerName: ProQuest
Title Joint label completion and label-specific features for multi-label learning algorithm
URI https://link.springer.com/article/10.1007/s00500-020-04775-1
https://www.proquest.com/docview/2918064846
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AFBBN
  dateStart: 19970401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-7479
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: U2A
  dateStart: 19970404
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPTgY1VcXZccvGmgyfZ5XGVXWVFEXFhPJU0TXVi74tb_7yRN6wMVPBXapJSZpN83ZOYbgOOeCgSyYkkV18KU5HAqMAKjeZJLkXHNfNtj6fomvBz7o0kwcUVhizrbvT6StH_qptjNSJV41IQ7nh9FAcWYZzUwcl64ise834RZTnsSiQByRwRcVyrz8zu-wtEHx_x2LGrRZrgFG44mkn7l121YUkULNusWDMTtyBasf9IT3IHxaD4tSoKOVTNik8WVsTsRRV7dpKaw0iQHEa2soueCIGklNquQVtNcG4lHImaP89dp-fS8C-Ph4P78krq-CVQiHJU0C02yZU_ITEVxxhF-kETpKMtCpXoe4g_TXh5GmmuDTAkTfqITwYRMsljmkvX2YKWYF2ofiGbSC7j0Yh15PoYiyFYMnOmY-TJRXLWB1eZLpRMVN70tZmkjh2xNnqLJU2vylLXhpJnzUklq_Dm6U3slddtrkfKExcil8GvacFp76uPx7287-N_wQ1jjdrGYBMcOrJSvb-oISUiZdWE5Hl50YbV_8XA1wOvZ4Ob2rmtX4js0_dTC
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HODCGzEYkAOcIKJJu7U9TIinxmtCiEncSpomA2l0wIoQf47fhpOlm0CCG9e2ycF27M-N7Q9gy1c1gahYUsW1MC05nArMwGgWZ1KkXLPAcixdterNdnB-V7sbg8-yF8aUVZY-0TrqrCfNP_I9HrMIwyeGy_3nF2pYo8ztakmhIRy1QtawI8ZcY8eF-njHFK7fODtGfW9zfnpye9SkjmWASnTeBU3rpjTRFzJVYZRydNYIOXSYpnWlfA-9NdNeVg8118aPx0wEsY4FEzJOI5lJ5uO-4zAZ-EGMyd_k4Unr-maY8rk5mAhKEMdi8HdtO7Z5z4xe8ahJ37wgDGuUfQ-NI7z744rWRr7TOZhxkJUcDGxsHsZUvgCzJR0Ecd5hEdrnvce8IGhWqktsqboyWicizwYPqWnrNKVJRCs7T7RPEDITW9NIB8sciUWHiG4HpV88PC1B-1_kuQwTeS9XK0A0k16NSy_SoRdgIoTKN8FURyyQseKqAqwUWCLdSHPDrNFNhsOYrZATFHJihZywCuwM1zwPBnr8-XW11EPiDnc_GZliBXZL3Yxe_77b6t-7bcJU8_bqMrk8a12swTS3pmFKK6swUby-qXWEP0W64WyMwP1_m_UXvUcSsA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SQfTgoypWq-bgTUM32fexqKVWLR5c6G3JZpNaqNvSrv_fSfbRKip43TxYZhK-b8jMNwhd2dLlwIoFkUxxXZLDCIcIjKRhKnjCFHVMj6XnodePnMHIHa1V8Zts9-pJsqhp0CpNWd6Zp6pTF75p2RKL6NDHcnzfJRD_bDpaKAFOdMS6dchV6lACKQAeCeBbls38vMdXaFrxzW9PpAZ5evtot6SMuFv4-ABtyKyJ9qp2DLi8nU20s6YteIiiwWyS5RicLKfYJI5L7QPMs7T4SHSRpU4Uwkoadc8lBgKLTYYhKZaVLSXGmE_Hs8Ukf3s_QlHv_vW2T8oeCkQANOUk8XTipc1FIv0gYQBFQKiUnySelLYFWESVlXq-YkqjVEi5E6qQUy7CJBCpoPYxamSzTJ4grKiwXCasQPmWA2EJMBcNbSqgjgglky1EK_PFohQY130upnEtjWxMHoPJY2PymLbQdb1mXshr_Dm7XXklLq_aMmYhDYBXwd-00E3lqdXw77ud_m_6Jdp6uevFTw_DxzO0zcy50XmPbdTIFx_yHLhJnlyY4_cJj2XX1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+label+completion+and+label-specific+features+for+multi-label+learning+algorithm&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Wang%2C+Yibin&rft.au=Zheng%2C+Weijie&rft.au=Cheng%2C+Yusheng&rft.au=Zhao%2C+Dawei&rft.date=2020-05-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=24&rft.issue=9&rft.spage=6553&rft.epage=6569&rft_id=info:doi/10.1007%2Fs00500-020-04775-1&rft.externalDocID=10_1007_s00500_020_04775_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon