Frame rate effects and their compensation on super-resolution microvessel imaging using ultrasound localization microscopy

•The effects of frame rate on the performance of ultrasound localization microscopy (ULM) were thoroughly investigated and the impacts on resolution, velocity measurement and saturation of the ULM imaging were quantitatively analyzed.•Applying a velocity constraint compensates the reduction in track...

Full description

Saved in:
Bibliographic Details
Published inUltrasonics Vol. 132; p. 107009
Main Authors Guo, Xingyi, Ta, Dean, Xu, Kailiang
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2023
Subjects
Online AccessGet full text
ISSN0041-624X
1874-9968
1874-9968
DOI10.1016/j.ultras.2023.107009

Cover

Abstract •The effects of frame rate on the performance of ultrasound localization microscopy (ULM) were thoroughly investigated and the impacts on resolution, velocity measurement and saturation of the ULM imaging were quantitatively analyzed.•Applying a velocity constraint compensates the reduction in tracking performance at low frame rates.•Inadequate frame rate generates inadequate microbubble detection, localization and tracking as well as incomplete track reconstruction, resulting in spatial resolution deterioration, velocity underestimation and saturation loss.•Towards accurate ULM imaging, the necessary frame rate should be determined according to blood flow speed, vessel morphology, clutter filtering method, tracking algorithm and acquisition time. Ultrasound localization microscopy (ULM) breaks the diffraction limit and allows imaging microvasculature at micrometric resolution while preserving the penetration depth. Frame rate plays an important role for high-quality ULM imaging, but there is still a lack of review and investigation of the frame rate effects on ULM. This work aims to clarify how frame rate influences the performance of ULM, including the effects of microbubble detection, localization and tracking. The performance of ULM was evaluated using an in vivo rat brain dataset (15.6 MHz, 3 tilted plane waves (−5°, 0°, +5°), at a compounded frame rate of 1000 Hz) with different frame rates. Quantification methods, including Fourier ring correlation and saturation parameter, were applied to analyze the spatial resolution and reconstruction efficiency, respectively. In addition, effects on each crucial step in ULM processing were further analyzed. Results showed that when frame rates dropped from 1000 Hz to 250 Hz, the spatial resolution deteriorated from 9.9 μm to 15.0 μm. Applying a velocity constraint was able to improve the ULM performance, but inappropriate constraint may artificially result in high apparent resolution. For the dataset, compared with the results of 1000 Hz frame rate, the velocity was underestimated at 100 Hz with 47.18% difference and the saturation was reduced from 55.00% at 1000 Hz to 43.34% at 100 Hz. Analysis showed that inadequate frame rate generated unreliable microbubble detection, localization and tracking as well as incomplete track reconstruction, resulting in the deterioration in spatial resolution, the underestimation in velocity measurement and the decrease in saturation. Finally, a guidance of determining the frame rate requirement was discussed by considering the required spatial sampling points based on vessel morphology, clutter filtering method, tracking algorithm and acquisition time, which provides indications for future clinical application of ULM method.
AbstractList •The effects of frame rate on the performance of ultrasound localization microscopy (ULM) were thoroughly investigated and the impacts on resolution, velocity measurement and saturation of the ULM imaging were quantitatively analyzed.•Applying a velocity constraint compensates the reduction in tracking performance at low frame rates.•Inadequate frame rate generates inadequate microbubble detection, localization and tracking as well as incomplete track reconstruction, resulting in spatial resolution deterioration, velocity underestimation and saturation loss.•Towards accurate ULM imaging, the necessary frame rate should be determined according to blood flow speed, vessel morphology, clutter filtering method, tracking algorithm and acquisition time. Ultrasound localization microscopy (ULM) breaks the diffraction limit and allows imaging microvasculature at micrometric resolution while preserving the penetration depth. Frame rate plays an important role for high-quality ULM imaging, but there is still a lack of review and investigation of the frame rate effects on ULM. This work aims to clarify how frame rate influences the performance of ULM, including the effects of microbubble detection, localization and tracking. The performance of ULM was evaluated using an in vivo rat brain dataset (15.6 MHz, 3 tilted plane waves (−5°, 0°, +5°), at a compounded frame rate of 1000 Hz) with different frame rates. Quantification methods, including Fourier ring correlation and saturation parameter, were applied to analyze the spatial resolution and reconstruction efficiency, respectively. In addition, effects on each crucial step in ULM processing were further analyzed. Results showed that when frame rates dropped from 1000 Hz to 250 Hz, the spatial resolution deteriorated from 9.9 μm to 15.0 μm. Applying a velocity constraint was able to improve the ULM performance, but inappropriate constraint may artificially result in high apparent resolution. For the dataset, compared with the results of 1000 Hz frame rate, the velocity was underestimated at 100 Hz with 47.18% difference and the saturation was reduced from 55.00% at 1000 Hz to 43.34% at 100 Hz. Analysis showed that inadequate frame rate generated unreliable microbubble detection, localization and tracking as well as incomplete track reconstruction, resulting in the deterioration in spatial resolution, the underestimation in velocity measurement and the decrease in saturation. Finally, a guidance of determining the frame rate requirement was discussed by considering the required spatial sampling points based on vessel morphology, clutter filtering method, tracking algorithm and acquisition time, which provides indications for future clinical application of ULM method.
Ultrasound localization microscopy (ULM) breaks the diffraction limit and allows imaging microvasculature at micrometric resolution while preserving the penetration depth. Frame rate plays an important role for high-quality ULM imaging, but there is still a lack of review and investigation of the frame rate effects on ULM. This work aims to clarify how frame rate influences the performance of ULM, including the effects of microbubble detection, localization and tracking. The performance of ULM was evaluated using an in vivo rat brain dataset (15.6 MHz, 3 tilted plane waves (-5°, 0°, +5°), at a compounded frame rate of 1000 Hz) with different frame rates. Quantification methods, including Fourier ring correlation and saturation parameter, were applied to analyze the spatial resolution and reconstruction efficiency, respectively. In addition, effects on each crucial step in ULM processing were further analyzed. Results showed that when frame rates dropped from 1000 Hz to 250 Hz, the spatial resolution deteriorated from 9.9 μm to 15.0 μm. Applying a velocity constraint was able to improve the ULM performance, but inappropriate constraint may artificially result in high apparent resolution. For the dataset, compared with the results of 1000 Hz frame rate, the velocity was underestimated at 100 Hz with 47.18% difference and the saturation was reduced from 55.00% at 1000 Hz to 43.34% at 100 Hz. Analysis showed that inadequate frame rate generated unreliable microbubble detection, localization and tracking as well as incomplete track reconstruction, resulting in the deterioration in spatial resolution, the underestimation in velocity measurement and the decrease in saturation. Finally, a guidance of determining the frame rate requirement was discussed by considering the required spatial sampling points based on vessel morphology, clutter filtering method, tracking algorithm and acquisition time, which provides indications for future clinical application of ULM method.Ultrasound localization microscopy (ULM) breaks the diffraction limit and allows imaging microvasculature at micrometric resolution while preserving the penetration depth. Frame rate plays an important role for high-quality ULM imaging, but there is still a lack of review and investigation of the frame rate effects on ULM. This work aims to clarify how frame rate influences the performance of ULM, including the effects of microbubble detection, localization and tracking. The performance of ULM was evaluated using an in vivo rat brain dataset (15.6 MHz, 3 tilted plane waves (-5°, 0°, +5°), at a compounded frame rate of 1000 Hz) with different frame rates. Quantification methods, including Fourier ring correlation and saturation parameter, were applied to analyze the spatial resolution and reconstruction efficiency, respectively. In addition, effects on each crucial step in ULM processing were further analyzed. Results showed that when frame rates dropped from 1000 Hz to 250 Hz, the spatial resolution deteriorated from 9.9 μm to 15.0 μm. Applying a velocity constraint was able to improve the ULM performance, but inappropriate constraint may artificially result in high apparent resolution. For the dataset, compared with the results of 1000 Hz frame rate, the velocity was underestimated at 100 Hz with 47.18% difference and the saturation was reduced from 55.00% at 1000 Hz to 43.34% at 100 Hz. Analysis showed that inadequate frame rate generated unreliable microbubble detection, localization and tracking as well as incomplete track reconstruction, resulting in the deterioration in spatial resolution, the underestimation in velocity measurement and the decrease in saturation. Finally, a guidance of determining the frame rate requirement was discussed by considering the required spatial sampling points based on vessel morphology, clutter filtering method, tracking algorithm and acquisition time, which provides indications for future clinical application of ULM method.
Ultrasound localization microscopy (ULM) breaks the diffraction limit and allows imaging microvasculature at micrometric resolution while preserving the penetration depth. Frame rate plays an important role for high-quality ULM imaging, but there is still a lack of review and investigation of the frame rate effects on ULM. This work aims to clarify how frame rate influences the performance of ULM, including the effects of microbubble detection, localization and tracking. The performance of ULM was evaluated using an in vivo rat brain dataset (15.6 MHz, 3 tilted plane waves (-5°, 0°, +5°), at a compounded frame rate of 1000 Hz) with different frame rates. Quantification methods, including Fourier ring correlation and saturation parameter, were applied to analyze the spatial resolution and reconstruction efficiency, respectively. In addition, effects on each crucial step in ULM processing were further analyzed. Results showed that when frame rates dropped from 1000 Hz to 250 Hz, the spatial resolution deteriorated from 9.9 μm to 15.0 μm. Applying a velocity constraint was able to improve the ULM performance, but inappropriate constraint may artificially result in high apparent resolution. For the dataset, compared with the results of 1000 Hz frame rate, the velocity was underestimated at 100 Hz with 47.18% difference and the saturation was reduced from 55.00% at 1000 Hz to 43.34% at 100 Hz. Analysis showed that inadequate frame rate generated unreliable microbubble detection, localization and tracking as well as incomplete track reconstruction, resulting in the deterioration in spatial resolution, the underestimation in velocity measurement and the decrease in saturation. Finally, a guidance of determining the frame rate requirement was discussed by considering the required spatial sampling points based on vessel morphology, clutter filtering method, tracking algorithm and acquisition time, which provides indications for future clinical application of ULM method.
ArticleNumber 107009
Author Guo, Xingyi
Ta, Dean
Xu, Kailiang
Author_xml – sequence: 1
  givenname: Xingyi
  surname: Guo
  fullname: Guo, Xingyi
  organization: Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
– sequence: 2
  givenname: Dean
  surname: Ta
  fullname: Ta, Dean
  organization: Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
– sequence: 3
  givenname: Kailiang
  orcidid: 0000-0002-1819-4101
  surname: Xu
  fullname: Xu, Kailiang
  email: xukl@fudan.edu.cn
  organization: Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37060620$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9LHTEUxYNY9Gn7DUqZpZt5TSYxf1wI8lBbELqp4C5kkjs2j8xkmswI-unNe6MUumghJHA5v0POPSfocIgDIPSZ4DXBhH_drucwJZPXDW5oGQmM1QFaESlYrRSXh2iFMSM1b9jDMTrJeYsxYZLQI3RMBeaYN3iFXm6S6aFKZoIKug7slCszuGr6BT5VNvYjDNlMPg5VOXkeIdUJcgzzftZ7m-IT5Ayh8r159MNjNef9vf9cnItXiNYE_2L-ENnG8fkj-tCZkOHT23uK7m-uf26-1Xc_br9vru5qS3kz1S0joIwCpzBzsul42woC0LWOUcmlEucOpBVYCXHeMAnSGUZtC4pakC0HeorOFt8xxd8z5En3PlsIwQwQ56wbiYmSRFBcpF_epHPbg9NjKqHSs37fVxFcLIJdiJyg09ZP-2AlrQ-aYL0rR2_1kl_vytFLOQVmf8Hv_v_BLhcMypKePCSdrYfBgvOp9KVd9P82eAXN_a74
CitedBy_id crossref_primary_10_1016_j_ultras_2023_107124
crossref_primary_10_1121_10_0028134
crossref_primary_10_1016_j_ultras_2024_107430
crossref_primary_10_1016_j_ebiom_2024_105457
crossref_primary_10_1016_j_ultras_2024_107451
crossref_primary_10_1016_j_ultras_2024_107465
crossref_primary_10_1109_TUFFC_2024_3463188
crossref_primary_10_1109_TUFFC_2024_3515218
crossref_primary_10_7498_aps_72_20230323
crossref_primary_10_1109_TMI_2023_3347261
crossref_primary_10_1109_TUFFC_2024_3519179
crossref_primary_10_1109_TUFFC_2024_3508266
Cites_doi 10.1109/TMI.2015.2428634
10.1109/TMI.2018.2789499
10.1088/1361-6560/abef45
10.1016/j.ultras.2017.01.008
10.1016/j.ultrasmedbio.2019.11.013
10.1109/TMI.2021.3097150
10.1088/1361-6560/abf1b6
10.1038/s41551-021-00697-x
10.7498/aps.71.20220954
10.1109/TUFFC.2020.2984384
10.1109/TUFFC.2015.2500266
10.1109/TMI.2022.3152396
10.1038/s41467-018-03973-8
10.1097/RLI.0000000000000565
10.1038/nature16066
10.1109/TUFFC.2018.2824846
10.1109/TUFFC.2012.2508
10.1109/TMI.2021.3123912
10.1126/science.1130258
10.1109/TMI.2014.2359650
10.1109/TUFFC.2018.2872067
10.1016/j.jsb.2013.05.004
10.1109/TUFFC.2019.2926062
10.1038/nmeth.2448
10.1109/TUFFC.2014.2882
10.1016/j.jsb.2005.05.009
10.7498/aps.71.20220629
10.1002/nav.3800020109
10.1109/TUFFC.2018.2850811
10.1109/TUFFC.2017.2778941
10.1109/TUFFC.2020.2965767
10.1038/s41598-018-38349-x
10.1038/s41551-021-00824-8
10.1038/s41551-018-0188-z
10.1148/radiol.2019182593
10.1109/TUFFC.2022.3143864
10.1038/s41598-022-24986-w
10.7150/thno.16899
10.1038/s41598-017-13676-7
10.1088/1361-6560/aa4fe8
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ultras.2023.107009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1874-9968
ExternalDocumentID 37060620
10_1016_j_ultras_2023_107009
S0041624X23000859
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABBQC
ABDPE
ABEFU
ABFNM
ABJNI
ABLJU
ABMAC
ABMZM
ABNEU
ABTAH
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
C45
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SPG
SSH
SSQ
SSZ
T5K
TAE
TEORI
UHS
WH7
WUQ
XPP
ZGI
ZMT
ZXP
ZY4
~02
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c362t-b41e9a9ed904d82f6bb71eefbd43868975de8c709775248e8da43cbe93ce8b6e3
IEDL.DBID .~1
ISSN 0041-624X
1874-9968
IngestDate Mon Sep 29 04:46:17 EDT 2025
Mon Jul 21 05:48:28 EDT 2025
Wed Oct 01 05:19:19 EDT 2025
Thu Apr 24 22:50:39 EDT 2025
Tue Dec 03 03:44:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Super-Resolution
Microvessel
Frame Rate
Microbubble
Ultrasound Localization Microscopy (ULM)
Language English
License Copyright © 2023 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-b41e9a9ed904d82f6bb71eefbd43868975de8c709775248e8da43cbe93ce8b6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1819-4101
PMID 37060620
PQID 2801981730
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2801981730
pubmed_primary_37060620
crossref_citationtrail_10_1016_j_ultras_2023_107009
crossref_primary_10_1016_j_ultras_2023_107009
elsevier_sciencedirect_doi_10_1016_j_ultras_2023_107009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
2023-Jul
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ultrasonics
PublicationTitleAlternate Ultrasonics
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Huang (b0010) 2021; 66
Zhu (b0105) Jun. 2019; 291
Demene (b0035) Apr. 2015; 34
Kuhn (b0155) Mar. 1955; 2
Bourquin (b0145) Nov. 2021; 41
Opacic (b0055) Apr. 2018; 9
Couture (b0040) Jun. 2018; 65
Solomon (b0175) Jul. 2019; 66
Foiret (b0100) Oct. 2017; 7
Hingot (b0185) May. 2017; 77
Banterle (b0165) Sep. 2013; 183
Boehr (b0015) Sep. 2006; 313
Christensen-Jeffries (b0045) Apr. 2020; 46
Kim (b0125) Jan. 2022; 69
Heiles (b0150) 2022; 6
Harmon (b0205) Dec. 2022; 12
Demené (b0050) Mar. 2021; 5
Kanoulas (b0085) Aug. 2019; 54
Huang (b0120) Apr. 2020; 10
Dencks (b0080) Sep. 2018; 66
Demeulenaere (b0135) Apr. 2022; 15
Hardy (b0140) Apr. 2021; 66
Couture (b0030) Dec. 2012; 59
Baranger (b0190) Feb. 2019; 37
Provost (b0020) Feb. 2018; 2
Song (b0110) Nov. 2017; 65
Arnal (b0195) Jan. 2017; 62
Hingot (b0005) Feb. 2019; 9
Tang (b0115) Mar. 2020; 67
Yu (b0215) Sep. 2022; 71
Hingot (b0130) Jul. 2021; 40
Christensen-Jeffries (b0065) Sep. 2014; 34
Errico (b0090) Nov. 2015; 527
Lin (b0095) Jan. 2017; 7
Yan (b0060) Feb. 2022; 41
Kierski (b0200) 2020; 67
Tanter, Fink (b0025) Jan. 2014; 61
Nieuwenhuizen (b0160) Jun. 2013; 10
van Heel, Schatz (b0170) Sep. 2005; 151
Sui (b0210) Nov. 2022; 71
Harput (b0070) 2018; 65
Ackermann, Schmitz (b0075) Nov. 2015; 63
Xu (b0180) 2021
Hingot (10.1016/j.ultras.2023.107009_b0185) 2017; 77
Tanter (10.1016/j.ultras.2023.107009_b0025) 2014; 61
Christensen-Jeffries (10.1016/j.ultras.2023.107009_b0045) 2020; 46
Yan (10.1016/j.ultras.2023.107009_b0060) 2022; 41
van Heel (10.1016/j.ultras.2023.107009_b0170) 2005; 151
Bourquin (10.1016/j.ultras.2023.107009_b0145) 2021; 41
Kuhn (10.1016/j.ultras.2023.107009_b0155) 1955; 2
Demeulenaere (10.1016/j.ultras.2023.107009_b0135) 2022; 15
Harmon (10.1016/j.ultras.2023.107009_b0205) 2022; 12
Ackermann (10.1016/j.ultras.2023.107009_b0075) 2015; 63
Hardy (10.1016/j.ultras.2023.107009_b0140) 2021; 66
Kierski (10.1016/j.ultras.2023.107009_b0200) 2020; 67
Opacic (10.1016/j.ultras.2023.107009_b0055) 2018; 9
Kim (10.1016/j.ultras.2023.107009_b0125) 2022; 69
Demené (10.1016/j.ultras.2023.107009_b0050) 2021; 5
Arnal (10.1016/j.ultras.2023.107009_b0195) 2017; 62
Huang (10.1016/j.ultras.2023.107009_b0010) 2021; 66
Zhu (10.1016/j.ultras.2023.107009_b0105) 2019; 291
Harput (10.1016/j.ultras.2023.107009_b0070) 2018; 65
Xu (10.1016/j.ultras.2023.107009_b0180) 2021
Demene (10.1016/j.ultras.2023.107009_b0035) 2015; 34
Errico (10.1016/j.ultras.2023.107009_b0090) 2015; 527
Christensen-Jeffries (10.1016/j.ultras.2023.107009_b0065) 2014; 34
Huang (10.1016/j.ultras.2023.107009_b0120) 2020; 10
Hingot (10.1016/j.ultras.2023.107009_b0130) 2021; 40
Banterle (10.1016/j.ultras.2023.107009_b0165) 2013; 183
Sui (10.1016/j.ultras.2023.107009_b0210) 2022; 71
Tang (10.1016/j.ultras.2023.107009_b0115) 2020; 67
Dencks (10.1016/j.ultras.2023.107009_b0080) 2018; 66
Foiret (10.1016/j.ultras.2023.107009_b0100) 2017; 7
Solomon (10.1016/j.ultras.2023.107009_b0175) 2019; 66
Kanoulas (10.1016/j.ultras.2023.107009_b0085) 2019; 54
Baranger (10.1016/j.ultras.2023.107009_b0190) 2019; 37
Couture (10.1016/j.ultras.2023.107009_b0040) 2018; 65
Heiles (10.1016/j.ultras.2023.107009_b0150) 2022; 6
Yu (10.1016/j.ultras.2023.107009_b0215) 2022; 71
Song (10.1016/j.ultras.2023.107009_b0110) 2017; 65
Couture (10.1016/j.ultras.2023.107009_b0030) 2012; 59
Lin (10.1016/j.ultras.2023.107009_b0095) 2017; 7
Hingot (10.1016/j.ultras.2023.107009_b0005) 2019; 9
Provost (10.1016/j.ultras.2023.107009_b0020) 2018; 2
Nieuwenhuizen (10.1016/j.ultras.2023.107009_b0160) 2013; 10
Boehr (10.1016/j.ultras.2023.107009_b0015) 2006; 313
References_xml – volume: 77
  start-page: 17
  year: May. 2017
  end-page: 21
  ident: b0185
  article-title: Subwavelength motion-correction for ultrafast ultrasound localization microscopy
  publication-title: Ultrasonics
– volume: 6
  start-page: 605
  year: 2022
  end-page: 616
  ident: b0150
  article-title: Performance benchmarking of microbubble-localization algorithms for ultrasound localization microscopy
  publication-title: Nat. Biomed. Eng.
– volume: 2
  start-page: 85
  year: Feb. 2018
  end-page: 94
  ident: b0020
  article-title: Simultaneous positron emission tomography and ultrafast ultrasound for hybrid molecular, anatomical and functional imaging
  publication-title: Nat. Biomed. Eng.
– volume: 65
  start-page: 149
  year: Nov. 2017
  end-page: 167
  ident: b0110
  article-title: Improved super-resolution ultrasound microvessel imaging with spatiotemporal nonlocal means filtering and bipartite graph-based microbubble tracking
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 7
  start-page: 1
  year: Oct. 2017
  end-page: 12
  ident: b0100
  article-title: Ultrasound localization microscopy to image and assess microvasculature in a rat kidney
  publication-title: Sci. Rep.
– volume: 66
  year: 2021
  ident: b0010
  article-title: Super-resolution ultrasound localization microscopy based on a high frame-rate clinical ultrasound scanner: an in-human feasibility study
  publication-title: Phys. Med. Biol.
– volume: 183
  start-page: 363
  year: Sep. 2013
  end-page: 367
  ident: b0165
  article-title: Fourier ring correlation as a resolution criterion for super-resolution microscopy
  publication-title: J. Struct. Biol.
– volume: 71
  year: Sep. 2022
  ident: b0215
  article-title: Ultrafast ultrasound localization microscopy method for spinal cord mircovasculature imaging
  publication-title: Acta Phys. Sin.
– volume: 34
  start-page: 433
  year: Sep. 2014
  end-page: 440
  ident: b0065
  article-title: In vivo acoustic super-resolution and super-resolved velocity mapping using microbubbles
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1
  year: 2021
  end-page: 4
  ident: b0180
  article-title: Robust PCA-based clutter filtering method for super-resolution ultrasound localization microscopy
  publication-title: In 2021 IEEE International Ultrasonics Symposium (IUS)
– volume: 62
  start-page: 843
  year: Jan. 2017
  end-page: 857
  ident: b0195
  article-title: In vivo real-time cavitation imaging in moving organs
  publication-title: Phys. Med. Biol.
– volume: 61
  start-page: 102
  year: Jan. 2014
  end-page: 119
  ident: b0025
  article-title: Ultrafast imaging in biomedical ultrasound
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 66
  year: Apr. 2021
  ident: b0140
  article-title: Sparse channel sampling for ultrasound localization microscopy (SPARSE-ULM)
  publication-title: Phys. Med. Biol.
– volume: 67
  start-page: 1738
  year: Mar. 2020
  end-page: 1751
  ident: b0115
  article-title: Kalman filter-based microbubble tracking for robust super-resolution ultrasound microvessel imaging
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 71
  year: Nov. 2022
  ident: b0210
  article-title: Accelerating super-resolution ultrasound localization microscopy with generative adversarial nets
  publication-title: Acta Phys. Sin.
– volume: 9
  start-page: 1
  year: Apr. 2018
  end-page: 13
  ident: b0055
  article-title: Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization
  publication-title: Nat. Commun.
– volume: 65
  start-page: 803
  year: 2018
  end-page: 814
  ident: b0070
  article-title: Two-stage motion correction for super-resolution ultrasound imaging in human lower limb
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 66
  start-page: 517
  year: Sep. 2018
  end-page: 526
  ident: b0080
  article-title: Clinical pilot application of super-resolution US imaging in breast cancer
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 41
  start-page: 782
  year: Nov. 2021
  end-page: 792
  ident: b0145
  article-title: In vivo pulsatility measurement of cerebral microcirculation in rodents using dynamic ultrasound localization microscopy
  publication-title: IEEE Trans. Med. Imaging
– volume: 69
  start-page: 1041
  year: Jan. 2022
  end-page: 1052
  ident: b0125
  article-title: Improved ultrasound localization microscopy based on microbubble uncoupling via transmit excitation
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 46
  start-page: 865
  year: Apr. 2020
  end-page: 891
  ident: b0045
  article-title: Super-resolution ultrasound imaging
  publication-title: Ultrasound Med. Biol.
– volume: 34
  start-page: 2271
  year: Apr. 2015
  end-page: 2285
  ident: b0035
  article-title: Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and fultrasound sensitivity
  publication-title: IEEE Trans. Med. Imaging
– volume: 63
  start-page: 72
  year: Nov. 2015
  end-page: 82
  ident: b0075
  article-title: Detection and tracking of multiple microbubbles in ultrasound B-mode images
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 40
  start-page: 3812
  year: Jul. 2021
  end-page: 3819
  ident: b0130
  article-title: Measuring image resolution in ultrasound localization microscopy
  publication-title: IEEE Trans. Med. Imaging
– volume: 41
  start-page: 1938
  year: Feb. 2022
  end-page: 1947
  ident: b0060
  article-title: Super-resolution ultrasound through sparsity-based deconvolution and multi-feature tracking
  publication-title: IEEE Trans. Med. Imaging
– volume: 66
  start-page: 1573
  year: Jul. 2019
  end-page: 1586
  ident: b0175
  article-title: Exploiting flow dynamics for superresolution in contrast-enhanced ultrasound
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 313
  start-page: 1638
  year: Sep. 2006
  end-page: 1642
  ident: b0015
  article-title: The dynamic energy landscape of dihydrofolate reductase catalysis
  publication-title: Science
– volume: 2
  start-page: 83
  year: Mar. 1955
  end-page: 97
  ident: b0155
  article-title: The Hungarian method for the assignment problem
  publication-title: Naval Research Logistics Quarterly
– volume: 291
  start-page: 642
  year: Jun. 2019
  end-page: 650
  ident: b0105
  article-title: 3D super-resolution US imaging of rabbit lymph node vasculature in vivo by using microbubbles
  publication-title: Radiology
– volume: 10
  start-page: 557
  year: Jun. 2013
  end-page: 562
  ident: b0160
  article-title: Measuring image resolution in optical nanoscopy
  publication-title: Nat. Methods
– volume: 59
  start-page: 2676
  year: Dec. 2012
  end-page: 2683
  ident: b0030
  article-title: Ultrasound contrast plane wave imaging
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 527
  start-page: 499
  year: Nov. 2015
  end-page: 502
  ident: b0090
  article-title: Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging
  publication-title: Nature
– volume: 7
  start-page: 196
  year: Jan. 2017
  end-page: 204
  ident: b0095
  article-title: 3-D ultrasound localization microscopy for identifying microvascular morphology features of tumor angiogenesis at a resolution beyond the diffraction limit of conventional ultrasound
  publication-title: Theranostics
– volume: 10
  start-page: 1
  year: Apr. 2020
  end-page: 13
  ident: b0120
  article-title: Short acquisition time super-resolution ultrasound microvessel imaging via microbubble separation
  publication-title: Sci. Rep.
– volume: 5
  start-page: 219
  year: Mar. 2021
  end-page: 228
  ident: b0050
  article-title: Transcranial ultrafast ultrasound localization microscopy of brain vasculature in patients
  publication-title: Nat. Biomed. Eng.
– volume: 15
  start-page: 1193
  year: Apr. 2022
  end-page: 1208
  ident: b0135
  article-title: “Coronary flow assessment using 3-dimensional ultrafast ultrasound localization microscopy,” JACC: Cardiovasc
  publication-title: Imaging
– volume: 37
  start-page: 1574
  year: Feb. 2019
  end-page: 1586
  ident: b0190
  article-title: Adaptive spatiotemporal SVD clutter filtering for ultrafast Doppler imaging using similarity of spatial singular vectors
  publication-title: IEEE Trans. Med. Imaging
– volume: 151
  start-page: 250
  year: Sep. 2005
  end-page: 262
  ident: b0170
  article-title: Fourier shell correlation threshold criteria
  publication-title: J. Struct. Biol.
– volume: 12
  start-page: 21943
  year: Dec. 2022
  ident: b0205
  article-title: Quantitative tissue perfusion imaging using nonlinear ultrasound localization microscopy
  publication-title: Sci. Rep.
– volume: 9
  start-page: 1
  year: Feb. 2019
  end-page: 10
  ident: b0005
  article-title: Microvascular flow dictates the compromise between spatial resolution and acquisition time in ultrasound localization microscopy
  publication-title: Sci. Rep.
– volume: 65
  start-page: 1304
  year: Jun. 2018
  end-page: 1320
  ident: b0040
  article-title: Ultrasound localization microscopy and super-resolution: a state of the art
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 54
  start-page: 500
  year: Aug. 2019
  end-page: 516
  ident: b0085
  article-title: Super-resolution contrast-enhanced ultrasound methodology for the identification of in vivo vascular dynamics in 2D
  publication-title: Invest. Radiol.
– volume: 67
  start-page: 957
  year: 2020
  end-page: 967
  ident: b0200
  article-title: Superharmonic ultrasound for motion-independent localization microscopy: applications to microvascular imaging from low to high flow rates
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 34
  start-page: 2271
  issue: 11
  year: 2015
  ident: 10.1016/j.ultras.2023.107009_b0035
  article-title: Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and fultrasound sensitivity
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2428634
– volume: 37
  start-page: 1574
  issue: 7
  year: 2019
  ident: 10.1016/j.ultras.2023.107009_b0190
  article-title: Adaptive spatiotemporal SVD clutter filtering for ultrafast Doppler imaging using similarity of spatial singular vectors
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2789499
– volume: 66
  issue: 8
  year: 2021
  ident: 10.1016/j.ultras.2023.107009_b0010
  article-title: Super-resolution ultrasound localization microscopy based on a high frame-rate clinical ultrasound scanner: an in-human feasibility study
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/abef45
– volume: 77
  start-page: 17
  year: 2017
  ident: 10.1016/j.ultras.2023.107009_b0185
  article-title: Subwavelength motion-correction for ultrafast ultrasound localization microscopy
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2017.01.008
– volume: 46
  start-page: 865
  issue: 4
  year: 2020
  ident: 10.1016/j.ultras.2023.107009_b0045
  article-title: Super-resolution ultrasound imaging
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2019.11.013
– volume: 40
  start-page: 3812
  issue: 12
  year: 2021
  ident: 10.1016/j.ultras.2023.107009_b0130
  article-title: Measuring image resolution in ultrasound localization microscopy
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3097150
– volume: 66
  issue: 9
  year: 2021
  ident: 10.1016/j.ultras.2023.107009_b0140
  article-title: Sparse channel sampling for ultrasound localization microscopy (SPARSE-ULM)
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/abf1b6
– volume: 5
  start-page: 219
  issue: 3
  year: 2021
  ident: 10.1016/j.ultras.2023.107009_b0050
  article-title: Transcranial ultrafast ultrasound localization microscopy of brain vasculature in patients
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-021-00697-x
– volume: 71
  issue: 22
  year: 2022
  ident: 10.1016/j.ultras.2023.107009_b0210
  article-title: Accelerating super-resolution ultrasound localization microscopy with generative adversarial nets
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.71.20220954
– volume: 67
  start-page: 1738
  issue: 9
  year: 2020
  ident: 10.1016/j.ultras.2023.107009_b0115
  article-title: Kalman filter-based microbubble tracking for robust super-resolution ultrasound microvessel imaging
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2020.2984384
– volume: 63
  start-page: 72
  issue: 1
  year: 2015
  ident: 10.1016/j.ultras.2023.107009_b0075
  article-title: Detection and tracking of multiple microbubbles in ultrasound B-mode images
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2015.2500266
– volume: 41
  start-page: 1938
  issue: 8
  year: 2022
  ident: 10.1016/j.ultras.2023.107009_b0060
  article-title: Super-resolution ultrasound through sparsity-based deconvolution and multi-feature tracking
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3152396
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.ultras.2023.107009_b0055
  article-title: Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03973-8
– volume: 54
  start-page: 500
  issue: 8
  year: 2019
  ident: 10.1016/j.ultras.2023.107009_b0085
  article-title: Super-resolution contrast-enhanced ultrasound methodology for the identification of in vivo vascular dynamics in 2D
  publication-title: Invest. Radiol.
  doi: 10.1097/RLI.0000000000000565
– volume: 527
  start-page: 499
  issue: 7579
  year: 2015
  ident: 10.1016/j.ultras.2023.107009_b0090
  article-title: Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging
  publication-title: Nature
  doi: 10.1038/nature16066
– volume: 65
  start-page: 803
  issue: 5
  year: 2018
  ident: 10.1016/j.ultras.2023.107009_b0070
  article-title: Two-stage motion correction for super-resolution ultrasound imaging in human lower limb
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2018.2824846
– volume: 59
  start-page: 2676
  issue: 12
  year: 2012
  ident: 10.1016/j.ultras.2023.107009_b0030
  article-title: Ultrasound contrast plane wave imaging
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2012.2508
– volume: 41
  start-page: 782
  issue: 4
  year: 2021
  ident: 10.1016/j.ultras.2023.107009_b0145
  article-title: In vivo pulsatility measurement of cerebral microcirculation in rodents using dynamic ultrasound localization microscopy
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3123912
– volume: 313
  start-page: 1638
  issue: 5793
  year: 2006
  ident: 10.1016/j.ultras.2023.107009_b0015
  article-title: The dynamic energy landscape of dihydrofolate reductase catalysis
  publication-title: Science
  doi: 10.1126/science.1130258
– volume: 34
  start-page: 433
  issue: 2
  year: 2014
  ident: 10.1016/j.ultras.2023.107009_b0065
  article-title: In vivo acoustic super-resolution and super-resolved velocity mapping using microbubbles
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2359650
– start-page: 1
  year: 2021
  ident: 10.1016/j.ultras.2023.107009_b0180
  article-title: Robust PCA-based clutter filtering method for super-resolution ultrasound localization microscopy
– volume: 66
  start-page: 517
  issue: 3
  year: 2018
  ident: 10.1016/j.ultras.2023.107009_b0080
  article-title: Clinical pilot application of super-resolution US imaging in breast cancer
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2018.2872067
– volume: 183
  start-page: 363
  issue: 3
  year: 2013
  ident: 10.1016/j.ultras.2023.107009_b0165
  article-title: Fourier ring correlation as a resolution criterion for super-resolution microscopy
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2013.05.004
– volume: 66
  start-page: 1573
  issue: 10
  year: 2019
  ident: 10.1016/j.ultras.2023.107009_b0175
  article-title: Exploiting flow dynamics for superresolution in contrast-enhanced ultrasound
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2019.2926062
– volume: 10
  start-page: 557
  issue: 6
  year: 2013
  ident: 10.1016/j.ultras.2023.107009_b0160
  article-title: Measuring image resolution in optical nanoscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2448
– volume: 61
  start-page: 102
  issue: 1
  year: 2014
  ident: 10.1016/j.ultras.2023.107009_b0025
  article-title: Ultrafast imaging in biomedical ultrasound
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2014.2882
– volume: 151
  start-page: 250
  issue: 3
  year: 2005
  ident: 10.1016/j.ultras.2023.107009_b0170
  article-title: Fourier shell correlation threshold criteria
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2005.05.009
– volume: 71
  issue: 17
  year: 2022
  ident: 10.1016/j.ultras.2023.107009_b0215
  article-title: Ultrafast ultrasound localization microscopy method for spinal cord mircovasculature imaging
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.71.20220629
– volume: 2
  start-page: 83
  issue: 1–2
  year: 1955
  ident: 10.1016/j.ultras.2023.107009_b0155
  article-title: The Hungarian method for the assignment problem
  publication-title: Naval Research Logistics Quarterly
  doi: 10.1002/nav.3800020109
– volume: 15
  start-page: 1193
  issue: 7
  year: 2022
  ident: 10.1016/j.ultras.2023.107009_b0135
  article-title: “Coronary flow assessment using 3-dimensional ultrafast ultrasound localization microscopy,” JACC: Cardiovasc
  publication-title: Imaging
– volume: 65
  start-page: 1304
  issue: 8
  year: 2018
  ident: 10.1016/j.ultras.2023.107009_b0040
  article-title: Ultrasound localization microscopy and super-resolution: a state of the art
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2018.2850811
– volume: 65
  start-page: 149
  issue: 2
  year: 2017
  ident: 10.1016/j.ultras.2023.107009_b0110
  article-title: Improved super-resolution ultrasound microvessel imaging with spatiotemporal nonlocal means filtering and bipartite graph-based microbubble tracking
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2017.2778941
– volume: 67
  start-page: 957
  issue: 5
  year: 2020
  ident: 10.1016/j.ultras.2023.107009_b0200
  article-title: Superharmonic ultrasound for motion-independent localization microscopy: applications to microvascular imaging from low to high flow rates
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2020.2965767
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.ultras.2023.107009_b0005
  article-title: Microvascular flow dictates the compromise between spatial resolution and acquisition time in ultrasound localization microscopy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-38349-x
– volume: 6
  start-page: 605
  issue: 5
  year: 2022
  ident: 10.1016/j.ultras.2023.107009_b0150
  article-title: Performance benchmarking of microbubble-localization algorithms for ultrasound localization microscopy
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-021-00824-8
– volume: 2
  start-page: 85
  issue: 2
  year: 2018
  ident: 10.1016/j.ultras.2023.107009_b0020
  article-title: Simultaneous positron emission tomography and ultrafast ultrasound for hybrid molecular, anatomical and functional imaging
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0188-z
– volume: 291
  start-page: 642
  issue: 3
  year: 2019
  ident: 10.1016/j.ultras.2023.107009_b0105
  article-title: 3D super-resolution US imaging of rabbit lymph node vasculature in vivo by using microbubbles
  publication-title: Radiology
  doi: 10.1148/radiol.2019182593
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.ultras.2023.107009_b0120
  article-title: Short acquisition time super-resolution ultrasound microvessel imaging via microbubble separation
  publication-title: Sci. Rep.
– volume: 69
  start-page: 1041
  issue: 3
  year: 2022
  ident: 10.1016/j.ultras.2023.107009_b0125
  article-title: Improved ultrasound localization microscopy based on microbubble uncoupling via transmit excitation
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2022.3143864
– volume: 12
  start-page: 21943
  issue: 1
  year: 2022
  ident: 10.1016/j.ultras.2023.107009_b0205
  article-title: Quantitative tissue perfusion imaging using nonlinear ultrasound localization microscopy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-24986-w
– volume: 7
  start-page: 196
  issue: 1
  year: 2017
  ident: 10.1016/j.ultras.2023.107009_b0095
  article-title: 3-D ultrasound localization microscopy for identifying microvascular morphology features of tumor angiogenesis at a resolution beyond the diffraction limit of conventional ultrasound
  publication-title: Theranostics
  doi: 10.7150/thno.16899
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.ultras.2023.107009_b0100
  article-title: Ultrasound localization microscopy to image and assess microvasculature in a rat kidney
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13676-7
– volume: 62
  start-page: 843
  issue: 3
  year: 2017
  ident: 10.1016/j.ultras.2023.107009_b0195
  article-title: In vivo real-time cavitation imaging in moving organs
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa4fe8
SSID ssj0014813
Score 2.4684803
Snippet •The effects of frame rate on the performance of ultrasound localization microscopy (ULM) were thoroughly investigated and the impacts on resolution, velocity...
Ultrasound localization microscopy (ULM) breaks the diffraction limit and allows imaging microvasculature at micrometric resolution while preserving the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107009
SubjectTerms Animals
Frame Rate
Microbubble
Microbubbles
Microscopy - methods
Microvessel
Microvessels - diagnostic imaging
Phantoms, Imaging
Rats
Super-Resolution
Ultrasonography - methods
Ultrasound Localization Microscopy (ULM)
Title Frame rate effects and their compensation on super-resolution microvessel imaging using ultrasound localization microscopy
URI https://dx.doi.org/10.1016/j.ultras.2023.107009
https://www.ncbi.nlm.nih.gov/pubmed/37060620
https://www.proquest.com/docview/2801981730
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: AKRWK
  dateStart: 19630101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpdAeSpq-tkmDCr2qsS3Zko4hdNm2NKcG9mb0GMOWjbNsdgvNIb-9M7K8tNAQKBiDhYQlz3jmE_pmhrEPuI9tdOc60UVZC9UACK-jFxaMjuggutpTcPK3i2Z2qb7M6_keOx9jYYhWmW3_YNOTtc4tp_lrnq4WC4rxRTBRqTmCaAIOFMSnlKYqBh_vdjQPRPtlPmUuBfUew-cSx2u73KwdJe2uJDbpgmiJ_3ZP98HP5IamB-xZxo_8bJjic7YH_SF7-kdWwUP2OLE6w80Ldjsl6hWnbBA8Eze46yNPpwOc2OS4iU2i4XjdbFewFrj9ztrIr4is95OSiy_54iqVM-LEk8d7WhFVZOLJGeZgzmEEBbr8eskup5--n89ELrYgAvqwjfCqBOssRFuoaKqu8V6XAJ2PSprGWF1HMEEXiBfrShkw0SkZPFgZwPgG5Cu231_38IZxG5ylhLfWl1G52roq4MandKExsS5kNWFy_MZtyJnIqSDGsh0pZz_aYR0tSaYdJDNhYjdqNWTieKC_HsXX_qVRLTqLB0a-H6Xd4s9GJyiuh-stdkJ_bk2JVnHCXg9qsJuLpDxETVW8_e_3HrEn9DSQgY_Z_ma9hXcIeTb-JOn0CXt09vnr7OI3NXkETg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_OE1EfRM-v9TOCr_HaJm2TRzlcVr27pzvYt5Cvwh57vWVvV9AH_3Zn0nRRUA6E0oc2oUlmmvkN-c0MwHv0Y5u2sx3vgqi5bGLkrg2O66jagAaiqx0FJ5-cNrNz-WVez_fgaIyFIVpl3vuHPT3t1vnJYV7Nw9ViQTG-CCYqOUcQTcBB34Lbsq5a8sA-_NzxPBDul_mYueTUfIyfSySv7XKztpS1uxL4qC2Il_h3-_Qv_Jns0PQhPMgAkn0cxvgI9mJ_APd_Syt4AHcSrdNfP4YfU-JeMUoHwTJzg9k-sHQ8wIhOjl5skg3D63q7imuO_ndWR3ZJbL1vlF18yRaXqZ4RI6I83tOMqCQTS9YwR3MOPSjS5fsTOJ9-Ojua8VxtgXs0YhvuZBm11THoQgZVdY1zbRlj54IUqlG6rUNUvi0QMNaVVFEFK4V3UQsflWuieAr7_VUfnwPT3mrKeKtdGaStta08ej6l9Y0KdSGqCYhxjY3PqcipIsbSjJyzCzPMw5BkzCCZCfBdr9WQiuOG9u0oPvOHShm0Fjf0fDdK2-DfRkcoto9XW2yEBl2rErfFCTwb1GA3FkGJiJqqePHf330Ld2dnJ8fm-PPp15dwj94MzOBXsL9Zb-NrxD8b9ybp9y8mXgXj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frame+rate+effects+and+their+compensation+on+super-resolution+microvessel+imaging+using+ultrasound+localization+microscopy&rft.jtitle=Ultrasonics&rft.au=Guo%2C+Xingyi&rft.au=Ta%2C+Dean&rft.au=Xu%2C+Kailiang&rft.date=2023-07-01&rft.issn=1874-9968&rft.eissn=1874-9968&rft.volume=132&rft.spage=107009&rft_id=info:doi/10.1016%2Fj.ultras.2023.107009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-624X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-624X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-624X&client=summon