Frame rate effects and their compensation on super-resolution microvessel imaging using ultrasound localization microscopy
•The effects of frame rate on the performance of ultrasound localization microscopy (ULM) were thoroughly investigated and the impacts on resolution, velocity measurement and saturation of the ULM imaging were quantitatively analyzed.•Applying a velocity constraint compensates the reduction in track...
Saved in:
| Published in | Ultrasonics Vol. 132; p. 107009 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.07.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0041-624X 1874-9968 1874-9968 |
| DOI | 10.1016/j.ultras.2023.107009 |
Cover
| Abstract | •The effects of frame rate on the performance of ultrasound localization microscopy (ULM) were thoroughly investigated and the impacts on resolution, velocity measurement and saturation of the ULM imaging were quantitatively analyzed.•Applying a velocity constraint compensates the reduction in tracking performance at low frame rates.•Inadequate frame rate generates inadequate microbubble detection, localization and tracking as well as incomplete track reconstruction, resulting in spatial resolution deterioration, velocity underestimation and saturation loss.•Towards accurate ULM imaging, the necessary frame rate should be determined according to blood flow speed, vessel morphology, clutter filtering method, tracking algorithm and acquisition time.
Ultrasound localization microscopy (ULM) breaks the diffraction limit and allows imaging microvasculature at micrometric resolution while preserving the penetration depth. Frame rate plays an important role for high-quality ULM imaging, but there is still a lack of review and investigation of the frame rate effects on ULM. This work aims to clarify how frame rate influences the performance of ULM, including the effects of microbubble detection, localization and tracking. The performance of ULM was evaluated using an in vivo rat brain dataset (15.6 MHz, 3 tilted plane waves (−5°, 0°, +5°), at a compounded frame rate of 1000 Hz) with different frame rates. Quantification methods, including Fourier ring correlation and saturation parameter, were applied to analyze the spatial resolution and reconstruction efficiency, respectively. In addition, effects on each crucial step in ULM processing were further analyzed. Results showed that when frame rates dropped from 1000 Hz to 250 Hz, the spatial resolution deteriorated from 9.9 μm to 15.0 μm. Applying a velocity constraint was able to improve the ULM performance, but inappropriate constraint may artificially result in high apparent resolution. For the dataset, compared with the results of 1000 Hz frame rate, the velocity was underestimated at 100 Hz with 47.18% difference and the saturation was reduced from 55.00% at 1000 Hz to 43.34% at 100 Hz. Analysis showed that inadequate frame rate generated unreliable microbubble detection, localization and tracking as well as incomplete track reconstruction, resulting in the deterioration in spatial resolution, the underestimation in velocity measurement and the decrease in saturation. Finally, a guidance of determining the frame rate requirement was discussed by considering the required spatial sampling points based on vessel morphology, clutter filtering method, tracking algorithm and acquisition time, which provides indications for future clinical application of ULM method. |
|---|---|
| AbstractList | •The effects of frame rate on the performance of ultrasound localization microscopy (ULM) were thoroughly investigated and the impacts on resolution, velocity measurement and saturation of the ULM imaging were quantitatively analyzed.•Applying a velocity constraint compensates the reduction in tracking performance at low frame rates.•Inadequate frame rate generates inadequate microbubble detection, localization and tracking as well as incomplete track reconstruction, resulting in spatial resolution deterioration, velocity underestimation and saturation loss.•Towards accurate ULM imaging, the necessary frame rate should be determined according to blood flow speed, vessel morphology, clutter filtering method, tracking algorithm and acquisition time.
Ultrasound localization microscopy (ULM) breaks the diffraction limit and allows imaging microvasculature at micrometric resolution while preserving the penetration depth. Frame rate plays an important role for high-quality ULM imaging, but there is still a lack of review and investigation of the frame rate effects on ULM. This work aims to clarify how frame rate influences the performance of ULM, including the effects of microbubble detection, localization and tracking. The performance of ULM was evaluated using an in vivo rat brain dataset (15.6 MHz, 3 tilted plane waves (−5°, 0°, +5°), at a compounded frame rate of 1000 Hz) with different frame rates. Quantification methods, including Fourier ring correlation and saturation parameter, were applied to analyze the spatial resolution and reconstruction efficiency, respectively. In addition, effects on each crucial step in ULM processing were further analyzed. Results showed that when frame rates dropped from 1000 Hz to 250 Hz, the spatial resolution deteriorated from 9.9 μm to 15.0 μm. Applying a velocity constraint was able to improve the ULM performance, but inappropriate constraint may artificially result in high apparent resolution. For the dataset, compared with the results of 1000 Hz frame rate, the velocity was underestimated at 100 Hz with 47.18% difference and the saturation was reduced from 55.00% at 1000 Hz to 43.34% at 100 Hz. Analysis showed that inadequate frame rate generated unreliable microbubble detection, localization and tracking as well as incomplete track reconstruction, resulting in the deterioration in spatial resolution, the underestimation in velocity measurement and the decrease in saturation. Finally, a guidance of determining the frame rate requirement was discussed by considering the required spatial sampling points based on vessel morphology, clutter filtering method, tracking algorithm and acquisition time, which provides indications for future clinical application of ULM method. Ultrasound localization microscopy (ULM) breaks the diffraction limit and allows imaging microvasculature at micrometric resolution while preserving the penetration depth. Frame rate plays an important role for high-quality ULM imaging, but there is still a lack of review and investigation of the frame rate effects on ULM. This work aims to clarify how frame rate influences the performance of ULM, including the effects of microbubble detection, localization and tracking. The performance of ULM was evaluated using an in vivo rat brain dataset (15.6 MHz, 3 tilted plane waves (-5°, 0°, +5°), at a compounded frame rate of 1000 Hz) with different frame rates. Quantification methods, including Fourier ring correlation and saturation parameter, were applied to analyze the spatial resolution and reconstruction efficiency, respectively. In addition, effects on each crucial step in ULM processing were further analyzed. Results showed that when frame rates dropped from 1000 Hz to 250 Hz, the spatial resolution deteriorated from 9.9 μm to 15.0 μm. Applying a velocity constraint was able to improve the ULM performance, but inappropriate constraint may artificially result in high apparent resolution. For the dataset, compared with the results of 1000 Hz frame rate, the velocity was underestimated at 100 Hz with 47.18% difference and the saturation was reduced from 55.00% at 1000 Hz to 43.34% at 100 Hz. Analysis showed that inadequate frame rate generated unreliable microbubble detection, localization and tracking as well as incomplete track reconstruction, resulting in the deterioration in spatial resolution, the underestimation in velocity measurement and the decrease in saturation. Finally, a guidance of determining the frame rate requirement was discussed by considering the required spatial sampling points based on vessel morphology, clutter filtering method, tracking algorithm and acquisition time, which provides indications for future clinical application of ULM method.Ultrasound localization microscopy (ULM) breaks the diffraction limit and allows imaging microvasculature at micrometric resolution while preserving the penetration depth. Frame rate plays an important role for high-quality ULM imaging, but there is still a lack of review and investigation of the frame rate effects on ULM. This work aims to clarify how frame rate influences the performance of ULM, including the effects of microbubble detection, localization and tracking. The performance of ULM was evaluated using an in vivo rat brain dataset (15.6 MHz, 3 tilted plane waves (-5°, 0°, +5°), at a compounded frame rate of 1000 Hz) with different frame rates. Quantification methods, including Fourier ring correlation and saturation parameter, were applied to analyze the spatial resolution and reconstruction efficiency, respectively. In addition, effects on each crucial step in ULM processing were further analyzed. Results showed that when frame rates dropped from 1000 Hz to 250 Hz, the spatial resolution deteriorated from 9.9 μm to 15.0 μm. Applying a velocity constraint was able to improve the ULM performance, but inappropriate constraint may artificially result in high apparent resolution. For the dataset, compared with the results of 1000 Hz frame rate, the velocity was underestimated at 100 Hz with 47.18% difference and the saturation was reduced from 55.00% at 1000 Hz to 43.34% at 100 Hz. Analysis showed that inadequate frame rate generated unreliable microbubble detection, localization and tracking as well as incomplete track reconstruction, resulting in the deterioration in spatial resolution, the underestimation in velocity measurement and the decrease in saturation. Finally, a guidance of determining the frame rate requirement was discussed by considering the required spatial sampling points based on vessel morphology, clutter filtering method, tracking algorithm and acquisition time, which provides indications for future clinical application of ULM method. Ultrasound localization microscopy (ULM) breaks the diffraction limit and allows imaging microvasculature at micrometric resolution while preserving the penetration depth. Frame rate plays an important role for high-quality ULM imaging, but there is still a lack of review and investigation of the frame rate effects on ULM. This work aims to clarify how frame rate influences the performance of ULM, including the effects of microbubble detection, localization and tracking. The performance of ULM was evaluated using an in vivo rat brain dataset (15.6 MHz, 3 tilted plane waves (-5°, 0°, +5°), at a compounded frame rate of 1000 Hz) with different frame rates. Quantification methods, including Fourier ring correlation and saturation parameter, were applied to analyze the spatial resolution and reconstruction efficiency, respectively. In addition, effects on each crucial step in ULM processing were further analyzed. Results showed that when frame rates dropped from 1000 Hz to 250 Hz, the spatial resolution deteriorated from 9.9 μm to 15.0 μm. Applying a velocity constraint was able to improve the ULM performance, but inappropriate constraint may artificially result in high apparent resolution. For the dataset, compared with the results of 1000 Hz frame rate, the velocity was underestimated at 100 Hz with 47.18% difference and the saturation was reduced from 55.00% at 1000 Hz to 43.34% at 100 Hz. Analysis showed that inadequate frame rate generated unreliable microbubble detection, localization and tracking as well as incomplete track reconstruction, resulting in the deterioration in spatial resolution, the underestimation in velocity measurement and the decrease in saturation. Finally, a guidance of determining the frame rate requirement was discussed by considering the required spatial sampling points based on vessel morphology, clutter filtering method, tracking algorithm and acquisition time, which provides indications for future clinical application of ULM method. |
| ArticleNumber | 107009 |
| Author | Guo, Xingyi Ta, Dean Xu, Kailiang |
| Author_xml | – sequence: 1 givenname: Xingyi surname: Guo fullname: Guo, Xingyi organization: Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China – sequence: 2 givenname: Dean surname: Ta fullname: Ta, Dean organization: Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China – sequence: 3 givenname: Kailiang orcidid: 0000-0002-1819-4101 surname: Xu fullname: Xu, Kailiang email: xukl@fudan.edu.cn organization: Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37060620$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU9LHTEUxYNY9Gn7DUqZpZt5TSYxf1wI8lBbELqp4C5kkjs2j8xkmswI-unNe6MUumghJHA5v0POPSfocIgDIPSZ4DXBhH_drucwJZPXDW5oGQmM1QFaESlYrRSXh2iFMSM1b9jDMTrJeYsxYZLQI3RMBeaYN3iFXm6S6aFKZoIKug7slCszuGr6BT5VNvYjDNlMPg5VOXkeIdUJcgzzftZ7m-IT5Ayh8r159MNjNef9vf9cnItXiNYE_2L-ENnG8fkj-tCZkOHT23uK7m-uf26-1Xc_br9vru5qS3kz1S0joIwCpzBzsul42woC0LWOUcmlEucOpBVYCXHeMAnSGUZtC4pakC0HeorOFt8xxd8z5En3PlsIwQwQ56wbiYmSRFBcpF_epHPbg9NjKqHSs37fVxFcLIJdiJyg09ZP-2AlrQ-aYL0rR2_1kl_vytFLOQVmf8Hv_v_BLhcMypKePCSdrYfBgvOp9KVd9P82eAXN_a74 |
| CitedBy_id | crossref_primary_10_1016_j_ultras_2023_107124 crossref_primary_10_1121_10_0028134 crossref_primary_10_1016_j_ultras_2024_107430 crossref_primary_10_1016_j_ebiom_2024_105457 crossref_primary_10_1016_j_ultras_2024_107451 crossref_primary_10_1016_j_ultras_2024_107465 crossref_primary_10_1109_TUFFC_2024_3463188 crossref_primary_10_1109_TUFFC_2024_3515218 crossref_primary_10_7498_aps_72_20230323 crossref_primary_10_1109_TMI_2023_3347261 crossref_primary_10_1109_TUFFC_2024_3519179 crossref_primary_10_1109_TUFFC_2024_3508266 |
| Cites_doi | 10.1109/TMI.2015.2428634 10.1109/TMI.2018.2789499 10.1088/1361-6560/abef45 10.1016/j.ultras.2017.01.008 10.1016/j.ultrasmedbio.2019.11.013 10.1109/TMI.2021.3097150 10.1088/1361-6560/abf1b6 10.1038/s41551-021-00697-x 10.7498/aps.71.20220954 10.1109/TUFFC.2020.2984384 10.1109/TUFFC.2015.2500266 10.1109/TMI.2022.3152396 10.1038/s41467-018-03973-8 10.1097/RLI.0000000000000565 10.1038/nature16066 10.1109/TUFFC.2018.2824846 10.1109/TUFFC.2012.2508 10.1109/TMI.2021.3123912 10.1126/science.1130258 10.1109/TMI.2014.2359650 10.1109/TUFFC.2018.2872067 10.1016/j.jsb.2013.05.004 10.1109/TUFFC.2019.2926062 10.1038/nmeth.2448 10.1109/TUFFC.2014.2882 10.1016/j.jsb.2005.05.009 10.7498/aps.71.20220629 10.1002/nav.3800020109 10.1109/TUFFC.2018.2850811 10.1109/TUFFC.2017.2778941 10.1109/TUFFC.2020.2965767 10.1038/s41598-018-38349-x 10.1038/s41551-021-00824-8 10.1038/s41551-018-0188-z 10.1148/radiol.2019182593 10.1109/TUFFC.2022.3143864 10.1038/s41598-022-24986-w 10.7150/thno.16899 10.1038/s41598-017-13676-7 10.1088/1361-6560/aa4fe8 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.ultras.2023.107009 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1874-9968 |
| ExternalDocumentID | 37060620 10_1016_j_ultras_2023_107009 S0041624X23000859 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABBQC ABDPE ABEFU ABFNM ABJNI ABLJU ABMAC ABMZM ABNEU ABTAH ABXDB ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC BNPGV C45 CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SPG SSH SSQ SSZ T5K TAE TEORI UHS WH7 WUQ XPP ZGI ZMT ZXP ZY4 ~02 ~G- AATTM AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c362t-b41e9a9ed904d82f6bb71eefbd43868975de8c709775248e8da43cbe93ce8b6e3 |
| IEDL.DBID | .~1 |
| ISSN | 0041-624X 1874-9968 |
| IngestDate | Mon Sep 29 04:46:17 EDT 2025 Mon Jul 21 05:48:28 EDT 2025 Wed Oct 01 05:19:19 EDT 2025 Thu Apr 24 22:50:39 EDT 2025 Tue Dec 03 03:44:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Super-Resolution Microvessel Frame Rate Microbubble Ultrasound Localization Microscopy (ULM) |
| Language | English |
| License | Copyright © 2023 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c362t-b41e9a9ed904d82f6bb71eefbd43868975de8c709775248e8da43cbe93ce8b6e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1819-4101 |
| PMID | 37060620 |
| PQID | 2801981730 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2801981730 pubmed_primary_37060620 crossref_citationtrail_10_1016_j_ultras_2023_107009 crossref_primary_10_1016_j_ultras_2023_107009 elsevier_sciencedirect_doi_10_1016_j_ultras_2023_107009 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2023 2023-07-00 2023-Jul 20230701 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Ultrasonics |
| PublicationTitleAlternate | Ultrasonics |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Huang (b0010) 2021; 66 Zhu (b0105) Jun. 2019; 291 Demene (b0035) Apr. 2015; 34 Kuhn (b0155) Mar. 1955; 2 Bourquin (b0145) Nov. 2021; 41 Opacic (b0055) Apr. 2018; 9 Couture (b0040) Jun. 2018; 65 Solomon (b0175) Jul. 2019; 66 Foiret (b0100) Oct. 2017; 7 Hingot (b0185) May. 2017; 77 Banterle (b0165) Sep. 2013; 183 Boehr (b0015) Sep. 2006; 313 Christensen-Jeffries (b0045) Apr. 2020; 46 Kim (b0125) Jan. 2022; 69 Heiles (b0150) 2022; 6 Harmon (b0205) Dec. 2022; 12 Demené (b0050) Mar. 2021; 5 Kanoulas (b0085) Aug. 2019; 54 Huang (b0120) Apr. 2020; 10 Dencks (b0080) Sep. 2018; 66 Demeulenaere (b0135) Apr. 2022; 15 Hardy (b0140) Apr. 2021; 66 Couture (b0030) Dec. 2012; 59 Baranger (b0190) Feb. 2019; 37 Provost (b0020) Feb. 2018; 2 Song (b0110) Nov. 2017; 65 Arnal (b0195) Jan. 2017; 62 Hingot (b0005) Feb. 2019; 9 Tang (b0115) Mar. 2020; 67 Yu (b0215) Sep. 2022; 71 Hingot (b0130) Jul. 2021; 40 Christensen-Jeffries (b0065) Sep. 2014; 34 Errico (b0090) Nov. 2015; 527 Lin (b0095) Jan. 2017; 7 Yan (b0060) Feb. 2022; 41 Kierski (b0200) 2020; 67 Tanter, Fink (b0025) Jan. 2014; 61 Nieuwenhuizen (b0160) Jun. 2013; 10 van Heel, Schatz (b0170) Sep. 2005; 151 Sui (b0210) Nov. 2022; 71 Harput (b0070) 2018; 65 Ackermann, Schmitz (b0075) Nov. 2015; 63 Xu (b0180) 2021 Hingot (10.1016/j.ultras.2023.107009_b0185) 2017; 77 Tanter (10.1016/j.ultras.2023.107009_b0025) 2014; 61 Christensen-Jeffries (10.1016/j.ultras.2023.107009_b0045) 2020; 46 Yan (10.1016/j.ultras.2023.107009_b0060) 2022; 41 van Heel (10.1016/j.ultras.2023.107009_b0170) 2005; 151 Bourquin (10.1016/j.ultras.2023.107009_b0145) 2021; 41 Kuhn (10.1016/j.ultras.2023.107009_b0155) 1955; 2 Demeulenaere (10.1016/j.ultras.2023.107009_b0135) 2022; 15 Harmon (10.1016/j.ultras.2023.107009_b0205) 2022; 12 Ackermann (10.1016/j.ultras.2023.107009_b0075) 2015; 63 Hardy (10.1016/j.ultras.2023.107009_b0140) 2021; 66 Kierski (10.1016/j.ultras.2023.107009_b0200) 2020; 67 Opacic (10.1016/j.ultras.2023.107009_b0055) 2018; 9 Kim (10.1016/j.ultras.2023.107009_b0125) 2022; 69 Demené (10.1016/j.ultras.2023.107009_b0050) 2021; 5 Arnal (10.1016/j.ultras.2023.107009_b0195) 2017; 62 Huang (10.1016/j.ultras.2023.107009_b0010) 2021; 66 Zhu (10.1016/j.ultras.2023.107009_b0105) 2019; 291 Harput (10.1016/j.ultras.2023.107009_b0070) 2018; 65 Xu (10.1016/j.ultras.2023.107009_b0180) 2021 Demene (10.1016/j.ultras.2023.107009_b0035) 2015; 34 Errico (10.1016/j.ultras.2023.107009_b0090) 2015; 527 Christensen-Jeffries (10.1016/j.ultras.2023.107009_b0065) 2014; 34 Huang (10.1016/j.ultras.2023.107009_b0120) 2020; 10 Hingot (10.1016/j.ultras.2023.107009_b0130) 2021; 40 Banterle (10.1016/j.ultras.2023.107009_b0165) 2013; 183 Sui (10.1016/j.ultras.2023.107009_b0210) 2022; 71 Tang (10.1016/j.ultras.2023.107009_b0115) 2020; 67 Dencks (10.1016/j.ultras.2023.107009_b0080) 2018; 66 Foiret (10.1016/j.ultras.2023.107009_b0100) 2017; 7 Solomon (10.1016/j.ultras.2023.107009_b0175) 2019; 66 Kanoulas (10.1016/j.ultras.2023.107009_b0085) 2019; 54 Baranger (10.1016/j.ultras.2023.107009_b0190) 2019; 37 Couture (10.1016/j.ultras.2023.107009_b0040) 2018; 65 Heiles (10.1016/j.ultras.2023.107009_b0150) 2022; 6 Yu (10.1016/j.ultras.2023.107009_b0215) 2022; 71 Song (10.1016/j.ultras.2023.107009_b0110) 2017; 65 Couture (10.1016/j.ultras.2023.107009_b0030) 2012; 59 Lin (10.1016/j.ultras.2023.107009_b0095) 2017; 7 Hingot (10.1016/j.ultras.2023.107009_b0005) 2019; 9 Provost (10.1016/j.ultras.2023.107009_b0020) 2018; 2 Nieuwenhuizen (10.1016/j.ultras.2023.107009_b0160) 2013; 10 Boehr (10.1016/j.ultras.2023.107009_b0015) 2006; 313 |
| References_xml | – volume: 77 start-page: 17 year: May. 2017 end-page: 21 ident: b0185 article-title: Subwavelength motion-correction for ultrafast ultrasound localization microscopy publication-title: Ultrasonics – volume: 6 start-page: 605 year: 2022 end-page: 616 ident: b0150 article-title: Performance benchmarking of microbubble-localization algorithms for ultrasound localization microscopy publication-title: Nat. Biomed. Eng. – volume: 2 start-page: 85 year: Feb. 2018 end-page: 94 ident: b0020 article-title: Simultaneous positron emission tomography and ultrafast ultrasound for hybrid molecular, anatomical and functional imaging publication-title: Nat. Biomed. Eng. – volume: 65 start-page: 149 year: Nov. 2017 end-page: 167 ident: b0110 article-title: Improved super-resolution ultrasound microvessel imaging with spatiotemporal nonlocal means filtering and bipartite graph-based microbubble tracking publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 7 start-page: 1 year: Oct. 2017 end-page: 12 ident: b0100 article-title: Ultrasound localization microscopy to image and assess microvasculature in a rat kidney publication-title: Sci. Rep. – volume: 66 year: 2021 ident: b0010 article-title: Super-resolution ultrasound localization microscopy based on a high frame-rate clinical ultrasound scanner: an in-human feasibility study publication-title: Phys. Med. Biol. – volume: 183 start-page: 363 year: Sep. 2013 end-page: 367 ident: b0165 article-title: Fourier ring correlation as a resolution criterion for super-resolution microscopy publication-title: J. Struct. Biol. – volume: 71 year: Sep. 2022 ident: b0215 article-title: Ultrafast ultrasound localization microscopy method for spinal cord mircovasculature imaging publication-title: Acta Phys. Sin. – volume: 34 start-page: 433 year: Sep. 2014 end-page: 440 ident: b0065 article-title: In vivo acoustic super-resolution and super-resolved velocity mapping using microbubbles publication-title: IEEE Trans. Med. Imaging – start-page: 1 year: 2021 end-page: 4 ident: b0180 article-title: Robust PCA-based clutter filtering method for super-resolution ultrasound localization microscopy publication-title: In 2021 IEEE International Ultrasonics Symposium (IUS) – volume: 62 start-page: 843 year: Jan. 2017 end-page: 857 ident: b0195 article-title: In vivo real-time cavitation imaging in moving organs publication-title: Phys. Med. Biol. – volume: 61 start-page: 102 year: Jan. 2014 end-page: 119 ident: b0025 article-title: Ultrafast imaging in biomedical ultrasound publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 66 year: Apr. 2021 ident: b0140 article-title: Sparse channel sampling for ultrasound localization microscopy (SPARSE-ULM) publication-title: Phys. Med. Biol. – volume: 67 start-page: 1738 year: Mar. 2020 end-page: 1751 ident: b0115 article-title: Kalman filter-based microbubble tracking for robust super-resolution ultrasound microvessel imaging publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 71 year: Nov. 2022 ident: b0210 article-title: Accelerating super-resolution ultrasound localization microscopy with generative adversarial nets publication-title: Acta Phys. Sin. – volume: 9 start-page: 1 year: Apr. 2018 end-page: 13 ident: b0055 article-title: Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization publication-title: Nat. Commun. – volume: 65 start-page: 803 year: 2018 end-page: 814 ident: b0070 article-title: Two-stage motion correction for super-resolution ultrasound imaging in human lower limb publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 66 start-page: 517 year: Sep. 2018 end-page: 526 ident: b0080 article-title: Clinical pilot application of super-resolution US imaging in breast cancer publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 41 start-page: 782 year: Nov. 2021 end-page: 792 ident: b0145 article-title: In vivo pulsatility measurement of cerebral microcirculation in rodents using dynamic ultrasound localization microscopy publication-title: IEEE Trans. Med. Imaging – volume: 69 start-page: 1041 year: Jan. 2022 end-page: 1052 ident: b0125 article-title: Improved ultrasound localization microscopy based on microbubble uncoupling via transmit excitation publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 46 start-page: 865 year: Apr. 2020 end-page: 891 ident: b0045 article-title: Super-resolution ultrasound imaging publication-title: Ultrasound Med. Biol. – volume: 34 start-page: 2271 year: Apr. 2015 end-page: 2285 ident: b0035 article-title: Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and fultrasound sensitivity publication-title: IEEE Trans. Med. Imaging – volume: 63 start-page: 72 year: Nov. 2015 end-page: 82 ident: b0075 article-title: Detection and tracking of multiple microbubbles in ultrasound B-mode images publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 40 start-page: 3812 year: Jul. 2021 end-page: 3819 ident: b0130 article-title: Measuring image resolution in ultrasound localization microscopy publication-title: IEEE Trans. Med. Imaging – volume: 41 start-page: 1938 year: Feb. 2022 end-page: 1947 ident: b0060 article-title: Super-resolution ultrasound through sparsity-based deconvolution and multi-feature tracking publication-title: IEEE Trans. Med. Imaging – volume: 66 start-page: 1573 year: Jul. 2019 end-page: 1586 ident: b0175 article-title: Exploiting flow dynamics for superresolution in contrast-enhanced ultrasound publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 313 start-page: 1638 year: Sep. 2006 end-page: 1642 ident: b0015 article-title: The dynamic energy landscape of dihydrofolate reductase catalysis publication-title: Science – volume: 2 start-page: 83 year: Mar. 1955 end-page: 97 ident: b0155 article-title: The Hungarian method for the assignment problem publication-title: Naval Research Logistics Quarterly – volume: 291 start-page: 642 year: Jun. 2019 end-page: 650 ident: b0105 article-title: 3D super-resolution US imaging of rabbit lymph node vasculature in vivo by using microbubbles publication-title: Radiology – volume: 10 start-page: 557 year: Jun. 2013 end-page: 562 ident: b0160 article-title: Measuring image resolution in optical nanoscopy publication-title: Nat. Methods – volume: 59 start-page: 2676 year: Dec. 2012 end-page: 2683 ident: b0030 article-title: Ultrasound contrast plane wave imaging publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 527 start-page: 499 year: Nov. 2015 end-page: 502 ident: b0090 article-title: Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging publication-title: Nature – volume: 7 start-page: 196 year: Jan. 2017 end-page: 204 ident: b0095 article-title: 3-D ultrasound localization microscopy for identifying microvascular morphology features of tumor angiogenesis at a resolution beyond the diffraction limit of conventional ultrasound publication-title: Theranostics – volume: 10 start-page: 1 year: Apr. 2020 end-page: 13 ident: b0120 article-title: Short acquisition time super-resolution ultrasound microvessel imaging via microbubble separation publication-title: Sci. Rep. – volume: 5 start-page: 219 year: Mar. 2021 end-page: 228 ident: b0050 article-title: Transcranial ultrafast ultrasound localization microscopy of brain vasculature in patients publication-title: Nat. Biomed. Eng. – volume: 15 start-page: 1193 year: Apr. 2022 end-page: 1208 ident: b0135 article-title: “Coronary flow assessment using 3-dimensional ultrafast ultrasound localization microscopy,” JACC: Cardiovasc publication-title: Imaging – volume: 37 start-page: 1574 year: Feb. 2019 end-page: 1586 ident: b0190 article-title: Adaptive spatiotemporal SVD clutter filtering for ultrafast Doppler imaging using similarity of spatial singular vectors publication-title: IEEE Trans. Med. Imaging – volume: 151 start-page: 250 year: Sep. 2005 end-page: 262 ident: b0170 article-title: Fourier shell correlation threshold criteria publication-title: J. Struct. Biol. – volume: 12 start-page: 21943 year: Dec. 2022 ident: b0205 article-title: Quantitative tissue perfusion imaging using nonlinear ultrasound localization microscopy publication-title: Sci. Rep. – volume: 9 start-page: 1 year: Feb. 2019 end-page: 10 ident: b0005 article-title: Microvascular flow dictates the compromise between spatial resolution and acquisition time in ultrasound localization microscopy publication-title: Sci. Rep. – volume: 65 start-page: 1304 year: Jun. 2018 end-page: 1320 ident: b0040 article-title: Ultrasound localization microscopy and super-resolution: a state of the art publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 54 start-page: 500 year: Aug. 2019 end-page: 516 ident: b0085 article-title: Super-resolution contrast-enhanced ultrasound methodology for the identification of in vivo vascular dynamics in 2D publication-title: Invest. Radiol. – volume: 67 start-page: 957 year: 2020 end-page: 967 ident: b0200 article-title: Superharmonic ultrasound for motion-independent localization microscopy: applications to microvascular imaging from low to high flow rates publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 34 start-page: 2271 issue: 11 year: 2015 ident: 10.1016/j.ultras.2023.107009_b0035 article-title: Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and fultrasound sensitivity publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2428634 – volume: 37 start-page: 1574 issue: 7 year: 2019 ident: 10.1016/j.ultras.2023.107009_b0190 article-title: Adaptive spatiotemporal SVD clutter filtering for ultrafast Doppler imaging using similarity of spatial singular vectors publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2789499 – volume: 66 issue: 8 year: 2021 ident: 10.1016/j.ultras.2023.107009_b0010 article-title: Super-resolution ultrasound localization microscopy based on a high frame-rate clinical ultrasound scanner: an in-human feasibility study publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/abef45 – volume: 77 start-page: 17 year: 2017 ident: 10.1016/j.ultras.2023.107009_b0185 article-title: Subwavelength motion-correction for ultrafast ultrasound localization microscopy publication-title: Ultrasonics doi: 10.1016/j.ultras.2017.01.008 – volume: 46 start-page: 865 issue: 4 year: 2020 ident: 10.1016/j.ultras.2023.107009_b0045 article-title: Super-resolution ultrasound imaging publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2019.11.013 – volume: 40 start-page: 3812 issue: 12 year: 2021 ident: 10.1016/j.ultras.2023.107009_b0130 article-title: Measuring image resolution in ultrasound localization microscopy publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3097150 – volume: 66 issue: 9 year: 2021 ident: 10.1016/j.ultras.2023.107009_b0140 article-title: Sparse channel sampling for ultrasound localization microscopy (SPARSE-ULM) publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/abf1b6 – volume: 5 start-page: 219 issue: 3 year: 2021 ident: 10.1016/j.ultras.2023.107009_b0050 article-title: Transcranial ultrafast ultrasound localization microscopy of brain vasculature in patients publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-021-00697-x – volume: 71 issue: 22 year: 2022 ident: 10.1016/j.ultras.2023.107009_b0210 article-title: Accelerating super-resolution ultrasound localization microscopy with generative adversarial nets publication-title: Acta Phys. Sin. doi: 10.7498/aps.71.20220954 – volume: 67 start-page: 1738 issue: 9 year: 2020 ident: 10.1016/j.ultras.2023.107009_b0115 article-title: Kalman filter-based microbubble tracking for robust super-resolution ultrasound microvessel imaging publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2020.2984384 – volume: 63 start-page: 72 issue: 1 year: 2015 ident: 10.1016/j.ultras.2023.107009_b0075 article-title: Detection and tracking of multiple microbubbles in ultrasound B-mode images publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2015.2500266 – volume: 41 start-page: 1938 issue: 8 year: 2022 ident: 10.1016/j.ultras.2023.107009_b0060 article-title: Super-resolution ultrasound through sparsity-based deconvolution and multi-feature tracking publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3152396 – volume: 9 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.ultras.2023.107009_b0055 article-title: Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization publication-title: Nat. Commun. doi: 10.1038/s41467-018-03973-8 – volume: 54 start-page: 500 issue: 8 year: 2019 ident: 10.1016/j.ultras.2023.107009_b0085 article-title: Super-resolution contrast-enhanced ultrasound methodology for the identification of in vivo vascular dynamics in 2D publication-title: Invest. Radiol. doi: 10.1097/RLI.0000000000000565 – volume: 527 start-page: 499 issue: 7579 year: 2015 ident: 10.1016/j.ultras.2023.107009_b0090 article-title: Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging publication-title: Nature doi: 10.1038/nature16066 – volume: 65 start-page: 803 issue: 5 year: 2018 ident: 10.1016/j.ultras.2023.107009_b0070 article-title: Two-stage motion correction for super-resolution ultrasound imaging in human lower limb publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2018.2824846 – volume: 59 start-page: 2676 issue: 12 year: 2012 ident: 10.1016/j.ultras.2023.107009_b0030 article-title: Ultrasound contrast plane wave imaging publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2012.2508 – volume: 41 start-page: 782 issue: 4 year: 2021 ident: 10.1016/j.ultras.2023.107009_b0145 article-title: In vivo pulsatility measurement of cerebral microcirculation in rodents using dynamic ultrasound localization microscopy publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3123912 – volume: 313 start-page: 1638 issue: 5793 year: 2006 ident: 10.1016/j.ultras.2023.107009_b0015 article-title: The dynamic energy landscape of dihydrofolate reductase catalysis publication-title: Science doi: 10.1126/science.1130258 – volume: 34 start-page: 433 issue: 2 year: 2014 ident: 10.1016/j.ultras.2023.107009_b0065 article-title: In vivo acoustic super-resolution and super-resolved velocity mapping using microbubbles publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2359650 – start-page: 1 year: 2021 ident: 10.1016/j.ultras.2023.107009_b0180 article-title: Robust PCA-based clutter filtering method for super-resolution ultrasound localization microscopy – volume: 66 start-page: 517 issue: 3 year: 2018 ident: 10.1016/j.ultras.2023.107009_b0080 article-title: Clinical pilot application of super-resolution US imaging in breast cancer publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2018.2872067 – volume: 183 start-page: 363 issue: 3 year: 2013 ident: 10.1016/j.ultras.2023.107009_b0165 article-title: Fourier ring correlation as a resolution criterion for super-resolution microscopy publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2013.05.004 – volume: 66 start-page: 1573 issue: 10 year: 2019 ident: 10.1016/j.ultras.2023.107009_b0175 article-title: Exploiting flow dynamics for superresolution in contrast-enhanced ultrasound publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2019.2926062 – volume: 10 start-page: 557 issue: 6 year: 2013 ident: 10.1016/j.ultras.2023.107009_b0160 article-title: Measuring image resolution in optical nanoscopy publication-title: Nat. Methods doi: 10.1038/nmeth.2448 – volume: 61 start-page: 102 issue: 1 year: 2014 ident: 10.1016/j.ultras.2023.107009_b0025 article-title: Ultrafast imaging in biomedical ultrasound publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2014.2882 – volume: 151 start-page: 250 issue: 3 year: 2005 ident: 10.1016/j.ultras.2023.107009_b0170 article-title: Fourier shell correlation threshold criteria publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.05.009 – volume: 71 issue: 17 year: 2022 ident: 10.1016/j.ultras.2023.107009_b0215 article-title: Ultrafast ultrasound localization microscopy method for spinal cord mircovasculature imaging publication-title: Acta Phys. Sin. doi: 10.7498/aps.71.20220629 – volume: 2 start-page: 83 issue: 1–2 year: 1955 ident: 10.1016/j.ultras.2023.107009_b0155 article-title: The Hungarian method for the assignment problem publication-title: Naval Research Logistics Quarterly doi: 10.1002/nav.3800020109 – volume: 15 start-page: 1193 issue: 7 year: 2022 ident: 10.1016/j.ultras.2023.107009_b0135 article-title: “Coronary flow assessment using 3-dimensional ultrafast ultrasound localization microscopy,” JACC: Cardiovasc publication-title: Imaging – volume: 65 start-page: 1304 issue: 8 year: 2018 ident: 10.1016/j.ultras.2023.107009_b0040 article-title: Ultrasound localization microscopy and super-resolution: a state of the art publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2018.2850811 – volume: 65 start-page: 149 issue: 2 year: 2017 ident: 10.1016/j.ultras.2023.107009_b0110 article-title: Improved super-resolution ultrasound microvessel imaging with spatiotemporal nonlocal means filtering and bipartite graph-based microbubble tracking publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2017.2778941 – volume: 67 start-page: 957 issue: 5 year: 2020 ident: 10.1016/j.ultras.2023.107009_b0200 article-title: Superharmonic ultrasound for motion-independent localization microscopy: applications to microvascular imaging from low to high flow rates publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2020.2965767 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.ultras.2023.107009_b0005 article-title: Microvascular flow dictates the compromise between spatial resolution and acquisition time in ultrasound localization microscopy publication-title: Sci. Rep. doi: 10.1038/s41598-018-38349-x – volume: 6 start-page: 605 issue: 5 year: 2022 ident: 10.1016/j.ultras.2023.107009_b0150 article-title: Performance benchmarking of microbubble-localization algorithms for ultrasound localization microscopy publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-021-00824-8 – volume: 2 start-page: 85 issue: 2 year: 2018 ident: 10.1016/j.ultras.2023.107009_b0020 article-title: Simultaneous positron emission tomography and ultrafast ultrasound for hybrid molecular, anatomical and functional imaging publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0188-z – volume: 291 start-page: 642 issue: 3 year: 2019 ident: 10.1016/j.ultras.2023.107009_b0105 article-title: 3D super-resolution US imaging of rabbit lymph node vasculature in vivo by using microbubbles publication-title: Radiology doi: 10.1148/radiol.2019182593 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.ultras.2023.107009_b0120 article-title: Short acquisition time super-resolution ultrasound microvessel imaging via microbubble separation publication-title: Sci. Rep. – volume: 69 start-page: 1041 issue: 3 year: 2022 ident: 10.1016/j.ultras.2023.107009_b0125 article-title: Improved ultrasound localization microscopy based on microbubble uncoupling via transmit excitation publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2022.3143864 – volume: 12 start-page: 21943 issue: 1 year: 2022 ident: 10.1016/j.ultras.2023.107009_b0205 article-title: Quantitative tissue perfusion imaging using nonlinear ultrasound localization microscopy publication-title: Sci. Rep. doi: 10.1038/s41598-022-24986-w – volume: 7 start-page: 196 issue: 1 year: 2017 ident: 10.1016/j.ultras.2023.107009_b0095 article-title: 3-D ultrasound localization microscopy for identifying microvascular morphology features of tumor angiogenesis at a resolution beyond the diffraction limit of conventional ultrasound publication-title: Theranostics doi: 10.7150/thno.16899 – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.ultras.2023.107009_b0100 article-title: Ultrasound localization microscopy to image and assess microvasculature in a rat kidney publication-title: Sci. Rep. doi: 10.1038/s41598-017-13676-7 – volume: 62 start-page: 843 issue: 3 year: 2017 ident: 10.1016/j.ultras.2023.107009_b0195 article-title: In vivo real-time cavitation imaging in moving organs publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa4fe8 |
| SSID | ssj0014813 |
| Score | 2.4684803 |
| Snippet | •The effects of frame rate on the performance of ultrasound localization microscopy (ULM) were thoroughly investigated and the impacts on resolution, velocity... Ultrasound localization microscopy (ULM) breaks the diffraction limit and allows imaging microvasculature at micrometric resolution while preserving the... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 107009 |
| SubjectTerms | Animals Frame Rate Microbubble Microbubbles Microscopy - methods Microvessel Microvessels - diagnostic imaging Phantoms, Imaging Rats Super-Resolution Ultrasonography - methods Ultrasound Localization Microscopy (ULM) |
| Title | Frame rate effects and their compensation on super-resolution microvessel imaging using ultrasound localization microscopy |
| URI | https://dx.doi.org/10.1016/j.ultras.2023.107009 https://www.ncbi.nlm.nih.gov/pubmed/37060620 https://www.proquest.com/docview/2801981730 |
| Volume | 132 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: AKRWK dateStart: 19630101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpdAeSpq-tkmDCr2qsS3Zko4hdNm2NKcG9mb0GMOWjbNsdgvNIb-9M7K8tNAQKBiDhYQlz3jmE_pmhrEPuI9tdOc60UVZC9UACK-jFxaMjuggutpTcPK3i2Z2qb7M6_keOx9jYYhWmW3_YNOTtc4tp_lrnq4WC4rxRTBRqTmCaAIOFMSnlKYqBh_vdjQPRPtlPmUuBfUew-cSx2u73KwdJe2uJDbpgmiJ_3ZP98HP5IamB-xZxo_8bJjic7YH_SF7-kdWwUP2OLE6w80Ldjsl6hWnbBA8Eze46yNPpwOc2OS4iU2i4XjdbFewFrj9ztrIr4is95OSiy_54iqVM-LEk8d7WhFVZOLJGeZgzmEEBbr8eskup5--n89ELrYgAvqwjfCqBOssRFuoaKqu8V6XAJ2PSprGWF1HMEEXiBfrShkw0SkZPFgZwPgG5Cu231_38IZxG5ylhLfWl1G52roq4MandKExsS5kNWFy_MZtyJnIqSDGsh0pZz_aYR0tSaYdJDNhYjdqNWTieKC_HsXX_qVRLTqLB0a-H6Xd4s9GJyiuh-stdkJ_bk2JVnHCXg9qsJuLpDxETVW8_e_3HrEn9DSQgY_Z_ma9hXcIeTb-JOn0CXt09vnr7OI3NXkETg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_OE1EfRM-v9TOCr_HaJm2TRzlcVr27pzvYt5Cvwh57vWVvV9AH_3Zn0nRRUA6E0oc2oUlmmvkN-c0MwHv0Y5u2sx3vgqi5bGLkrg2O66jagAaiqx0FJ5-cNrNz-WVez_fgaIyFIVpl3vuHPT3t1vnJYV7Nw9ViQTG-CCYqOUcQTcBB34Lbsq5a8sA-_NzxPBDul_mYueTUfIyfSySv7XKztpS1uxL4qC2Il_h3-_Qv_Jns0PQhPMgAkn0cxvgI9mJ_APd_Syt4AHcSrdNfP4YfU-JeMUoHwTJzg9k-sHQ8wIhOjl5skg3D63q7imuO_ndWR3ZJbL1vlF18yRaXqZ4RI6I83tOMqCQTS9YwR3MOPSjS5fsTOJ9-Ojua8VxtgXs0YhvuZBm11THoQgZVdY1zbRlj54IUqlG6rUNUvi0QMNaVVFEFK4V3UQsflWuieAr7_VUfnwPT3mrKeKtdGaStta08ej6l9Y0KdSGqCYhxjY3PqcipIsbSjJyzCzPMw5BkzCCZCfBdr9WQiuOG9u0oPvOHShm0Fjf0fDdK2-DfRkcoto9XW2yEBl2rErfFCTwb1GA3FkGJiJqqePHf330Ld2dnJ8fm-PPp15dwj94MzOBXsL9Zb-NrxD8b9ybp9y8mXgXj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frame+rate+effects+and+their+compensation+on+super-resolution+microvessel+imaging+using+ultrasound+localization+microscopy&rft.jtitle=Ultrasonics&rft.au=Guo%2C+Xingyi&rft.au=Ta%2C+Dean&rft.au=Xu%2C+Kailiang&rft.date=2023-07-01&rft.issn=1874-9968&rft.eissn=1874-9968&rft.volume=132&rft.spage=107009&rft_id=info:doi/10.1016%2Fj.ultras.2023.107009&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-624X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-624X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-624X&client=summon |