CenterNet-Auto: A Multi-object Visual Detection Algorithm for Autonomous Driving Scenes Based on Improved CenterNet

With the rise in popularity of autonomous driving, the speed and accuracy of surrounding objects' detection by in-vehicle sensing technology is becoming increasingly important for autonomous vehicles. Building on CenterNet, this paper proposes CenterNet-Auto, a new anchor-free detection network...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on emerging topics in computational intelligence Vol. 7; no. 3; pp. 1 - 11
Main Authors Wang, Hai, Xu, Yansong, Wang, Zining, Cai, Yingfeng, Chen, Long, Li, Yicheng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2471-285X
2471-285X
DOI10.1109/TETCI.2023.3235381

Cover

Abstract With the rise in popularity of autonomous driving, the speed and accuracy of surrounding objects' detection by in-vehicle sensing technology is becoming increasingly important for autonomous vehicles. Building on CenterNet, this paper proposes CenterNet-Auto, a new anchor-free detection network for driving scenes that can satisfy the detection speed requirements while ensuring detection accuracy. The network's backbone uses the RepVGG model transformed through structural re-parameterization technology. Features of different scales are fused, and feature pyramids and deformable convolution are added after the backbone to accurately detect objects of different sizes. To solve the occlusion problem in the driving scene, this paper proposes the Average Border Model, which supports locating the object using the boundary feature information. The test results demonstrate that the proposed algorithm outperforms CenterNet regarding speed and accuracy on the BDD dataset. The accuracy reaches 55.6%, and the speed reaches 30 FPS, meeting the speed and accuracy requirements in a driving scene.
AbstractList With the rise in popularity of autonomous driving, the speed and accuracy of surrounding objects' detection by in-vehicle sensing technology is becoming increasingly important for autonomous vehicles. Building on CenterNet, this paper proposes CenterNet-Auto, a new anchor-free detection network for driving scenes that can satisfy the detection speed requirements while ensuring detection accuracy. The network's backbone uses the RepVGG model transformed through structural re-parameterization technology. Features of different scales are fused, and feature pyramids and deformable convolution are added after the backbone to accurately detect objects of different sizes. To solve the occlusion problem in the driving scene, this paper proposes the Average Border Model, which supports locating the object using the boundary feature information. The test results demonstrate that the proposed algorithm outperforms CenterNet regarding speed and accuracy on the BDD dataset. The accuracy reaches 55.6%, and the speed reaches 30 FPS, meeting the speed and accuracy requirements in a driving scene.
Author Li, Yicheng
Chen, Long
Xu, Yansong
Wang, Hai
Wang, Zining
Cai, Yingfeng
Author_xml – sequence: 1
  givenname: Hai
  orcidid: 0000-0002-9136-8091
  surname: Wang
  fullname: Wang, Hai
  organization: School of Automotive and Traffic Engineering of Jiangsu University, Zhenjiang, China
– sequence: 2
  givenname: Yansong
  orcidid: 0000-0002-9652-2780
  surname: Xu
  fullname: Xu, Yansong
  organization: School of Automotive and Traffic Engineering of Jiangsu University, Zhenjiang, China
– sequence: 3
  givenname: Zining
  surname: Wang
  fullname: Wang, Zining
  organization: School of Automotive and Traffic Engineering of Jiangsu University, Zhenjiang, China
– sequence: 4
  givenname: Yingfeng
  orcidid: 0000-0002-0633-9887
  surname: Cai
  fullname: Cai, Yingfeng
  organization: Automotive Engineering Research Institute of Jiangsu University, Zhenjiang, China
– sequence: 5
  givenname: Long
  orcidid: 0000-0002-2079-3867
  surname: Chen
  fullname: Chen, Long
  organization: Automotive Engineering Research Institute of Jiangsu University, Zhenjiang, China
– sequence: 6
  givenname: Yicheng
  orcidid: 0000-0003-2937-7162
  surname: Li
  fullname: Li, Yicheng
  organization: Automotive Engineering Research Institute of Jiangsu University, Zhenjiang, China
BookMark eNp9kMtOwzAQRS0EEq_-AGJhiXWKPXYSh11peVTisaAgdlHqTMBVEoPtVOLvSShCiAUrj6U5c2fOPtlubYuEHHE25pxlp4uLxXQ-BgZiLEDEQvEtsgcy5RGo-Hn7V71LRt6vGGOQxVzEco_4KbYB3R2GaNIFe0Yn9Larg4nscoU60Cfju6KmMwz9z9iWTuoX60x4bWhlHR2Y1ja283TmzNq0L_RBY4uenhceS9oD8-bN2XVf_yQdkp2qqD2Ovt8D8njZn3Ad3dxfzaeTm0iLBEKUpQJkgVwqQLlkqDVLQFUQa8CYpapSKARbQiwlpiKNE55xCaVIOGS6VKU4ICebuf0C7x36kK9s59o-MgfFlWRMqKTvgk2XdtZ7h1X-5kxTuI-cs3zwm3_5zQe_-bffHlJ_IG1CMQgKrjD1_-jxBjWI-CuLcZUBE59Mc4nt
CODEN ITETCU
CitedBy_id crossref_primary_10_1109_TITS_2023_3329001
crossref_primary_10_1002_cpe_8359
crossref_primary_10_3390_s23229102
crossref_primary_10_1049_gtd2_13093
crossref_primary_10_1016_j_eswa_2024_124942
crossref_primary_10_3390_s25010214
crossref_primary_10_1109_TETCI_2024_3398020
crossref_primary_10_1109_TITS_2023_3273817
crossref_primary_10_1109_TETCI_2024_3377680
crossref_primary_10_1109_TVT_2024_3394350
crossref_primary_10_1016_j_aei_2024_102899
crossref_primary_10_3390_s25051540
crossref_primary_10_1109_TIM_2024_3379090
crossref_primary_10_1109_JSEN_2023_3293519
crossref_primary_10_1109_TIFS_2024_3461950
crossref_primary_10_3390_app14156802
crossref_primary_10_1007_s11554_024_01446_4
crossref_primary_10_1109_TTE_2024_3462449
crossref_primary_10_1109_ACCESS_2025_3550947
crossref_primary_10_1109_JSEN_2023_3280177
crossref_primary_10_7717_peerj_cs_2021
crossref_primary_10_1109_TIM_2024_3438845
crossref_primary_10_3390_wevj16010008
crossref_primary_10_1109_TITS_2023_3273286
crossref_primary_10_1109_TITS_2023_3253554
crossref_primary_10_1109_TMM_2024_3521722
crossref_primary_10_1109_JSEN_2023_3292137
crossref_primary_10_3390_electronics13010043
crossref_primary_10_1049_itr2_12386
crossref_primary_10_1155_2023_9215528
crossref_primary_10_1109_TETCI_2024_3369937
crossref_primary_10_1109_TTE_2023_3332345
crossref_primary_10_1007_s11227_024_05995_0
crossref_primary_10_1049_itr2_12391
crossref_primary_10_1109_LRA_2025_3548397
crossref_primary_10_1587_elex_20_20230445
crossref_primary_10_1109_TETCI_2024_3389710
Cites_doi 10.1109/ICCV.2017.322
10.1007/978-3-540-30548-4_21
10.1007/978-3-030-01219-9_39
10.1109/TIP.2006.877062
10.1109/SAMI50585.2021.9378657
10.1109/CVPR42600.2020.00165
10.1109/CVPR.2018.00644
10.1109/ICCV.2017.89
10.1007/s11633-022-1339-y
10.1109/CVPR.2018.00811
10.1109/ICCV.2005.129
10.1109/CVPR.2018.00907
10.1109/TITS.2022.3177615
10.1109/WACV45572.2020.9093560
10.1007/978-3-030-01264-9_45
10.1609/aaai.v33i01.33014780
10.1109/CVPR.2018.00913
10.1109/CVPR42600.2020.00271
10.1109/TIM.2021.3065438
10.1109/CVPR.2012.6248074
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2016.90
10.1109/JSEN.2022.3208076
10.1007/978-3-030-01246-5_2
10.1109/CVPR46437.2021.01352
10.1109/ICCV.2019.00975
10.1109/CVPR.2005.177
10.1109/CVPR.2017.243
10.1109/CVPR.2019.00094
10.1109/CVPR.2017.690
10.1109/TIM.2018.2840598
10.1109/MITS.2019.2903518
10.1109/CVPR.2018.00474
10.1109/CVPR42600.2020.01044
10.1007/s11263-020-01401-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2023.3235381
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2471-285X
EndPage 11
ExternalDocumentID 10_1109_TETCI_2023_3235381
10018920
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52225212; U20A20333; 52072160; 51875255
  funderid: 10.13039/501100001809
– fundername: Key Research and Development Program of Jiangsu Province
  grantid: BE2019010-2; BE2020083-3
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
EJD
7SP
8FD
L7M
ID FETCH-LOGICAL-c362t-97324ae1482e4b0ecc0628f25c2e5078f8e330b2544e7375619142d36129cd8d3
IEDL.DBID RIE
ISSN 2471-285X
IngestDate Sun Jun 29 13:58:25 EDT 2025
Thu Apr 24 23:10:58 EDT 2025
Wed Oct 01 03:58:02 EDT 2025
Wed Aug 27 02:21:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-97324ae1482e4b0ecc0628f25c2e5078f8e330b2544e7375619142d36129cd8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2079-3867
0000-0002-9652-2780
0000-0003-2937-7162
0000-0002-9136-8091
0000-0002-0633-9887
PQID 2818400386
PQPubID 4437216
PageCount 11
ParticipantIDs ieee_primary_10018920
proquest_journals_2818400386
crossref_citationtrail_10_1109_TETCI_2023_3235381
crossref_primary_10_1109_TETCI_2023_3235381
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
bochkovskiy (ref1) 2020
lin (ref42) 2014
ref14
chen (ref2) 2020; 33
ref31
ref30
ma (ref37) 2018
ref10
ref32
bochkovskiy (ref8) 2020
veit (ref36) 2016; 29
ref17
ref39
ref16
ref38
ref19
ma (ref45) 2018
kingma (ref40) 2014
redmon (ref7) 2018
ref24
ref46
ref23
ref26
ref25
ref47
ref20
liu (ref33) 2016
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref9
ref4
ref3
ref6
ref5
ouyang (ref18) 2014
zhou (ref11) 2019
References_xml – ident: ref34
  doi: 10.1109/ICCV.2017.322
– ident: ref25
  doi: 10.1007/978-3-540-30548-4_21
– ident: ref21
  doi: 10.1007/978-3-030-01219-9_39
– ident: ref22
  doi: 10.1109/TIP.2006.877062
– year: 2014
  ident: ref40
  article-title: Adam: A method for stochastic optimization
– ident: ref12
  doi: 10.1109/SAMI50585.2021.9378657
– ident: ref47
  doi: 10.1109/CVPR42600.2020.00165
– ident: ref13
  doi: 10.1109/CVPR.2018.00644
– ident: ref38
  doi: 10.1109/ICCV.2017.89
– ident: ref43
  doi: 10.1007/s11633-022-1339-y
– volume: 33
  start-page: 5621
  year: 2020
  ident: ref2
  article-title: RepPoints V2: Verification meets regression for object detection
  publication-title: Adv Neural Inf Process Syst
– ident: ref20
  doi: 10.1109/CVPR.2018.00811
– ident: ref23
  doi: 10.1109/ICCV.2005.129
– ident: ref28
  doi: 10.1109/CVPR.2018.00907
– ident: ref3
  doi: 10.1109/TITS.2022.3177615
– ident: ref16
  doi: 10.1109/WACV45572.2020.9093560
– ident: ref10
  doi: 10.1007/978-3-030-01264-9_45
– ident: ref29
  doi: 10.1609/aaai.v33i01.33014780
– year: 2019
  ident: ref11
  article-title: Objects as points
– ident: ref19
  doi: 10.1109/CVPR.2018.00913
– year: 2014
  ident: ref18
  article-title: Deepid-net: Multi-stage and deformable deep convolutional neural networks for object detection
– volume: 29
  start-page: 550
  year: 2016
  ident: ref36
  article-title: Residual networks behave like ensembles of relatively shallow networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref39
  doi: 10.1109/CVPR42600.2020.00271
– year: 2020
  ident: ref8
  article-title: Yolov4: Optimal speed and accuracy of object detection
– start-page: 21
  year: 2016
  ident: ref33
  article-title: SSD: Single shot multibox detector
  publication-title: Proc Eur Conf Comput Vis
– start-page: 740
  year: 2014
  ident: ref42
  article-title: Microsoft coco: Common objects in context
  publication-title: Proc Eur Conf Comput Vis
– start-page: 116
  year: 2018
  ident: ref37
  article-title: ShuffleNet V2: Practical guidelines for efficient CNN architecture design
  publication-title: Proc Eur Conf Comput Vis
– year: 2018
  ident: ref7
  article-title: Yolov3: An incremental improvement
– ident: ref4
  doi: 10.1109/TIM.2021.3065438
– start-page: 116
  year: 2018
  ident: ref45
  article-title: Shufflenet v2: Practical guidelines for efficient cnn architecture design
  publication-title: Proc Eur Conf Comput Vis
– ident: ref41
  doi: 10.1109/CVPR.2012.6248074
– ident: ref5
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref32
  doi: 10.1109/CVPR.2016.90
– ident: ref9
  doi: 10.1109/JSEN.2022.3208076
– ident: ref30
  doi: 10.1007/978-3-030-01246-5_2
– year: 2020
  ident: ref1
  article-title: Yolov4: Optimal speed and accuracy of object detection
  publication-title: arXiv 2004 10934
– ident: ref27
  doi: 10.1109/CVPR46437.2021.01352
– ident: ref35
  doi: 10.1109/ICCV.2019.00975
– ident: ref24
  doi: 10.1109/CVPR.2005.177
– ident: ref46
  doi: 10.1109/CVPR.2017.243
– ident: ref26
  doi: 10.1109/CVPR.2019.00094
– ident: ref6
  doi: 10.1109/CVPR.2017.690
– ident: ref15
  doi: 10.1109/TIM.2018.2840598
– ident: ref14
  doi: 10.1109/MITS.2019.2903518
– ident: ref44
  doi: 10.1109/CVPR.2018.00474
– ident: ref31
  doi: 10.1109/CVPR42600.2020.01044
– ident: ref17
  doi: 10.1007/s11263-020-01401-3
SSID ssj0002951354
Score 2.4972641
Snippet With the rise in popularity of autonomous driving, the speed and accuracy of surrounding objects' detection by in-vehicle sensing technology is becoming...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 2D object detection
Accuracy
Algorithms
autonomous driving
complex traffic conditions
Convolution
Detection algorithms
Feature extraction
Formability
Head
image recognition
Object detection
Occlusion
Parameterization
Proposals
Pyramids
Training
Title CenterNet-Auto: A Multi-object Visual Detection Algorithm for Autonomous Driving Scenes Based on Improved CenterNet
URI https://ieeexplore.ieee.org/document/10018920
https://www.proquest.com/docview/2818400386
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25TsQwELWAioZDgFguuaBDDknszUG3XAIktuEQXRTbE1gBCdpNGr6eGSe74hCILoUnsfJ8PI9n3jC2rxRokgQUuTZKqDywIi_SQiRgfGtjAN9Vb7geRhd36uqh_9Alq7tcGABwwWfg0aO7y7eVachVdkh6QUka4gl9Pk6iNllr5lAJkSvIvpomxvjp4e3Z7cmlR_XBPRlKnNnBl83HVVP5sQS7feV8mQ2nPWrDSZ69ptaeef8m1vjvLq-wpY5h8kE7JFbZHJRrbEJeXBgPoRaDpq6O-IC71FtRaXLE8PvRpEGjU6hdaFbJBy-P1XhUP71yZLWcbMqKvAT8dDwiHwS_MbRK8mPcBS1Hg9Y7gc-zL62zu3P8Nxeiq7cgDG5jtSDhHpUDKYOC0j6CSwmWRdg3ISBtTIoEpPQ1iZpBLGNkXmmgQiuRJKXGJlZusIWyKmGT8TiweFCykY4gVsg6dFBYJQtbhCbKC1_2WDAFIjOdGDnVxHjJ3KHETzMHXkbgZR14PXYws3lrpTj-bL1OaHxq2QLRYztTwLNuuk4yksRSdEkabf1its0W6e1tkNgOW6jHDewiHan1nhuGH1_B3FE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUqOMAFqApigbY-9IYcktj56m2BoqXAXlgQtyi2J7ACErSbXPrrO-NkV6WIqrccPLKV54_n8cwbxr4pBZokAUWhjRKqCKwoyqwUKRjf2gTAd9Ubrsbx6Eb9vIvu-mR1lwsDAC74DDz6dG_5tjYtucqOSC8ozUK8oa9GSqmoS9daulRCZAsyUovUGD87mvyYnJx7VCHck6HEtR28On5cPZU3m7A7Wc422Xgxpi6g5NFrG-2ZX3_JNf73oLfYRs8x-bCbFB_ZB6g-sTn5cWE2hkYM26b-zofcJd-KWpMrht9O5y0anULjgrMqPny6r2fT5uGZI6_lZFPV5Cfgp7MpeSH4taF9kh_jOWg5GnT-Cfxe9rTNbs7w34xEX3FBGDzIGkHSPaoA0gYFpX2El1IsyzAyISBxTMsUpPQ1yZpBIhPkXlmgQiuRJmXGplbusJWqrmCX8SSweFWysY4hUcg7dFBaJUtbhiYuSl8OWLAAIje9HDlVxXjK3bXEz3IHXk7g5T14A3a4tHnpxDj-2Xqb0PijZQfEgB0sAM_7BTvPSRRL0TNpvPeO2Ve2NppcXeaX5-OLfbZOPXUhYwdspZm18BnJSaO_uCn5GxG_354
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CenterNet-Auto%3A+A+Multi-object+Visual+Detection+Algorithm+for+Autonomous+Driving+Scenes+Based+on+Improved+CenterNet&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Wang%2C+Hai&rft.au=Xu%2C+Yansong&rft.au=Wang%2C+Zining&rft.au=Cai%2C+Yingfeng&rft.date=2023-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2471-285X&rft.volume=7&rft.issue=3&rft.spage=742&rft_id=info:doi/10.1109%2FTETCI.2023.3235381&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon