CenterNet-Auto: A Multi-object Visual Detection Algorithm for Autonomous Driving Scenes Based on Improved CenterNet
With the rise in popularity of autonomous driving, the speed and accuracy of surrounding objects' detection by in-vehicle sensing technology is becoming increasingly important for autonomous vehicles. Building on CenterNet, this paper proposes CenterNet-Auto, a new anchor-free detection network...
Saved in:
| Published in | IEEE transactions on emerging topics in computational intelligence Vol. 7; no. 3; pp. 1 - 11 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2471-285X 2471-285X |
| DOI | 10.1109/TETCI.2023.3235381 |
Cover
| Abstract | With the rise in popularity of autonomous driving, the speed and accuracy of surrounding objects' detection by in-vehicle sensing technology is becoming increasingly important for autonomous vehicles. Building on CenterNet, this paper proposes CenterNet-Auto, a new anchor-free detection network for driving scenes that can satisfy the detection speed requirements while ensuring detection accuracy. The network's backbone uses the RepVGG model transformed through structural re-parameterization technology. Features of different scales are fused, and feature pyramids and deformable convolution are added after the backbone to accurately detect objects of different sizes. To solve the occlusion problem in the driving scene, this paper proposes the Average Border Model, which supports locating the object using the boundary feature information. The test results demonstrate that the proposed algorithm outperforms CenterNet regarding speed and accuracy on the BDD dataset. The accuracy reaches 55.6%, and the speed reaches 30 FPS, meeting the speed and accuracy requirements in a driving scene. |
|---|---|
| AbstractList | With the rise in popularity of autonomous driving, the speed and accuracy of surrounding objects' detection by in-vehicle sensing technology is becoming increasingly important for autonomous vehicles. Building on CenterNet, this paper proposes CenterNet-Auto, a new anchor-free detection network for driving scenes that can satisfy the detection speed requirements while ensuring detection accuracy. The network's backbone uses the RepVGG model transformed through structural re-parameterization technology. Features of different scales are fused, and feature pyramids and deformable convolution are added after the backbone to accurately detect objects of different sizes. To solve the occlusion problem in the driving scene, this paper proposes the Average Border Model, which supports locating the object using the boundary feature information. The test results demonstrate that the proposed algorithm outperforms CenterNet regarding speed and accuracy on the BDD dataset. The accuracy reaches 55.6%, and the speed reaches 30 FPS, meeting the speed and accuracy requirements in a driving scene. |
| Author | Li, Yicheng Chen, Long Xu, Yansong Wang, Hai Wang, Zining Cai, Yingfeng |
| Author_xml | – sequence: 1 givenname: Hai orcidid: 0000-0002-9136-8091 surname: Wang fullname: Wang, Hai organization: School of Automotive and Traffic Engineering of Jiangsu University, Zhenjiang, China – sequence: 2 givenname: Yansong orcidid: 0000-0002-9652-2780 surname: Xu fullname: Xu, Yansong organization: School of Automotive and Traffic Engineering of Jiangsu University, Zhenjiang, China – sequence: 3 givenname: Zining surname: Wang fullname: Wang, Zining organization: School of Automotive and Traffic Engineering of Jiangsu University, Zhenjiang, China – sequence: 4 givenname: Yingfeng orcidid: 0000-0002-0633-9887 surname: Cai fullname: Cai, Yingfeng organization: Automotive Engineering Research Institute of Jiangsu University, Zhenjiang, China – sequence: 5 givenname: Long orcidid: 0000-0002-2079-3867 surname: Chen fullname: Chen, Long organization: Automotive Engineering Research Institute of Jiangsu University, Zhenjiang, China – sequence: 6 givenname: Yicheng orcidid: 0000-0003-2937-7162 surname: Li fullname: Li, Yicheng organization: Automotive Engineering Research Institute of Jiangsu University, Zhenjiang, China |
| BookMark | eNp9kMtOwzAQRS0EEq_-AGJhiXWKPXYSh11peVTisaAgdlHqTMBVEoPtVOLvSShCiAUrj6U5c2fOPtlubYuEHHE25pxlp4uLxXQ-BgZiLEDEQvEtsgcy5RGo-Hn7V71LRt6vGGOQxVzEco_4KbYB3R2GaNIFe0Yn9Larg4nscoU60Cfju6KmMwz9z9iWTuoX60x4bWhlHR2Y1ja283TmzNq0L_RBY4uenhceS9oD8-bN2XVf_yQdkp2qqD2Ovt8D8njZn3Ad3dxfzaeTm0iLBEKUpQJkgVwqQLlkqDVLQFUQa8CYpapSKARbQiwlpiKNE55xCaVIOGS6VKU4ICebuf0C7x36kK9s59o-MgfFlWRMqKTvgk2XdtZ7h1X-5kxTuI-cs3zwm3_5zQe_-bffHlJ_IG1CMQgKrjD1_-jxBjWI-CuLcZUBE59Mc4nt |
| CODEN | ITETCU |
| CitedBy_id | crossref_primary_10_1109_TITS_2023_3329001 crossref_primary_10_1002_cpe_8359 crossref_primary_10_3390_s23229102 crossref_primary_10_1049_gtd2_13093 crossref_primary_10_1016_j_eswa_2024_124942 crossref_primary_10_3390_s25010214 crossref_primary_10_1109_TETCI_2024_3398020 crossref_primary_10_1109_TITS_2023_3273817 crossref_primary_10_1109_TETCI_2024_3377680 crossref_primary_10_1109_TVT_2024_3394350 crossref_primary_10_1016_j_aei_2024_102899 crossref_primary_10_3390_s25051540 crossref_primary_10_1109_TIM_2024_3379090 crossref_primary_10_1109_JSEN_2023_3293519 crossref_primary_10_1109_TIFS_2024_3461950 crossref_primary_10_3390_app14156802 crossref_primary_10_1007_s11554_024_01446_4 crossref_primary_10_1109_TTE_2024_3462449 crossref_primary_10_1109_ACCESS_2025_3550947 crossref_primary_10_1109_JSEN_2023_3280177 crossref_primary_10_7717_peerj_cs_2021 crossref_primary_10_1109_TIM_2024_3438845 crossref_primary_10_3390_wevj16010008 crossref_primary_10_1109_TITS_2023_3273286 crossref_primary_10_1109_TITS_2023_3253554 crossref_primary_10_1109_TMM_2024_3521722 crossref_primary_10_1109_JSEN_2023_3292137 crossref_primary_10_3390_electronics13010043 crossref_primary_10_1049_itr2_12386 crossref_primary_10_1155_2023_9215528 crossref_primary_10_1109_TETCI_2024_3369937 crossref_primary_10_1109_TTE_2023_3332345 crossref_primary_10_1007_s11227_024_05995_0 crossref_primary_10_1049_itr2_12391 crossref_primary_10_1109_LRA_2025_3548397 crossref_primary_10_1587_elex_20_20230445 crossref_primary_10_1109_TETCI_2024_3389710 |
| Cites_doi | 10.1109/ICCV.2017.322 10.1007/978-3-540-30548-4_21 10.1007/978-3-030-01219-9_39 10.1109/TIP.2006.877062 10.1109/SAMI50585.2021.9378657 10.1109/CVPR42600.2020.00165 10.1109/CVPR.2018.00644 10.1109/ICCV.2017.89 10.1007/s11633-022-1339-y 10.1109/CVPR.2018.00811 10.1109/ICCV.2005.129 10.1109/CVPR.2018.00907 10.1109/TITS.2022.3177615 10.1109/WACV45572.2020.9093560 10.1007/978-3-030-01264-9_45 10.1609/aaai.v33i01.33014780 10.1109/CVPR.2018.00913 10.1109/CVPR42600.2020.00271 10.1109/TIM.2021.3065438 10.1109/CVPR.2012.6248074 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2016.90 10.1109/JSEN.2022.3208076 10.1007/978-3-030-01246-5_2 10.1109/CVPR46437.2021.01352 10.1109/ICCV.2019.00975 10.1109/CVPR.2005.177 10.1109/CVPR.2017.243 10.1109/CVPR.2019.00094 10.1109/CVPR.2017.690 10.1109/TIM.2018.2840598 10.1109/MITS.2019.2903518 10.1109/CVPR.2018.00474 10.1109/CVPR42600.2020.01044 10.1007/s11263-020-01401-3 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TETCI.2023.3235381 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2471-285X |
| EndPage | 11 |
| ExternalDocumentID | 10_1109_TETCI_2023_3235381 10018920 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52225212; U20A20333; 52072160; 51875255 funderid: 10.13039/501100001809 – fundername: Key Research and Development Program of Jiangsu Province grantid: BE2019010-2; BE2020083-3 |
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE JAVBF OCL RIA RIE AAYXX CITATION EJD 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c362t-97324ae1482e4b0ecc0628f25c2e5078f8e330b2544e7375619142d36129cd8d3 |
| IEDL.DBID | RIE |
| ISSN | 2471-285X |
| IngestDate | Sun Jun 29 13:58:25 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Wed Oct 01 03:58:02 EDT 2025 Wed Aug 27 02:21:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c362t-97324ae1482e4b0ecc0628f25c2e5078f8e330b2544e7375619142d36129cd8d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2079-3867 0000-0002-9652-2780 0000-0003-2937-7162 0000-0002-9136-8091 0000-0002-0633-9887 |
| PQID | 2818400386 |
| PQPubID | 4437216 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_10018920 proquest_journals_2818400386 crossref_citationtrail_10_1109_TETCI_2023_3235381 crossref_primary_10_1109_TETCI_2023_3235381 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on emerging topics in computational intelligence |
| PublicationTitleAbbrev | TETCI |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 bochkovskiy (ref1) 2020 lin (ref42) 2014 ref14 chen (ref2) 2020; 33 ref31 ref30 ma (ref37) 2018 ref10 ref32 bochkovskiy (ref8) 2020 veit (ref36) 2016; 29 ref17 ref39 ref16 ref38 ref19 ma (ref45) 2018 kingma (ref40) 2014 redmon (ref7) 2018 ref24 ref46 ref23 ref26 ref25 ref47 ref20 liu (ref33) 2016 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref9 ref4 ref3 ref6 ref5 ouyang (ref18) 2014 zhou (ref11) 2019 |
| References_xml | – ident: ref34 doi: 10.1109/ICCV.2017.322 – ident: ref25 doi: 10.1007/978-3-540-30548-4_21 – ident: ref21 doi: 10.1007/978-3-030-01219-9_39 – ident: ref22 doi: 10.1109/TIP.2006.877062 – year: 2014 ident: ref40 article-title: Adam: A method for stochastic optimization – ident: ref12 doi: 10.1109/SAMI50585.2021.9378657 – ident: ref47 doi: 10.1109/CVPR42600.2020.00165 – ident: ref13 doi: 10.1109/CVPR.2018.00644 – ident: ref38 doi: 10.1109/ICCV.2017.89 – ident: ref43 doi: 10.1007/s11633-022-1339-y – volume: 33 start-page: 5621 year: 2020 ident: ref2 article-title: RepPoints V2: Verification meets regression for object detection publication-title: Adv Neural Inf Process Syst – ident: ref20 doi: 10.1109/CVPR.2018.00811 – ident: ref23 doi: 10.1109/ICCV.2005.129 – ident: ref28 doi: 10.1109/CVPR.2018.00907 – ident: ref3 doi: 10.1109/TITS.2022.3177615 – ident: ref16 doi: 10.1109/WACV45572.2020.9093560 – ident: ref10 doi: 10.1007/978-3-030-01264-9_45 – ident: ref29 doi: 10.1609/aaai.v33i01.33014780 – year: 2019 ident: ref11 article-title: Objects as points – ident: ref19 doi: 10.1109/CVPR.2018.00913 – year: 2014 ident: ref18 article-title: Deepid-net: Multi-stage and deformable deep convolutional neural networks for object detection – volume: 29 start-page: 550 year: 2016 ident: ref36 article-title: Residual networks behave like ensembles of relatively shallow networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref39 doi: 10.1109/CVPR42600.2020.00271 – year: 2020 ident: ref8 article-title: Yolov4: Optimal speed and accuracy of object detection – start-page: 21 year: 2016 ident: ref33 article-title: SSD: Single shot multibox detector publication-title: Proc Eur Conf Comput Vis – start-page: 740 year: 2014 ident: ref42 article-title: Microsoft coco: Common objects in context publication-title: Proc Eur Conf Comput Vis – start-page: 116 year: 2018 ident: ref37 article-title: ShuffleNet V2: Practical guidelines for efficient CNN architecture design publication-title: Proc Eur Conf Comput Vis – year: 2018 ident: ref7 article-title: Yolov3: An incremental improvement – ident: ref4 doi: 10.1109/TIM.2021.3065438 – start-page: 116 year: 2018 ident: ref45 article-title: Shufflenet v2: Practical guidelines for efficient cnn architecture design publication-title: Proc Eur Conf Comput Vis – ident: ref41 doi: 10.1109/CVPR.2012.6248074 – ident: ref5 doi: 10.1109/TPAMI.2016.2577031 – ident: ref32 doi: 10.1109/CVPR.2016.90 – ident: ref9 doi: 10.1109/JSEN.2022.3208076 – ident: ref30 doi: 10.1007/978-3-030-01246-5_2 – year: 2020 ident: ref1 article-title: Yolov4: Optimal speed and accuracy of object detection publication-title: arXiv 2004 10934 – ident: ref27 doi: 10.1109/CVPR46437.2021.01352 – ident: ref35 doi: 10.1109/ICCV.2019.00975 – ident: ref24 doi: 10.1109/CVPR.2005.177 – ident: ref46 doi: 10.1109/CVPR.2017.243 – ident: ref26 doi: 10.1109/CVPR.2019.00094 – ident: ref6 doi: 10.1109/CVPR.2017.690 – ident: ref15 doi: 10.1109/TIM.2018.2840598 – ident: ref14 doi: 10.1109/MITS.2019.2903518 – ident: ref44 doi: 10.1109/CVPR.2018.00474 – ident: ref31 doi: 10.1109/CVPR42600.2020.01044 – ident: ref17 doi: 10.1007/s11263-020-01401-3 |
| SSID | ssj0002951354 |
| Score | 2.4972641 |
| Snippet | With the rise in popularity of autonomous driving, the speed and accuracy of surrounding objects' detection by in-vehicle sensing technology is becoming... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | 2D object detection Accuracy Algorithms autonomous driving complex traffic conditions Convolution Detection algorithms Feature extraction Formability Head image recognition Object detection Occlusion Parameterization Proposals Pyramids Training |
| Title | CenterNet-Auto: A Multi-object Visual Detection Algorithm for Autonomous Driving Scenes Based on Improved CenterNet |
| URI | https://ieeexplore.ieee.org/document/10018920 https://www.proquest.com/docview/2818400386 |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 2471-285X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002951354 issn: 2471-285X databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25TsQwELWAioZDgFguuaBDDknszUG3XAIktuEQXRTbE1gBCdpNGr6eGSe74hCILoUnsfJ8PI9n3jC2rxRokgQUuTZKqDywIi_SQiRgfGtjAN9Vb7geRhd36uqh_9Alq7tcGABwwWfg0aO7y7eVachVdkh6QUka4gl9Pk6iNllr5lAJkSvIvpomxvjp4e3Z7cmlR_XBPRlKnNnBl83HVVP5sQS7feV8mQ2nPWrDSZ69ptaeef8m1vjvLq-wpY5h8kE7JFbZHJRrbEJeXBgPoRaDpq6O-IC71FtRaXLE8PvRpEGjU6hdaFbJBy-P1XhUP71yZLWcbMqKvAT8dDwiHwS_MbRK8mPcBS1Hg9Y7gc-zL62zu3P8Nxeiq7cgDG5jtSDhHpUDKYOC0j6CSwmWRdg3ISBtTIoEpPQ1iZpBLGNkXmmgQiuRJKXGJlZusIWyKmGT8TiweFCykY4gVsg6dFBYJQtbhCbKC1_2WDAFIjOdGDnVxHjJ3KHETzMHXkbgZR14PXYws3lrpTj-bL1OaHxq2QLRYztTwLNuuk4yksRSdEkabf1its0W6e1tkNgOW6jHDewiHan1nhuGH1_B3FE |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUqOMAFqApigbY-9IYcktj56m2BoqXAXlgQtyi2J7ACErSbXPrrO-NkV6WIqrccPLKV54_n8cwbxr4pBZokAUWhjRKqCKwoyqwUKRjf2gTAd9Ubrsbx6Eb9vIvu-mR1lwsDAC74DDz6dG_5tjYtucqOSC8ozUK8oa9GSqmoS9daulRCZAsyUovUGD87mvyYnJx7VCHck6HEtR28On5cPZU3m7A7Wc422Xgxpi6g5NFrG-2ZX3_JNf73oLfYRs8x-bCbFB_ZB6g-sTn5cWE2hkYM26b-zofcJd-KWpMrht9O5y0anULjgrMqPny6r2fT5uGZI6_lZFPV5Cfgp7MpeSH4taF9kh_jOWg5GnT-Cfxe9rTNbs7w34xEX3FBGDzIGkHSPaoA0gYFpX2El1IsyzAyISBxTMsUpPQ1yZpBIhPkXlmgQiuRJmXGplbusJWqrmCX8SSweFWysY4hUcg7dFBaJUtbhiYuSl8OWLAAIje9HDlVxXjK3bXEz3IHXk7g5T14A3a4tHnpxDj-2Xqb0PijZQfEgB0sAM_7BTvPSRRL0TNpvPeO2Ve2NppcXeaX5-OLfbZOPXUhYwdspZm18BnJSaO_uCn5GxG_354 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CenterNet-Auto%3A+A+Multi-object+Visual+Detection+Algorithm+for+Autonomous+Driving+Scenes+Based+on+Improved+CenterNet&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Wang%2C+Hai&rft.au=Xu%2C+Yansong&rft.au=Wang%2C+Zining&rft.au=Cai%2C+Yingfeng&rft.date=2023-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2471-285X&rft.volume=7&rft.issue=3&rft.spage=742&rft_id=info:doi/10.1109%2FTETCI.2023.3235381&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon |