Adaptive super-twisting sliding mode altitude trajectory tracking control for reentry vehicle
This paper addresses the altitude trajectory tracking control problem of reentry vehicle subject to bounded uncertainty. A new continuous adaptive super-twisting sliding mode control (ASTSMC) method is developed based on conventional super-twisting sliding mode control (STSMC) and adaptive gain tech...
Saved in:
| Published in | ISA transactions Vol. 132; pp. 329 - 337 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.01.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0019-0578 1879-2022 1879-2022 |
| DOI | 10.1016/j.isatra.2022.06.023 |
Cover
| Abstract | This paper addresses the altitude trajectory tracking control problem of reentry vehicle subject to bounded uncertainty. A new continuous adaptive super-twisting sliding mode control (ASTSMC) method is developed based on conventional super-twisting sliding mode control (STSMC) and adaptive gain technique, which can improve tracking accuracy and achieve high control performance. Based on adaptive gain technique, the designed ASTSMC method requires no prior information on uncertainty and avoids the overestimation of control gain, then the unexpected chattering phenomenon is alleviated. By employing fast power rate reaching law and modified fast nonsingular terminal sliding mode (FNTSM) surface, the designed controller achieves faster convergence and stronger robustness than conventional STSMC methods. Furthermore, the finite-time stability of closed-loop system is proved through Lyapunov theory. Simulation results are executed to validate the superiority of the proposed controller.
•A novel adaptive super-twisting sliding mode control (ASTSMC) law is proposed to address trajectory tracking problem for reentry vehicle under bounded uncertainty.•The proposed ASTSMC law can resolve the gain overestimation, and it requires no prior information on uncertainty.•By employing fast power rate reaching law, the proposed ASTSMC law achieves fast finite-time convergence and exhibits strong robustness. |
|---|---|
| AbstractList | This paper addresses the altitude trajectory tracking control problem of reentry vehicle subject to bounded uncertainty. A new continuous adaptive super-twisting sliding mode control (ASTSMC) method is developed based on conventional super-twisting sliding mode control (STSMC) and adaptive gain technique, which can improve tracking accuracy and achieve high control performance. Based on adaptive gain technique, the designed ASTSMC method requires no prior information on uncertainty and avoids the overestimation of control gain, then the unexpected chattering phenomenon is alleviated. By employing fast power rate reaching law and modified fast nonsingular terminal sliding mode (FNTSM) surface, the designed controller achieves faster convergence and stronger robustness than conventional STSMC methods. Furthermore, the finite-time stability of closed-loop system is proved through Lyapunov theory. Simulation results are executed to validate the superiority of the proposed controller. This paper addresses the altitude trajectory tracking control problem of reentry vehicle subject to bounded uncertainty. A new continuous adaptive super-twisting sliding mode control (ASTSMC) method is developed based on conventional super-twisting sliding mode control (STSMC) and adaptive gain technique, which can improve tracking accuracy and achieve high control performance. Based on adaptive gain technique, the designed ASTSMC method requires no prior information on uncertainty and avoids the overestimation of control gain, then the unexpected chattering phenomenon is alleviated. By employing fast power rate reaching law and modified fast nonsingular terminal sliding mode (FNTSM) surface, the designed controller achieves faster convergence and stronger robustness than conventional STSMC methods. Furthermore, the finite-time stability of closed-loop system is proved through Lyapunov theory. Simulation results are executed to validate the superiority of the proposed controller. •A novel adaptive super-twisting sliding mode control (ASTSMC) law is proposed to address trajectory tracking problem for reentry vehicle under bounded uncertainty.•The proposed ASTSMC law can resolve the gain overestimation, and it requires no prior information on uncertainty.•By employing fast power rate reaching law, the proposed ASTSMC law achieves fast finite-time convergence and exhibits strong robustness. This paper addresses the altitude trajectory tracking control problem of reentry vehicle subject to bounded uncertainty. A new continuous adaptive super-twisting sliding mode control (ASTSMC) method is developed based on conventional super-twisting sliding mode control (STSMC) and adaptive gain technique, which can improve tracking accuracy and achieve high control performance. Based on adaptive gain technique, the designed ASTSMC method requires no prior information on uncertainty and avoids the overestimation of control gain, then the unexpected chattering phenomenon is alleviated. By employing fast power rate reaching law and modified fast nonsingular terminal sliding mode (FNTSM) surface, the designed controller achieves faster convergence and stronger robustness than conventional STSMC methods. Furthermore, the finite-time stability of closed-loop system is proved through Lyapunov theory. Simulation results are executed to validate the superiority of the proposed controller.This paper addresses the altitude trajectory tracking control problem of reentry vehicle subject to bounded uncertainty. A new continuous adaptive super-twisting sliding mode control (ASTSMC) method is developed based on conventional super-twisting sliding mode control (STSMC) and adaptive gain technique, which can improve tracking accuracy and achieve high control performance. Based on adaptive gain technique, the designed ASTSMC method requires no prior information on uncertainty and avoids the overestimation of control gain, then the unexpected chattering phenomenon is alleviated. By employing fast power rate reaching law and modified fast nonsingular terminal sliding mode (FNTSM) surface, the designed controller achieves faster convergence and stronger robustness than conventional STSMC methods. Furthermore, the finite-time stability of closed-loop system is proved through Lyapunov theory. Simulation results are executed to validate the superiority of the proposed controller. |
| Author | Shen, Ganghui Xia, Yuanqing Zhang, Jinhui Cui, Bing |
| Author_xml | – sequence: 1 givenname: Ganghui surname: Shen fullname: Shen, Ganghui email: shenganghui@nwpu.edu.cn organization: National Key Laboratory of Aerospace Flight Dynamics, Research Center for Intelligent Robotics, School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China – sequence: 2 givenname: Yuanqing surname: Xia fullname: Xia, Yuanqing email: xia_yuanqing@bit.edu.cn organization: School of Automation, Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Beijing 100081, China – sequence: 3 givenname: Jinhui surname: Zhang fullname: Zhang, Jinhui email: zhangjinh@bit.edu.cn organization: School of Automation, Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Beijing 100081, China – sequence: 4 givenname: Bing surname: Cui fullname: Cui, Bing email: bing.cui@bit.edu.cn organization: School of Automation, Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Beijing 100081, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35798588$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkE1P3DAQhq0KVBbaf1ChHHtJGDuJY3OohBD9kJC40GNlOc649TYbL7azaP89jpb2wAFO86HnnZGeU3I0-QkJ-UShokD5xbpyUaegKwaMVcArYPU7sqKik-WyOiIrACpLaDtxQk5jXAMAa6V4T07qtpOiFWJFfl0NepvcDos4bzGU6dHF5KbfRRzdsNSNH7DQY3Jpzk3-t0aTfNgvrfm7EMZPKfixsD4UATEP-2KHf5wZ8QM5tnqM-PG5npGfX2_ur7-Xt3ffflxf3Zam5iyVkvcSjUYE0VAGvOZogdamq6W1vNPSsobTWnZG9MYIOlBrbd9Aw1hPRTPUZ-Tz4e42-IcZY1IbFw2Oo57Qz1ExLrqOStG0GT1_Rud-g4PaBrfRYa_-KclAcwBM8DEGtP8RCmoxr9bqYF4tmhVwlc3n2OWLmHFJJ7fI0W58K_zlEMYsaecwqGgcTgYHF7JuNXj3-oEn7oCjAA |
| CitedBy_id | crossref_primary_10_1016_j_ast_2024_109159 crossref_primary_10_1016_j_ast_2024_109368 crossref_primary_10_1007_s40435_023_01229_y crossref_primary_10_3390_math11153382 crossref_primary_10_1109_TAES_2024_3357649 crossref_primary_10_1016_j_jfranklin_2023_12_049 crossref_primary_10_1016_j_conengprac_2023_105745 crossref_primary_10_1080_15361055_2023_2271226 crossref_primary_10_1109_ACCESS_2023_3291347 crossref_primary_10_1007_s12239_024_00119_2 crossref_primary_10_1016_j_oceaneng_2024_118032 crossref_primary_10_1080_15361055_2024_2339666 crossref_primary_10_1017_aer_2024_17 crossref_primary_10_1177_00202940231212871 crossref_primary_10_1002_asjc_3339 crossref_primary_10_1002_asjc_3501 crossref_primary_10_1109_TITS_2024_3470528 crossref_primary_10_1016_j_jfranklin_2024_106699 crossref_primary_10_1177_01423312241231282 crossref_primary_10_1002_cta_4185 crossref_primary_10_1016_j_cja_2024_08_002 crossref_primary_10_1016_j_jfranklin_2025_107587 |
| Cites_doi | 10.1016/j.automatica.2021.109656 10.1002/rnc.1666 10.1016/j.ins.2016.08.054 10.1002/rnc.4359 10.1109/TAES.2020.3043532 10.1016/j.ast.2015.11.033 10.1016/j.isatra.2019.08.046 10.1016/j.automatica.2012.02.024 10.2514/6.2002-4457 10.1109/TII.2020.2981367 10.1016/j.conengprac.2015.08.006 10.1002/rnc.4433 10.1016/j.jfranklin.2015.08.022 10.1016/j.isatra.2018.02.006 10.1016/j.automatica.2012.09.008 10.1109/TAC.2012.2186179 10.1016/j.asr.2016.03.036 10.1016/j.isatra.2018.10.027 10.1016/j.actaastro.2021.06.030 10.1109/TIE.2017.2736499 10.2514/1.G000327 10.1016/j.automatica.2013.09.001 10.1007/s11071-018-4209-y 10.1016/j.automatica.2015.11.038 10.1049/iet-cta.2008.0057 10.1016/j.isatra.2016.09.002 10.1016/j.actaastro.2016.12.013 10.1109/TNNLS.2020.2991088 10.1016/j.isatra.2017.08.012 10.1002/rnc.5019 10.1016/j.actaastro.2017.11.025 10.1016/j.jfranklin.2019.08.040 10.1016/j.asr.2018.02.010 10.1016/j.conengprac.2017.03.014 10.1016/j.matcom.2018.03.004 10.1016/j.ast.2015.03.006 10.1109/TIE.2017.2772192 10.2514/2.5096 10.1016/j.isatra.2018.08.012 10.1016/j.isatra.2016.04.024 10.1016/j.isatra.2018.04.001 |
| ContentType | Journal Article |
| Copyright | 2022 ISA Copyright © 2022 ISA. Published by Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2022 ISA – notice: Copyright © 2022 ISA. Published by Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.isatra.2022.06.023 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 1879-2022 |
| EndPage | 337 |
| ExternalDocumentID | 35798588 10_1016_j_isatra_2022_06_023 S0019057822003317 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFO ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K T9H TAE TN5 UHS UNMZH WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM PKN 7X8 |
| ID | FETCH-LOGICAL-c362t-96b9ecaee084120636ef013c739ff67a9f2461397c8bcc81d1fffb40422b184d3 |
| IEDL.DBID | .~1 |
| ISSN | 0019-0578 1879-2022 |
| IngestDate | Sun Sep 28 08:01:16 EDT 2025 Wed Feb 19 02:24:45 EST 2025 Wed Oct 01 05:13:24 EDT 2025 Thu Apr 24 22:57:09 EDT 2025 Fri Feb 23 02:38:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Finite-time control Reentry vehicle Super-twisting sliding mode control Fast nonsingular terminal sliding mode Adaptive law |
| Language | English |
| License | Copyright © 2022 ISA. Published by Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c362t-96b9ecaee084120636ef013c739ff67a9f2461397c8bcc81d1fffb40422b184d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 35798588 |
| PQID | 2687719845 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2687719845 pubmed_primary_35798588 crossref_primary_10_1016_j_isatra_2022_06_023 crossref_citationtrail_10_1016_j_isatra_2022_06_023 elsevier_sciencedirect_doi_10_1016_j_isatra_2022_06_023 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2023 2023-01-00 2023-Jan 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ISA transactions |
| PublicationTitleAlternate | ISA Trans |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Salgado, Kamal, Bandyopadhyay (b28) 2016; 64 Mohamed, Sofiane, Nicolas (b43) 2018; 151 Wu, Yang, Li, Lei (b11) 2018; 61 Yan, Wang, He, Wei (b6) 2020; 30 Kali, Saad, Benjelloun, Khairallah (b26) 2018; 93 Lu, Xia (b36) 2013; 49 Edwards, Shtessel (b29) 2016; 65 Zerar, Cazaurang, Zolghadri (b33) 2009; 3 Xia, Shen, Zhou, Sun (b8) 2015; 45 Moreno, Osorio (b20) 2012; 57 Ali S. Samar, Shah (b24) 2016; 49 Zhao, Yang, Li (b23) 2015; 352 Yu, Yang, Chen, Lian (b35) 2021; 187 Yu, Chen (b2) 2021; 57 Yang, Yang (b42) 2011; 21 Wang, Song, Krstic (b31) 2016; 372 Gifty, Rajeev, Lalithambika (b7) 2017; 63 Long, Zhu, Cui, Liang (b22) 2020; 106 Zhao, Huang, Zhang (b40) 2018; 143 Chen, Li, Wu (b27) 2021; 32 Guo, Chang (b45) 2018; 77 Utkin, Poznyak (b30) 2013; 49 Zhang, Chen, Yu (b4) 2018; 83 Yu, Chen, Jiang, Liu, Zhou (b5) 2016; 65 Huang, Li, Guo, Wang (b32) 2019; 85 Li, Jiang (b13) 2015; 43 Yu, Li, Zhang (b16) 2018; 68 Shen, Xia, Ma, Zhang (b38) 2019; 29 Shen, Xia, Zhang, Cui (b15) 2018; 28 Yan, Shi (b12) 2019; 356 Shtessel, Taleb, Plestan (b18) 2012; 48 Dukeman G. Profile-following entry guidance using linear quadratic regulator theory. In: AIAA Paper, 2002-4457. 2002. Souza, Sarigul (b1) 2014; 68 Lu, Brunner, Stachowiak (b3) 2017; 40 Zimmerman, Dukeman, Hanson (b10) 2003; 26 Tian, Cui, Lu (b25) 2021; 17 Manrique (b34) 2010 Rinaldi, Menon, Edwards, Ferrara (b19) 2021; 129 Liao, Li, Bao (b21) 2017; 65 Haghighi, Mobayen (b44) 2018; 75 Zhao, Yang, Li (b17) 2016; 57 Wang, Zhu, Chen, Jin (b37) 2020; 98 Hardy, Littlewood, Polya (b39) 1952 Zhang Y. Tang, Guo (b41) 2017; 71 Dai, Gao, Xia (b14) 2017; 132 Mohamed (10.1016/j.isatra.2022.06.023_b43) 2018; 151 Li (10.1016/j.isatra.2022.06.023_b13) 2015; 43 Salgado (10.1016/j.isatra.2022.06.023_b28) 2016; 64 Utkin (10.1016/j.isatra.2022.06.023_b30) 2013; 49 Manrique (10.1016/j.isatra.2022.06.023_b34) 2010 Lu (10.1016/j.isatra.2022.06.023_b3) 2017; 40 Huang (10.1016/j.isatra.2022.06.023_b32) 2019; 85 Zhao (10.1016/j.isatra.2022.06.023_b23) 2015; 352 Zhang (10.1016/j.isatra.2022.06.023_b4) 2018; 83 Yan (10.1016/j.isatra.2022.06.023_b6) 2020; 30 Zhao (10.1016/j.isatra.2022.06.023_b17) 2016; 57 Moreno (10.1016/j.isatra.2022.06.023_b20) 2012; 57 Kali (10.1016/j.isatra.2022.06.023_b26) 2018; 93 Zerar (10.1016/j.isatra.2022.06.023_b33) 2009; 3 Ali S. Samar (10.1016/j.isatra.2022.06.023_b24) 2016; 49 Zhao (10.1016/j.isatra.2022.06.023_b40) 2018; 143 Yan (10.1016/j.isatra.2022.06.023_b12) 2019; 356 Wang (10.1016/j.isatra.2022.06.023_b31) 2016; 372 Yang (10.1016/j.isatra.2022.06.023_b42) 2011; 21 Guo (10.1016/j.isatra.2022.06.023_b45) 2018; 77 Xia (10.1016/j.isatra.2022.06.023_b8) 2015; 45 Wu (10.1016/j.isatra.2022.06.023_b11) 2018; 61 Yu (10.1016/j.isatra.2022.06.023_b16) 2018; 68 Shen (10.1016/j.isatra.2022.06.023_b15) 2018; 28 Gifty (10.1016/j.isatra.2022.06.023_b7) 2017; 63 Chen (10.1016/j.isatra.2022.06.023_b27) 2021; 32 Rinaldi (10.1016/j.isatra.2022.06.023_b19) 2021; 129 Liao (10.1016/j.isatra.2022.06.023_b21) 2017; 65 Long (10.1016/j.isatra.2022.06.023_b22) 2020; 106 Edwards (10.1016/j.isatra.2022.06.023_b29) 2016; 65 Hardy (10.1016/j.isatra.2022.06.023_b39) 1952 Zhang Y. Tang (10.1016/j.isatra.2022.06.023_b41) 2017; 71 10.1016/j.isatra.2022.06.023_b9 Wang (10.1016/j.isatra.2022.06.023_b37) 2020; 98 Yu (10.1016/j.isatra.2022.06.023_b2) 2021; 57 Zimmerman (10.1016/j.isatra.2022.06.023_b10) 2003; 26 Souza (10.1016/j.isatra.2022.06.023_b1) 2014; 68 Yu (10.1016/j.isatra.2022.06.023_b35) 2021; 187 Yu (10.1016/j.isatra.2022.06.023_b5) 2016; 65 Shtessel (10.1016/j.isatra.2022.06.023_b18) 2012; 48 Lu (10.1016/j.isatra.2022.06.023_b36) 2013; 49 Tian (10.1016/j.isatra.2022.06.023_b25) 2021; 17 Haghighi (10.1016/j.isatra.2022.06.023_b44) 2018; 75 Shen (10.1016/j.isatra.2022.06.023_b38) 2019; 29 Dai (10.1016/j.isatra.2022.06.023_b14) 2017; 132 |
| References_xml | – volume: 30 start-page: 4906 year: 2020 end-page: 4923 ident: b6 article-title: Reduced-order observer-based robust drag-tracking guidance for uncertain entry vehicles publication-title: Internat J Robust Nonlinear Control – volume: 3 start-page: 110 year: 2009 end-page: 130 ident: b33 article-title: Coupled linear parameter varying and flatness-based approach for space re-entry vehicles guidance publication-title: IET Control Theory Appl – year: 2010 ident: b34 article-title: Advances in spacecraft atmospheric entry guidance – volume: 57 start-page: 2508 year: 2016 end-page: 2518 ident: b17 article-title: Drag-based composite super-twisting sliding mode control law design for mars entry guidance publication-title: Adv Space Res – volume: 75 start-page: 216 year: 2018 end-page: 225 ident: b44 article-title: Design of an adaptive super-twisting decoupled terminal sliding mode control scheme for a class of fourth-order systems publication-title: ISA Trans – volume: 68 start-page: 4135 year: 2018 end-page: 4144 ident: b16 article-title: The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles publication-title: IEEE Trans Ind Electron – volume: 57 start-page: 1035 year: 2012 end-page: 1040 ident: b20 article-title: Strict lyapunov functions for the super-twisting algorithm publication-title: IEEE Trans. Autom. Control – volume: 77 start-page: 22 year: 2018 end-page: 29 ident: b45 article-title: Adaptive twisting sliding mode algorithm for hypersonic reentry vehicle attitude control based on finite-time observer publication-title: ISA Trans – volume: 68 start-page: 64 year: 2014 end-page: 74 ident: b1 article-title: Survey of planetary entry guidance algorithms publication-title: Prog Aerosp Sci – volume: 48 start-page: 759 year: 2012 end-page: 769 ident: b18 article-title: A novel adaptive-gain super-twisting sliding mode controller: methodology and application publication-title: Automatica – volume: 71 start-page: 380 year: 2017 end-page: 390 ident: b41 article-title: Adaptive-gain fast super-twisting sliding mode fault tolerant control for areusable launch vehicle in reentry phase publication-title: ISA Trans – reference: Dukeman G. Profile-following entry guidance using linear quadratic regulator theory. In: AIAA Paper, 2002-4457. 2002. – volume: 352 start-page: 5226 year: 2015 end-page: 5248 ident: b23 article-title: Finite-time super-twisting sliding mode control for mars entry trajectory tracking publication-title: J Franklin Inst – volume: 61 start-page: 2457 year: 2018 end-page: 2471 ident: b11 article-title: Disturbance observer based model predictive control for accurate atmospheric entry of spacecraft publication-title: Adv Space Res – volume: 132 start-page: 221 year: 2017 end-page: 229 ident: b14 article-title: Mars atmospheric entry guidance for reference trajectory tracking based on robust nonlinear compound controller publication-title: Acta Astronaut – volume: 28 start-page: 5895 year: 2018 end-page: 5914 ident: b15 article-title: Finite-time trajectory tracking control for entry guidance publication-title: Int. J. Robust Nonlinear Control – volume: 40 start-page: 230 year: 2017 end-page: 247 ident: b3 article-title: Verification of a fully numerical entry guidance algorithm publication-title: J Guid Control Dyn – volume: 83 start-page: 176 year: 2018 end-page: 188 ident: b4 article-title: Entry guidance for high-L/D hypersonic vehicle based on drag-vs-energy profile publication-title: ISA Trans – volume: 29 start-page: 1249 year: 2019 end-page: 1264 ident: b38 article-title: Adaptive sliding-mode control for mars entry trajectory tracking with finite-time convergence publication-title: Internat J Robust Nonlinear Control – volume: 21 start-page: 1865 year: 2011 end-page: 1879 ident: b42 article-title: Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems publication-title: Internat J Robust Nonlinear Control – volume: 43 start-page: 226 year: 2015 end-page: 235 ident: b13 article-title: RBF neural network based second-order sliding mode guidance for mars entry under uncertainties publication-title: Aerosp Sci Technol – volume: 143 start-page: 111 year: 2018 end-page: 130 ident: b40 article-title: Dynamic modeling and super-twisting sliding mode control for tethered space robot publication-title: Acta Astronaut – volume: 85 start-page: 141 year: 2019 end-page: 150 ident: b32 article-title: Rotation matrix based finite-time attitude synchronization control for spacecraft with external disturbances publication-title: ISA Trans – volume: 49 start-page: 88 year: 2016 end-page: 100 ident: b24 article-title: Lateral guidance and control of UAVs using second-order sliding modes publication-title: Aerosp Sci Technol – volume: 63 start-page: 24 year: 2017 end-page: 33 ident: b7 article-title: Entry guidance with smooth drag planning and non-linear tracking publication-title: Control Eng Pract – volume: 106 year: 2020 ident: b22 article-title: Barrier Lyapunov function based sliding mode control for mars atmospheric entry trajectory tracking with input saturation constraint publication-title: Aerosp Sci Technol – volume: 65 start-page: 487 year: 2016 end-page: 503 ident: b5 article-title: Omnidirectional autonomous entry guidance based on publication-title: ISA Trans – volume: 45 start-page: 79 year: 2015 end-page: 85 ident: b8 article-title: Mars entry guidance based on segmented guidance predictor–corrector algorithm publication-title: Control Eng Pract – volume: 93 start-page: 557 year: 2018 end-page: 569 ident: b26 article-title: Super-twisting algorithm with time delay estimation for uncertain robot manipulators publication-title: Nonlinear Dynam – volume: 151 start-page: 110 year: 2018 end-page: 130 ident: b43 article-title: Adaptive super twisting extended state observer-based sliding mode control for diesel engine air path subject to matched and unmatched disturbance publication-title: Math Comput Simulation – volume: 49 start-page: 39 year: 2013 end-page: 47 ident: b30 article-title: Adaptive sliding mode control with application to super-twist algorithm: equivalent control method publication-title: Automatica – volume: 98 start-page: 483 year: 2020 end-page: 495 ident: b37 article-title: Model-free continuous nonsingular fast terminal sliding mode control for cable-driven manipulators publication-title: ISA Trans – volume: 57 start-page: 1498 year: 2021 end-page: 1512 ident: b2 article-title: High-accuracy approximate solutions for hypersonic gliding trajectory with large lateral maneuvering range publication-title: IEEE Trans Aerosp Electron Syst – volume: 187 start-page: 79 year: 2021 end-page: 88 ident: b35 article-title: Analytical trajectory prediction for near-first-cosmic-velocity atmospheric gliding using a perturbation method publication-title: Acta Astronaut – year: 1952 ident: b39 article-title: Inequalities – volume: 26 start-page: 523 year: 2003 end-page: 529 ident: b10 article-title: Automated method to compute orbital reentry trajectories with heating constraints publication-title: J Guid Control Dyn – volume: 356 start-page: 9824 year: 2019 end-page: 9843 ident: b12 article-title: Mars entry guidance based on nonlinear model predictive control with disturbance observer publication-title: J Franklin Inst B – volume: 129 year: 2021 ident: b19 article-title: Adaptive dual-layer super-twisting sliding mode observers to reconstruct and mitigate disturbances and communication attacks in power networks publication-title: Automatica – volume: 32 start-page: 1776 year: 2021 end-page: 1787 ident: b27 article-title: A novel supertwisting zeroing neural network with application to mobile robot manipulators publication-title: IEEE Trans Neural Netw Learn Syst – volume: 17 start-page: 1029 year: 2021 end-page: 1038 ident: b25 article-title: Attitude control of UAVs based on event-triggered supertwisting algorithm publication-title: IEEE Trans Ind Inf – volume: 65 start-page: 2704 year: 2017 end-page: 2715 ident: b21 article-title: Three-dmensional diving guidance for hypersonic gliding vehicle via integrated design of FTNDO and AMSTSMC publication-title: IEEE Trans Ind Electron – volume: 49 start-page: 3591 year: 2013 end-page: 3599 ident: b36 article-title: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence publication-title: Automatica – volume: 64 start-page: 47 year: 2016 end-page: 55 ident: b28 article-title: Control of discrete time systems based on recurrent super-twisting-like algorithm publication-title: ISA Trans – volume: 372 start-page: 392 year: 2016 end-page: 406 ident: b31 article-title: Adaptive finite time coordinated consensus for high-order multi-agent systems publication-title: Inform Sci – volume: 65 start-page: 183 year: 2016 end-page: 190 ident: b29 article-title: Adaptive continuous higher order sliding mode control publication-title: Automatica – volume: 129 year: 2021 ident: 10.1016/j.isatra.2022.06.023_b19 article-title: Adaptive dual-layer super-twisting sliding mode observers to reconstruct and mitigate disturbances and communication attacks in power networks publication-title: Automatica doi: 10.1016/j.automatica.2021.109656 – volume: 21 start-page: 1865 issue: 16 year: 2011 ident: 10.1016/j.isatra.2022.06.023_b42 article-title: Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems publication-title: Internat J Robust Nonlinear Control doi: 10.1002/rnc.1666 – volume: 372 start-page: 392 year: 2016 ident: 10.1016/j.isatra.2022.06.023_b31 article-title: Adaptive finite time coordinated consensus for high-order multi-agent systems publication-title: Inform Sci doi: 10.1016/j.ins.2016.08.054 – volume: 28 start-page: 5895 issue: 18 year: 2018 ident: 10.1016/j.isatra.2022.06.023_b15 article-title: Finite-time trajectory tracking control for entry guidance publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.4359 – volume: 57 start-page: 1498 issue: 3 year: 2021 ident: 10.1016/j.isatra.2022.06.023_b2 article-title: High-accuracy approximate solutions for hypersonic gliding trajectory with large lateral maneuvering range publication-title: IEEE Trans Aerosp Electron Syst doi: 10.1109/TAES.2020.3043532 – volume: 49 start-page: 88 year: 2016 ident: 10.1016/j.isatra.2022.06.023_b24 article-title: Lateral guidance and control of UAVs using second-order sliding modes publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2015.11.033 – volume: 98 start-page: 483 year: 2020 ident: 10.1016/j.isatra.2022.06.023_b37 article-title: Model-free continuous nonsingular fast terminal sliding mode control for cable-driven manipulators publication-title: ISA Trans doi: 10.1016/j.isatra.2019.08.046 – volume: 48 start-page: 759 issue: 3 year: 2012 ident: 10.1016/j.isatra.2022.06.023_b18 article-title: A novel adaptive-gain super-twisting sliding mode controller: methodology and application publication-title: Automatica doi: 10.1016/j.automatica.2012.02.024 – ident: 10.1016/j.isatra.2022.06.023_b9 doi: 10.2514/6.2002-4457 – volume: 17 start-page: 1029 issue: 2 year: 2021 ident: 10.1016/j.isatra.2022.06.023_b25 article-title: Attitude control of UAVs based on event-triggered supertwisting algorithm publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2020.2981367 – volume: 45 start-page: 79 year: 2015 ident: 10.1016/j.isatra.2022.06.023_b8 article-title: Mars entry guidance based on segmented guidance predictor–corrector algorithm publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2015.08.006 – volume: 29 start-page: 1249 issue: 5 year: 2019 ident: 10.1016/j.isatra.2022.06.023_b38 article-title: Adaptive sliding-mode control for mars entry trajectory tracking with finite-time convergence publication-title: Internat J Robust Nonlinear Control doi: 10.1002/rnc.4433 – volume: 352 start-page: 5226 issue: 11 year: 2015 ident: 10.1016/j.isatra.2022.06.023_b23 article-title: Finite-time super-twisting sliding mode control for mars entry trajectory tracking publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2015.08.022 – volume: 75 start-page: 216 year: 2018 ident: 10.1016/j.isatra.2022.06.023_b44 article-title: Design of an adaptive super-twisting decoupled terminal sliding mode control scheme for a class of fourth-order systems publication-title: ISA Trans doi: 10.1016/j.isatra.2018.02.006 – volume: 49 start-page: 39 year: 2013 ident: 10.1016/j.isatra.2022.06.023_b30 article-title: Adaptive sliding mode control with application to super-twist algorithm: equivalent control method publication-title: Automatica doi: 10.1016/j.automatica.2012.09.008 – volume: 57 start-page: 1035 issue: 4 year: 2012 ident: 10.1016/j.isatra.2022.06.023_b20 article-title: Strict lyapunov functions for the super-twisting algorithm publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2012.2186179 – volume: 57 start-page: 2508 issue: 12 year: 2016 ident: 10.1016/j.isatra.2022.06.023_b17 article-title: Drag-based composite super-twisting sliding mode control law design for mars entry guidance publication-title: Adv Space Res doi: 10.1016/j.asr.2016.03.036 – volume: 85 start-page: 141 year: 2019 ident: 10.1016/j.isatra.2022.06.023_b32 article-title: Rotation matrix based finite-time attitude synchronization control for spacecraft with external disturbances publication-title: ISA Trans doi: 10.1016/j.isatra.2018.10.027 – volume: 187 start-page: 79 year: 2021 ident: 10.1016/j.isatra.2022.06.023_b35 article-title: Analytical trajectory prediction for near-first-cosmic-velocity atmospheric gliding using a perturbation method publication-title: Acta Astronaut doi: 10.1016/j.actaastro.2021.06.030 – volume: 65 start-page: 2704 issue: 3 year: 2017 ident: 10.1016/j.isatra.2022.06.023_b21 article-title: Three-dmensional diving guidance for hypersonic gliding vehicle via integrated design of FTNDO and AMSTSMC publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2017.2736499 – volume: 40 start-page: 230 issue: 2 year: 2017 ident: 10.1016/j.isatra.2022.06.023_b3 article-title: Verification of a fully numerical entry guidance algorithm publication-title: J Guid Control Dyn doi: 10.2514/1.G000327 – volume: 106 issue: 3 year: 2020 ident: 10.1016/j.isatra.2022.06.023_b22 article-title: Barrier Lyapunov function based sliding mode control for mars atmospheric entry trajectory tracking with input saturation constraint publication-title: Aerosp Sci Technol – volume: 49 start-page: 3591 issue: 12 year: 2013 ident: 10.1016/j.isatra.2022.06.023_b36 article-title: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence publication-title: Automatica doi: 10.1016/j.automatica.2013.09.001 – volume: 93 start-page: 557 issue: 2 year: 2018 ident: 10.1016/j.isatra.2022.06.023_b26 article-title: Super-twisting algorithm with time delay estimation for uncertain robot manipulators publication-title: Nonlinear Dynam doi: 10.1007/s11071-018-4209-y – volume: 65 start-page: 183 year: 2016 ident: 10.1016/j.isatra.2022.06.023_b29 article-title: Adaptive continuous higher order sliding mode control publication-title: Automatica doi: 10.1016/j.automatica.2015.11.038 – volume: 3 start-page: 110 issue: 8 year: 2009 ident: 10.1016/j.isatra.2022.06.023_b33 article-title: Coupled linear parameter varying and flatness-based approach for space re-entry vehicles guidance publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2008.0057 – volume: 65 start-page: 487 year: 2016 ident: 10.1016/j.isatra.2022.06.023_b5 article-title: Omnidirectional autonomous entry guidance based on 3-D analytical glide formulas publication-title: ISA Trans doi: 10.1016/j.isatra.2016.09.002 – volume: 132 start-page: 221 year: 2017 ident: 10.1016/j.isatra.2022.06.023_b14 article-title: Mars atmospheric entry guidance for reference trajectory tracking based on robust nonlinear compound controller publication-title: Acta Astronaut doi: 10.1016/j.actaastro.2016.12.013 – volume: 32 start-page: 1776 issue: 4 year: 2021 ident: 10.1016/j.isatra.2022.06.023_b27 article-title: A novel supertwisting zeroing neural network with application to mobile robot manipulators publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.2991088 – volume: 71 start-page: 380 year: 2017 ident: 10.1016/j.isatra.2022.06.023_b41 article-title: Adaptive-gain fast super-twisting sliding mode fault tolerant control for areusable launch vehicle in reentry phase publication-title: ISA Trans doi: 10.1016/j.isatra.2017.08.012 – volume: 30 start-page: 4906 issue: 13 year: 2020 ident: 10.1016/j.isatra.2022.06.023_b6 article-title: Reduced-order observer-based robust drag-tracking guidance for uncertain entry vehicles publication-title: Internat J Robust Nonlinear Control doi: 10.1002/rnc.5019 – year: 1952 ident: 10.1016/j.isatra.2022.06.023_b39 – volume: 143 start-page: 111 year: 2018 ident: 10.1016/j.isatra.2022.06.023_b40 article-title: Dynamic modeling and super-twisting sliding mode control for tethered space robot publication-title: Acta Astronaut doi: 10.1016/j.actaastro.2017.11.025 – volume: 356 start-page: 9824 year: 2019 ident: 10.1016/j.isatra.2022.06.023_b12 article-title: Mars entry guidance based on nonlinear model predictive control with disturbance observer publication-title: J Franklin Inst B doi: 10.1016/j.jfranklin.2019.08.040 – volume: 61 start-page: 2457 issue: 2 year: 2018 ident: 10.1016/j.isatra.2022.06.023_b11 article-title: Disturbance observer based model predictive control for accurate atmospheric entry of spacecraft publication-title: Adv Space Res doi: 10.1016/j.asr.2018.02.010 – year: 2010 ident: 10.1016/j.isatra.2022.06.023_b34 – volume: 63 start-page: 24 year: 2017 ident: 10.1016/j.isatra.2022.06.023_b7 article-title: Entry guidance with smooth drag planning and non-linear tracking publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2017.03.014 – volume: 151 start-page: 110 year: 2018 ident: 10.1016/j.isatra.2022.06.023_b43 article-title: Adaptive super twisting extended state observer-based sliding mode control for diesel engine air path subject to matched and unmatched disturbance publication-title: Math Comput Simulation doi: 10.1016/j.matcom.2018.03.004 – volume: 43 start-page: 226 year: 2015 ident: 10.1016/j.isatra.2022.06.023_b13 article-title: RBF neural network based second-order sliding mode guidance for mars entry under uncertainties publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2015.03.006 – volume: 68 start-page: 4135 issue: 5 year: 2018 ident: 10.1016/j.isatra.2022.06.023_b16 article-title: The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2017.2772192 – volume: 26 start-page: 523 issue: 4 year: 2003 ident: 10.1016/j.isatra.2022.06.023_b10 article-title: Automated method to compute orbital reentry trajectories with heating constraints publication-title: J Guid Control Dyn doi: 10.2514/2.5096 – volume: 68 start-page: 64 issue: 8 year: 2014 ident: 10.1016/j.isatra.2022.06.023_b1 article-title: Survey of planetary entry guidance algorithms publication-title: Prog Aerosp Sci – volume: 83 start-page: 176 year: 2018 ident: 10.1016/j.isatra.2022.06.023_b4 article-title: Entry guidance for high-L/D hypersonic vehicle based on drag-vs-energy profile publication-title: ISA Trans doi: 10.1016/j.isatra.2018.08.012 – volume: 64 start-page: 47 year: 2016 ident: 10.1016/j.isatra.2022.06.023_b28 article-title: Control of discrete time systems based on recurrent super-twisting-like algorithm publication-title: ISA Trans doi: 10.1016/j.isatra.2016.04.024 – volume: 77 start-page: 22 year: 2018 ident: 10.1016/j.isatra.2022.06.023_b45 article-title: Adaptive twisting sliding mode algorithm for hypersonic reentry vehicle attitude control based on finite-time observer publication-title: ISA Trans doi: 10.1016/j.isatra.2018.04.001 |
| SSID | ssj0002598 |
| Score | 2.489454 |
| Snippet | This paper addresses the altitude trajectory tracking control problem of reentry vehicle subject to bounded uncertainty. A new continuous adaptive... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 329 |
| SubjectTerms | Adaptive law Fast nonsingular terminal sliding mode Finite-time control Reentry vehicle Super-twisting sliding mode control |
| Title | Adaptive super-twisting sliding mode altitude trajectory tracking control for reentry vehicle |
| URI | https://dx.doi.org/10.1016/j.isatra.2022.06.023 https://www.ncbi.nlm.nih.gov/pubmed/35798588 https://www.proquest.com/docview/2687719845 |
| Volume | 132 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: AKRWK dateStart: 19890101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH6axgUOiJYBZVAZicN2MF3sNHGOVcVUfmhCaJV6QZbj2LAJZVGbbNplf_veS5wBh6oSp1j5oVh-8Xufne99D-B9btHFFRa9n_Wexz4y3NhIcpcVMrLKeZW3LN-zZLGMP6-mqz2Y97kwRKsMvr_z6a23DmcmYTQn1cUF5fhiMCM1duJXYRikDPY4pSoGH-7-0DwQ3gdvnHG6u0-fazlexJhZk_qQEK2Kp5DbwtM2-NmGodNn8DTgRzbrujiAPVcO4clfqoJDGIT5umFHQVT6-Dn8mBWmItfGNk3l1ry-ocld_mSIMyl8MSqJwwxl4zbYwP5etvv5t9S0tJ_OAqudIcxlxNap8eK1-0X9OIDl6cfz-YKH0grcYsSqeZbkmbPGuRMVRwJhSuI8gkGbysz7JDWZJ505xCpW5dYipo2893lMgmE5rgkL-QL2y6vSvQIm2gwTYRKb41o7NYaqWZtCnHhZWJEUI5D9iGobdMep_MVv3RPMLnVnB0120MSzE3IE_OGpqtPd2HF_2htL__P9aAwNO55819tW49Si_yWmdFfNRotEpWmUqXg6gped0R_6IqdppqZKvf7v9x7CYypd323nvIH9et24twhw6nzcfsFjeDSbf__6jY6fvizO7gGfBP2f |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7B9gAcUIFCl7ZgJA7twSyx83COK1S05XUCiQuyHMfmoSqsdrNUvfDbmUkcSg8IiVuUOIrlsWc-O998A7BbWHRxpUXvZ73nsY8MNzaS3OWljKxyXhUNy_csHV3ER5fJ5RwcdLkwRKsMvr_16Y23DncGYTQH49tbyvHFYEZq7MSvwjA4Dx_iRGS0A9t7_MfzQHwf3HHOqXmXP9eQvIgyMyH5ISEaGU8hX4tPr-HPJg4dfoTlACDZsO3jCsy5ahWWXsgKrsJKWLBT9j2oSv9Yg6thacbk29h0NnYTXv-h1V1dMwSaFL8Y1cRhhtJxZ3iB_b1rDvT_0qWlA3UWaO0McS4juk6NDx_cDfXjE1wc_jw_GPFQW4FbDFk1z9Mid9Y4t6_iSCBOSZ1HNGgzmXufZib3JDSHYMWqwloEtZH3vohJMazATWEp16FX3VfuMzDRpJgIk9oCN9uZMVTO2pRi38vSirTsg-xGVNsgPE71L37rjmF2p1s7aLKDJqKdkH3gz2-NW-GNN9pnnbH0fxNIY2x4482dzrYa1xb9MDGVu59NtUhVlkW5ipM-bLRGf-6LTLJcJUptvvu727AwOj890Se_zo6_wCLVsW_Pdr5Cr57M3DdEO3Wx1czmJ4VC_Z8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+super-twisting+sliding+mode+altitude+trajectory+tracking+control+for+reentry+vehicle&rft.jtitle=ISA+transactions&rft.au=Shen%2C+Ganghui&rft.au=Xia%2C+Yuanqing&rft.au=Zhang%2C+Jinhui&rft.au=Cui%2C+Bing&rft.date=2023-01-01&rft.eissn=1879-2022&rft.volume=132&rft.spage=329&rft_id=info:doi/10.1016%2Fj.isatra.2022.06.023&rft_id=info%3Apmid%2F35798588&rft.externalDocID=35798588 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon |