On the Huffman and Alphabetic Tree Problem with General Cost Functions

We address generalized versions of the Huffman and Alphabetic Tree Problem where the cost caused by each individual leaf i , instead of being linear, depends on its depth in the tree by an arbitrary function. The objective is to minimize either the total cost or the maximum cost among all leaves. We...

Full description

Saved in:
Bibliographic Details
Published inAlgorithmica Vol. 69; no. 3; pp. 582 - 604
Main Authors Fujiwara, Hiroshi, Jacobs, Tobias
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.07.2014
Springer
Subjects
Online AccessGet full text
ISSN0178-4617
1432-0541
DOI10.1007/s00453-013-9755-6

Cover

Abstract We address generalized versions of the Huffman and Alphabetic Tree Problem where the cost caused by each individual leaf i , instead of being linear, depends on its depth in the tree by an arbitrary function. The objective is to minimize either the total cost or the maximum cost among all leaves. We review and extend the known results in this direction and devise a number of new algorithms and hardness proofs. It turns out that the Dynamic Programming approach for the Alphabetic Tree Problem can be extended to arbitrary cost functions, resulting in a time O ( n 4 ) optimal algorithm using space O ( n 3 ). We identify classes of cost functions where the well-known trick to reduce the runtime by a factor of n via a “monotonicity” property can be applied. For the generalized Huffman Tree Problem we show that even the k -ary version can be solved by a generalized version of the Coin Collector Algorithm of Larmore and Hirschberg (in Proc. SODA’90, pp. 310–318, 1990 ) when the cost functions are nondecreasing and convex. Furthermore, we give an O ( n 2 log n ) algorithm for the worst case minimization variants of both the Huffman and Alphabetic Tree Problem with nondecreasing cost functions. Investigating the limits of computational tractability, we show that the Huffman Tree Problem in its full generality is inapproximable unless P = NP, no matter if the objective function is the sum of leaf costs or their maximum. The alphabetic version becomes NP-hard when the leaf costs are interdependent.
AbstractList We address generalized versions of the Huffman and Alphabetic Tree Problem where the cost caused by each individual leaf i , instead of being linear, depends on its depth in the tree by an arbitrary function. The objective is to minimize either the total cost or the maximum cost among all leaves. We review and extend the known results in this direction and devise a number of new algorithms and hardness proofs. It turns out that the Dynamic Programming approach for the Alphabetic Tree Problem can be extended to arbitrary cost functions, resulting in a time O ( n 4 ) optimal algorithm using space O ( n 3 ). We identify classes of cost functions where the well-known trick to reduce the runtime by a factor of n via a “monotonicity” property can be applied. For the generalized Huffman Tree Problem we show that even the k -ary version can be solved by a generalized version of the Coin Collector Algorithm of Larmore and Hirschberg (in Proc. SODA’90, pp. 310–318, 1990 ) when the cost functions are nondecreasing and convex. Furthermore, we give an O ( n 2 log n ) algorithm for the worst case minimization variants of both the Huffman and Alphabetic Tree Problem with nondecreasing cost functions. Investigating the limits of computational tractability, we show that the Huffman Tree Problem in its full generality is inapproximable unless P = NP, no matter if the objective function is the sum of leaf costs or their maximum. The alphabetic version becomes NP-hard when the leaf costs are interdependent.
Author Fujiwara, Hiroshi
Jacobs, Tobias
Author_xml – sequence: 1
  givenname: Hiroshi
  surname: Fujiwara
  fullname: Fujiwara, Hiroshi
  email: h-fujiwara@cs.tut.ac.jp
  organization: Department of Information and Computer Sciences, Toyohashi University of Technology
– sequence: 2
  givenname: Tobias
  surname: Jacobs
  fullname: Jacobs, Tobias
  organization: National Institute of Informatics
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28572900$$DView record in Pascal Francis
BookMark eNp9kE1LAzEQhoNUsK3-AG-5eIzmc7M9lmJboVAP9Rxmk6zdss2WJEX8925Z8eChp4Hhfd5hngkahS54hB4ZfWaU6pdEqVSCUCbITCtFihs0ZlJwQpVkIzSmTJdEFkzfoUlKB0oZ17NijJbbgPPe4_W5ro8QMASH5-1pD5XPjcW76D1-j13V-iP-avIer3zwEVq86FLGy3OwuelCuke3NbTJP_zOKfpYvu4Wa7LZrt4W8w2xouCZFI45NdPWlxK4lSVQKVQlFbX9iqqaaS2YcsKVsvKVAFCuYM7WzrkSvONiip6G3hMkC20dIdgmmVNsjhC_DS-V5jNK-xwbcjZ2KUVf_0UYNRdhZhBmemHmIswUPaP_MbbJcHkvR2jaqyQfyNRfCZ8-mkN3jqEXcQX6AUITgQ4
CitedBy_id crossref_primary_10_1016_j_ejor_2017_07_031
crossref_primary_10_1587_transfun_E98_A_1189
crossref_primary_10_1587_transinf_2021FCP0006
Cites_doi 10.1016/j.ipl.2009.11.008
10.1016/0020-0190(76)90052-1
10.1109/18.79913
10.1137/0206045
10.1137/0205002
10.1137/0216070
10.1137/0121057
10.1137/0125012
10.1137/0210031
10.1137/0203008
10.1137/0137015
10.1016/S0304-3975(96)00296-4
10.1016/j.tcs.2003.06.001
10.1007/s10107-004-0510-2
10.1002/j.1538-7305.1959.tb01583.x
10.1007/BF00264289
10.1137/S0097539792231167
ContentType Journal Article
Copyright Springer Science+Business Media New York 2013
2015 INIST-CNRS
Copyright_xml – notice: Springer Science+Business Media New York 2013
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1007/s00453-013-9755-6
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1432-0541
EndPage 604
ExternalDocumentID 28572900
10_1007_s00453_013_9755_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
IQODW
ID FETCH-LOGICAL-c362t-6d1d597ce84a2c48a0435b450cce805f177315d3d84beb3aa5d61dcfddd8aed23
IEDL.DBID U2A
ISSN 0178-4617
IngestDate Wed Apr 02 07:25:10 EDT 2025
Wed Oct 01 01:52:05 EDT 2025
Thu Apr 24 23:10:29 EDT 2025
Fri Feb 21 02:43:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Alphabetic tree
Dynamic programming
Binary tree
Huffman coding
Optimal tree
Multi-ary tree
Alphabet
Optimal algorithm
Huffman code
Worst case method
Lossless compression
Minimization
Computational complexity
Minimum time
Prefix code
NP hard problem
Objective function
Variable length code
Monotonicity
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-6d1d597ce84a2c48a0435b450cce805f177315d3d84beb3aa5d61dcfddd8aed23
OpenAccessLink https://soar-ir.repo.nii.ac.jp/records/19568
PageCount 23
ParticipantIDs pascalfrancis_primary_28572900
crossref_primary_10_1007_s00453_013_9755_6
crossref_citationtrail_10_1007_s00453_013_9755_6
springer_journals_10_1007_s00453_013_9755_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Heidelberg
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2014
Publisher Springer US
Springer
Publisher_xml – name: Springer US
– name: Springer
References Knuth (CR21) 1971; 1
Larmore (CR23) 1987; 16
Carmo, Donadelli, Kohayakawa, Sany Laber (CR4) 2004; 321
Gotlieb (CR10) 1981; 10
Garey (CR7) 1974; 3
Klawe, Mumey (CR20) 1993
Hu (CR11) 1973; 25
Karp, Miller, Thatcher (CR18) 1972
Bose, Douïeb (CR3) 2010
Yeung (CR28) 1991; 37
Huffman (CR15) 1952
Larmore, Przytycka (CR25) 1994; 23
Chakaravarthy, Pandit, Roy, Awasthi, Mohania (CR5) 2007
Hu, Kleitman, Tamaki (CR13) 1979; 37
Gilbert, Moore (CR9) 1959; 38
Karpinski, Larmore, Rytter (CR19) 1997; 180
Jacobs, Cicalese, Laber, Molinaro (CR17) 2010
Mozes, Onak, Weimann (CR26) 2008
Baer (CR2) 2010; 110
Larmore, Hirschberg (CR24) 1990
CR22
Hu, Tucker (CR12) 1971; 21
Wessner (CR27) 1976; 4
Zhao, Nagamochi, Ibaraki (CR29) 2005; 102
Chakaravarthy, Pandit, Roy, Sabharwal (CR6) 2009
Garsia, Wachs (CR8) 1977; 6
Hu, Larmore, Morgenthaler (CR14) 2005
Adler, Heeringa (CR1) 2008
Itai (CR16) 1976; 5
9755_CR22
V.T. Chakaravarthy (9755_CR6) 2009
A. Itai (9755_CR16) 1976; 5
D.E. Knuth (9755_CR21) 1971; 1
A.M. Garsia (9755_CR8) 1977; 6
T.C. Hu (9755_CR12) 1971; 21
M.R. Garey (9755_CR7) 1974; 3
M. Adler (9755_CR1) 2008
L. Zhao (9755_CR29) 2005; 102
T. Jacobs (9755_CR17) 2010
D.A. Huffman (9755_CR15) 1952
L. Gotlieb (9755_CR10) 1981; 10
L.L. Larmore (9755_CR24) 1990
P. Bose (9755_CR3) 2010
S. Mozes (9755_CR26) 2008
E.N. Gilbert (9755_CR9) 1959; 38
L.L. Larmore (9755_CR25) 1994; 23
V.T. Chakaravarthy (9755_CR5) 2007
T.C. Hu (9755_CR13) 1979; 37
R.M. Karp (9755_CR18) 1972
M. Klawe (9755_CR20) 1993
L.L. Larmore (9755_CR23) 1987; 16
R. Carmo (9755_CR4) 2004; 321
T.C. Hu (9755_CR14) 2005
R.W. Yeung (9755_CR28) 1991; 37
R.L. Wessner (9755_CR27) 1976; 4
T.C. Hu (9755_CR11) 1973; 25
M. Karpinski (9755_CR19) 1997; 180
M.B. Baer (9755_CR2) 2010; 110
References_xml – start-page: 527
  year: 2010
  end-page: 539
  ident: CR17
  article-title: On the complexity of searching in trees: average-case minimization
  publication-title: Proc. ICALP’10
– start-page: 1
  year: 2008
  end-page: 9
  ident: CR1
  article-title: Approximating optimal binary decision trees
  publication-title: Proc. APPROX-RANDOM’08
– ident: CR22
– volume: 110
  start-page: 139
  issue: 4
  year: 2010
  end-page: 142
  ident: CR2
  article-title: Alphabetic coding with exponential costs
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2009.11.008
– volume: 4
  start-page: 90
  issue: 4
  year: 1976
  end-page: 94
  ident: CR27
  article-title: Optimal alphabetic search trees with restricted maximal height
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(76)90052-1
– start-page: 185
  year: 1993
  end-page: 193
  ident: CR20
  article-title: Upper and lower bounds on constructing alphabetic binary trees
  publication-title: Proc. SODA’93
– volume: 37
  start-page: 564
  issue: 3
  year: 1991
  end-page: 572
  ident: CR28
  article-title: Alphabetic codes revisited
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.79913
– volume: 6
  start-page: 622
  issue: 4
  year: 1977
  end-page: 642
  ident: CR8
  article-title: A new algorithm for minimum cost binary trees
  publication-title: SIAM J. Comput.
  doi: 10.1137/0206045
– start-page: 109
  year: 2010
  end-page: 120
  ident: CR3
  article-title: Should static search trees ever be unbalanced?
  publication-title: Proc. ISAAC’10
– volume: 5
  start-page: 9
  issue: 1
  year: 1976
  end-page: 18
  ident: CR16
  article-title: Optimal alphabetic trees
  publication-title: SIAM J. Comput.
  doi: 10.1137/0205002
– volume: 16
  start-page: 1115
  issue: 6
  year: 1987
  end-page: 1123
  ident: CR23
  article-title: Height restricted optimal binary trees
  publication-title: SIAM J. Comput.
  doi: 10.1137/0216070
– start-page: 210
  year: 2009
  end-page: 221
  ident: CR6
  article-title: Approximating decision trees with multiway branches
  publication-title: Proc. ICALP’09
– volume: 21
  start-page: 514
  issue: 4
  year: 1971
  end-page: 532
  ident: CR12
  article-title: Optimal computer search trees and variable-length alphabetical codes
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0121057
– volume: 25
  start-page: 83
  issue: 1
  year: 1973
  end-page: 94
  ident: CR11
  article-title: A new proof of the T-C algorithm
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0125012
– volume: 10
  start-page: 422
  issue: 3
  year: 1981
  end-page: 433
  ident: CR10
  article-title: Optimal multi-way search trees
  publication-title: SIAM J. Comput.
  doi: 10.1137/0210031
– volume: 3
  start-page: 101
  issue: 2
  year: 1974
  end-page: 110
  ident: CR7
  article-title: Optimal binary search trees with restricted maximal depth
  publication-title: SIAM J. Comput.
  doi: 10.1137/0203008
– volume: 37
  start-page: 246
  issue: 2
  year: 1979
  end-page: 256
  ident: CR13
  article-title: Binary trees optimum under various criteria
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0137015
– volume: 180
  start-page: 309
  year: 1997
  end-page: 324
  ident: CR19
  article-title: Correctness of constructing optimal alphabetic trees revisited
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(96)00296-4
– start-page: 1098
  year: 1952
  end-page: 1101
  ident: CR15
  article-title: A method for the construction of minimum-redundancy codes
  publication-title: Proc. the Institute of Radio Engineers
– volume: 321
  start-page: 41
  issue: 1
  year: 2004
  end-page: 57
  ident: CR4
  article-title: Searching in random partially ordered sets
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2003.06.001
– start-page: 1096
  year: 2008
  end-page: 1105
  ident: CR26
  article-title: Finding an optimal tree searching strategy in linear time
  publication-title: Proc. SODA’08
– year: 1972
  ident: CR18
  article-title: Reducibility among combinatorial problems
  publication-title: Complexity of Computer Computations
– start-page: 310
  year: 1990
  end-page: 318
  ident: CR24
  article-title: Length-limited coding
  publication-title: Proc. SODA’90
– start-page: 53
  year: 2007
  end-page: 62
  ident: CR5
  article-title: Decision trees for entity identification: approximation algorithms and hardness results
  publication-title: Proc. PODS’07
– volume: 102
  start-page: 167
  year: 2005
  end-page: 183
  ident: CR29
  article-title: Greedy splitting algorithms for approximating multiway partition problems
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0510-2
– volume: 38
  start-page: 933
  year: 1959
  end-page: 966
  ident: CR9
  article-title: Variable-length binary encodings
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1959.tb01583.x
– volume: 1
  start-page: 14
  year: 1971
  end-page: 25
  ident: CR21
  article-title: Optimum binary search trees
  publication-title: Acta Inform.
  doi: 10.1007/BF00264289
– volume: 23
  start-page: 1283
  year: 1994
  end-page: 1312
  ident: CR25
  article-title: A fast algorithm for optimum height-limited alphabetic binary trees
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539792231167
– start-page: 226
  year: 2005
  end-page: 237
  ident: CR14
  article-title: Optimal integer alphabetic trees in linear time
  publication-title: Proc. ESA’05
– volume: 102
  start-page: 167
  year: 2005
  ident: 9755_CR29
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0510-2
– volume: 10
  start-page: 422
  issue: 3
  year: 1981
  ident: 9755_CR10
  publication-title: SIAM J. Comput.
  doi: 10.1137/0210031
– volume-title: Complexity of Computer Computations
  year: 1972
  ident: 9755_CR18
– volume: 16
  start-page: 1115
  issue: 6
  year: 1987
  ident: 9755_CR23
  publication-title: SIAM J. Comput.
  doi: 10.1137/0216070
– start-page: 53
  volume-title: Proc. PODS’07
  year: 2007
  ident: 9755_CR5
– volume: 6
  start-page: 622
  issue: 4
  year: 1977
  ident: 9755_CR8
  publication-title: SIAM J. Comput.
  doi: 10.1137/0206045
– volume: 21
  start-page: 514
  issue: 4
  year: 1971
  ident: 9755_CR12
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0121057
– volume: 37
  start-page: 246
  issue: 2
  year: 1979
  ident: 9755_CR13
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0137015
– volume: 1
  start-page: 14
  year: 1971
  ident: 9755_CR21
  publication-title: Acta Inform.
  doi: 10.1007/BF00264289
– volume: 3
  start-page: 101
  issue: 2
  year: 1974
  ident: 9755_CR7
  publication-title: SIAM J. Comput.
  doi: 10.1137/0203008
– volume: 23
  start-page: 1283
  year: 1994
  ident: 9755_CR25
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539792231167
– volume: 180
  start-page: 309
  year: 1997
  ident: 9755_CR19
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(96)00296-4
– ident: 9755_CR22
– start-page: 109
  volume-title: Proc. ISAAC’10
  year: 2010
  ident: 9755_CR3
– volume: 38
  start-page: 933
  year: 1959
  ident: 9755_CR9
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1959.tb01583.x
– volume: 4
  start-page: 90
  issue: 4
  year: 1976
  ident: 9755_CR27
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(76)90052-1
– volume: 25
  start-page: 83
  issue: 1
  year: 1973
  ident: 9755_CR11
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0125012
– start-page: 1
  volume-title: Proc. APPROX-RANDOM’08
  year: 2008
  ident: 9755_CR1
– volume: 110
  start-page: 139
  issue: 4
  year: 2010
  ident: 9755_CR2
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2009.11.008
– start-page: 527
  volume-title: Proc. ICALP’10
  year: 2010
  ident: 9755_CR17
– start-page: 1098
  volume-title: Proc. the Institute of Radio Engineers
  year: 1952
  ident: 9755_CR15
– start-page: 226
  volume-title: Proc. ESA’05
  year: 2005
  ident: 9755_CR14
– start-page: 210
  volume-title: Proc. ICALP’09
  year: 2009
  ident: 9755_CR6
– volume: 321
  start-page: 41
  issue: 1
  year: 2004
  ident: 9755_CR4
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2003.06.001
– start-page: 310
  volume-title: Proc. SODA’90
  year: 1990
  ident: 9755_CR24
– volume: 37
  start-page: 564
  issue: 3
  year: 1991
  ident: 9755_CR28
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.79913
– volume: 5
  start-page: 9
  issue: 1
  year: 1976
  ident: 9755_CR16
  publication-title: SIAM J. Comput.
  doi: 10.1137/0205002
– start-page: 185
  volume-title: Proc. SODA’93
  year: 1993
  ident: 9755_CR20
– start-page: 1096
  volume-title: Proc. SODA’08
  year: 2008
  ident: 9755_CR26
SSID ssj0012796
Score 2.0670753
Snippet We address generalized versions of the Huffman and Alphabetic Tree Problem where the cost caused by each individual leaf i , instead of being linear, depends...
SourceID pascalfrancis
crossref
springer
SourceType Index Database
Enrichment Source
Publisher
StartPage 582
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Coding, codes
Computer Science
Computer science; control theory; systems
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Exact sciences and technology
Information, signal and communications theory
Mathematics of Computing
Signal and communications theory
Telecommunications and information theory
Theoretical computing
Theory of Computation
Title On the Huffman and Alphabetic Tree Problem with General Cost Functions
URI https://link.springer.com/article/10.1007/s00453-013-9755-6
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: AFBBN
  dateStart: 19861101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXgTxLdZHycGTEthHstk9botrUaweWqinJZvHSbelu_3_TvYFxQd4WliSHCYzmW8ymfkQunUBgmeejogSDAIUlTkklNIjkdEqEJQJaex9x8s0mMzp04Itmjruon3t3qYkq5O6K3az6MO-_fFJxBkjwS7qM9vNC5R47sVd6sDjFSmXpZ0nFPxzm8r8aYktZ7S_EgXIxdSEFt8yo5XDSY7QQYMUcVxv7THa0fkJOmxZGHBjlKcoec0xoDg82RjzKXIscoVjW0Gb2fpEPFtrjd9q2hhsb11x02kaj5dFiRPwa5XqnaF58jAbT0jDjkAkOJ2SBMpVEA1IHVLhSRoKB5BPRpkj4ZfDjMu57zLlq5BmEDELwVTgKmmUUqHQyvPPUS9f5voC4UhoCaGNkUob6mseOdLnXsAzsOZMaD5ATiumVDatwy2DxUfaNT2uJJuCZFMr2TQYoLtuyqrum_HX4OGW7LsZXsgA_DvOAN23m5E2Nlb8vtzlv0ZfoT0AQbR-gnuNeuV6o28AaJTZEPXjZDSa2u_j-_PDsFK0LzDhzQE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3HTgMxEB1BcgAJ0RGhBB84gYy22FuOESKEziFIcFq5XoAFkc2Fr2e8TaJKXFe25R2XeeMpD2DfRwguA5NSLTgaKFp6NFEqoKk1OhKMC2Xde8fVdTS6Y-f3_L7O45400e6NS7K8qdtkN4c-XOxPSNOYcxrNQpehfRJ0oDs4fbg4aZ0HQVzScjniecpQQzfOzJ8G-aSOFl7FBCVjK0qLb77RUuUMl2DcTLaKNHk8mhbySL1_qeP4z79ZhsUagpJBtWdWYMbkq7DU0DuQ-rSvwfAmJwgPyWhq7bPIicg1GbjUXOkSH8n4zRhyW_HREPecS-oS1uT4ZVKQISrMck-vw93wZHw8ojXtAlWozQoaaV-jmaFMwkSgWCI8hFSScU_hJ49bP45Dn-tQJ0yiKS4E15GvldVaJ8LoINyATv6Sm00gqTAKbSartLEsNHHqqTAOoljiNSGFiXvgNdLPVF2T3FFjPGVtNeVSThnKKXNyyqIeHLRdXquCHH817n9a0rZHkHC0KjyvB4fN8mT14Z38PtzWv1rvwdxofHWZXZ5dX2zDPCItVsX57kCneJuaXUQzhezXu_cDx9XppA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA5aQQRxF-tSc_CkhM6STGaORR3qVntoobchk-Wk09KZ_n9fZoPiAl5DksPLe7zv5S0fQjcuQPDU0xFRgkGAolKHhFJ6JDJaBYIyIY3973gbBcMpfZ6xWc1zmjfV7k1KsuppsFOasqK_UKbfNr5ZJGLrgHwSccZIsIm2qJ2TAAo99QZtGsHjJUGXpaAnFHx1k9b86Yo1x7S7EDnIyFTkFt-ypKXziQ_QXo0a8aB65kO0obMjtN8wMuDaQI9R_J5hQHR4uDLmU2RYZAoPbDdtansV8WSpNR5XFDLY_sDieuo0vp_nBY7Bx5VqeIKm8ePkfkhqpgQiwQEVJFCugshA6pAKT9JQOICCUsocCUsOMy7nvsuUr0KaQvQsBFOBq6RRSoVCK88_RZ1snukzhCOhJYQ5RiptqK955EifewFPwbJToXkXOY2YElmPEbdsFh9JOwC5lGwCkk2sZJOgi27bI4tqhsZfm3trsm9PeCGDQMBxuuiueYyktrf89-vO_7X7Gm2PH-Lk9Wn0coF2ABvRqjL3EnWK5UpfAf4o0l6pY18nH9EZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Huffman+and+Alphabetic+Tree+Problem+with+General+Cost+Functions&rft.jtitle=Algorithmica&rft.au=Fujiwara%2C+Hiroshi&rft.au=Jacobs%2C+Tobias&rft.date=2014-07-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=69&rft.issue=3&rft.spage=582&rft.epage=604&rft_id=info:doi/10.1007%2Fs00453-013-9755-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_013_9755_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon