Vibration compensation control strategy of composite cage rotor bearingless induction motor based on fuzzy coefficient adaptive-linear-neuron method
To address the vibration problem induced by rotor eccentricity in a composite cage rotor bearingless induction motor(CCR-BIM), a vibration compensation control approach based on the fuzzy coefficient adaptive-linear-neuron is proposed. Firstly, the CCR-BIM mathematical model and the mechanism of unb...
        Saved in:
      
    
          | Published in | ISA transactions Vol. 154; pp. 455 - 464 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Ltd
    
        01.11.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0019-0578 1879-2022 1879-2022  | 
| DOI | 10.1016/j.isatra.2024.09.003 | 
Cover
| Abstract | To address the vibration problem induced by rotor eccentricity in a composite cage rotor bearingless induction motor(CCR-BIM), a vibration compensation control approach based on the fuzzy coefficient adaptive-linear-neuron is proposed. Firstly, the CCR-BIM mathematical model and the mechanism of unbalanced vibration are investigated, obtaining the expression of rotor displacement when the rotor is unbalanced. Afterwards, the displacement is decomposed by the fuzzy coefficient adaptive-linear-neuron algorithm to obtain the harmonic component related to vibration, and the value range of the weight coefficient is determined using stability analysis. Furthermore, through analyzing the shortcomings of the traditional PID vibration compensation method, a rotor vibration compensation method based on the fuzzy coefficient adaptive-linear-neuron is put forward to achieve high-performance vibration compensation control. Finally, the PID method and the proposed fuzzy coefficient adaptive-linear-neuron algorithm are simulated and verified by experiments. The findings demonstrate that the proposed algorithm successfully not only suppresses rotor unbalanced vibration but also exhibiting great dynamic performance.
•Dual adaptive-linear-neuron is proposed to solve the problem of PID's insufficient ability to regulate periodic signals. | 
    
|---|---|
| AbstractList | To address the vibration problem induced by rotor eccentricity in a composite cage rotor bearingless induction motor(CCR-BIM), a vibration compensation control approach based on the fuzzy coefficient adaptive-linear-neuron is proposed. Firstly, the CCR-BIM mathematical model and the mechanism of unbalanced vibration are investigated, obtaining the expression of rotor displacement when the rotor is unbalanced. Afterwards, the displacement is decomposed by the fuzzy coefficient adaptive-linear-neuron algorithm to obtain the harmonic component related to vibration, and the value range of the weight coefficient is determined using stability analysis. Furthermore, through analyzing the shortcomings of the traditional PID vibration compensation method, a rotor vibration compensation method based on the fuzzy coefficient adaptive-linear-neuron is put forward to achieve high-performance vibration compensation control. Finally, the PID method and the proposed fuzzy coefficient adaptive-linear-neuron algorithm are simulated and verified by experiments. The findings demonstrate that the proposed algorithm successfully not only suppresses rotor unbalanced vibration but also exhibiting great dynamic performance. To address the vibration problem induced by rotor eccentricity in a composite cage rotor bearingless induction motor(CCR-BIM), a vibration compensation control approach based on the fuzzy coefficient adaptive-linear-neuron is proposed. Firstly, the CCR-BIM mathematical model and the mechanism of unbalanced vibration are investigated, obtaining the expression of rotor displacement when the rotor is unbalanced. Afterwards, the displacement is decomposed by the fuzzy coefficient adaptive-linear-neuron algorithm to obtain the harmonic component related to vibration, and the value range of the weight coefficient is determined using stability analysis. Furthermore, through analyzing the shortcomings of the traditional PID vibration compensation method, a rotor vibration compensation method based on the fuzzy coefficient adaptive-linear-neuron is put forward to achieve high-performance vibration compensation control. Finally, the PID method and the proposed fuzzy coefficient adaptive-linear-neuron algorithm are simulated and verified by experiments. The findings demonstrate that the proposed algorithm successfully not only suppresses rotor unbalanced vibration but also exhibiting great dynamic performance. •Dual adaptive-linear-neuron is proposed to solve the problem of PID's insufficient ability to regulate periodic signals. To address the vibration problem induced by rotor eccentricity in a composite cage rotor bearingless induction motor(CCR-BIM), a vibration compensation control approach based on the fuzzy coefficient adaptive-linear-neuron is proposed. Firstly, the CCR-BIM mathematical model and the mechanism of unbalanced vibration are investigated, obtaining the expression of rotor displacement when the rotor is unbalanced. Afterwards, the displacement is decomposed by the fuzzy coefficient adaptive-linear-neuron algorithm to obtain the harmonic component related to vibration, and the value range of the weight coefficient is determined using stability analysis. Furthermore, through analyzing the shortcomings of the traditional PID vibration compensation method, a rotor vibration compensation method based on the fuzzy coefficient adaptive-linear-neuron is put forward to achieve high-performance vibration compensation control. Finally, the PID method and the proposed fuzzy coefficient adaptive-linear-neuron algorithm are simulated and verified by experiments. The findings demonstrate that the proposed algorithm successfully not only suppresses rotor unbalanced vibration but also exhibiting great dynamic performance.To address the vibration problem induced by rotor eccentricity in a composite cage rotor bearingless induction motor(CCR-BIM), a vibration compensation control approach based on the fuzzy coefficient adaptive-linear-neuron is proposed. Firstly, the CCR-BIM mathematical model and the mechanism of unbalanced vibration are investigated, obtaining the expression of rotor displacement when the rotor is unbalanced. Afterwards, the displacement is decomposed by the fuzzy coefficient adaptive-linear-neuron algorithm to obtain the harmonic component related to vibration, and the value range of the weight coefficient is determined using stability analysis. Furthermore, through analyzing the shortcomings of the traditional PID vibration compensation method, a rotor vibration compensation method based on the fuzzy coefficient adaptive-linear-neuron is put forward to achieve high-performance vibration compensation control. Finally, the PID method and the proposed fuzzy coefficient adaptive-linear-neuron algorithm are simulated and verified by experiments. The findings demonstrate that the proposed algorithm successfully not only suppresses rotor unbalanced vibration but also exhibiting great dynamic performance.  | 
    
| Author | Yang, Zebin Lu, Chengling Ding, Qifeng Sun, Xiaodong  | 
    
| Author_xml | – sequence: 1 givenname: Chengling surname: Lu fullname: Lu, Chengling email: luchengling@wxc.edu.cn organization: School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 2 givenname: Zebin surname: Yang fullname: Yang, Zebin email: zbyang@ujs.edu.cn organization: School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 3 givenname: Xiaodong surname: Sun fullname: Sun, Xiaodong email: xdsun@ujs.edu.cn organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China – sequence: 4 givenname: Qifeng surname: Ding fullname: Ding, Qifeng email: 2112007005@stmail.ujs.edu.cn organization: School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39294085$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkcFu1DAQhi1URLeFN0AoRy4J4ziJYw5IqAJaqRIX4Go59mTxKrEX26m0fY4-MN5Ny4EDnKwZf99Ynv-CnDnvkJDXFCoKtHu3q2xUKaiqhrqpQFQA7BnZ0J6LMrfqM7IBoKKElvfn5CLGHQDUrehfkHMmatFA327Iww87BJWsd4X28x5dfCpcCn4qYn4h4fZQ-PEE-GgTFlptsQg--VAMqIJ12wljLKwziz7p83qnIpoil-Nyf3_IPo6j1RZdKpRR-2TvsJysyxNKh0s4eph-evOSPB_VFPHV43lJvn_-9O3qurz9-uXm6uNtqVlXp7IRdW9E1w0URd8qxXo-dh1wY0aOozbAoaGDAY0Nzx9uda-MFiZ3Ga-hadglebvO3Qf_a8GY5GyjxmlSDv0SJaPQcdYxyjP65hFdhhmN3Ac7q3CQT5vMQLMCOvgYA45_EAryGJjcyTUweQxMgpA5sKy9_0vTNp0iyKSd_id_WGXMS7qzGGQ8blejsQF1ksbbfw_4DWIDt9k | 
    
| CitedBy_id | crossref_primary_10_3390_act14030125 | 
    
| Cites_doi | 10.3233/JAE-150120 10.1109/TPEL.2020.2994254 10.1109/TIE.2020.3003632 10.1109/TIA.2019.2926673 10.1109/ACCESS.2019.2938222 10.1109/TIA.2020.3044970 10.1109/TTE.2020.3031338 10.3233/JAE-190092 10.1007/s43236-021-00220-0 10.1109/TPEL.2022.3141454 10.3233/JAE-170061 10.1109/TCST.2021.3139087 10.1109/TIE.2021.3071712 10.1109/TPEL.2015.2427914 10.1109/TIA.2019.2963381 10.1002/2050-7038.12988 10.1016/j.isatra.2020.01.028 10.1109/ACCESS.2020.2964106 10.1109/TAC.2021.3071021 10.1109/TIE.2016.2530040  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 ISA Copyright © 2024 ISA. Published by Elsevier Ltd. All rights reserved.  | 
    
| Copyright_xml | – notice: 2024 ISA – notice: Copyright © 2024 ISA. Published by Elsevier Ltd. All rights reserved.  | 
    
| DBID | AAYXX CITATION NPM 7X8  | 
    
| DOI | 10.1016/j.isatra.2024.09.003 | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Sciences (General)  | 
    
| EISSN | 1879-2022 | 
    
| EndPage | 464 | 
    
| ExternalDocumentID | 39294085 10_1016_j_isatra_2024_09_003 S0019057824004270  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ACDAQ ACFVG ACGFO ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K T9H TAE TN5 UHS UNMZH WUQ XPP ZMT ZY4 ~G- AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD AFXIZ AGCQF AGRNS BNPGV NPM SSH 7X8  | 
    
| ID | FETCH-LOGICAL-c362t-4928d966b1e985aa387f6607ddf7efcd07041bd0ce479295c8adc9d7043720443 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0019-0578 1879-2022  | 
    
| IngestDate | Thu Oct 02 12:54:40 EDT 2025 Mon Jul 21 05:53:00 EDT 2025 Thu Apr 24 23:12:53 EDT 2025 Wed Oct 01 05:12:26 EDT 2025 Sat Nov 02 16:00:39 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Fuzzy coefficient adaptive-linear-neuron Vibration compensation Composite cage rotor bearingless induction motor  | 
    
| Language | English | 
    
| License | Copyright © 2024 ISA. Published by Elsevier Ltd. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c362t-4928d966b1e985aa387f6607ddf7efcd07041bd0ce479295c8adc9d7043720443 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 39294085 | 
    
| PQID | 3106736317 | 
    
| PQPubID | 23479 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_3106736317 pubmed_primary_39294085 crossref_primary_10_1016_j_isatra_2024_09_003 crossref_citationtrail_10_1016_j_isatra_2024_09_003 elsevier_sciencedirect_doi_10_1016_j_isatra_2024_09_003  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | November 2024 2024-11-00 2024-Nov 20241101  | 
    
| PublicationDateYYYYMMDD | 2024-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2024 text: November 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | ISA transactions | 
    
| PublicationTitleAlternate | ISA Trans | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Chen, Fujii, Johnson (bib1) 2021; 57 Chen, Zhu, Severson (bib4) 2020; 56 Gong, Zhu (bib10) 2021; 68 Zheng, Mo, Zhou (bib11) 2019; 7 Lu, Yang, Sun (bib2) 2021; 31 Zhu, Yang, Sun (bib14) 2020; 8 Han, Liu, Kang (bib21) 2022; 67 Sun, Jin, Cai (bib7) 2020; 35 Bu, Huang, Lu (bib16) 2017; 56 Bu, He, Lu (bib15) 2016; 51 Zhu, Gu (bib3) 2020; 101 Asama, Shibata, Oiwa (bib9) 2017 Yang, Sun, Sun (bib18) 2022; 69 Sugimoto, Chiba (bib5) 2019; 55 Sun, Chen, Jiang (bib6) 2016; 63 Yang, Lu, Sun (bib8) 2021; 7 Wang, Zhu (bib20) 2022; 37 Qiu, Wen, Zhao (bib19) 2016; 31 Yang, Mei, Sun (bib12) 2021; 21 Bu, Tu, Lu (bib17) 2020; 63 Tan, Wang, Wang (bib13) 2019 He, Tang, Wang (bib22) 2022; 30 Tan (10.1016/j.isatra.2024.09.003_bib13) 2019 Asama (10.1016/j.isatra.2024.09.003_bib9) 2017 Yang (10.1016/j.isatra.2024.09.003_bib8) 2021; 7 Chen (10.1016/j.isatra.2024.09.003_bib4) 2020; 56 Chen (10.1016/j.isatra.2024.09.003_bib1) 2021; 57 Qiu (10.1016/j.isatra.2024.09.003_bib19) 2016; 31 Yang (10.1016/j.isatra.2024.09.003_bib12) 2021; 21 Wang (10.1016/j.isatra.2024.09.003_bib20) 2022; 37 Sun (10.1016/j.isatra.2024.09.003_bib7) 2020; 35 Sugimoto (10.1016/j.isatra.2024.09.003_bib5) 2019; 55 Lu (10.1016/j.isatra.2024.09.003_bib2) 2021; 31 Zhu (10.1016/j.isatra.2024.09.003_bib14) 2020; 8 Zhu (10.1016/j.isatra.2024.09.003_bib3) 2020; 101 Bu (10.1016/j.isatra.2024.09.003_bib16) 2017; 56 Bu (10.1016/j.isatra.2024.09.003_bib17) 2020; 63 Sun (10.1016/j.isatra.2024.09.003_bib6) 2016; 63 Gong (10.1016/j.isatra.2024.09.003_bib10) 2021; 68 Han (10.1016/j.isatra.2024.09.003_bib21) 2022; 67 Yang (10.1016/j.isatra.2024.09.003_bib18) 2022; 69 He (10.1016/j.isatra.2024.09.003_bib22) 2022; 30 Zheng (10.1016/j.isatra.2024.09.003_bib11) 2019; 7 Bu (10.1016/j.isatra.2024.09.003_bib15) 2016; 51  | 
    
| References_xml | – volume: 56 start-page: 1377 year: 2020 end-page: 1388 ident: bib4 article-title: Review of bearingless motor technology for significant power applications publication-title: IEEE Trans Ind Appl – volume: 67 start-page: 1952 year: 2022 end-page: 1959 ident: bib21 article-title: Boundary feedback control of a nonhomogeneous wind turbine tower with exogenous disturbances publication-title: IEEE Trans Autom Contr – volume: 31 start-page: 2530 year: 2016 end-page: 2538 ident: bib19 article-title: Adaptive-linear-neuron-based dead-time effects compensation scheme for PMSM drives publication-title: IEEE Trans Power Electron – volume: 7 start-page: 694 year: 2021 end-page: 705 ident: bib8 article-title: Study on active disturbance rejection control of a bearingless induction motor based on an improved particle swarm optimization–genetic algorithm publication-title: IEEE Trans Transp Electrif. – volume: 31 year: 2021 ident: bib2 article-title: A decoupling control of composite cage rotor bearingless induction motor based on SA-PSO support vector machine inverse publication-title: Int Trans Electr Energ Syst – volume: 68 start-page: 6547 year: 2021 end-page: 6559 ident: bib10 article-title: Synchronous vibration control for magnetically suspended rotor system using a variable angle compensation algorithm publication-title: IEEE Trans Ind Electron – volume: 56 start-page: 35 year: 2017 end-page: 47 ident: bib16 article-title: Unbalanced displacement LMS extraction algorithm and vibration control of a bearingless induction motor publication-title: Int J Appl Electromagn Mech – start-page: 111 year: 2019 end-page: 115 ident: bib13 article-title: Rotor eccentricity compensation of bearingless switched reluctance motors based on extended kalman filter publication-title: : Int Symp Comput Intell Des (ISCID – volume: 30 start-page: 2243 year: 2022 end-page: 2250 ident: bib22 article-title: Trajectory tracking control for a three-dimensional flexible wing publication-title: IEEE Trans Control Syst Technol – start-page: 1 year: 2017 end-page: 5 ident: bib9 article-title: Performance improvement of a bearingless motor by rotation about an estimated center of inertia publication-title: : Int Symp Linear Drives Ind Appl (LDIA) – volume: 35 start-page: 13631 year: 2020 end-page: 13640 ident: bib7 article-title: Grey wolf optimization algorithm based state feedback control for a bearingless permanent magnet synchronous machine publication-title: IEEE Trans Power Electron – volume: 37 start-page: 7145 year: 2022 end-page: 7155 ident: bib20 article-title: Vibration compensation control of BPMSM with dead-time effect based on adaptive neural network band-pass filter publication-title: IEEE Trans Power Electron – volume: 21 start-page: 792 year: 2021 end-page: 803 ident: bib12 article-title: Compensation control of rotor mass eccentric vibration for bearingless induction motors publication-title: J Power Electron – volume: 57 start-page: 1375 year: 2021 end-page: 1388 ident: bib1 article-title: Optimal design of the bearingless induction motor publication-title: IEEE Trans Ind Appl – volume: 63 start-page: 3479 year: 2016 end-page: 3488 ident: bib6 article-title: High-performance control for a bearingless permanent-magnet synchronous motor using neural network inverse scheme plus internal model controllers publication-title: IEEE Trans Ind Electron – volume: 55 start-page: 4754 year: 2019 end-page: 4761 ident: bib5 article-title: Parameter identification of current–force factor and torque constant in single-drive bearingless motors with back EMF publication-title: IEEE Trans Ind Appl – volume: 51 start-page: 455 year: 2016 end-page: 469 ident: bib15 article-title: Unbalanced vibration control strategy of bearingless induction motor based on inverse system decoupling publication-title: Int J Appl Electromagn Mech – volume: 7 start-page: 122613 year: 2019 end-page: 122625 ident: bib11 article-title: Unbalance compensation and automatic balance of active magnetic bearing rotor system by using iterative learning control publication-title: IEEE Access – volume: 69 start-page: 3439 year: 2022 end-page: 3448 ident: bib18 article-title: An improved dynamic model for bearingless induction motor considering rotor eccentricity and load change publication-title: IEEE Trans Ind Electron – volume: 101 start-page: 295 year: 2020 end-page: 308 ident: bib3 article-title: Active disturbance rejection control of 5-degree-of-freedom bearingless permanent magnet synchronous motor based on fuzzy neural network inverse system publication-title: ISA Trans – volume: 8 start-page: 12988 year: 2020 end-page: 12998 ident: bib14 article-title: Rotor vibration control of a bearingless induction motor based on unbalanced force feed-forward compensation and current compensation publication-title: IEEE Access – volume: 63 start-page: 199 year: 2020 end-page: 215 ident: bib17 article-title: Adaptive feedforward vibration compensation control strategy of bearingless induction motor publication-title: Int J Appl Electromagn Mech – volume: 51 start-page: 455 issue: 4 year: 2016 ident: 10.1016/j.isatra.2024.09.003_bib15 article-title: Unbalanced vibration control strategy of bearingless induction motor based on inverse system decoupling publication-title: Int J Appl Electromagn Mech doi: 10.3233/JAE-150120 – volume: 35 start-page: 13631 issue: 12 year: 2020 ident: 10.1016/j.isatra.2024.09.003_bib7 article-title: Grey wolf optimization algorithm based state feedback control for a bearingless permanent magnet synchronous machine publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2020.2994254 – volume: 68 start-page: 6547 issue: 8 year: 2021 ident: 10.1016/j.isatra.2024.09.003_bib10 article-title: Synchronous vibration control for magnetically suspended rotor system using a variable angle compensation algorithm publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2020.3003632 – volume: 55 start-page: 4754 issue: 5 year: 2019 ident: 10.1016/j.isatra.2024.09.003_bib5 article-title: Parameter identification of current–force factor and torque constant in single-drive bearingless motors with back EMF publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2019.2926673 – volume: 7 start-page: 122613 year: 2019 ident: 10.1016/j.isatra.2024.09.003_bib11 article-title: Unbalance compensation and automatic balance of active magnetic bearing rotor system by using iterative learning control publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2938222 – volume: 57 start-page: 1375 issue: 2 year: 2021 ident: 10.1016/j.isatra.2024.09.003_bib1 article-title: Optimal design of the bearingless induction motor publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2020.3044970 – volume: 7 start-page: 694 issue: 2 year: 2021 ident: 10.1016/j.isatra.2024.09.003_bib8 article-title: Study on active disturbance rejection control of a bearingless induction motor based on an improved particle swarm optimization–genetic algorithm publication-title: IEEE Trans Transp Electrif. doi: 10.1109/TTE.2020.3031338 – volume: 63 start-page: 199 issue: 2 year: 2020 ident: 10.1016/j.isatra.2024.09.003_bib17 article-title: Adaptive feedforward vibration compensation control strategy of bearingless induction motor publication-title: Int J Appl Electromagn Mech doi: 10.3233/JAE-190092 – volume: 21 start-page: 792 issue: 5 year: 2021 ident: 10.1016/j.isatra.2024.09.003_bib12 article-title: Compensation control of rotor mass eccentric vibration for bearingless induction motors publication-title: J Power Electron doi: 10.1007/s43236-021-00220-0 – volume: 37 start-page: 7145 issue: 6 year: 2022 ident: 10.1016/j.isatra.2024.09.003_bib20 article-title: Vibration compensation control of BPMSM with dead-time effect based on adaptive neural network band-pass filter publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2022.3141454 – volume: 56 start-page: 35 issue: 1 year: 2017 ident: 10.1016/j.isatra.2024.09.003_bib16 article-title: Unbalanced displacement LMS extraction algorithm and vibration control of a bearingless induction motor publication-title: Int J Appl Electromagn Mech doi: 10.3233/JAE-170061 – volume: 30 start-page: 2243 issue: 5 year: 2022 ident: 10.1016/j.isatra.2024.09.003_bib22 article-title: Trajectory tracking control for a three-dimensional flexible wing publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2021.3139087 – volume: 69 start-page: 3439 issue: 4 year: 2022 ident: 10.1016/j.isatra.2024.09.003_bib18 article-title: An improved dynamic model for bearingless induction motor considering rotor eccentricity and load change publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2021.3071712 – volume: 31 start-page: 2530 issue: 3 year: 2016 ident: 10.1016/j.isatra.2024.09.003_bib19 article-title: Adaptive-linear-neuron-based dead-time effects compensation scheme for PMSM drives publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2015.2427914 – volume: 56 start-page: 1377 year: 2020 ident: 10.1016/j.isatra.2024.09.003_bib4 article-title: Review of bearingless motor technology for significant power applications publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2019.2963381 – volume: 31 issue: 8 year: 2021 ident: 10.1016/j.isatra.2024.09.003_bib2 article-title: A decoupling control of composite cage rotor bearingless induction motor based on SA-PSO support vector machine inverse publication-title: Int Trans Electr Energ Syst doi: 10.1002/2050-7038.12988 – volume: 101 start-page: 295 year: 2020 ident: 10.1016/j.isatra.2024.09.003_bib3 article-title: Active disturbance rejection control of 5-degree-of-freedom bearingless permanent magnet synchronous motor based on fuzzy neural network inverse system publication-title: ISA Trans doi: 10.1016/j.isatra.2020.01.028 – volume: 8 start-page: 12988 year: 2020 ident: 10.1016/j.isatra.2024.09.003_bib14 article-title: Rotor vibration control of a bearingless induction motor based on unbalanced force feed-forward compensation and current compensation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964106 – volume: 67 start-page: 1952 issue: 4 year: 2022 ident: 10.1016/j.isatra.2024.09.003_bib21 article-title: Boundary feedback control of a nonhomogeneous wind turbine tower with exogenous disturbances publication-title: IEEE Trans Autom Contr doi: 10.1109/TAC.2021.3071021 – start-page: 1 year: 2017 ident: 10.1016/j.isatra.2024.09.003_bib9 article-title: Performance improvement of a bearingless motor by rotation about an estimated center of inertia publication-title: : Int Symp Linear Drives Ind Appl (LDIA) – volume: 63 start-page: 3479 issue: 6 year: 2016 ident: 10.1016/j.isatra.2024.09.003_bib6 article-title: High-performance control for a bearingless permanent-magnet synchronous motor using neural network inverse scheme plus internal model controllers publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2016.2530040 – start-page: 111 year: 2019 ident: 10.1016/j.isatra.2024.09.003_bib13 article-title: Rotor eccentricity compensation of bearingless switched reluctance motors based on extended kalman filter publication-title: : Int Symp Comput Intell Des (ISCID  | 
    
| SSID | ssj0002598 | 
    
| Score | 2.3893526 | 
    
| Snippet | To address the vibration problem induced by rotor eccentricity in a composite cage rotor bearingless induction motor(CCR-BIM), a vibration compensation control... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 455 | 
    
| SubjectTerms | Composite cage rotor bearingless induction motor Fuzzy coefficient adaptive-linear-neuron Vibration compensation  | 
    
| Title | Vibration compensation control strategy of composite cage rotor bearingless induction motor based on fuzzy coefficient adaptive-linear-neuron method | 
    
| URI | https://dx.doi.org/10.1016/j.isatra.2024.09.003 https://www.ncbi.nlm.nih.gov/pubmed/39294085 https://www.proquest.com/docview/3106736317  | 
    
| Volume | 154 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: AKRWK dateStart: 19890101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QIHRMtrKVRG4gAH0yT2xvGxWlEtrwohinqzHD-korK72sehPfRX8IOZsZ0CQqgSp8iJ7VgZe-YbZeYbgBdOheh0U_MovOSIwBXXSkReda7TtWtqUVNy8sfjdnoi352OT7dgMuTCUFhl0f1ZpydtXe4clK95sDg7oxxfNGbExi5TwQjy26VUVMXg9dWvMA-E90Uba069h_S5FONFETNLYh9qMtvpUDrrb_P0L_iZzNDRPbhb8CM7zEvcga0w24U7v7EK7sJOOa8r9rKQSr-6Dz--kl9MUmAURY7O69BIoepslVlqL9g8pg4UyxWYQ23DlnP0y1mPRwKnP0fNyNCPz6Sz7Ht-hqbQM2zGzeXlBY4PiZgC7Rmz3i5Io3KCs3bJE38mjkuFqx_AydGbL5MpLxUZuENDt0ZZNp1HB6mvg-7G1opOxbatlPeRZO5Rf8i695ULUiHuGrvOeqe9IgKlppJSPITt2XwWHgMLOGGIjfZtZWX0je6ECEojoutxXtuOQAyCMK7QlVPVjHMzxKV9M1l8hsRnKk00pyPg16MWma7jhv5qkLH5Y9sZtCg3jHw-bAmDJ5J-s9hZmG9WRhArn2gRmI3gUd4r12shNEqcck_--717cJtaOR3yKWyvl5vwDHHRut9PG38fbh1OPn_4RNe376fHPwHxtBGZ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QAcEC2v5WkkDnAwTWJvHB9RRbVA21OLerMcP6RWZXe1j0N76K_oD2bGdgoIoUocHT9iZeyZb5SZbwDeORWi003No_CSIwJXXCsRedW5TteuqUVNyckHh-3kWH49GZ9swO6QC0NhlUX3Z52etHV5slO-5s789JRyfNGYERu7TAUj0G-_I8eNIg_s49WvOA_E90Uda07Dh_y5FORFITMLoh9qMt3pUDvrb_v0L_yZ7NDeQ3hQACT7lPe4BRthug33f6MV3IatcmGX7H1hlf7wCK6_k2NMYmAURo7e69BIsepsmWlqL9gspgEUzBWYQ3XDFjN0zFmPdwKXP0fVyNCRz6yz7EfuQ1voGTbj-vLyAueHxEyBBo1Zb-ekUjnhWbvgiUAT56XK1Y_heO_z0e6El5IM3KGlW6Ewm86jh9TXQXdja0WnYttWyvtIQveoQGTd-8oFqRB4jV1nvdNeEYNSU0kpnsDmdDYNz4AFXDDERvu2sjL6RndCBKUR0vW4rm1HIAZBGFf4yqlsxrkZAtPOTBafIfGZShPP6Qj4zax55uu4ZbwaZGz-OHcGTcotM98OR8LglaT_LHYaZuulEUTLJ1pEZiN4ms_KzV4IjhKp3PP_fu8buDs5Otg3-18Ov72Ae9STcyNfwuZqsQ6vECSt-tfpEvwEkyQRmQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibration+compensation+control+strategy+of+composite+cage+rotor+bearingless+induction+motor+based+on+fuzzy+coefficient+adaptive-linear-neuron+method&rft.jtitle=ISA+transactions&rft.au=Lu%2C+Chengling&rft.au=Yang%2C+Zebin&rft.au=Sun%2C+Xiaodong&rft.au=Ding%2C+Qifeng&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=0019-0578&rft.volume=154&rft.spage=455&rft.epage=464&rft_id=info:doi/10.1016%2Fj.isatra.2024.09.003&rft.externalDocID=S0019057824004270 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon |