Joint learning of multiple Granger causal networks via non-convex regularizations: Inference of group-level brain connectivity
This paper considers joint learning of multiple sparse Granger graphical models to discover underlying common and differential Granger causality (GC) structures across multiple time series. This can be applied to drawing group-level brain connectivity inferences from a homogeneous group of subjects...
        Saved in:
      
    
          | Published in | Neural networks Vol. 149; pp. 157 - 171 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Ltd
    
        01.05.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0893-6080 1879-2782 1879-2782  | 
| DOI | 10.1016/j.neunet.2022.02.005 | 
Cover
| Abstract | This paper considers joint learning of multiple sparse Granger graphical models to discover underlying common and differential Granger causality (GC) structures across multiple time series. This can be applied to drawing group-level brain connectivity inferences from a homogeneous group of subjects or discovering network differences among groups of signals collected under heterogeneous conditions. By recognizing that the GC of a single multivariate time series can be characterized by common zeros of vector autoregressive (VAR) lag coefficients, a group sparse prior is included in joint regularized least-squares estimations of multiple VAR models. Group-norm regularizations based on group- and fused-lasso penalties encourage a decomposition of multiple networks into a common GC structure, with other remaining parts defined in individual-specific networks. Prior information about sparseness and sparsity patterns of desired GC networks are incorporated as relative weights, while a non-convex group norm in the penalty is proposed to enhance the accuracy of network estimation in low-sample settings. Extensive numerical results on simulations illustrated our method’s improvements over existing sparse estimation approaches on GC network sparsity recovery. Our methods were also applied to available resting-state fMRI time series from the ADHD-200 data sets to learn the differences of causality mechanisms, called effective brain connectivity, between adolescents with ADHD and typically developing children. Our analysis revealed that parts of the causality differences between the two groups often resided in the orbitofrontal region and areas associated with the limbic system, which agreed with clinical findings and data-driven results in previous studies.
•Learning common and differential structures of multiple heterogeneous time series.•Group- and fused-lasso with relative weights in non-convex penalties.•Effective brain connectivity differences between ADHD and typically developing children. | 
    
|---|---|
| AbstractList | This paper considers joint learning of multiple sparse Granger graphical models to discover underlying common and differential Granger causality (GC) structures across multiple time series. This can be applied to drawing group-level brain connectivity inferences from a homogeneous group of subjects or discovering network differences among groups of signals collected under heterogeneous conditions. By recognizing that the GC of a single multivariate time series can be characterized by common zeros of vector autoregressive (VAR) lag coefficients, a group sparse prior is included in joint regularized least-squares estimations of multiple VAR models. Group-norm regularizations based on group- and fused-lasso penalties encourage a decomposition of multiple networks into a common GC structure, with other remaining parts defined in individual-specific networks. Prior information about sparseness and sparsity patterns of desired GC networks are incorporated as relative weights, while a non-convex group norm in the penalty is proposed to enhance the accuracy of network estimation in low-sample settings. Extensive numerical results on simulations illustrated our method's improvements over existing sparse estimation approaches on GC network sparsity recovery. Our methods were also applied to available resting-state fMRI time series from the ADHD-200 data sets to learn the differences of causality mechanisms, called effective brain connectivity, between adolescents with ADHD and typically developing children. Our analysis revealed that parts of the causality differences between the two groups often resided in the orbitofrontal region and areas associated with the limbic system, which agreed with clinical findings and data-driven results in previous studies.This paper considers joint learning of multiple sparse Granger graphical models to discover underlying common and differential Granger causality (GC) structures across multiple time series. This can be applied to drawing group-level brain connectivity inferences from a homogeneous group of subjects or discovering network differences among groups of signals collected under heterogeneous conditions. By recognizing that the GC of a single multivariate time series can be characterized by common zeros of vector autoregressive (VAR) lag coefficients, a group sparse prior is included in joint regularized least-squares estimations of multiple VAR models. Group-norm regularizations based on group- and fused-lasso penalties encourage a decomposition of multiple networks into a common GC structure, with other remaining parts defined in individual-specific networks. Prior information about sparseness and sparsity patterns of desired GC networks are incorporated as relative weights, while a non-convex group norm in the penalty is proposed to enhance the accuracy of network estimation in low-sample settings. Extensive numerical results on simulations illustrated our method's improvements over existing sparse estimation approaches on GC network sparsity recovery. Our methods were also applied to available resting-state fMRI time series from the ADHD-200 data sets to learn the differences of causality mechanisms, called effective brain connectivity, between adolescents with ADHD and typically developing children. Our analysis revealed that parts of the causality differences between the two groups often resided in the orbitofrontal region and areas associated with the limbic system, which agreed with clinical findings and data-driven results in previous studies. This paper considers joint learning of multiple sparse Granger graphical models to discover underlying common and differential Granger causality (GC) structures across multiple time series. This can be applied to drawing group-level brain connectivity inferences from a homogeneous group of subjects or discovering network differences among groups of signals collected under heterogeneous conditions. By recognizing that the GC of a single multivariate time series can be characterized by common zeros of vector autoregressive (VAR) lag coefficients, a group sparse prior is included in joint regularized least-squares estimations of multiple VAR models. Group-norm regularizations based on group- and fused-lasso penalties encourage a decomposition of multiple networks into a common GC structure, with other remaining parts defined in individual-specific networks. Prior information about sparseness and sparsity patterns of desired GC networks are incorporated as relative weights, while a non-convex group norm in the penalty is proposed to enhance the accuracy of network estimation in low-sample settings. Extensive numerical results on simulations illustrated our method’s improvements over existing sparse estimation approaches on GC network sparsity recovery. Our methods were also applied to available resting-state fMRI time series from the ADHD-200 data sets to learn the differences of causality mechanisms, called effective brain connectivity, between adolescents with ADHD and typically developing children. Our analysis revealed that parts of the causality differences between the two groups often resided in the orbitofrontal region and areas associated with the limbic system, which agreed with clinical findings and data-driven results in previous studies. •Learning common and differential structures of multiple heterogeneous time series.•Group- and fused-lasso with relative weights in non-convex penalties.•Effective brain connectivity differences between ADHD and typically developing children. This paper considers joint learning of multiple sparse Granger graphical models to discover underlying common and differential Granger causality (GC) structures across multiple time series. This can be applied to drawing group-level brain connectivity inferences from a homogeneous group of subjects or discovering network differences among groups of signals collected under heterogeneous conditions. By recognizing that the GC of a single multivariate time series can be characterized by common zeros of vector autoregressive (VAR) lag coefficients, a group sparse prior is included in joint regularized least-squares estimations of multiple VAR models. Group-norm regularizations based on group- and fused-lasso penalties encourage a decomposition of multiple networks into a common GC structure, with other remaining parts defined in individual-specific networks. Prior information about sparseness and sparsity patterns of desired GC networks are incorporated as relative weights, while a non-convex group norm in the penalty is proposed to enhance the accuracy of network estimation in low-sample settings. Extensive numerical results on simulations illustrated our method's improvements over existing sparse estimation approaches on GC network sparsity recovery. Our methods were also applied to available resting-state fMRI time series from the ADHD-200 data sets to learn the differences of causality mechanisms, called effective brain connectivity, between adolescents with ADHD and typically developing children. Our analysis revealed that parts of the causality differences between the two groups often resided in the orbitofrontal region and areas associated with the limbic system, which agreed with clinical findings and data-driven results in previous studies.  | 
    
| Author | Songsiri, Jitkomut Manomaisaowapak, Parinthorn  | 
    
| Author_xml | – sequence: 1 givenname: Parinthorn orcidid: 0000-0003-3139-0876 surname: Manomaisaowapak fullname: Manomaisaowapak, Parinthorn email: parinthorn@gmail.com – sequence: 2 givenname: Jitkomut orcidid: 0000-0002-2715-8305 surname: Songsiri fullname: Songsiri, Jitkomut email: jitkomut.s@chula.ac.th  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35240427$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkU9v1DAQxS1URLeFb4CQj1yy-F_spAckVEFbVIlL75bjTFZevPZiOynlwGfHy7YcOIA00lzeezP6vTN0EmIAhF5TsqaEynfbdYA5QFkzwtia1CHtM7Sineobpjp2glak63kjSUdO0VnOW0KI7AR_gU55ywQRTK3Qz8_RhYI9mBRc2OA44d3si9t7wFfJhA0kbM2cjcf11n1MXzNenMH1mcbGsMB3nGAze5PcD1NcDPkC34QJEgQLh7RNivO-8bCAx0MyLuBqC2CLW1x5eImeT8ZnePW4z9Hdp493l9fN7Zerm8sPt43lkpWG0X5gcpST7FrR9bSfhFESOjMpTnsydKptlZDctqrvTU8HKSoNOSpiSCsmfo7eHmP3KX6bIRe9c9mC9yZAnLNmkksqeMtVlb55lM7DDka9T25n0oN-QlYF4iiwKeacYPojoUQfmtFbfWxGH5rRpA5pq-3iL5t15TexUqn4_5nfH81QGS0Oks7WHQiPLlWUeozu3wG_ABhRrT4 | 
    
| CitedBy_id | crossref_primary_10_1002_bimj_202300370 crossref_primary_10_1016_j_knosys_2024_112926 crossref_primary_10_1109_TIM_2024_3502734 crossref_primary_10_1109_LSP_2024_3418712  | 
    
| Cites_doi | 10.1109/ICASSP40776.2020.9054430 10.1103/PhysRevLett.100.144103 10.1109/TMI.2009.2025126 10.1109/TNNLS.2014.2384201 10.1093/braincomms/fcaa196 10.1002/hbm.23092 10.1016/j.neuroimage.2009.08.065 10.1016/j.neuroimage.2009.10.003 10.1089/brain.2012.0091 10.1017/S1092852915000383 10.1016/j.csda.2008.05.006 10.1016/j.neuroimage.2016.06.034 10.1111/j.1467-9868.2005.00532.x 10.7461/jcen.2016.18.3.223 10.1111/rssb.12033 10.1093/bioinformatics/btq377 10.1016/S1364-6613(00)01483-2 10.1103/PhysRevE.91.040101 10.1016/j.neunet.2020.01.022 10.1214/16-EJS1137 10.1016/j.ecosta.2018.08.001 10.1016/j.tics.2013.06.009 10.1093/biomet/asn034 10.1093/biostatistics/kxm045 10.24963/ijcai.2018/282 10.1016/j.neunet.2018.02.016 10.3389/fnins.2013.00064 10.1038/ijo.2014.121 10.1016/j.eswa.2017.08.044 10.1109/ACCESS.2018.2880454 10.1016/j.csda.2019.05.007 10.1109/ASCC.2015.7244429 10.3389/fpsyt.2019.00692 10.1016/j.sigpro.2016.03.009 10.1016/j.envint.2020.105558 10.1371/journal.pone.0215720 10.1093/bioinformatics/btp199 10.1093/biomet/asq060 10.1016/j.neuroimage.2011.02.064 10.1016/S0074-7742(04)62006-X 10.1080/10618600.2014.956876 10.1109/ACCESS.2020.2982401 10.1016/j.biopsych.2011.11.003 10.1016/j.neunet.2012.11.004 10.1111/rssc.12231  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved.  | 
    
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.1016/j.neunet.2022.02.005 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1879-2782 | 
    
| EndPage | 171 | 
    
| ExternalDocumentID | 35240427 10_1016_j_neunet_2022_02_005 S0893608022000387  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM PKN 7X8  | 
    
| ID | FETCH-LOGICAL-c362t-219b26d6f68548919f4a76e8af73190b87557463c5799a91b640056d70a054f3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0893-6080 1879-2782  | 
    
| IngestDate | Sun Sep 28 05:28:08 EDT 2025 Wed Feb 19 02:26:12 EST 2025 Thu Oct 16 04:43:32 EDT 2025 Thu Apr 24 23:04:24 EDT 2025 Fri Feb 23 02:39:13 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Effective brain connectivity Granger causality Non-convex penalty Composite penalty  | 
    
| Language | English | 
    
| License | Copyright © 2022 Elsevier Ltd. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c362t-219b26d6f68548919f4a76e8af73190b87557463c5799a91b640056d70a054f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0003-3139-0876 0000-0002-2715-8305  | 
    
| PMID | 35240427 | 
    
| PQID | 2636143537 | 
    
| PQPubID | 23479 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | proquest_miscellaneous_2636143537 pubmed_primary_35240427 crossref_primary_10_1016_j_neunet_2022_02_005 crossref_citationtrail_10_1016_j_neunet_2022_02_005 elsevier_sciencedirect_doi_10_1016_j_neunet_2022_02_005  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | May 2022 2022-05-00 2022-May 20220501  | 
    
| PublicationDateYYYYMMDD | 2022-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | Neural networks | 
    
| PublicationTitleAlternate | Neural Netw | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Guo, Levina, Michailidis, Zhu (b18) 2011; 98 Hu, Li, Meng, Qin, Yang (b21) 2017; 18 Lozano, Abe, Liu, Rosset (b30) 2009; 25 Shojaie, Michailidis (b41) 2010; 26 Tang, Li, Chen, Zhong, Jiang, Wang (b48) 2020; 8 Rubinov, Sporns (b38) 2010; 52 Tomasi, Volkow (b50) 2012; 71 Manomaisaowapak, Nartkulpat, Songsiri (b33) 2021 Sung, Sun, Taek, Il, Woo, Gee (b47) 2016; 18 Fujita, Sato, Garay-Malpartida, Yamaguchi, Miyano, Sogayar, Ferreira (b16) 2007; 1 (pp. 2042–2048). Wen, Chu, Liu, Qiu (b52) 2018; 6 Skripnikov, Michailidis (b44) 2019; 139 Bechara (b4) 2004; 62 Chun, Zhang, Zhao (b12) 2015; 24 Saegusa, Shojaie (b39) 2016; 10 Bush, Luu, Posner (b8) 2000; 4 Songsiri (b46) 2017 Friedman, Hastie, Tibshirani (b15) 2007; 9 Liao, Marinazzo, Pan, Gong, Chen (b29) 2009; 28 Gregorova, M., Kalousis, A., & Marchand-Maillet, S. (2015). Learning coherent Granger-causality in panel vector autoregressive models. In Wang, Leng (b51) 2008; 52 Deshpande, Hu (b14) 2012; 2 Itani, Lecron, Fortemps (b25) 2018; 91 Huang, Chen, Huang (b23) 2018; 29 Danaher, Wang, Witten (b13) 2014; 76 Wilms, Barbaglia, Croux (b53) 2018; 67 Shott, Cornier, Mittal, Pryor, Orr, Brown, Frank (b42) 2015; 39 Xu, Liu, Lin, Yang (b55) 2017 Yuan, Lin (b56) 2006; 68 (pp. 1–4). 2015-07. Boyd, Parikh, Chu, Peleato, Eckstein (b7) 2011; 3 Liang, Connelly, Calamante (b28) 2016; 37 Aminoff, Kveraga, Bar (b2) 2013; 17 Lavin, Melis, Mikulan, Gelormini, Huepe, Ibanez (b27) 2013; 7 (pp. 1–6). Itami, Uno (b24) 2002; 13 Lütkepohl (b31) 2005 Skripnikov, Michailidis (b43) 2019; 10 Songsiri, J. (2015). Learning Multiple Granger Graphical Models via Group Fused Lasso. In (pp. 1160–1164). Rolls, Cheng, Feng (b37) 2020; 2 de Abril, Yoshimoto, Doya (b1) 2018; 102 Ma, Michailidis (b32) 2016; 17 Manomaisaowapak, P., & Songsiri, J. (2020). Learning A Common Granger Causality Network Using A Non-Convex Regularization. In Barnett, Seth (b3) 2015; 91 Marinazzo, Pellicoro, Stramaglia (b35) 2008; 100 Zhou, Fang, Lan, Sun, Cao, Wang, Luo, Zang, Zhang (b57) 2019; 10 Hahn, Stein, Windischberger, Weissenbacher, Spindelegger, Moser, Kasper, Lanzenberger (b19) 2011; 56 Bore, Li, Harmah, Li, Yao, Xu (b6) 2020; 124 Hara, Washio (b20) 2013; 38 Huang, Chen (b22) 2014; 26 Bellec, Chu, Chouinard-Decorte, Benhajali, Margulies, Craddock (b5) 2017; 144 Chen, Chen (b9) 2008; 95 Seymour, Reinblatt, Benson, Carnell (b40) 2015; 20 Chikahara, Y., & Fujino, A. (2018). Causal Inference in Time Series via Supervised Learning. In Itani, Rossignol, Lecron, Fortemps (b26) 2019; 14 Tao, Huang, Wang, Xi, Li (b49) 2016; 128 Chen, Chen, Zhao, Kwan, Cai, Zhuang, Zhao, Wang, Chen, Yang, Li, He, Gao, Wang, Xu (b10) 2020; 139 Xu, Figueiredo, Goldstein (b54) 2017; vol. 54 Ramsey, Hanson, Hanson, Halchenko, Poldrack, Glymour (b36) 2010; 49 Bellec (10.1016/j.neunet.2022.02.005_b5) 2017; 144 Marinazzo (10.1016/j.neunet.2022.02.005_b35) 2008; 100 Manomaisaowapak (10.1016/j.neunet.2022.02.005_b33) 2021 Yuan (10.1016/j.neunet.2022.02.005_b56) 2006; 68 Saegusa (10.1016/j.neunet.2022.02.005_b39) 2016; 10 Ma (10.1016/j.neunet.2022.02.005_b32) 2016; 17 Rubinov (10.1016/j.neunet.2022.02.005_b38) 2010; 52 10.1016/j.neunet.2022.02.005_b17 10.1016/j.neunet.2022.02.005_b11 Danaher (10.1016/j.neunet.2022.02.005_b13) 2014; 76 Xu (10.1016/j.neunet.2022.02.005_b55) 2017 Hahn (10.1016/j.neunet.2022.02.005_b19) 2011; 56 Chun (10.1016/j.neunet.2022.02.005_b12) 2015; 24 Itami (10.1016/j.neunet.2022.02.005_b24) 2002; 13 Skripnikov (10.1016/j.neunet.2022.02.005_b43) 2019; 10 Skripnikov (10.1016/j.neunet.2022.02.005_b44) 2019; 139 Barnett (10.1016/j.neunet.2022.02.005_b3) 2015; 91 Aminoff (10.1016/j.neunet.2022.02.005_b2) 2013; 17 de Abril (10.1016/j.neunet.2022.02.005_b1) 2018; 102 10.1016/j.neunet.2022.02.005_b45 Tang (10.1016/j.neunet.2022.02.005_b48) 2020; 8 Xu (10.1016/j.neunet.2022.02.005_b54) 2017; vol. 54 Liao (10.1016/j.neunet.2022.02.005_b29) 2009; 28 Guo (10.1016/j.neunet.2022.02.005_b18) 2011; 98 Chen (10.1016/j.neunet.2022.02.005_b9) 2008; 95 Itani (10.1016/j.neunet.2022.02.005_b25) 2018; 91 Songsiri (10.1016/j.neunet.2022.02.005_b46) 2017 Chen (10.1016/j.neunet.2022.02.005_b10) 2020; 139 Bechara (10.1016/j.neunet.2022.02.005_b4) 2004; 62 Lütkepohl (10.1016/j.neunet.2022.02.005_b31) 2005 Shott (10.1016/j.neunet.2022.02.005_b42) 2015; 39 Tomasi (10.1016/j.neunet.2022.02.005_b50) 2012; 71 Tao (10.1016/j.neunet.2022.02.005_b49) 2016; 128 Lavin (10.1016/j.neunet.2022.02.005_b27) 2013; 7 Liang (10.1016/j.neunet.2022.02.005_b28) 2016; 37 Bore (10.1016/j.neunet.2022.02.005_b6) 2020; 124 Fujita (10.1016/j.neunet.2022.02.005_b16) 2007; 1 10.1016/j.neunet.2022.02.005_b34 Shojaie (10.1016/j.neunet.2022.02.005_b41) 2010; 26 Friedman (10.1016/j.neunet.2022.02.005_b15) 2007; 9 Hara (10.1016/j.neunet.2022.02.005_b20) 2013; 38 Seymour (10.1016/j.neunet.2022.02.005_b40) 2015; 20 Hu (10.1016/j.neunet.2022.02.005_b21) 2017; 18 Huang (10.1016/j.neunet.2022.02.005_b22) 2014; 26 Zhou (10.1016/j.neunet.2022.02.005_b57) 2019; 10 Wilms (10.1016/j.neunet.2022.02.005_b53) 2018; 67 Boyd (10.1016/j.neunet.2022.02.005_b7) 2011; 3 Lozano (10.1016/j.neunet.2022.02.005_b30) 2009; 25 Sung (10.1016/j.neunet.2022.02.005_b47) 2016; 18 Wen (10.1016/j.neunet.2022.02.005_b52) 2018; 6 Wang (10.1016/j.neunet.2022.02.005_b51) 2008; 52 Rolls (10.1016/j.neunet.2022.02.005_b37) 2020; 2 Deshpande (10.1016/j.neunet.2022.02.005_b14) 2012; 2 Bush (10.1016/j.neunet.2022.02.005_b8) 2000; 4 Ramsey (10.1016/j.neunet.2022.02.005_b36) 2010; 49 Huang (10.1016/j.neunet.2022.02.005_b23) 2018; 29 Itani (10.1016/j.neunet.2022.02.005_b26) 2019; 14  | 
    
| References_xml | – volume: 18 start-page: 223 year: 2016 end-page: 228 ident: b47 article-title: Relationship between gyrus rectus resection and cognitive impairment after surgery for ruptured anterior communicating artery aneurysms publication-title: Journal of Cerebrovascular and Endovascular Neurosurgery – reference: Manomaisaowapak, P., & Songsiri, J. (2020). Learning A Common Granger Causality Network Using A Non-Convex Regularization. In – volume: 25 start-page: i110 year: 2009 end-page: i118 ident: b30 article-title: Grouped graphical Granger modeling for gene expression regulatory networks discovery publication-title: Bioinformatics – volume: 1 year: 2007 ident: b16 article-title: Modeling gene expression regulatory networks with the sparse vector autoregressive model publication-title: BMC Systems Biology – volume: 139 start-page: 164 year: 2019 end-page: 177 ident: b44 article-title: Regularized joint estimation of related vector autoregressive models publication-title: Computational Statistics & Data Analysis – reference: (pp. 1160–1164). – volume: 37 start-page: 1162 year: 2016 end-page: 1177 ident: b28 article-title: A novel joint sparse partial correlation method for estimating group functional networks publication-title: Human Brain Mapping – volume: 2 start-page: 235 year: 2012 end-page: 245 ident: b14 article-title: Investigating effective brain connectivity from fMRI data: past findings and current issues with reference to Granger causality analysis publication-title: Brain Connectivity – volume: 7 start-page: 64 year: 2013 ident: b27 article-title: The anterior cingulate cortex: an integrative hub for human socially-driven interactions publication-title: Frontiers in Neuroscience – volume: 102 start-page: 120 year: 2018 end-page: 137 ident: b1 article-title: Connectivity inference from neural recording data: Challenges, mathematical bases and research directions publication-title: Neural Networks – volume: 26 start-page: 2606 year: 2014 end-page: 2620 ident: b22 article-title: Joint learning of multiple sparse matrix Gaussian graphical models publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 29 start-page: 3034 year: 2018 end-page: 3046 ident: b23 article-title: Joint estimation of multiple conditional Gaussian graphical models publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2021 ident: b33 article-title: Granger causailty inference in EEG source connectivity analysis: A state-space approach publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 6 start-page: 69883 year: 2018 end-page: 69906 ident: b52 article-title: A survey on nonconvex regularization-based sparse and low-rank recovery in signal processing, statistics, and machine learning publication-title: IEEE Access – volume: 18 start-page: 1 year: 2017 end-page: 52 ident: b21 article-title: Group sparse optimization via publication-title: Journal of Machine Learning Research – volume: 24 start-page: 954 year: 2015 end-page: 974 ident: b12 article-title: Gene regulation network inference with joint sparse Gaussian graphical models publication-title: Journal of Computational and Graphical Statistics – volume: 10 start-page: 692 year: 2019 ident: b57 article-title: Inconsistency in abnormal functional connectivity across datasets of ADHD-200 in children with attention deficit hyperactivity disorder publication-title: Frontiers in Psychiatry – volume: 17 start-page: 1 year: 2016 end-page: 48 ident: b32 article-title: Joint structural estimation of multiple graphical models publication-title: Journal of Machine Learning Research – volume: 17 start-page: 379 year: 2013 end-page: 390 ident: b2 article-title: The role of the parahippocampal cortex in cognition publication-title: Trends in Cognitive Sciences – start-page: 1 year: 2017 end-page: 11 ident: b55 article-title: ADMM without a fixed penalty parameter: Faster convergence with new adaptive penalization publication-title: Advances in neural information processing systems. Vol. 30 – volume: 139 year: 2020 ident: b10 article-title: Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism publication-title: Environment International – volume: 144 start-page: 275 year: 2017 end-page: 286 ident: b5 article-title: The neuro bureau ADHD-200 preprocessed repository publication-title: NeuroImage – volume: 124 start-page: 213 year: 2020 end-page: 222 ident: b6 article-title: Directed EEG neural network analysis by LAPPS ( publication-title: Neural Networks – volume: 62 start-page: 159 year: 2004 end-page: 193 ident: b4 article-title: Disturbances of emotion regulation after focal brain lesions publication-title: International Review of Neurobiology – volume: 49 start-page: 1545 year: 2010 end-page: 1558 ident: b36 article-title: Six problems for causal inference from fMRI publication-title: NeuroImage – volume: 67 start-page: 435 year: 2018 end-page: 452 ident: b53 article-title: Multiclass vector auto-regressive models for multistore sales data publication-title: Journal of the Royal Statistical Society. Series C. Applied Statistics – volume: 9 start-page: 432 year: 2007 end-page: 441 ident: b15 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics – volume: 2 year: 2020 ident: b37 article-title: The orbitofrontal cortex: reward, emotion and depression publication-title: Brain Communications – volume: 91 start-page: 36 year: 2018 end-page: 45 ident: b25 article-title: A multi-level classification framework for multi-site medical data: application to the ADHD-200 collection publication-title: Expert Systems with Applications – volume: 52 start-page: 5277 year: 2008 end-page: 5286 ident: b51 article-title: A note on adaptive group lasso publication-title: Computational Statistics & Data Analysis – volume: 91 start-page: 1 year: 2015 end-page: 6 ident: b3 article-title: Granger causality for state-space models publication-title: Physical Review E – volume: 10 start-page: 120 year: 2019 end-page: 133 ident: b43 article-title: Joint estimation of multiple network Granger causal models publication-title: Econometrics and Statistics – volume: 39 start-page: 214 year: 2015 end-page: 221 ident: b42 article-title: Orbitofrontal cortex volume and brain reward response in obesity publication-title: International Journal of Obesity – reference: (pp. 1–6). – volume: 20 start-page: 401 year: 2015 end-page: 411 ident: b40 article-title: Overlapping neurobehavioral circuits in ADHD, obesity, and binge eating: evidence from neuroimaging research publication-title: CNS Spectrums – volume: 95 start-page: 759 year: 2008 end-page: 771 ident: b9 article-title: Extended Bayesian information critera for model selection with large model spaces publication-title: Biometrika – volume: 38 start-page: 23 year: 2013 end-page: 38 ident: b20 article-title: Learning a common substructure of multiple graphical Gaussian models publication-title: Neural Networks – volume: 13 year: 2002 ident: b24 article-title: Orbitofrontal cortex dysfunction in attention-deficit hyperactivity disorder revealed by reversal and extinction tasks publication-title: NeuroReport – volume: 52 start-page: 1059 year: 2010 end-page: 1069 ident: b38 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: NeuroImage – volume: 3 start-page: 1 year: 2011 end-page: 122 ident: b7 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Foundation and Trends in Machine Learning – volume: 128 start-page: 88 year: 2016 end-page: 97 ident: b49 article-title: Multiple Gaussian graphical estimation with jointly sparse penalty publication-title: Signal Processing – volume: 76 start-page: 373 year: 2014 end-page: 397 ident: b13 article-title: The joint graphical lasso for inverse covariance estimation across multiple classes publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology – volume: 68 start-page: 49 year: 2006 end-page: 67 ident: b56 article-title: Model selection and estimation in regression with grouped variables publication-title: Journal of the Royal Statistical Society. Series B. – reference: Gregorova, M., Kalousis, A., & Marchand-Maillet, S. (2015). Learning coherent Granger-causality in panel vector autoregressive models. In – volume: 28 start-page: 1825 year: 2009 end-page: 1835 ident: b29 article-title: Kernel Granger causality mapping effective connectivity on fMRI data publication-title: IEEE Transactions on Medical Imaging – volume: 14 start-page: 1 year: 2019 end-page: 20 ident: b26 article-title: Towards interpretable machine learning models for diagnosis aid: A case study on attention deficit/hyperactivity disorder publication-title: PLoS One – volume: vol. 54 start-page: 718 year: 2017 end-page: 727 ident: b54 article-title: Adaptive ADMM with spectral penalty parameter selection publication-title: Proceedings of the 20th international conference on artificial intelligence and statistics – volume: 8 start-page: 56228 year: 2020 end-page: 56237 ident: b48 article-title: High-accuracy classification of attention deficit hyperactivity disorder with publication-title: IEEE Access – volume: 56 start-page: 881 year: 2011 end-page: 889 ident: b19 article-title: Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder publication-title: NeuroImage – year: 2017 ident: b46 article-title: Estimations in learning Granger graphical models with application to fMRI time series – reference: Chikahara, Y., & Fujino, A. (2018). Causal Inference in Time Series via Supervised Learning. In – volume: 98 start-page: 1 year: 2011 end-page: 15 ident: b18 article-title: Joint estimation of multiple graphical models publication-title: Biometrika – year: 2005 ident: b31 article-title: New introduction to multiple time series analysis – volume: 71 start-page: 443 year: 2012 end-page: 450 ident: b50 article-title: Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder publication-title: Biological Psychiatry – reference: (pp. 1–4). 2015-07. – volume: 26 start-page: i517 year: 2010 end-page: i523 ident: b41 article-title: Discovering graphical Granger causality using the truncating lasso penalty publication-title: Bioinformatics – volume: 10 start-page: 1341 year: 2016 end-page: 1392 ident: b39 article-title: Joint estimation of precision matrices in heterogeneous populations publication-title: Electronic Journal of Statistics – volume: 100 year: 2008 ident: b35 article-title: Kernel method for nonlinear Granger causality publication-title: Physical Review Letters – reference: (pp. 2042–2048). – reference: Songsiri, J. (2015). Learning Multiple Granger Graphical Models via Group Fused Lasso. In – volume: 4 year: 2000 ident: b8 article-title: Cognitive and emotional influences in anterior cingulate cortex publication-title: Trends in Cognitive Sciences – ident: 10.1016/j.neunet.2022.02.005_b34 doi: 10.1109/ICASSP40776.2020.9054430 – volume: 100 issue: 14 year: 2008 ident: 10.1016/j.neunet.2022.02.005_b35 article-title: Kernel method for nonlinear Granger causality publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.100.144103 – volume: 29 start-page: 3034 issue: 7 year: 2018 ident: 10.1016/j.neunet.2022.02.005_b23 article-title: Joint estimation of multiple conditional Gaussian graphical models publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 28 start-page: 1825 issue: 11 year: 2009 ident: 10.1016/j.neunet.2022.02.005_b29 article-title: Kernel Granger causality mapping effective connectivity on fMRI data publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2009.2025126 – volume: 26 start-page: 2606 issue: 11 year: 2014 ident: 10.1016/j.neunet.2022.02.005_b22 article-title: Joint learning of multiple sparse matrix Gaussian graphical models publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2014.2384201 – volume: 2 issue: 2 year: 2020 ident: 10.1016/j.neunet.2022.02.005_b37 article-title: The orbitofrontal cortex: reward, emotion and depression publication-title: Brain Communications doi: 10.1093/braincomms/fcaa196 – start-page: 1 year: 2017 ident: 10.1016/j.neunet.2022.02.005_b55 article-title: ADMM without a fixed penalty parameter: Faster convergence with new adaptive penalization – volume: 37 start-page: 1162 issue: 3 year: 2016 ident: 10.1016/j.neunet.2022.02.005_b28 article-title: A novel joint sparse partial correlation method for estimating group functional networks publication-title: Human Brain Mapping doi: 10.1002/hbm.23092 – volume: 49 start-page: 1545 issue: 2 year: 2010 ident: 10.1016/j.neunet.2022.02.005_b36 article-title: Six problems for causal inference from fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.08.065 – volume: 52 start-page: 1059 issue: 3 year: 2010 ident: 10.1016/j.neunet.2022.02.005_b38 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.003 – year: 2017 ident: 10.1016/j.neunet.2022.02.005_b46 – volume: 2 start-page: 235 issue: 5 year: 2012 ident: 10.1016/j.neunet.2022.02.005_b14 article-title: Investigating effective brain connectivity from fMRI data: past findings and current issues with reference to Granger causality analysis publication-title: Brain Connectivity doi: 10.1089/brain.2012.0091 – volume: 20 start-page: 401 issue: 4 year: 2015 ident: 10.1016/j.neunet.2022.02.005_b40 article-title: Overlapping neurobehavioral circuits in ADHD, obesity, and binge eating: evidence from neuroimaging research publication-title: CNS Spectrums doi: 10.1017/S1092852915000383 – volume: 52 start-page: 5277 issue: 12 year: 2008 ident: 10.1016/j.neunet.2022.02.005_b51 article-title: A note on adaptive group lasso publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2008.05.006 – volume: 144 start-page: 275 year: 2017 ident: 10.1016/j.neunet.2022.02.005_b5 article-title: The neuro bureau ADHD-200 preprocessed repository publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.06.034 – volume: 68 start-page: 49 year: 2006 ident: 10.1016/j.neunet.2022.02.005_b56 article-title: Model selection and estimation in regression with grouped variables publication-title: Journal of the Royal Statistical Society. Series B. doi: 10.1111/j.1467-9868.2005.00532.x – volume: 18 start-page: 223 issue: 3 year: 2016 ident: 10.1016/j.neunet.2022.02.005_b47 article-title: Relationship between gyrus rectus resection and cognitive impairment after surgery for ruptured anterior communicating artery aneurysms publication-title: Journal of Cerebrovascular and Endovascular Neurosurgery doi: 10.7461/jcen.2016.18.3.223 – volume: 76 start-page: 373 issue: 2 year: 2014 ident: 10.1016/j.neunet.2022.02.005_b13 article-title: The joint graphical lasso for inverse covariance estimation across multiple classes publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology doi: 10.1111/rssb.12033 – volume: 26 start-page: i517 issue: 18 year: 2010 ident: 10.1016/j.neunet.2022.02.005_b41 article-title: Discovering graphical Granger causality using the truncating lasso penalty publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq377 – volume: 4 issue: 6 year: 2000 ident: 10.1016/j.neunet.2022.02.005_b8 article-title: Cognitive and emotional influences in anterior cingulate cortex publication-title: Trends in Cognitive Sciences doi: 10.1016/S1364-6613(00)01483-2 – year: 2021 ident: 10.1016/j.neunet.2022.02.005_b33 article-title: Granger causailty inference in EEG source connectivity analysis: A state-space approach publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 91 start-page: 1 issue: 4 year: 2015 ident: 10.1016/j.neunet.2022.02.005_b3 article-title: Granger causality for state-space models publication-title: Physical Review E doi: 10.1103/PhysRevE.91.040101 – volume: 124 start-page: 213 year: 2020 ident: 10.1016/j.neunet.2022.02.005_b6 article-title: Directed EEG neural network analysis by LAPPS (p≤1) penalized sparse Granger approach publication-title: Neural Networks doi: 10.1016/j.neunet.2020.01.022 – volume: 10 start-page: 1341 issue: 1 year: 2016 ident: 10.1016/j.neunet.2022.02.005_b39 article-title: Joint estimation of precision matrices in heterogeneous populations publication-title: Electronic Journal of Statistics doi: 10.1214/16-EJS1137 – volume: 10 start-page: 120 year: 2019 ident: 10.1016/j.neunet.2022.02.005_b43 article-title: Joint estimation of multiple network Granger causal models publication-title: Econometrics and Statistics doi: 10.1016/j.ecosta.2018.08.001 – volume: 17 start-page: 1 issue: 166 year: 2016 ident: 10.1016/j.neunet.2022.02.005_b32 article-title: Joint structural estimation of multiple graphical models publication-title: Journal of Machine Learning Research – volume: 3 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.neunet.2022.02.005_b7 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Foundation and Trends in Machine Learning – volume: 13 issue: 8 year: 2002 ident: 10.1016/j.neunet.2022.02.005_b24 article-title: Orbitofrontal cortex dysfunction in attention-deficit hyperactivity disorder revealed by reversal and extinction tasks publication-title: NeuroReport – volume: 17 start-page: 379 issue: 8 year: 2013 ident: 10.1016/j.neunet.2022.02.005_b2 article-title: The role of the parahippocampal cortex in cognition publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2013.06.009 – volume: 95 start-page: 759 year: 2008 ident: 10.1016/j.neunet.2022.02.005_b9 article-title: Extended Bayesian information critera for model selection with large model spaces publication-title: Biometrika doi: 10.1093/biomet/asn034 – volume: 9 start-page: 432 issue: 3 year: 2007 ident: 10.1016/j.neunet.2022.02.005_b15 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics doi: 10.1093/biostatistics/kxm045 – ident: 10.1016/j.neunet.2022.02.005_b17 – ident: 10.1016/j.neunet.2022.02.005_b11 doi: 10.24963/ijcai.2018/282 – volume: 102 start-page: 120 year: 2018 ident: 10.1016/j.neunet.2022.02.005_b1 article-title: Connectivity inference from neural recording data: Challenges, mathematical bases and research directions publication-title: Neural Networks doi: 10.1016/j.neunet.2018.02.016 – volume: 7 start-page: 64 year: 2013 ident: 10.1016/j.neunet.2022.02.005_b27 article-title: The anterior cingulate cortex: an integrative hub for human socially-driven interactions publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2013.00064 – volume: 39 start-page: 214 issue: 2 year: 2015 ident: 10.1016/j.neunet.2022.02.005_b42 article-title: Orbitofrontal cortex volume and brain reward response in obesity publication-title: International Journal of Obesity doi: 10.1038/ijo.2014.121 – volume: 91 start-page: 36 year: 2018 ident: 10.1016/j.neunet.2022.02.005_b25 article-title: A multi-level classification framework for multi-site medical data: application to the ADHD-200 collection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.08.044 – volume: 6 start-page: 69883 year: 2018 ident: 10.1016/j.neunet.2022.02.005_b52 article-title: A survey on nonconvex regularization-based sparse and low-rank recovery in signal processing, statistics, and machine learning publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2880454 – volume: 139 start-page: 164 year: 2019 ident: 10.1016/j.neunet.2022.02.005_b44 article-title: Regularized joint estimation of related vector autoregressive models publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2019.05.007 – year: 2005 ident: 10.1016/j.neunet.2022.02.005_b31 – ident: 10.1016/j.neunet.2022.02.005_b45 doi: 10.1109/ASCC.2015.7244429 – volume: 10 start-page: 692 year: 2019 ident: 10.1016/j.neunet.2022.02.005_b57 article-title: Inconsistency in abnormal functional connectivity across datasets of ADHD-200 in children with attention deficit hyperactivity disorder publication-title: Frontiers in Psychiatry doi: 10.3389/fpsyt.2019.00692 – volume: 128 start-page: 88 year: 2016 ident: 10.1016/j.neunet.2022.02.005_b49 article-title: Multiple Gaussian graphical estimation with jointly sparse penalty publication-title: Signal Processing doi: 10.1016/j.sigpro.2016.03.009 – volume: 139 year: 2020 ident: 10.1016/j.neunet.2022.02.005_b10 article-title: Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism publication-title: Environment International doi: 10.1016/j.envint.2020.105558 – volume: 14 start-page: 1 issue: 4 year: 2019 ident: 10.1016/j.neunet.2022.02.005_b26 article-title: Towards interpretable machine learning models for diagnosis aid: A case study on attention deficit/hyperactivity disorder publication-title: PLoS One doi: 10.1371/journal.pone.0215720 – volume: 25 start-page: i110 issue: 12 year: 2009 ident: 10.1016/j.neunet.2022.02.005_b30 article-title: Grouped graphical Granger modeling for gene expression regulatory networks discovery publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp199 – volume: 98 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.neunet.2022.02.005_b18 article-title: Joint estimation of multiple graphical models publication-title: Biometrika doi: 10.1093/biomet/asq060 – volume: 56 start-page: 881 issue: 3 year: 2011 ident: 10.1016/j.neunet.2022.02.005_b19 article-title: Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.02.064 – volume: 62 start-page: 159 year: 2004 ident: 10.1016/j.neunet.2022.02.005_b4 article-title: Disturbances of emotion regulation after focal brain lesions publication-title: International Review of Neurobiology doi: 10.1016/S0074-7742(04)62006-X – volume: 18 start-page: 1 issue: 30 year: 2017 ident: 10.1016/j.neunet.2022.02.005_b21 article-title: Group sparse optimization via ℓp,q regularization publication-title: Journal of Machine Learning Research – volume: 1 issue: 39 year: 2007 ident: 10.1016/j.neunet.2022.02.005_b16 article-title: Modeling gene expression regulatory networks with the sparse vector autoregressive model publication-title: BMC Systems Biology – volume: 24 start-page: 954 issue: 4 year: 2015 ident: 10.1016/j.neunet.2022.02.005_b12 article-title: Gene regulation network inference with joint sparse Gaussian graphical models publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.2014.956876 – volume: vol. 54 start-page: 718 year: 2017 ident: 10.1016/j.neunet.2022.02.005_b54 article-title: Adaptive ADMM with spectral penalty parameter selection – volume: 8 start-page: 56228 year: 2020 ident: 10.1016/j.neunet.2022.02.005_b48 article-title: High-accuracy classification of attention deficit hyperactivity disorder with ℓ2,1-norm linear discriminant analysis and binary hypothesis testing publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982401 – volume: 71 start-page: 443 issue: 5 year: 2012 ident: 10.1016/j.neunet.2022.02.005_b50 article-title: Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder publication-title: Biological Psychiatry doi: 10.1016/j.biopsych.2011.11.003 – volume: 38 start-page: 23 year: 2013 ident: 10.1016/j.neunet.2022.02.005_b20 article-title: Learning a common substructure of multiple graphical Gaussian models publication-title: Neural Networks doi: 10.1016/j.neunet.2012.11.004 – volume: 67 start-page: 435 issue: 2 year: 2018 ident: 10.1016/j.neunet.2022.02.005_b53 article-title: Multiclass vector auto-regressive models for multistore sales data publication-title: Journal of the Royal Statistical Society. Series C. Applied Statistics doi: 10.1111/rssc.12231  | 
    
| SSID | ssj0006843 | 
    
| Score | 2.3898308 | 
    
| Snippet | This paper considers joint learning of multiple sparse Granger graphical models to discover underlying common and differential Granger causality (GC)... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 157 | 
    
| SubjectTerms | Adolescent Brain - diagnostic imaging Causality Child Composite penalty Computer Simulation Effective brain connectivity Granger causality Humans Magnetic Resonance Imaging - methods Non-convex penalty  | 
    
| Title | Joint learning of multiple Granger causal networks via non-convex regularizations: Inference of group-level brain connectivity | 
    
| URI | https://dx.doi.org/10.1016/j.neunet.2022.02.005 https://www.ncbi.nlm.nih.gov/pubmed/35240427 https://www.proquest.com/docview/2636143537  | 
    
| Volume | 149 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWcOmFlpbSLQ8Ziau7JnHshBtaQXcXwQUq7c2ynbjaCmXRPhAnfjszdkzVwwqpUi6JbMfyjD0z8jfzEXJqCssF6C2zpcmZqKRlBuwo876sjcu9k6F88c2tHP0Sk2kx7ZFhyoVBWGV39sczPZzW3ZdBt5qDx9lscMfB1MqYKor3W5hRLoRCFoMfL39hHrKMyDlozLB1Sp8LGK-2WbcNIiqzLFbuLDaZp03uZzBDV5_ITuc_0os4xV3Sa9rP5GPiZqDdVv1CXibzWbuiHSnEbzr3NGEH6c9FSPalzqyXMFYbkeBL-jQztJ23LCDRn-ki0NQvUqLmOR2n5EAcLaSDsAfEHFGLPBPUIWbGRTaKPXJ_dXk_HLGOa4E5MGErBgeXzWQtvSwhhqnOKi-Mkk1pvIJNyi2ENYUSMneFqipTnVkpsIporbgBp8_nX8kWTLD5RmhWOwiTuLOCl6JyCiu8W9OIulYeYhfeJ3laYe26OuRIh_GgE-Dsj45y0SgXzeHhRZ-wt16PsQ7HO-1VEp7-R580mIp3ep4kWWvYanh_Ytpmvl7qTOYS3ctc9cl-VIK3uYAfK5C25Pt___eAfMC3CKY8JFurxbo5AodnZY-DRh-T7Yvx9ej2FZmwAQo | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RemgvpS19LPThSlzdNYljJ9wQKl0ocOlW4mbZTlxthbJoH1VP_PbO2DGoB4RUKafEdizP2DMjfzMfwJ6tnJCot9zVtuSyUY5btKM8hLq1vgxexfLF5xdq8kOeXlaXG3CUc2EIVjmc_elMj6f18GY8rOb4ejYbfxdoalVKFaX7Lf0IHsuq0BSBfb65w3moOkHnsDWn5jl_LoK8-m7ddwSpLIpUurO6zz7d539GO3T8HJ4NDiQ7THN8ARtd_xK2MjkDG_bqNtyczmf9ig2sED_ZPLAMHmRfFzHbl3m7XuJYfYKCL9nvmWX9vOcRiv6HLSJP_SJnah6wk5wdSKPFfBB-RaAj5ohognkCzfhER_EKpsdfpkcTPpAtcI82bMXx5HKFalVQNQYxzX4TpNWqq23QuEuFw7im0lKVvtJNY5t9pySVEW21sOj1hfI1bOIEu7fAitZjnCS8k6KWjddU4t3ZTratDhi8iBGUeYWNHwqREx_GlcmIs18mycWQXIzAR1Qj4Le9rlMhjgfa6yw8849CGbQVD_T8lGVtcK_RBYrtu_l6aQpVKvIvSz2CN0kJbueCjqwk3pKd__7vR3gymZ6fmbOTi2-78JS-JGTlO9hcLdbde_R-Vu5D1O6_fJECnw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+learning+of+multiple+Granger+causal+networks+via+non-convex+regularizations%3A+Inference+of+group-level+brain+connectivity&rft.jtitle=Neural+networks&rft.au=Manomaisaowapak%2C+Parinthorn&rft.au=Songsiri%2C+Jitkomut&rft.date=2022-05-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=149&rft.spage=157&rft_id=info:doi/10.1016%2Fj.neunet.2022.02.005&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |