Joint learning of multiple Granger causal networks via non-convex regularizations: Inference of group-level brain connectivity

This paper considers joint learning of multiple sparse Granger graphical models to discover underlying common and differential Granger causality (GC) structures across multiple time series. This can be applied to drawing group-level brain connectivity inferences from a homogeneous group of subjects...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 149; pp. 157 - 171
Main Authors Manomaisaowapak, Parinthorn, Songsiri, Jitkomut
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.05.2022
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2022.02.005

Cover

Abstract This paper considers joint learning of multiple sparse Granger graphical models to discover underlying common and differential Granger causality (GC) structures across multiple time series. This can be applied to drawing group-level brain connectivity inferences from a homogeneous group of subjects or discovering network differences among groups of signals collected under heterogeneous conditions. By recognizing that the GC of a single multivariate time series can be characterized by common zeros of vector autoregressive (VAR) lag coefficients, a group sparse prior is included in joint regularized least-squares estimations of multiple VAR models. Group-norm regularizations based on group- and fused-lasso penalties encourage a decomposition of multiple networks into a common GC structure, with other remaining parts defined in individual-specific networks. Prior information about sparseness and sparsity patterns of desired GC networks are incorporated as relative weights, while a non-convex group norm in the penalty is proposed to enhance the accuracy of network estimation in low-sample settings. Extensive numerical results on simulations illustrated our method’s improvements over existing sparse estimation approaches on GC network sparsity recovery. Our methods were also applied to available resting-state fMRI time series from the ADHD-200 data sets to learn the differences of causality mechanisms, called effective brain connectivity, between adolescents with ADHD and typically developing children. Our analysis revealed that parts of the causality differences between the two groups often resided in the orbitofrontal region and areas associated with the limbic system, which agreed with clinical findings and data-driven results in previous studies. •Learning common and differential structures of multiple heterogeneous time series.•Group- and fused-lasso with relative weights in non-convex penalties.•Effective brain connectivity differences between ADHD and typically developing children.
AbstractList This paper considers joint learning of multiple sparse Granger graphical models to discover underlying common and differential Granger causality (GC) structures across multiple time series. This can be applied to drawing group-level brain connectivity inferences from a homogeneous group of subjects or discovering network differences among groups of signals collected under heterogeneous conditions. By recognizing that the GC of a single multivariate time series can be characterized by common zeros of vector autoregressive (VAR) lag coefficients, a group sparse prior is included in joint regularized least-squares estimations of multiple VAR models. Group-norm regularizations based on group- and fused-lasso penalties encourage a decomposition of multiple networks into a common GC structure, with other remaining parts defined in individual-specific networks. Prior information about sparseness and sparsity patterns of desired GC networks are incorporated as relative weights, while a non-convex group norm in the penalty is proposed to enhance the accuracy of network estimation in low-sample settings. Extensive numerical results on simulations illustrated our method's improvements over existing sparse estimation approaches on GC network sparsity recovery. Our methods were also applied to available resting-state fMRI time series from the ADHD-200 data sets to learn the differences of causality mechanisms, called effective brain connectivity, between adolescents with ADHD and typically developing children. Our analysis revealed that parts of the causality differences between the two groups often resided in the orbitofrontal region and areas associated with the limbic system, which agreed with clinical findings and data-driven results in previous studies.This paper considers joint learning of multiple sparse Granger graphical models to discover underlying common and differential Granger causality (GC) structures across multiple time series. This can be applied to drawing group-level brain connectivity inferences from a homogeneous group of subjects or discovering network differences among groups of signals collected under heterogeneous conditions. By recognizing that the GC of a single multivariate time series can be characterized by common zeros of vector autoregressive (VAR) lag coefficients, a group sparse prior is included in joint regularized least-squares estimations of multiple VAR models. Group-norm regularizations based on group- and fused-lasso penalties encourage a decomposition of multiple networks into a common GC structure, with other remaining parts defined in individual-specific networks. Prior information about sparseness and sparsity patterns of desired GC networks are incorporated as relative weights, while a non-convex group norm in the penalty is proposed to enhance the accuracy of network estimation in low-sample settings. Extensive numerical results on simulations illustrated our method's improvements over existing sparse estimation approaches on GC network sparsity recovery. Our methods were also applied to available resting-state fMRI time series from the ADHD-200 data sets to learn the differences of causality mechanisms, called effective brain connectivity, between adolescents with ADHD and typically developing children. Our analysis revealed that parts of the causality differences between the two groups often resided in the orbitofrontal region and areas associated with the limbic system, which agreed with clinical findings and data-driven results in previous studies.
This paper considers joint learning of multiple sparse Granger graphical models to discover underlying common and differential Granger causality (GC) structures across multiple time series. This can be applied to drawing group-level brain connectivity inferences from a homogeneous group of subjects or discovering network differences among groups of signals collected under heterogeneous conditions. By recognizing that the GC of a single multivariate time series can be characterized by common zeros of vector autoregressive (VAR) lag coefficients, a group sparse prior is included in joint regularized least-squares estimations of multiple VAR models. Group-norm regularizations based on group- and fused-lasso penalties encourage a decomposition of multiple networks into a common GC structure, with other remaining parts defined in individual-specific networks. Prior information about sparseness and sparsity patterns of desired GC networks are incorporated as relative weights, while a non-convex group norm in the penalty is proposed to enhance the accuracy of network estimation in low-sample settings. Extensive numerical results on simulations illustrated our method’s improvements over existing sparse estimation approaches on GC network sparsity recovery. Our methods were also applied to available resting-state fMRI time series from the ADHD-200 data sets to learn the differences of causality mechanisms, called effective brain connectivity, between adolescents with ADHD and typically developing children. Our analysis revealed that parts of the causality differences between the two groups often resided in the orbitofrontal region and areas associated with the limbic system, which agreed with clinical findings and data-driven results in previous studies. •Learning common and differential structures of multiple heterogeneous time series.•Group- and fused-lasso with relative weights in non-convex penalties.•Effective brain connectivity differences between ADHD and typically developing children.
This paper considers joint learning of multiple sparse Granger graphical models to discover underlying common and differential Granger causality (GC) structures across multiple time series. This can be applied to drawing group-level brain connectivity inferences from a homogeneous group of subjects or discovering network differences among groups of signals collected under heterogeneous conditions. By recognizing that the GC of a single multivariate time series can be characterized by common zeros of vector autoregressive (VAR) lag coefficients, a group sparse prior is included in joint regularized least-squares estimations of multiple VAR models. Group-norm regularizations based on group- and fused-lasso penalties encourage a decomposition of multiple networks into a common GC structure, with other remaining parts defined in individual-specific networks. Prior information about sparseness and sparsity patterns of desired GC networks are incorporated as relative weights, while a non-convex group norm in the penalty is proposed to enhance the accuracy of network estimation in low-sample settings. Extensive numerical results on simulations illustrated our method's improvements over existing sparse estimation approaches on GC network sparsity recovery. Our methods were also applied to available resting-state fMRI time series from the ADHD-200 data sets to learn the differences of causality mechanisms, called effective brain connectivity, between adolescents with ADHD and typically developing children. Our analysis revealed that parts of the causality differences between the two groups often resided in the orbitofrontal region and areas associated with the limbic system, which agreed with clinical findings and data-driven results in previous studies.
Author Songsiri, Jitkomut
Manomaisaowapak, Parinthorn
Author_xml – sequence: 1
  givenname: Parinthorn
  orcidid: 0000-0003-3139-0876
  surname: Manomaisaowapak
  fullname: Manomaisaowapak, Parinthorn
  email: parinthorn@gmail.com
– sequence: 2
  givenname: Jitkomut
  orcidid: 0000-0002-2715-8305
  surname: Songsiri
  fullname: Songsiri, Jitkomut
  email: jitkomut.s@chula.ac.th
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35240427$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFb4CQj1yy-F_spAckVEFbVIlL75bjTFZevPZiOynlwGfHy7YcOIA00lzeezP6vTN0EmIAhF5TsqaEynfbdYA5QFkzwtia1CHtM7Sineobpjp2glak63kjSUdO0VnOW0KI7AR_gU55ywQRTK3Qz8_RhYI9mBRc2OA44d3si9t7wFfJhA0kbM2cjcf11n1MXzNenMH1mcbGsMB3nGAze5PcD1NcDPkC34QJEgQLh7RNivO-8bCAx0MyLuBqC2CLW1x5eImeT8ZnePW4z9Hdp493l9fN7Zerm8sPt43lkpWG0X5gcpST7FrR9bSfhFESOjMpTnsydKptlZDctqrvTU8HKSoNOSpiSCsmfo7eHmP3KX6bIRe9c9mC9yZAnLNmkksqeMtVlb55lM7DDka9T25n0oN-QlYF4iiwKeacYPojoUQfmtFbfWxGH5rRpA5pq-3iL5t15TexUqn4_5nfH81QGS0Oks7WHQiPLlWUeozu3wG_ABhRrT4
CitedBy_id crossref_primary_10_1002_bimj_202300370
crossref_primary_10_1016_j_knosys_2024_112926
crossref_primary_10_1109_TIM_2024_3502734
crossref_primary_10_1109_LSP_2024_3418712
Cites_doi 10.1109/ICASSP40776.2020.9054430
10.1103/PhysRevLett.100.144103
10.1109/TMI.2009.2025126
10.1109/TNNLS.2014.2384201
10.1093/braincomms/fcaa196
10.1002/hbm.23092
10.1016/j.neuroimage.2009.08.065
10.1016/j.neuroimage.2009.10.003
10.1089/brain.2012.0091
10.1017/S1092852915000383
10.1016/j.csda.2008.05.006
10.1016/j.neuroimage.2016.06.034
10.1111/j.1467-9868.2005.00532.x
10.7461/jcen.2016.18.3.223
10.1111/rssb.12033
10.1093/bioinformatics/btq377
10.1016/S1364-6613(00)01483-2
10.1103/PhysRevE.91.040101
10.1016/j.neunet.2020.01.022
10.1214/16-EJS1137
10.1016/j.ecosta.2018.08.001
10.1016/j.tics.2013.06.009
10.1093/biomet/asn034
10.1093/biostatistics/kxm045
10.24963/ijcai.2018/282
10.1016/j.neunet.2018.02.016
10.3389/fnins.2013.00064
10.1038/ijo.2014.121
10.1016/j.eswa.2017.08.044
10.1109/ACCESS.2018.2880454
10.1016/j.csda.2019.05.007
10.1109/ASCC.2015.7244429
10.3389/fpsyt.2019.00692
10.1016/j.sigpro.2016.03.009
10.1016/j.envint.2020.105558
10.1371/journal.pone.0215720
10.1093/bioinformatics/btp199
10.1093/biomet/asq060
10.1016/j.neuroimage.2011.02.064
10.1016/S0074-7742(04)62006-X
10.1080/10618600.2014.956876
10.1109/ACCESS.2020.2982401
10.1016/j.biopsych.2011.11.003
10.1016/j.neunet.2012.11.004
10.1111/rssc.12231
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2022.02.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 171
ExternalDocumentID 35240427
10_1016_j_neunet_2022_02_005
S0893608022000387
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c362t-219b26d6f68548919f4a76e8af73190b87557463c5799a91b640056d70a054f3
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Sun Sep 28 05:28:08 EDT 2025
Wed Feb 19 02:26:12 EST 2025
Thu Oct 16 04:43:32 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Fri Feb 23 02:39:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Effective brain connectivity
Granger causality
Non-convex penalty
Composite penalty
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-219b26d6f68548919f4a76e8af73190b87557463c5799a91b640056d70a054f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3139-0876
0000-0002-2715-8305
PMID 35240427
PQID 2636143537
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2636143537
pubmed_primary_35240427
crossref_primary_10_1016_j_neunet_2022_02_005
crossref_citationtrail_10_1016_j_neunet_2022_02_005
elsevier_sciencedirect_doi_10_1016_j_neunet_2022_02_005
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
2022-May
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guo, Levina, Michailidis, Zhu (b18) 2011; 98
Hu, Li, Meng, Qin, Yang (b21) 2017; 18
Lozano, Abe, Liu, Rosset (b30) 2009; 25
Shojaie, Michailidis (b41) 2010; 26
Tang, Li, Chen, Zhong, Jiang, Wang (b48) 2020; 8
Rubinov, Sporns (b38) 2010; 52
Tomasi, Volkow (b50) 2012; 71
Manomaisaowapak, Nartkulpat, Songsiri (b33) 2021
Sung, Sun, Taek, Il, Woo, Gee (b47) 2016; 18
Fujita, Sato, Garay-Malpartida, Yamaguchi, Miyano, Sogayar, Ferreira (b16) 2007; 1
(pp. 2042–2048).
Wen, Chu, Liu, Qiu (b52) 2018; 6
Skripnikov, Michailidis (b44) 2019; 139
Bechara (b4) 2004; 62
Chun, Zhang, Zhao (b12) 2015; 24
Saegusa, Shojaie (b39) 2016; 10
Bush, Luu, Posner (b8) 2000; 4
Songsiri (b46) 2017
Friedman, Hastie, Tibshirani (b15) 2007; 9
Liao, Marinazzo, Pan, Gong, Chen (b29) 2009; 28
Gregorova, M., Kalousis, A., & Marchand-Maillet, S. (2015). Learning coherent Granger-causality in panel vector autoregressive models. In
Wang, Leng (b51) 2008; 52
Deshpande, Hu (b14) 2012; 2
Itani, Lecron, Fortemps (b25) 2018; 91
Huang, Chen, Huang (b23) 2018; 29
Danaher, Wang, Witten (b13) 2014; 76
Wilms, Barbaglia, Croux (b53) 2018; 67
Shott, Cornier, Mittal, Pryor, Orr, Brown, Frank (b42) 2015; 39
Xu, Liu, Lin, Yang (b55) 2017
Yuan, Lin (b56) 2006; 68
(pp. 1–4). 2015-07.
Boyd, Parikh, Chu, Peleato, Eckstein (b7) 2011; 3
Liang, Connelly, Calamante (b28) 2016; 37
Aminoff, Kveraga, Bar (b2) 2013; 17
Lavin, Melis, Mikulan, Gelormini, Huepe, Ibanez (b27) 2013; 7
(pp. 1–6).
Itami, Uno (b24) 2002; 13
Lütkepohl (b31) 2005
Skripnikov, Michailidis (b43) 2019; 10
Songsiri, J. (2015). Learning Multiple Granger Graphical Models via Group Fused Lasso. In
(pp. 1160–1164).
Rolls, Cheng, Feng (b37) 2020; 2
de Abril, Yoshimoto, Doya (b1) 2018; 102
Ma, Michailidis (b32) 2016; 17
Manomaisaowapak, P., & Songsiri, J. (2020). Learning A Common Granger Causality Network Using A Non-Convex Regularization. In
Barnett, Seth (b3) 2015; 91
Marinazzo, Pellicoro, Stramaglia (b35) 2008; 100
Zhou, Fang, Lan, Sun, Cao, Wang, Luo, Zang, Zhang (b57) 2019; 10
Hahn, Stein, Windischberger, Weissenbacher, Spindelegger, Moser, Kasper, Lanzenberger (b19) 2011; 56
Bore, Li, Harmah, Li, Yao, Xu (b6) 2020; 124
Hara, Washio (b20) 2013; 38
Huang, Chen (b22) 2014; 26
Bellec, Chu, Chouinard-Decorte, Benhajali, Margulies, Craddock (b5) 2017; 144
Chen, Chen (b9) 2008; 95
Seymour, Reinblatt, Benson, Carnell (b40) 2015; 20
Chikahara, Y., & Fujino, A. (2018). Causal Inference in Time Series via Supervised Learning. In
Itani, Rossignol, Lecron, Fortemps (b26) 2019; 14
Tao, Huang, Wang, Xi, Li (b49) 2016; 128
Chen, Chen, Zhao, Kwan, Cai, Zhuang, Zhao, Wang, Chen, Yang, Li, He, Gao, Wang, Xu (b10) 2020; 139
Xu, Figueiredo, Goldstein (b54) 2017; vol. 54
Ramsey, Hanson, Hanson, Halchenko, Poldrack, Glymour (b36) 2010; 49
Bellec (10.1016/j.neunet.2022.02.005_b5) 2017; 144
Marinazzo (10.1016/j.neunet.2022.02.005_b35) 2008; 100
Manomaisaowapak (10.1016/j.neunet.2022.02.005_b33) 2021
Yuan (10.1016/j.neunet.2022.02.005_b56) 2006; 68
Saegusa (10.1016/j.neunet.2022.02.005_b39) 2016; 10
Ma (10.1016/j.neunet.2022.02.005_b32) 2016; 17
Rubinov (10.1016/j.neunet.2022.02.005_b38) 2010; 52
10.1016/j.neunet.2022.02.005_b17
10.1016/j.neunet.2022.02.005_b11
Danaher (10.1016/j.neunet.2022.02.005_b13) 2014; 76
Xu (10.1016/j.neunet.2022.02.005_b55) 2017
Hahn (10.1016/j.neunet.2022.02.005_b19) 2011; 56
Chun (10.1016/j.neunet.2022.02.005_b12) 2015; 24
Itami (10.1016/j.neunet.2022.02.005_b24) 2002; 13
Skripnikov (10.1016/j.neunet.2022.02.005_b43) 2019; 10
Skripnikov (10.1016/j.neunet.2022.02.005_b44) 2019; 139
Barnett (10.1016/j.neunet.2022.02.005_b3) 2015; 91
Aminoff (10.1016/j.neunet.2022.02.005_b2) 2013; 17
de Abril (10.1016/j.neunet.2022.02.005_b1) 2018; 102
10.1016/j.neunet.2022.02.005_b45
Tang (10.1016/j.neunet.2022.02.005_b48) 2020; 8
Xu (10.1016/j.neunet.2022.02.005_b54) 2017; vol. 54
Liao (10.1016/j.neunet.2022.02.005_b29) 2009; 28
Guo (10.1016/j.neunet.2022.02.005_b18) 2011; 98
Chen (10.1016/j.neunet.2022.02.005_b9) 2008; 95
Itani (10.1016/j.neunet.2022.02.005_b25) 2018; 91
Songsiri (10.1016/j.neunet.2022.02.005_b46) 2017
Chen (10.1016/j.neunet.2022.02.005_b10) 2020; 139
Bechara (10.1016/j.neunet.2022.02.005_b4) 2004; 62
Lütkepohl (10.1016/j.neunet.2022.02.005_b31) 2005
Shott (10.1016/j.neunet.2022.02.005_b42) 2015; 39
Tomasi (10.1016/j.neunet.2022.02.005_b50) 2012; 71
Tao (10.1016/j.neunet.2022.02.005_b49) 2016; 128
Lavin (10.1016/j.neunet.2022.02.005_b27) 2013; 7
Liang (10.1016/j.neunet.2022.02.005_b28) 2016; 37
Bore (10.1016/j.neunet.2022.02.005_b6) 2020; 124
Fujita (10.1016/j.neunet.2022.02.005_b16) 2007; 1
10.1016/j.neunet.2022.02.005_b34
Shojaie (10.1016/j.neunet.2022.02.005_b41) 2010; 26
Friedman (10.1016/j.neunet.2022.02.005_b15) 2007; 9
Hara (10.1016/j.neunet.2022.02.005_b20) 2013; 38
Seymour (10.1016/j.neunet.2022.02.005_b40) 2015; 20
Hu (10.1016/j.neunet.2022.02.005_b21) 2017; 18
Huang (10.1016/j.neunet.2022.02.005_b22) 2014; 26
Zhou (10.1016/j.neunet.2022.02.005_b57) 2019; 10
Wilms (10.1016/j.neunet.2022.02.005_b53) 2018; 67
Boyd (10.1016/j.neunet.2022.02.005_b7) 2011; 3
Lozano (10.1016/j.neunet.2022.02.005_b30) 2009; 25
Sung (10.1016/j.neunet.2022.02.005_b47) 2016; 18
Wen (10.1016/j.neunet.2022.02.005_b52) 2018; 6
Wang (10.1016/j.neunet.2022.02.005_b51) 2008; 52
Rolls (10.1016/j.neunet.2022.02.005_b37) 2020; 2
Deshpande (10.1016/j.neunet.2022.02.005_b14) 2012; 2
Bush (10.1016/j.neunet.2022.02.005_b8) 2000; 4
Ramsey (10.1016/j.neunet.2022.02.005_b36) 2010; 49
Huang (10.1016/j.neunet.2022.02.005_b23) 2018; 29
Itani (10.1016/j.neunet.2022.02.005_b26) 2019; 14
References_xml – volume: 18
  start-page: 223
  year: 2016
  end-page: 228
  ident: b47
  article-title: Relationship between gyrus rectus resection and cognitive impairment after surgery for ruptured anterior communicating artery aneurysms
  publication-title: Journal of Cerebrovascular and Endovascular Neurosurgery
– reference: Manomaisaowapak, P., & Songsiri, J. (2020). Learning A Common Granger Causality Network Using A Non-Convex Regularization. In
– volume: 25
  start-page: i110
  year: 2009
  end-page: i118
  ident: b30
  article-title: Grouped graphical Granger modeling for gene expression regulatory networks discovery
  publication-title: Bioinformatics
– volume: 1
  year: 2007
  ident: b16
  article-title: Modeling gene expression regulatory networks with the sparse vector autoregressive model
  publication-title: BMC Systems Biology
– volume: 139
  start-page: 164
  year: 2019
  end-page: 177
  ident: b44
  article-title: Regularized joint estimation of related vector autoregressive models
  publication-title: Computational Statistics & Data Analysis
– reference: (pp. 1160–1164).
– volume: 37
  start-page: 1162
  year: 2016
  end-page: 1177
  ident: b28
  article-title: A novel joint sparse partial correlation method for estimating group functional networks
  publication-title: Human Brain Mapping
– volume: 2
  start-page: 235
  year: 2012
  end-page: 245
  ident: b14
  article-title: Investigating effective brain connectivity from fMRI data: past findings and current issues with reference to Granger causality analysis
  publication-title: Brain Connectivity
– volume: 7
  start-page: 64
  year: 2013
  ident: b27
  article-title: The anterior cingulate cortex: an integrative hub for human socially-driven interactions
  publication-title: Frontiers in Neuroscience
– volume: 102
  start-page: 120
  year: 2018
  end-page: 137
  ident: b1
  article-title: Connectivity inference from neural recording data: Challenges, mathematical bases and research directions
  publication-title: Neural Networks
– volume: 26
  start-page: 2606
  year: 2014
  end-page: 2620
  ident: b22
  article-title: Joint learning of multiple sparse matrix Gaussian graphical models
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 29
  start-page: 3034
  year: 2018
  end-page: 3046
  ident: b23
  article-title: Joint estimation of multiple conditional Gaussian graphical models
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2021
  ident: b33
  article-title: Granger causailty inference in EEG source connectivity analysis: A state-space approach
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 6
  start-page: 69883
  year: 2018
  end-page: 69906
  ident: b52
  article-title: A survey on nonconvex regularization-based sparse and low-rank recovery in signal processing, statistics, and machine learning
  publication-title: IEEE Access
– volume: 18
  start-page: 1
  year: 2017
  end-page: 52
  ident: b21
  article-title: Group sparse optimization via
  publication-title: Journal of Machine Learning Research
– volume: 24
  start-page: 954
  year: 2015
  end-page: 974
  ident: b12
  article-title: Gene regulation network inference with joint sparse Gaussian graphical models
  publication-title: Journal of Computational and Graphical Statistics
– volume: 10
  start-page: 692
  year: 2019
  ident: b57
  article-title: Inconsistency in abnormal functional connectivity across datasets of ADHD-200 in children with attention deficit hyperactivity disorder
  publication-title: Frontiers in Psychiatry
– volume: 17
  start-page: 1
  year: 2016
  end-page: 48
  ident: b32
  article-title: Joint structural estimation of multiple graphical models
  publication-title: Journal of Machine Learning Research
– volume: 17
  start-page: 379
  year: 2013
  end-page: 390
  ident: b2
  article-title: The role of the parahippocampal cortex in cognition
  publication-title: Trends in Cognitive Sciences
– start-page: 1
  year: 2017
  end-page: 11
  ident: b55
  article-title: ADMM without a fixed penalty parameter: Faster convergence with new adaptive penalization
  publication-title: Advances in neural information processing systems. Vol. 30
– volume: 139
  year: 2020
  ident: b10
  article-title: Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism
  publication-title: Environment International
– volume: 144
  start-page: 275
  year: 2017
  end-page: 286
  ident: b5
  article-title: The neuro bureau ADHD-200 preprocessed repository
  publication-title: NeuroImage
– volume: 124
  start-page: 213
  year: 2020
  end-page: 222
  ident: b6
  article-title: Directed EEG neural network analysis by LAPPS (
  publication-title: Neural Networks
– volume: 62
  start-page: 159
  year: 2004
  end-page: 193
  ident: b4
  article-title: Disturbances of emotion regulation after focal brain lesions
  publication-title: International Review of Neurobiology
– volume: 49
  start-page: 1545
  year: 2010
  end-page: 1558
  ident: b36
  article-title: Six problems for causal inference from fMRI
  publication-title: NeuroImage
– volume: 67
  start-page: 435
  year: 2018
  end-page: 452
  ident: b53
  article-title: Multiclass vector auto-regressive models for multistore sales data
  publication-title: Journal of the Royal Statistical Society. Series C. Applied Statistics
– volume: 9
  start-page: 432
  year: 2007
  end-page: 441
  ident: b15
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics
– volume: 2
  year: 2020
  ident: b37
  article-title: The orbitofrontal cortex: reward, emotion and depression
  publication-title: Brain Communications
– volume: 91
  start-page: 36
  year: 2018
  end-page: 45
  ident: b25
  article-title: A multi-level classification framework for multi-site medical data: application to the ADHD-200 collection
  publication-title: Expert Systems with Applications
– volume: 52
  start-page: 5277
  year: 2008
  end-page: 5286
  ident: b51
  article-title: A note on adaptive group lasso
  publication-title: Computational Statistics & Data Analysis
– volume: 91
  start-page: 1
  year: 2015
  end-page: 6
  ident: b3
  article-title: Granger causality for state-space models
  publication-title: Physical Review E
– volume: 10
  start-page: 120
  year: 2019
  end-page: 133
  ident: b43
  article-title: Joint estimation of multiple network Granger causal models
  publication-title: Econometrics and Statistics
– volume: 39
  start-page: 214
  year: 2015
  end-page: 221
  ident: b42
  article-title: Orbitofrontal cortex volume and brain reward response in obesity
  publication-title: International Journal of Obesity
– reference: (pp. 1–6).
– volume: 20
  start-page: 401
  year: 2015
  end-page: 411
  ident: b40
  article-title: Overlapping neurobehavioral circuits in ADHD, obesity, and binge eating: evidence from neuroimaging research
  publication-title: CNS Spectrums
– volume: 95
  start-page: 759
  year: 2008
  end-page: 771
  ident: b9
  article-title: Extended Bayesian information critera for model selection with large model spaces
  publication-title: Biometrika
– volume: 38
  start-page: 23
  year: 2013
  end-page: 38
  ident: b20
  article-title: Learning a common substructure of multiple graphical Gaussian models
  publication-title: Neural Networks
– volume: 13
  year: 2002
  ident: b24
  article-title: Orbitofrontal cortex dysfunction in attention-deficit hyperactivity disorder revealed by reversal and extinction tasks
  publication-title: NeuroReport
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  ident: b38
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: NeuroImage
– volume: 3
  start-page: 1
  year: 2011
  end-page: 122
  ident: b7
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundation and Trends in Machine Learning
– volume: 128
  start-page: 88
  year: 2016
  end-page: 97
  ident: b49
  article-title: Multiple Gaussian graphical estimation with jointly sparse penalty
  publication-title: Signal Processing
– volume: 76
  start-page: 373
  year: 2014
  end-page: 397
  ident: b13
  article-title: The joint graphical lasso for inverse covariance estimation across multiple classes
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
– volume: 68
  start-page: 49
  year: 2006
  end-page: 67
  ident: b56
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: Journal of the Royal Statistical Society. Series B.
– reference: Gregorova, M., Kalousis, A., & Marchand-Maillet, S. (2015). Learning coherent Granger-causality in panel vector autoregressive models. In
– volume: 28
  start-page: 1825
  year: 2009
  end-page: 1835
  ident: b29
  article-title: Kernel Granger causality mapping effective connectivity on fMRI data
  publication-title: IEEE Transactions on Medical Imaging
– volume: 14
  start-page: 1
  year: 2019
  end-page: 20
  ident: b26
  article-title: Towards interpretable machine learning models for diagnosis aid: A case study on attention deficit/hyperactivity disorder
  publication-title: PLoS One
– volume: vol. 54
  start-page: 718
  year: 2017
  end-page: 727
  ident: b54
  article-title: Adaptive ADMM with spectral penalty parameter selection
  publication-title: Proceedings of the 20th international conference on artificial intelligence and statistics
– volume: 8
  start-page: 56228
  year: 2020
  end-page: 56237
  ident: b48
  article-title: High-accuracy classification of attention deficit hyperactivity disorder with
  publication-title: IEEE Access
– volume: 56
  start-page: 881
  year: 2011
  end-page: 889
  ident: b19
  article-title: Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder
  publication-title: NeuroImage
– year: 2017
  ident: b46
  article-title: Estimations in learning Granger graphical models with application to fMRI time series
– reference: Chikahara, Y., & Fujino, A. (2018). Causal Inference in Time Series via Supervised Learning. In
– volume: 98
  start-page: 1
  year: 2011
  end-page: 15
  ident: b18
  article-title: Joint estimation of multiple graphical models
  publication-title: Biometrika
– year: 2005
  ident: b31
  article-title: New introduction to multiple time series analysis
– volume: 71
  start-page: 443
  year: 2012
  end-page: 450
  ident: b50
  article-title: Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder
  publication-title: Biological Psychiatry
– reference: (pp. 1–4). 2015-07.
– volume: 26
  start-page: i517
  year: 2010
  end-page: i523
  ident: b41
  article-title: Discovering graphical Granger causality using the truncating lasso penalty
  publication-title: Bioinformatics
– volume: 10
  start-page: 1341
  year: 2016
  end-page: 1392
  ident: b39
  article-title: Joint estimation of precision matrices in heterogeneous populations
  publication-title: Electronic Journal of Statistics
– volume: 100
  year: 2008
  ident: b35
  article-title: Kernel method for nonlinear Granger causality
  publication-title: Physical Review Letters
– reference: (pp. 2042–2048).
– reference: Songsiri, J. (2015). Learning Multiple Granger Graphical Models via Group Fused Lasso. In
– volume: 4
  year: 2000
  ident: b8
  article-title: Cognitive and emotional influences in anterior cingulate cortex
  publication-title: Trends in Cognitive Sciences
– ident: 10.1016/j.neunet.2022.02.005_b34
  doi: 10.1109/ICASSP40776.2020.9054430
– volume: 100
  issue: 14
  year: 2008
  ident: 10.1016/j.neunet.2022.02.005_b35
  article-title: Kernel method for nonlinear Granger causality
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.100.144103
– volume: 29
  start-page: 3034
  issue: 7
  year: 2018
  ident: 10.1016/j.neunet.2022.02.005_b23
  article-title: Joint estimation of multiple conditional Gaussian graphical models
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 28
  start-page: 1825
  issue: 11
  year: 2009
  ident: 10.1016/j.neunet.2022.02.005_b29
  article-title: Kernel Granger causality mapping effective connectivity on fMRI data
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2009.2025126
– volume: 26
  start-page: 2606
  issue: 11
  year: 2014
  ident: 10.1016/j.neunet.2022.02.005_b22
  article-title: Joint learning of multiple sparse matrix Gaussian graphical models
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2014.2384201
– volume: 2
  issue: 2
  year: 2020
  ident: 10.1016/j.neunet.2022.02.005_b37
  article-title: The orbitofrontal cortex: reward, emotion and depression
  publication-title: Brain Communications
  doi: 10.1093/braincomms/fcaa196
– start-page: 1
  year: 2017
  ident: 10.1016/j.neunet.2022.02.005_b55
  article-title: ADMM without a fixed penalty parameter: Faster convergence with new adaptive penalization
– volume: 37
  start-page: 1162
  issue: 3
  year: 2016
  ident: 10.1016/j.neunet.2022.02.005_b28
  article-title: A novel joint sparse partial correlation method for estimating group functional networks
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23092
– volume: 49
  start-page: 1545
  issue: 2
  year: 2010
  ident: 10.1016/j.neunet.2022.02.005_b36
  article-title: Six problems for causal inference from fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.08.065
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  ident: 10.1016/j.neunet.2022.02.005_b38
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.003
– year: 2017
  ident: 10.1016/j.neunet.2022.02.005_b46
– volume: 2
  start-page: 235
  issue: 5
  year: 2012
  ident: 10.1016/j.neunet.2022.02.005_b14
  article-title: Investigating effective brain connectivity from fMRI data: past findings and current issues with reference to Granger causality analysis
  publication-title: Brain Connectivity
  doi: 10.1089/brain.2012.0091
– volume: 20
  start-page: 401
  issue: 4
  year: 2015
  ident: 10.1016/j.neunet.2022.02.005_b40
  article-title: Overlapping neurobehavioral circuits in ADHD, obesity, and binge eating: evidence from neuroimaging research
  publication-title: CNS Spectrums
  doi: 10.1017/S1092852915000383
– volume: 52
  start-page: 5277
  issue: 12
  year: 2008
  ident: 10.1016/j.neunet.2022.02.005_b51
  article-title: A note on adaptive group lasso
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2008.05.006
– volume: 144
  start-page: 275
  year: 2017
  ident: 10.1016/j.neunet.2022.02.005_b5
  article-title: The neuro bureau ADHD-200 preprocessed repository
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.06.034
– volume: 68
  start-page: 49
  year: 2006
  ident: 10.1016/j.neunet.2022.02.005_b56
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: Journal of the Royal Statistical Society. Series B.
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 18
  start-page: 223
  issue: 3
  year: 2016
  ident: 10.1016/j.neunet.2022.02.005_b47
  article-title: Relationship between gyrus rectus resection and cognitive impairment after surgery for ruptured anterior communicating artery aneurysms
  publication-title: Journal of Cerebrovascular and Endovascular Neurosurgery
  doi: 10.7461/jcen.2016.18.3.223
– volume: 76
  start-page: 373
  issue: 2
  year: 2014
  ident: 10.1016/j.neunet.2022.02.005_b13
  article-title: The joint graphical lasso for inverse covariance estimation across multiple classes
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
  doi: 10.1111/rssb.12033
– volume: 26
  start-page: i517
  issue: 18
  year: 2010
  ident: 10.1016/j.neunet.2022.02.005_b41
  article-title: Discovering graphical Granger causality using the truncating lasso penalty
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq377
– volume: 4
  issue: 6
  year: 2000
  ident: 10.1016/j.neunet.2022.02.005_b8
  article-title: Cognitive and emotional influences in anterior cingulate cortex
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/S1364-6613(00)01483-2
– year: 2021
  ident: 10.1016/j.neunet.2022.02.005_b33
  article-title: Granger causailty inference in EEG source connectivity analysis: A state-space approach
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 91
  start-page: 1
  issue: 4
  year: 2015
  ident: 10.1016/j.neunet.2022.02.005_b3
  article-title: Granger causality for state-space models
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.91.040101
– volume: 124
  start-page: 213
  year: 2020
  ident: 10.1016/j.neunet.2022.02.005_b6
  article-title: Directed EEG neural network analysis by LAPPS (p≤1) penalized sparse Granger approach
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.01.022
– volume: 10
  start-page: 1341
  issue: 1
  year: 2016
  ident: 10.1016/j.neunet.2022.02.005_b39
  article-title: Joint estimation of precision matrices in heterogeneous populations
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/16-EJS1137
– volume: 10
  start-page: 120
  year: 2019
  ident: 10.1016/j.neunet.2022.02.005_b43
  article-title: Joint estimation of multiple network Granger causal models
  publication-title: Econometrics and Statistics
  doi: 10.1016/j.ecosta.2018.08.001
– volume: 17
  start-page: 1
  issue: 166
  year: 2016
  ident: 10.1016/j.neunet.2022.02.005_b32
  article-title: Joint structural estimation of multiple graphical models
  publication-title: Journal of Machine Learning Research
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.neunet.2022.02.005_b7
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundation and Trends in Machine Learning
– volume: 13
  issue: 8
  year: 2002
  ident: 10.1016/j.neunet.2022.02.005_b24
  article-title: Orbitofrontal cortex dysfunction in attention-deficit hyperactivity disorder revealed by reversal and extinction tasks
  publication-title: NeuroReport
– volume: 17
  start-page: 379
  issue: 8
  year: 2013
  ident: 10.1016/j.neunet.2022.02.005_b2
  article-title: The role of the parahippocampal cortex in cognition
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2013.06.009
– volume: 95
  start-page: 759
  year: 2008
  ident: 10.1016/j.neunet.2022.02.005_b9
  article-title: Extended Bayesian information critera for model selection with large model spaces
  publication-title: Biometrika
  doi: 10.1093/biomet/asn034
– volume: 9
  start-page: 432
  issue: 3
  year: 2007
  ident: 10.1016/j.neunet.2022.02.005_b15
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxm045
– ident: 10.1016/j.neunet.2022.02.005_b17
– ident: 10.1016/j.neunet.2022.02.005_b11
  doi: 10.24963/ijcai.2018/282
– volume: 102
  start-page: 120
  year: 2018
  ident: 10.1016/j.neunet.2022.02.005_b1
  article-title: Connectivity inference from neural recording data: Challenges, mathematical bases and research directions
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.02.016
– volume: 7
  start-page: 64
  year: 2013
  ident: 10.1016/j.neunet.2022.02.005_b27
  article-title: The anterior cingulate cortex: an integrative hub for human socially-driven interactions
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2013.00064
– volume: 39
  start-page: 214
  issue: 2
  year: 2015
  ident: 10.1016/j.neunet.2022.02.005_b42
  article-title: Orbitofrontal cortex volume and brain reward response in obesity
  publication-title: International Journal of Obesity
  doi: 10.1038/ijo.2014.121
– volume: 91
  start-page: 36
  year: 2018
  ident: 10.1016/j.neunet.2022.02.005_b25
  article-title: A multi-level classification framework for multi-site medical data: application to the ADHD-200 collection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.08.044
– volume: 6
  start-page: 69883
  year: 2018
  ident: 10.1016/j.neunet.2022.02.005_b52
  article-title: A survey on nonconvex regularization-based sparse and low-rank recovery in signal processing, statistics, and machine learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2880454
– volume: 139
  start-page: 164
  year: 2019
  ident: 10.1016/j.neunet.2022.02.005_b44
  article-title: Regularized joint estimation of related vector autoregressive models
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2019.05.007
– year: 2005
  ident: 10.1016/j.neunet.2022.02.005_b31
– ident: 10.1016/j.neunet.2022.02.005_b45
  doi: 10.1109/ASCC.2015.7244429
– volume: 10
  start-page: 692
  year: 2019
  ident: 10.1016/j.neunet.2022.02.005_b57
  article-title: Inconsistency in abnormal functional connectivity across datasets of ADHD-200 in children with attention deficit hyperactivity disorder
  publication-title: Frontiers in Psychiatry
  doi: 10.3389/fpsyt.2019.00692
– volume: 128
  start-page: 88
  year: 2016
  ident: 10.1016/j.neunet.2022.02.005_b49
  article-title: Multiple Gaussian graphical estimation with jointly sparse penalty
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2016.03.009
– volume: 139
  year: 2020
  ident: 10.1016/j.neunet.2022.02.005_b10
  article-title: Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism
  publication-title: Environment International
  doi: 10.1016/j.envint.2020.105558
– volume: 14
  start-page: 1
  issue: 4
  year: 2019
  ident: 10.1016/j.neunet.2022.02.005_b26
  article-title: Towards interpretable machine learning models for diagnosis aid: A case study on attention deficit/hyperactivity disorder
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0215720
– volume: 25
  start-page: i110
  issue: 12
  year: 2009
  ident: 10.1016/j.neunet.2022.02.005_b30
  article-title: Grouped graphical Granger modeling for gene expression regulatory networks discovery
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp199
– volume: 98
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.neunet.2022.02.005_b18
  article-title: Joint estimation of multiple graphical models
  publication-title: Biometrika
  doi: 10.1093/biomet/asq060
– volume: 56
  start-page: 881
  issue: 3
  year: 2011
  ident: 10.1016/j.neunet.2022.02.005_b19
  article-title: Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.02.064
– volume: 62
  start-page: 159
  year: 2004
  ident: 10.1016/j.neunet.2022.02.005_b4
  article-title: Disturbances of emotion regulation after focal brain lesions
  publication-title: International Review of Neurobiology
  doi: 10.1016/S0074-7742(04)62006-X
– volume: 18
  start-page: 1
  issue: 30
  year: 2017
  ident: 10.1016/j.neunet.2022.02.005_b21
  article-title: Group sparse optimization via ℓp,q regularization
  publication-title: Journal of Machine Learning Research
– volume: 1
  issue: 39
  year: 2007
  ident: 10.1016/j.neunet.2022.02.005_b16
  article-title: Modeling gene expression regulatory networks with the sparse vector autoregressive model
  publication-title: BMC Systems Biology
– volume: 24
  start-page: 954
  issue: 4
  year: 2015
  ident: 10.1016/j.neunet.2022.02.005_b12
  article-title: Gene regulation network inference with joint sparse Gaussian graphical models
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2014.956876
– volume: vol. 54
  start-page: 718
  year: 2017
  ident: 10.1016/j.neunet.2022.02.005_b54
  article-title: Adaptive ADMM with spectral penalty parameter selection
– volume: 8
  start-page: 56228
  year: 2020
  ident: 10.1016/j.neunet.2022.02.005_b48
  article-title: High-accuracy classification of attention deficit hyperactivity disorder with ℓ2,1-norm linear discriminant analysis and binary hypothesis testing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982401
– volume: 71
  start-page: 443
  issue: 5
  year: 2012
  ident: 10.1016/j.neunet.2022.02.005_b50
  article-title: Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder
  publication-title: Biological Psychiatry
  doi: 10.1016/j.biopsych.2011.11.003
– volume: 38
  start-page: 23
  year: 2013
  ident: 10.1016/j.neunet.2022.02.005_b20
  article-title: Learning a common substructure of multiple graphical Gaussian models
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.11.004
– volume: 67
  start-page: 435
  issue: 2
  year: 2018
  ident: 10.1016/j.neunet.2022.02.005_b53
  article-title: Multiclass vector auto-regressive models for multistore sales data
  publication-title: Journal of the Royal Statistical Society. Series C. Applied Statistics
  doi: 10.1111/rssc.12231
SSID ssj0006843
Score 2.3898308
Snippet This paper considers joint learning of multiple sparse Granger graphical models to discover underlying common and differential Granger causality (GC)...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 157
SubjectTerms Adolescent
Brain - diagnostic imaging
Causality
Child
Composite penalty
Computer Simulation
Effective brain connectivity
Granger causality
Humans
Magnetic Resonance Imaging - methods
Non-convex penalty
Title Joint learning of multiple Granger causal networks via non-convex regularizations: Inference of group-level brain connectivity
URI https://dx.doi.org/10.1016/j.neunet.2022.02.005
https://www.ncbi.nlm.nih.gov/pubmed/35240427
https://www.proquest.com/docview/2636143537
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWcOmFlpbSLQ8Ziau7JnHshBtaQXcXwQUq7c2ynbjaCmXRPhAnfjszdkzVwwqpUi6JbMfyjD0z8jfzEXJqCssF6C2zpcmZqKRlBuwo876sjcu9k6F88c2tHP0Sk2kx7ZFhyoVBWGV39sczPZzW3ZdBt5qDx9lscMfB1MqYKor3W5hRLoRCFoMfL39hHrKMyDlozLB1Sp8LGK-2WbcNIiqzLFbuLDaZp03uZzBDV5_ITuc_0os4xV3Sa9rP5GPiZqDdVv1CXibzWbuiHSnEbzr3NGEH6c9FSPalzqyXMFYbkeBL-jQztJ23LCDRn-ki0NQvUqLmOR2n5EAcLaSDsAfEHFGLPBPUIWbGRTaKPXJ_dXk_HLGOa4E5MGErBgeXzWQtvSwhhqnOKi-Mkk1pvIJNyi2ENYUSMneFqipTnVkpsIporbgBp8_nX8kWTLD5RmhWOwiTuLOCl6JyCiu8W9OIulYeYhfeJ3laYe26OuRIh_GgE-Dsj45y0SgXzeHhRZ-wt16PsQ7HO-1VEp7-R580mIp3ep4kWWvYanh_Ytpmvl7qTOYS3ctc9cl-VIK3uYAfK5C25Pt___eAfMC3CKY8JFurxbo5AodnZY-DRh-T7Yvx9ej2FZmwAQo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RemgvpS19LPThSlzdNYljJ9wQKl0ocOlW4mbZTlxthbJoH1VP_PbO2DGoB4RUKafEdizP2DMjfzMfwJ6tnJCot9zVtuSyUY5btKM8hLq1vgxexfLF5xdq8kOeXlaXG3CUc2EIVjmc_elMj6f18GY8rOb4ejYbfxdoalVKFaX7Lf0IHsuq0BSBfb65w3moOkHnsDWn5jl_LoK8-m7ddwSpLIpUurO6zz7d539GO3T8HJ4NDiQ7THN8ARtd_xK2MjkDG_bqNtyczmf9ig2sED_ZPLAMHmRfFzHbl3m7XuJYfYKCL9nvmWX9vOcRiv6HLSJP_SJnah6wk5wdSKPFfBB-RaAj5ohognkCzfhER_EKpsdfpkcTPpAtcI82bMXx5HKFalVQNQYxzX4TpNWqq23QuEuFw7im0lKVvtJNY5t9pySVEW21sOj1hfI1bOIEu7fAitZjnCS8k6KWjddU4t3ZTratDhi8iBGUeYWNHwqREx_GlcmIs18mycWQXIzAR1Qj4Le9rlMhjgfa6yw8849CGbQVD_T8lGVtcK_RBYrtu_l6aQpVKvIvSz2CN0kJbueCjqwk3pKd__7vR3gymZ6fmbOTi2-78JS-JGTlO9hcLdbde_R-Vu5D1O6_fJECnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+learning+of+multiple+Granger+causal+networks+via+non-convex+regularizations%3A+Inference+of+group-level+brain+connectivity&rft.jtitle=Neural+networks&rft.au=Manomaisaowapak%2C+Parinthorn&rft.au=Songsiri%2C+Jitkomut&rft.date=2022-05-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=149&rft.spage=157&rft_id=info:doi/10.1016%2Fj.neunet.2022.02.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon